1/*
2 * Copyright (C) 2012 Avionic Design GmbH
3 * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
9
10#include <linux/clk.h>
11#include <linux/debugfs.h>
12#include <linux/iommu.h>
13#include <linux/reset.h>
14
15#include <soc/tegra/pmc.h>
16
17#include "dc.h"
18#include "drm.h"
19#include "gem.h"
20
21#include <drm/drm_atomic.h>
22#include <drm/drm_atomic_helper.h>
23#include <drm/drm_plane_helper.h>
24
25struct tegra_dc_soc_info {
26	bool supports_border_color;
27	bool supports_interlacing;
28	bool supports_cursor;
29	bool supports_block_linear;
30	unsigned int pitch_align;
31	bool has_powergate;
32};
33
34struct tegra_plane {
35	struct drm_plane base;
36	unsigned int index;
37};
38
39static inline struct tegra_plane *to_tegra_plane(struct drm_plane *plane)
40{
41	return container_of(plane, struct tegra_plane, base);
42}
43
44struct tegra_dc_state {
45	struct drm_crtc_state base;
46
47	struct clk *clk;
48	unsigned long pclk;
49	unsigned int div;
50
51	u32 planes;
52};
53
54static inline struct tegra_dc_state *to_dc_state(struct drm_crtc_state *state)
55{
56	if (state)
57		return container_of(state, struct tegra_dc_state, base);
58
59	return NULL;
60}
61
62struct tegra_plane_state {
63	struct drm_plane_state base;
64
65	struct tegra_bo_tiling tiling;
66	u32 format;
67	u32 swap;
68};
69
70static inline struct tegra_plane_state *
71to_tegra_plane_state(struct drm_plane_state *state)
72{
73	if (state)
74		return container_of(state, struct tegra_plane_state, base);
75
76	return NULL;
77}
78
79static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
80{
81	stats->frames = 0;
82	stats->vblank = 0;
83	stats->underflow = 0;
84	stats->overflow = 0;
85}
86
87/*
88 * Reads the active copy of a register. This takes the dc->lock spinlock to
89 * prevent races with the VBLANK processing which also needs access to the
90 * active copy of some registers.
91 */
92static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
93{
94	unsigned long flags;
95	u32 value;
96
97	spin_lock_irqsave(&dc->lock, flags);
98
99	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
100	value = tegra_dc_readl(dc, offset);
101	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
102
103	spin_unlock_irqrestore(&dc->lock, flags);
104	return value;
105}
106
107/*
108 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
109 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
110 * Latching happens mmediately if the display controller is in STOP mode or
111 * on the next frame boundary otherwise.
112 *
113 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
114 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
115 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
116 * into the ACTIVE copy, either immediately if the display controller is in
117 * STOP mode, or at the next frame boundary otherwise.
118 */
119void tegra_dc_commit(struct tegra_dc *dc)
120{
121	tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
122	tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
123}
124
125static int tegra_dc_format(u32 fourcc, u32 *format, u32 *swap)
126{
127	/* assume no swapping of fetched data */
128	if (swap)
129		*swap = BYTE_SWAP_NOSWAP;
130
131	switch (fourcc) {
132	case DRM_FORMAT_XBGR8888:
133		*format = WIN_COLOR_DEPTH_R8G8B8A8;
134		break;
135
136	case DRM_FORMAT_XRGB8888:
137		*format = WIN_COLOR_DEPTH_B8G8R8A8;
138		break;
139
140	case DRM_FORMAT_RGB565:
141		*format = WIN_COLOR_DEPTH_B5G6R5;
142		break;
143
144	case DRM_FORMAT_UYVY:
145		*format = WIN_COLOR_DEPTH_YCbCr422;
146		break;
147
148	case DRM_FORMAT_YUYV:
149		if (swap)
150			*swap = BYTE_SWAP_SWAP2;
151
152		*format = WIN_COLOR_DEPTH_YCbCr422;
153		break;
154
155	case DRM_FORMAT_YUV420:
156		*format = WIN_COLOR_DEPTH_YCbCr420P;
157		break;
158
159	case DRM_FORMAT_YUV422:
160		*format = WIN_COLOR_DEPTH_YCbCr422P;
161		break;
162
163	default:
164		return -EINVAL;
165	}
166
167	return 0;
168}
169
170static bool tegra_dc_format_is_yuv(unsigned int format, bool *planar)
171{
172	switch (format) {
173	case WIN_COLOR_DEPTH_YCbCr422:
174	case WIN_COLOR_DEPTH_YUV422:
175		if (planar)
176			*planar = false;
177
178		return true;
179
180	case WIN_COLOR_DEPTH_YCbCr420P:
181	case WIN_COLOR_DEPTH_YUV420P:
182	case WIN_COLOR_DEPTH_YCbCr422P:
183	case WIN_COLOR_DEPTH_YUV422P:
184	case WIN_COLOR_DEPTH_YCbCr422R:
185	case WIN_COLOR_DEPTH_YUV422R:
186	case WIN_COLOR_DEPTH_YCbCr422RA:
187	case WIN_COLOR_DEPTH_YUV422RA:
188		if (planar)
189			*planar = true;
190
191		return true;
192	}
193
194	if (planar)
195		*planar = false;
196
197	return false;
198}
199
200static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
201				  unsigned int bpp)
202{
203	fixed20_12 outf = dfixed_init(out);
204	fixed20_12 inf = dfixed_init(in);
205	u32 dda_inc;
206	int max;
207
208	if (v)
209		max = 15;
210	else {
211		switch (bpp) {
212		case 2:
213			max = 8;
214			break;
215
216		default:
217			WARN_ON_ONCE(1);
218			/* fallthrough */
219		case 4:
220			max = 4;
221			break;
222		}
223	}
224
225	outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
226	inf.full -= dfixed_const(1);
227
228	dda_inc = dfixed_div(inf, outf);
229	dda_inc = min_t(u32, dda_inc, dfixed_const(max));
230
231	return dda_inc;
232}
233
234static inline u32 compute_initial_dda(unsigned int in)
235{
236	fixed20_12 inf = dfixed_init(in);
237	return dfixed_frac(inf);
238}
239
240static void tegra_dc_setup_window(struct tegra_dc *dc, unsigned int index,
241				  const struct tegra_dc_window *window)
242{
243	unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
244	unsigned long value, flags;
245	bool yuv, planar;
246
247	/*
248	 * For YUV planar modes, the number of bytes per pixel takes into
249	 * account only the luma component and therefore is 1.
250	 */
251	yuv = tegra_dc_format_is_yuv(window->format, &planar);
252	if (!yuv)
253		bpp = window->bits_per_pixel / 8;
254	else
255		bpp = planar ? 1 : 2;
256
257	spin_lock_irqsave(&dc->lock, flags);
258
259	value = WINDOW_A_SELECT << index;
260	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
261
262	tegra_dc_writel(dc, window->format, DC_WIN_COLOR_DEPTH);
263	tegra_dc_writel(dc, window->swap, DC_WIN_BYTE_SWAP);
264
265	value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
266	tegra_dc_writel(dc, value, DC_WIN_POSITION);
267
268	value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
269	tegra_dc_writel(dc, value, DC_WIN_SIZE);
270
271	h_offset = window->src.x * bpp;
272	v_offset = window->src.y;
273	h_size = window->src.w * bpp;
274	v_size = window->src.h;
275
276	value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
277	tegra_dc_writel(dc, value, DC_WIN_PRESCALED_SIZE);
278
279	/*
280	 * For DDA computations the number of bytes per pixel for YUV planar
281	 * modes needs to take into account all Y, U and V components.
282	 */
283	if (yuv && planar)
284		bpp = 2;
285
286	h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
287	v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
288
289	value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
290	tegra_dc_writel(dc, value, DC_WIN_DDA_INC);
291
292	h_dda = compute_initial_dda(window->src.x);
293	v_dda = compute_initial_dda(window->src.y);
294
295	tegra_dc_writel(dc, h_dda, DC_WIN_H_INITIAL_DDA);
296	tegra_dc_writel(dc, v_dda, DC_WIN_V_INITIAL_DDA);
297
298	tegra_dc_writel(dc, 0, DC_WIN_UV_BUF_STRIDE);
299	tegra_dc_writel(dc, 0, DC_WIN_BUF_STRIDE);
300
301	tegra_dc_writel(dc, window->base[0], DC_WINBUF_START_ADDR);
302
303	if (yuv && planar) {
304		tegra_dc_writel(dc, window->base[1], DC_WINBUF_START_ADDR_U);
305		tegra_dc_writel(dc, window->base[2], DC_WINBUF_START_ADDR_V);
306		value = window->stride[1] << 16 | window->stride[0];
307		tegra_dc_writel(dc, value, DC_WIN_LINE_STRIDE);
308	} else {
309		tegra_dc_writel(dc, window->stride[0], DC_WIN_LINE_STRIDE);
310	}
311
312	if (window->bottom_up)
313		v_offset += window->src.h - 1;
314
315	tegra_dc_writel(dc, h_offset, DC_WINBUF_ADDR_H_OFFSET);
316	tegra_dc_writel(dc, v_offset, DC_WINBUF_ADDR_V_OFFSET);
317
318	if (dc->soc->supports_block_linear) {
319		unsigned long height = window->tiling.value;
320
321		switch (window->tiling.mode) {
322		case TEGRA_BO_TILING_MODE_PITCH:
323			value = DC_WINBUF_SURFACE_KIND_PITCH;
324			break;
325
326		case TEGRA_BO_TILING_MODE_TILED:
327			value = DC_WINBUF_SURFACE_KIND_TILED;
328			break;
329
330		case TEGRA_BO_TILING_MODE_BLOCK:
331			value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
332				DC_WINBUF_SURFACE_KIND_BLOCK;
333			break;
334		}
335
336		tegra_dc_writel(dc, value, DC_WINBUF_SURFACE_KIND);
337	} else {
338		switch (window->tiling.mode) {
339		case TEGRA_BO_TILING_MODE_PITCH:
340			value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
341				DC_WIN_BUFFER_ADDR_MODE_LINEAR;
342			break;
343
344		case TEGRA_BO_TILING_MODE_TILED:
345			value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
346				DC_WIN_BUFFER_ADDR_MODE_TILE;
347			break;
348
349		case TEGRA_BO_TILING_MODE_BLOCK:
350			/*
351			 * No need to handle this here because ->atomic_check
352			 * will already have filtered it out.
353			 */
354			break;
355		}
356
357		tegra_dc_writel(dc, value, DC_WIN_BUFFER_ADDR_MODE);
358	}
359
360	value = WIN_ENABLE;
361
362	if (yuv) {
363		/* setup default colorspace conversion coefficients */
364		tegra_dc_writel(dc, 0x00f0, DC_WIN_CSC_YOF);
365		tegra_dc_writel(dc, 0x012a, DC_WIN_CSC_KYRGB);
366		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KUR);
367		tegra_dc_writel(dc, 0x0198, DC_WIN_CSC_KVR);
368		tegra_dc_writel(dc, 0x039b, DC_WIN_CSC_KUG);
369		tegra_dc_writel(dc, 0x032f, DC_WIN_CSC_KVG);
370		tegra_dc_writel(dc, 0x0204, DC_WIN_CSC_KUB);
371		tegra_dc_writel(dc, 0x0000, DC_WIN_CSC_KVB);
372
373		value |= CSC_ENABLE;
374	} else if (window->bits_per_pixel < 24) {
375		value |= COLOR_EXPAND;
376	}
377
378	if (window->bottom_up)
379		value |= V_DIRECTION;
380
381	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
382
383	/*
384	 * Disable blending and assume Window A is the bottom-most window,
385	 * Window C is the top-most window and Window B is in the middle.
386	 */
387	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_NOKEY);
388	tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_1WIN);
389
390	switch (index) {
391	case 0:
392		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_X);
393		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
394		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
395		break;
396
397	case 1:
398		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
399		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_2WIN_Y);
400		tegra_dc_writel(dc, 0x000000, DC_WIN_BLEND_3WIN_XY);
401		break;
402
403	case 2:
404		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_X);
405		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_2WIN_Y);
406		tegra_dc_writel(dc, 0xffff00, DC_WIN_BLEND_3WIN_XY);
407		break;
408	}
409
410	spin_unlock_irqrestore(&dc->lock, flags);
411}
412
413static void tegra_plane_destroy(struct drm_plane *plane)
414{
415	struct tegra_plane *p = to_tegra_plane(plane);
416
417	drm_plane_cleanup(plane);
418	kfree(p);
419}
420
421static const u32 tegra_primary_plane_formats[] = {
422	DRM_FORMAT_XBGR8888,
423	DRM_FORMAT_XRGB8888,
424	DRM_FORMAT_RGB565,
425};
426
427static void tegra_primary_plane_destroy(struct drm_plane *plane)
428{
429	tegra_plane_destroy(plane);
430}
431
432static void tegra_plane_reset(struct drm_plane *plane)
433{
434	struct tegra_plane_state *state;
435
436	if (plane->state)
437		__drm_atomic_helper_plane_destroy_state(plane, plane->state);
438
439	kfree(plane->state);
440	plane->state = NULL;
441
442	state = kzalloc(sizeof(*state), GFP_KERNEL);
443	if (state) {
444		plane->state = &state->base;
445		plane->state->plane = plane;
446	}
447}
448
449static struct drm_plane_state *tegra_plane_atomic_duplicate_state(struct drm_plane *plane)
450{
451	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
452	struct tegra_plane_state *copy;
453
454	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
455	if (!copy)
456		return NULL;
457
458	__drm_atomic_helper_plane_duplicate_state(plane, &copy->base);
459	copy->tiling = state->tiling;
460	copy->format = state->format;
461	copy->swap = state->swap;
462
463	return &copy->base;
464}
465
466static void tegra_plane_atomic_destroy_state(struct drm_plane *plane,
467					     struct drm_plane_state *state)
468{
469	__drm_atomic_helper_plane_destroy_state(plane, state);
470	kfree(state);
471}
472
473static const struct drm_plane_funcs tegra_primary_plane_funcs = {
474	.update_plane = drm_atomic_helper_update_plane,
475	.disable_plane = drm_atomic_helper_disable_plane,
476	.destroy = tegra_primary_plane_destroy,
477	.reset = tegra_plane_reset,
478	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
479	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
480};
481
482static int tegra_plane_prepare_fb(struct drm_plane *plane,
483				  const struct drm_plane_state *new_state)
484{
485	return 0;
486}
487
488static void tegra_plane_cleanup_fb(struct drm_plane *plane,
489				   const struct drm_plane_state *old_fb)
490{
491}
492
493static int tegra_plane_state_add(struct tegra_plane *plane,
494				 struct drm_plane_state *state)
495{
496	struct drm_crtc_state *crtc_state;
497	struct tegra_dc_state *tegra;
498
499	/* Propagate errors from allocation or locking failures. */
500	crtc_state = drm_atomic_get_crtc_state(state->state, state->crtc);
501	if (IS_ERR(crtc_state))
502		return PTR_ERR(crtc_state);
503
504	tegra = to_dc_state(crtc_state);
505
506	tegra->planes |= WIN_A_ACT_REQ << plane->index;
507
508	return 0;
509}
510
511static int tegra_plane_atomic_check(struct drm_plane *plane,
512				    struct drm_plane_state *state)
513{
514	struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
515	struct tegra_bo_tiling *tiling = &plane_state->tiling;
516	struct tegra_plane *tegra = to_tegra_plane(plane);
517	struct tegra_dc *dc = to_tegra_dc(state->crtc);
518	int err;
519
520	/* no need for further checks if the plane is being disabled */
521	if (!state->crtc)
522		return 0;
523
524	err = tegra_dc_format(state->fb->pixel_format, &plane_state->format,
525			      &plane_state->swap);
526	if (err < 0)
527		return err;
528
529	err = tegra_fb_get_tiling(state->fb, tiling);
530	if (err < 0)
531		return err;
532
533	if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
534	    !dc->soc->supports_block_linear) {
535		DRM_ERROR("hardware doesn't support block linear mode\n");
536		return -EINVAL;
537	}
538
539	/*
540	 * Tegra doesn't support different strides for U and V planes so we
541	 * error out if the user tries to display a framebuffer with such a
542	 * configuration.
543	 */
544	if (drm_format_num_planes(state->fb->pixel_format) > 2) {
545		if (state->fb->pitches[2] != state->fb->pitches[1]) {
546			DRM_ERROR("unsupported UV-plane configuration\n");
547			return -EINVAL;
548		}
549	}
550
551	err = tegra_plane_state_add(tegra, state);
552	if (err < 0)
553		return err;
554
555	return 0;
556}
557
558static void tegra_plane_atomic_update(struct drm_plane *plane,
559				      struct drm_plane_state *old_state)
560{
561	struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
562	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
563	struct drm_framebuffer *fb = plane->state->fb;
564	struct tegra_plane *p = to_tegra_plane(plane);
565	struct tegra_dc_window window;
566	unsigned int i;
567
568	/* rien ne va plus */
569	if (!plane->state->crtc || !plane->state->fb)
570		return;
571
572	memset(&window, 0, sizeof(window));
573	window.src.x = plane->state->src_x >> 16;
574	window.src.y = plane->state->src_y >> 16;
575	window.src.w = plane->state->src_w >> 16;
576	window.src.h = plane->state->src_h >> 16;
577	window.dst.x = plane->state->crtc_x;
578	window.dst.y = plane->state->crtc_y;
579	window.dst.w = plane->state->crtc_w;
580	window.dst.h = plane->state->crtc_h;
581	window.bits_per_pixel = fb->bits_per_pixel;
582	window.bottom_up = tegra_fb_is_bottom_up(fb);
583
584	/* copy from state */
585	window.tiling = state->tiling;
586	window.format = state->format;
587	window.swap = state->swap;
588
589	for (i = 0; i < drm_format_num_planes(fb->pixel_format); i++) {
590		struct tegra_bo *bo = tegra_fb_get_plane(fb, i);
591
592		window.base[i] = bo->paddr + fb->offsets[i];
593		window.stride[i] = fb->pitches[i];
594	}
595
596	tegra_dc_setup_window(dc, p->index, &window);
597}
598
599static void tegra_plane_atomic_disable(struct drm_plane *plane,
600				       struct drm_plane_state *old_state)
601{
602	struct tegra_plane *p = to_tegra_plane(plane);
603	struct tegra_dc *dc;
604	unsigned long flags;
605	u32 value;
606
607	/* rien ne va plus */
608	if (!old_state || !old_state->crtc)
609		return;
610
611	dc = to_tegra_dc(old_state->crtc);
612
613	spin_lock_irqsave(&dc->lock, flags);
614
615	value = WINDOW_A_SELECT << p->index;
616	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_WINDOW_HEADER);
617
618	value = tegra_dc_readl(dc, DC_WIN_WIN_OPTIONS);
619	value &= ~WIN_ENABLE;
620	tegra_dc_writel(dc, value, DC_WIN_WIN_OPTIONS);
621
622	spin_unlock_irqrestore(&dc->lock, flags);
623}
624
625static const struct drm_plane_helper_funcs tegra_primary_plane_helper_funcs = {
626	.prepare_fb = tegra_plane_prepare_fb,
627	.cleanup_fb = tegra_plane_cleanup_fb,
628	.atomic_check = tegra_plane_atomic_check,
629	.atomic_update = tegra_plane_atomic_update,
630	.atomic_disable = tegra_plane_atomic_disable,
631};
632
633static struct drm_plane *tegra_dc_primary_plane_create(struct drm_device *drm,
634						       struct tegra_dc *dc)
635{
636	/*
637	 * Ideally this would use drm_crtc_mask(), but that would require the
638	 * CRTC to already be in the mode_config's list of CRTCs. However, it
639	 * will only be added to that list in the drm_crtc_init_with_planes()
640	 * (in tegra_dc_init()), which in turn requires registration of these
641	 * planes. So we have ourselves a nice little chicken and egg problem
642	 * here.
643	 *
644	 * We work around this by manually creating the mask from the number
645	 * of CRTCs that have been registered, and should therefore always be
646	 * the same as drm_crtc_index() after registration.
647	 */
648	unsigned long possible_crtcs = 1 << drm->mode_config.num_crtc;
649	struct tegra_plane *plane;
650	unsigned int num_formats;
651	const u32 *formats;
652	int err;
653
654	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
655	if (!plane)
656		return ERR_PTR(-ENOMEM);
657
658	num_formats = ARRAY_SIZE(tegra_primary_plane_formats);
659	formats = tegra_primary_plane_formats;
660
661	err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
662				       &tegra_primary_plane_funcs, formats,
663				       num_formats, DRM_PLANE_TYPE_PRIMARY);
664	if (err < 0) {
665		kfree(plane);
666		return ERR_PTR(err);
667	}
668
669	drm_plane_helper_add(&plane->base, &tegra_primary_plane_helper_funcs);
670
671	return &plane->base;
672}
673
674static const u32 tegra_cursor_plane_formats[] = {
675	DRM_FORMAT_RGBA8888,
676};
677
678static int tegra_cursor_atomic_check(struct drm_plane *plane,
679				     struct drm_plane_state *state)
680{
681	struct tegra_plane *tegra = to_tegra_plane(plane);
682	int err;
683
684	/* no need for further checks if the plane is being disabled */
685	if (!state->crtc)
686		return 0;
687
688	/* scaling not supported for cursor */
689	if ((state->src_w >> 16 != state->crtc_w) ||
690	    (state->src_h >> 16 != state->crtc_h))
691		return -EINVAL;
692
693	/* only square cursors supported */
694	if (state->src_w != state->src_h)
695		return -EINVAL;
696
697	if (state->crtc_w != 32 && state->crtc_w != 64 &&
698	    state->crtc_w != 128 && state->crtc_w != 256)
699		return -EINVAL;
700
701	err = tegra_plane_state_add(tegra, state);
702	if (err < 0)
703		return err;
704
705	return 0;
706}
707
708static void tegra_cursor_atomic_update(struct drm_plane *plane,
709				       struct drm_plane_state *old_state)
710{
711	struct tegra_bo *bo = tegra_fb_get_plane(plane->state->fb, 0);
712	struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
713	struct drm_plane_state *state = plane->state;
714	u32 value = CURSOR_CLIP_DISPLAY;
715
716	/* rien ne va plus */
717	if (!plane->state->crtc || !plane->state->fb)
718		return;
719
720	switch (state->crtc_w) {
721	case 32:
722		value |= CURSOR_SIZE_32x32;
723		break;
724
725	case 64:
726		value |= CURSOR_SIZE_64x64;
727		break;
728
729	case 128:
730		value |= CURSOR_SIZE_128x128;
731		break;
732
733	case 256:
734		value |= CURSOR_SIZE_256x256;
735		break;
736
737	default:
738		WARN(1, "cursor size %ux%u not supported\n", state->crtc_w,
739		     state->crtc_h);
740		return;
741	}
742
743	value |= (bo->paddr >> 10) & 0x3fffff;
744	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
745
746#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
747	value = (bo->paddr >> 32) & 0x3;
748	tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
749#endif
750
751	/* enable cursor and set blend mode */
752	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
753	value |= CURSOR_ENABLE;
754	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
755
756	value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
757	value &= ~CURSOR_DST_BLEND_MASK;
758	value &= ~CURSOR_SRC_BLEND_MASK;
759	value |= CURSOR_MODE_NORMAL;
760	value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
761	value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
762	value |= CURSOR_ALPHA;
763	tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
764
765	/* position the cursor */
766	value = (state->crtc_y & 0x3fff) << 16 | (state->crtc_x & 0x3fff);
767	tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
768}
769
770static void tegra_cursor_atomic_disable(struct drm_plane *plane,
771					struct drm_plane_state *old_state)
772{
773	struct tegra_dc *dc;
774	u32 value;
775
776	/* rien ne va plus */
777	if (!old_state || !old_state->crtc)
778		return;
779
780	dc = to_tegra_dc(old_state->crtc);
781
782	value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
783	value &= ~CURSOR_ENABLE;
784	tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
785}
786
787static const struct drm_plane_funcs tegra_cursor_plane_funcs = {
788	.update_plane = drm_atomic_helper_update_plane,
789	.disable_plane = drm_atomic_helper_disable_plane,
790	.destroy = tegra_plane_destroy,
791	.reset = tegra_plane_reset,
792	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
793	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
794};
795
796static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
797	.prepare_fb = tegra_plane_prepare_fb,
798	.cleanup_fb = tegra_plane_cleanup_fb,
799	.atomic_check = tegra_cursor_atomic_check,
800	.atomic_update = tegra_cursor_atomic_update,
801	.atomic_disable = tegra_cursor_atomic_disable,
802};
803
804static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
805						      struct tegra_dc *dc)
806{
807	struct tegra_plane *plane;
808	unsigned int num_formats;
809	const u32 *formats;
810	int err;
811
812	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
813	if (!plane)
814		return ERR_PTR(-ENOMEM);
815
816	/*
817	 * This index is kind of fake. The cursor isn't a regular plane, but
818	 * its update and activation request bits in DC_CMD_STATE_CONTROL do
819	 * use the same programming. Setting this fake index here allows the
820	 * code in tegra_add_plane_state() to do the right thing without the
821	 * need to special-casing the cursor plane.
822	 */
823	plane->index = 6;
824
825	num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
826	formats = tegra_cursor_plane_formats;
827
828	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
829				       &tegra_cursor_plane_funcs, formats,
830				       num_formats, DRM_PLANE_TYPE_CURSOR);
831	if (err < 0) {
832		kfree(plane);
833		return ERR_PTR(err);
834	}
835
836	drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
837
838	return &plane->base;
839}
840
841static void tegra_overlay_plane_destroy(struct drm_plane *plane)
842{
843	tegra_plane_destroy(plane);
844}
845
846static const struct drm_plane_funcs tegra_overlay_plane_funcs = {
847	.update_plane = drm_atomic_helper_update_plane,
848	.disable_plane = drm_atomic_helper_disable_plane,
849	.destroy = tegra_overlay_plane_destroy,
850	.reset = tegra_plane_reset,
851	.atomic_duplicate_state = tegra_plane_atomic_duplicate_state,
852	.atomic_destroy_state = tegra_plane_atomic_destroy_state,
853};
854
855static const uint32_t tegra_overlay_plane_formats[] = {
856	DRM_FORMAT_XBGR8888,
857	DRM_FORMAT_XRGB8888,
858	DRM_FORMAT_RGB565,
859	DRM_FORMAT_UYVY,
860	DRM_FORMAT_YUYV,
861	DRM_FORMAT_YUV420,
862	DRM_FORMAT_YUV422,
863};
864
865static const struct drm_plane_helper_funcs tegra_overlay_plane_helper_funcs = {
866	.prepare_fb = tegra_plane_prepare_fb,
867	.cleanup_fb = tegra_plane_cleanup_fb,
868	.atomic_check = tegra_plane_atomic_check,
869	.atomic_update = tegra_plane_atomic_update,
870	.atomic_disable = tegra_plane_atomic_disable,
871};
872
873static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
874						       struct tegra_dc *dc,
875						       unsigned int index)
876{
877	struct tegra_plane *plane;
878	unsigned int num_formats;
879	const u32 *formats;
880	int err;
881
882	plane = kzalloc(sizeof(*plane), GFP_KERNEL);
883	if (!plane)
884		return ERR_PTR(-ENOMEM);
885
886	plane->index = index;
887
888	num_formats = ARRAY_SIZE(tegra_overlay_plane_formats);
889	formats = tegra_overlay_plane_formats;
890
891	err = drm_universal_plane_init(drm, &plane->base, 1 << dc->pipe,
892				       &tegra_overlay_plane_funcs, formats,
893				       num_formats, DRM_PLANE_TYPE_OVERLAY);
894	if (err < 0) {
895		kfree(plane);
896		return ERR_PTR(err);
897	}
898
899	drm_plane_helper_add(&plane->base, &tegra_overlay_plane_helper_funcs);
900
901	return &plane->base;
902}
903
904static int tegra_dc_add_planes(struct drm_device *drm, struct tegra_dc *dc)
905{
906	struct drm_plane *plane;
907	unsigned int i;
908
909	for (i = 0; i < 2; i++) {
910		plane = tegra_dc_overlay_plane_create(drm, dc, 1 + i);
911		if (IS_ERR(plane))
912			return PTR_ERR(plane);
913	}
914
915	return 0;
916}
917
918u32 tegra_dc_get_vblank_counter(struct tegra_dc *dc)
919{
920	if (dc->syncpt)
921		return host1x_syncpt_read(dc->syncpt);
922
923	/* fallback to software emulated VBLANK counter */
924	return drm_crtc_vblank_count(&dc->base);
925}
926
927void tegra_dc_enable_vblank(struct tegra_dc *dc)
928{
929	unsigned long value, flags;
930
931	spin_lock_irqsave(&dc->lock, flags);
932
933	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
934	value |= VBLANK_INT;
935	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
936
937	spin_unlock_irqrestore(&dc->lock, flags);
938}
939
940void tegra_dc_disable_vblank(struct tegra_dc *dc)
941{
942	unsigned long value, flags;
943
944	spin_lock_irqsave(&dc->lock, flags);
945
946	value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
947	value &= ~VBLANK_INT;
948	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
949
950	spin_unlock_irqrestore(&dc->lock, flags);
951}
952
953static void tegra_dc_finish_page_flip(struct tegra_dc *dc)
954{
955	struct drm_device *drm = dc->base.dev;
956	struct drm_crtc *crtc = &dc->base;
957	unsigned long flags, base;
958	struct tegra_bo *bo;
959
960	spin_lock_irqsave(&drm->event_lock, flags);
961
962	if (!dc->event) {
963		spin_unlock_irqrestore(&drm->event_lock, flags);
964		return;
965	}
966
967	bo = tegra_fb_get_plane(crtc->primary->fb, 0);
968
969	spin_lock(&dc->lock);
970
971	/* check if new start address has been latched */
972	tegra_dc_writel(dc, WINDOW_A_SELECT, DC_CMD_DISPLAY_WINDOW_HEADER);
973	tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
974	base = tegra_dc_readl(dc, DC_WINBUF_START_ADDR);
975	tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
976
977	spin_unlock(&dc->lock);
978
979	if (base == bo->paddr + crtc->primary->fb->offsets[0]) {
980		drm_crtc_send_vblank_event(crtc, dc->event);
981		drm_crtc_vblank_put(crtc);
982		dc->event = NULL;
983	}
984
985	spin_unlock_irqrestore(&drm->event_lock, flags);
986}
987
988void tegra_dc_cancel_page_flip(struct drm_crtc *crtc, struct drm_file *file)
989{
990	struct tegra_dc *dc = to_tegra_dc(crtc);
991	struct drm_device *drm = crtc->dev;
992	unsigned long flags;
993
994	spin_lock_irqsave(&drm->event_lock, flags);
995
996	if (dc->event && dc->event->base.file_priv == file) {
997		dc->event->base.destroy(&dc->event->base);
998		drm_crtc_vblank_put(crtc);
999		dc->event = NULL;
1000	}
1001
1002	spin_unlock_irqrestore(&drm->event_lock, flags);
1003}
1004
1005static void tegra_dc_destroy(struct drm_crtc *crtc)
1006{
1007	drm_crtc_cleanup(crtc);
1008}
1009
1010static void tegra_crtc_reset(struct drm_crtc *crtc)
1011{
1012	struct tegra_dc_state *state;
1013
1014	if (crtc->state)
1015		__drm_atomic_helper_crtc_destroy_state(crtc, crtc->state);
1016
1017	kfree(crtc->state);
1018	crtc->state = NULL;
1019
1020	state = kzalloc(sizeof(*state), GFP_KERNEL);
1021	if (state) {
1022		crtc->state = &state->base;
1023		crtc->state->crtc = crtc;
1024	}
1025
1026	drm_crtc_vblank_reset(crtc);
1027}
1028
1029static struct drm_crtc_state *
1030tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1031{
1032	struct tegra_dc_state *state = to_dc_state(crtc->state);
1033	struct tegra_dc_state *copy;
1034
1035	copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1036	if (!copy)
1037		return NULL;
1038
1039	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1040	copy->clk = state->clk;
1041	copy->pclk = state->pclk;
1042	copy->div = state->div;
1043	copy->planes = state->planes;
1044
1045	return &copy->base;
1046}
1047
1048static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1049					    struct drm_crtc_state *state)
1050{
1051	__drm_atomic_helper_crtc_destroy_state(crtc, state);
1052	kfree(state);
1053}
1054
1055static const struct drm_crtc_funcs tegra_crtc_funcs = {
1056	.page_flip = drm_atomic_helper_page_flip,
1057	.set_config = drm_atomic_helper_set_config,
1058	.destroy = tegra_dc_destroy,
1059	.reset = tegra_crtc_reset,
1060	.atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1061	.atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1062};
1063
1064static int tegra_dc_set_timings(struct tegra_dc *dc,
1065				struct drm_display_mode *mode)
1066{
1067	unsigned int h_ref_to_sync = 1;
1068	unsigned int v_ref_to_sync = 1;
1069	unsigned long value;
1070
1071	tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1072
1073	value = (v_ref_to_sync << 16) | h_ref_to_sync;
1074	tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1075
1076	value = ((mode->vsync_end - mode->vsync_start) << 16) |
1077		((mode->hsync_end - mode->hsync_start) <<  0);
1078	tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1079
1080	value = ((mode->vtotal - mode->vsync_end) << 16) |
1081		((mode->htotal - mode->hsync_end) <<  0);
1082	tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1083
1084	value = ((mode->vsync_start - mode->vdisplay) << 16) |
1085		((mode->hsync_start - mode->hdisplay) <<  0);
1086	tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1087
1088	value = (mode->vdisplay << 16) | mode->hdisplay;
1089	tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1090
1091	return 0;
1092}
1093
1094/**
1095 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1096 *     state
1097 * @dc: display controller
1098 * @crtc_state: CRTC atomic state
1099 * @clk: parent clock for display controller
1100 * @pclk: pixel clock
1101 * @div: shift clock divider
1102 *
1103 * Returns:
1104 * 0 on success or a negative error-code on failure.
1105 */
1106int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1107			       struct drm_crtc_state *crtc_state,
1108			       struct clk *clk, unsigned long pclk,
1109			       unsigned int div)
1110{
1111	struct tegra_dc_state *state = to_dc_state(crtc_state);
1112
1113	if (!clk_has_parent(dc->clk, clk))
1114		return -EINVAL;
1115
1116	state->clk = clk;
1117	state->pclk = pclk;
1118	state->div = div;
1119
1120	return 0;
1121}
1122
1123static void tegra_dc_commit_state(struct tegra_dc *dc,
1124				  struct tegra_dc_state *state)
1125{
1126	u32 value;
1127	int err;
1128
1129	err = clk_set_parent(dc->clk, state->clk);
1130	if (err < 0)
1131		dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1132
1133	/*
1134	 * Outputs may not want to change the parent clock rate. This is only
1135	 * relevant to Tegra20 where only a single display PLL is available.
1136	 * Since that PLL would typically be used for HDMI, an internal LVDS
1137	 * panel would need to be driven by some other clock such as PLL_P
1138	 * which is shared with other peripherals. Changing the clock rate
1139	 * should therefore be avoided.
1140	 */
1141	if (state->pclk > 0) {
1142		err = clk_set_rate(state->clk, state->pclk);
1143		if (err < 0)
1144			dev_err(dc->dev,
1145				"failed to set clock rate to %lu Hz\n",
1146				state->pclk);
1147	}
1148
1149	DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1150		      state->div);
1151	DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1152
1153	value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1154	tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1155}
1156
1157static void tegra_dc_stop(struct tegra_dc *dc)
1158{
1159	u32 value;
1160
1161	/* stop the display controller */
1162	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1163	value &= ~DISP_CTRL_MODE_MASK;
1164	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1165
1166	tegra_dc_commit(dc);
1167}
1168
1169static bool tegra_dc_idle(struct tegra_dc *dc)
1170{
1171	u32 value;
1172
1173	value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1174
1175	return (value & DISP_CTRL_MODE_MASK) == 0;
1176}
1177
1178static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1179{
1180	timeout = jiffies + msecs_to_jiffies(timeout);
1181
1182	while (time_before(jiffies, timeout)) {
1183		if (tegra_dc_idle(dc))
1184			return 0;
1185
1186		usleep_range(1000, 2000);
1187	}
1188
1189	dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1190	return -ETIMEDOUT;
1191}
1192
1193static void tegra_crtc_disable(struct drm_crtc *crtc)
1194{
1195	struct tegra_dc *dc = to_tegra_dc(crtc);
1196	u32 value;
1197
1198	if (!tegra_dc_idle(dc)) {
1199		tegra_dc_stop(dc);
1200
1201		/*
1202		 * Ignore the return value, there isn't anything useful to do
1203		 * in case this fails.
1204		 */
1205		tegra_dc_wait_idle(dc, 100);
1206	}
1207
1208	/*
1209	 * This should really be part of the RGB encoder driver, but clearing
1210	 * these bits has the side-effect of stopping the display controller.
1211	 * When that happens no VBLANK interrupts will be raised. At the same
1212	 * time the encoder is disabled before the display controller, so the
1213	 * above code is always going to timeout waiting for the controller
1214	 * to go idle.
1215	 *
1216	 * Given the close coupling between the RGB encoder and the display
1217	 * controller doing it here is still kind of okay. None of the other
1218	 * encoder drivers require these bits to be cleared.
1219	 *
1220	 * XXX: Perhaps given that the display controller is switched off at
1221	 * this point anyway maybe clearing these bits isn't even useful for
1222	 * the RGB encoder?
1223	 */
1224	if (dc->rgb) {
1225		value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1226		value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1227			   PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1228		tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1229	}
1230
1231	tegra_dc_stats_reset(&dc->stats);
1232	drm_crtc_vblank_off(crtc);
1233}
1234
1235static void tegra_crtc_enable(struct drm_crtc *crtc)
1236{
1237	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1238	struct tegra_dc_state *state = to_dc_state(crtc->state);
1239	struct tegra_dc *dc = to_tegra_dc(crtc);
1240	u32 value;
1241
1242	tegra_dc_commit_state(dc, state);
1243
1244	/* program display mode */
1245	tegra_dc_set_timings(dc, mode);
1246
1247	/* interlacing isn't supported yet, so disable it */
1248	if (dc->soc->supports_interlacing) {
1249		value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1250		value &= ~INTERLACE_ENABLE;
1251		tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1252	}
1253
1254	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1255	value &= ~DISP_CTRL_MODE_MASK;
1256	value |= DISP_CTRL_MODE_C_DISPLAY;
1257	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1258
1259	value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1260	value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1261		 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1262	tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1263
1264	tegra_dc_commit(dc);
1265
1266	drm_crtc_vblank_on(crtc);
1267}
1268
1269static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
1270				   struct drm_crtc_state *state)
1271{
1272	return 0;
1273}
1274
1275static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1276				    struct drm_crtc_state *old_crtc_state)
1277{
1278	struct tegra_dc *dc = to_tegra_dc(crtc);
1279
1280	if (crtc->state->event) {
1281		crtc->state->event->pipe = drm_crtc_index(crtc);
1282
1283		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1284
1285		dc->event = crtc->state->event;
1286		crtc->state->event = NULL;
1287	}
1288}
1289
1290static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1291				    struct drm_crtc_state *old_crtc_state)
1292{
1293	struct tegra_dc_state *state = to_dc_state(crtc->state);
1294	struct tegra_dc *dc = to_tegra_dc(crtc);
1295
1296	tegra_dc_writel(dc, state->planes << 8, DC_CMD_STATE_CONTROL);
1297	tegra_dc_writel(dc, state->planes, DC_CMD_STATE_CONTROL);
1298}
1299
1300static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1301	.disable = tegra_crtc_disable,
1302	.enable = tegra_crtc_enable,
1303	.atomic_check = tegra_crtc_atomic_check,
1304	.atomic_begin = tegra_crtc_atomic_begin,
1305	.atomic_flush = tegra_crtc_atomic_flush,
1306};
1307
1308static irqreturn_t tegra_dc_irq(int irq, void *data)
1309{
1310	struct tegra_dc *dc = data;
1311	unsigned long status;
1312
1313	status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1314	tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1315
1316	if (status & FRAME_END_INT) {
1317		/*
1318		dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1319		*/
1320		dc->stats.frames++;
1321	}
1322
1323	if (status & VBLANK_INT) {
1324		/*
1325		dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1326		*/
1327		drm_crtc_handle_vblank(&dc->base);
1328		tegra_dc_finish_page_flip(dc);
1329		dc->stats.vblank++;
1330	}
1331
1332	if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1333		/*
1334		dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1335		*/
1336		dc->stats.underflow++;
1337	}
1338
1339	if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1340		/*
1341		dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1342		*/
1343		dc->stats.overflow++;
1344	}
1345
1346	return IRQ_HANDLED;
1347}
1348
1349static int tegra_dc_show_regs(struct seq_file *s, void *data)
1350{
1351	struct drm_info_node *node = s->private;
1352	struct tegra_dc *dc = node->info_ent->data;
1353	int err = 0;
1354
1355	drm_modeset_lock_crtc(&dc->base, NULL);
1356
1357	if (!dc->base.state->active) {
1358		err = -EBUSY;
1359		goto unlock;
1360	}
1361
1362#define DUMP_REG(name)						\
1363	seq_printf(s, "%-40s %#05x %08x\n", #name, name,	\
1364		   tegra_dc_readl(dc, name))
1365
1366	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT);
1367	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1368	DUMP_REG(DC_CMD_GENERAL_INCR_SYNCPT_ERROR);
1369	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT);
1370	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL);
1371	DUMP_REG(DC_CMD_WIN_A_INCR_SYNCPT_ERROR);
1372	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT);
1373	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL);
1374	DUMP_REG(DC_CMD_WIN_B_INCR_SYNCPT_ERROR);
1375	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT);
1376	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL);
1377	DUMP_REG(DC_CMD_WIN_C_INCR_SYNCPT_ERROR);
1378	DUMP_REG(DC_CMD_CONT_SYNCPT_VSYNC);
1379	DUMP_REG(DC_CMD_DISPLAY_COMMAND_OPTION0);
1380	DUMP_REG(DC_CMD_DISPLAY_COMMAND);
1381	DUMP_REG(DC_CMD_SIGNAL_RAISE);
1382	DUMP_REG(DC_CMD_DISPLAY_POWER_CONTROL);
1383	DUMP_REG(DC_CMD_INT_STATUS);
1384	DUMP_REG(DC_CMD_INT_MASK);
1385	DUMP_REG(DC_CMD_INT_ENABLE);
1386	DUMP_REG(DC_CMD_INT_TYPE);
1387	DUMP_REG(DC_CMD_INT_POLARITY);
1388	DUMP_REG(DC_CMD_SIGNAL_RAISE1);
1389	DUMP_REG(DC_CMD_SIGNAL_RAISE2);
1390	DUMP_REG(DC_CMD_SIGNAL_RAISE3);
1391	DUMP_REG(DC_CMD_STATE_ACCESS);
1392	DUMP_REG(DC_CMD_STATE_CONTROL);
1393	DUMP_REG(DC_CMD_DISPLAY_WINDOW_HEADER);
1394	DUMP_REG(DC_CMD_REG_ACT_CONTROL);
1395	DUMP_REG(DC_COM_CRC_CONTROL);
1396	DUMP_REG(DC_COM_CRC_CHECKSUM);
1397	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(0));
1398	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(1));
1399	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(2));
1400	DUMP_REG(DC_COM_PIN_OUTPUT_ENABLE(3));
1401	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(0));
1402	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(1));
1403	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(2));
1404	DUMP_REG(DC_COM_PIN_OUTPUT_POLARITY(3));
1405	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(0));
1406	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(1));
1407	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(2));
1408	DUMP_REG(DC_COM_PIN_OUTPUT_DATA(3));
1409	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(0));
1410	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(1));
1411	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(2));
1412	DUMP_REG(DC_COM_PIN_INPUT_ENABLE(3));
1413	DUMP_REG(DC_COM_PIN_INPUT_DATA(0));
1414	DUMP_REG(DC_COM_PIN_INPUT_DATA(1));
1415	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(0));
1416	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(1));
1417	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(2));
1418	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(3));
1419	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(4));
1420	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(5));
1421	DUMP_REG(DC_COM_PIN_OUTPUT_SELECT(6));
1422	DUMP_REG(DC_COM_PIN_MISC_CONTROL);
1423	DUMP_REG(DC_COM_PIN_PM0_CONTROL);
1424	DUMP_REG(DC_COM_PIN_PM0_DUTY_CYCLE);
1425	DUMP_REG(DC_COM_PIN_PM1_CONTROL);
1426	DUMP_REG(DC_COM_PIN_PM1_DUTY_CYCLE);
1427	DUMP_REG(DC_COM_SPI_CONTROL);
1428	DUMP_REG(DC_COM_SPI_START_BYTE);
1429	DUMP_REG(DC_COM_HSPI_WRITE_DATA_AB);
1430	DUMP_REG(DC_COM_HSPI_WRITE_DATA_CD);
1431	DUMP_REG(DC_COM_HSPI_CS_DC);
1432	DUMP_REG(DC_COM_SCRATCH_REGISTER_A);
1433	DUMP_REG(DC_COM_SCRATCH_REGISTER_B);
1434	DUMP_REG(DC_COM_GPIO_CTRL);
1435	DUMP_REG(DC_COM_GPIO_DEBOUNCE_COUNTER);
1436	DUMP_REG(DC_COM_CRC_CHECKSUM_LATCHED);
1437	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS0);
1438	DUMP_REG(DC_DISP_DISP_SIGNAL_OPTIONS1);
1439	DUMP_REG(DC_DISP_DISP_WIN_OPTIONS);
1440	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY);
1441	DUMP_REG(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1442	DUMP_REG(DC_DISP_DISP_TIMING_OPTIONS);
1443	DUMP_REG(DC_DISP_REF_TO_SYNC);
1444	DUMP_REG(DC_DISP_SYNC_WIDTH);
1445	DUMP_REG(DC_DISP_BACK_PORCH);
1446	DUMP_REG(DC_DISP_ACTIVE);
1447	DUMP_REG(DC_DISP_FRONT_PORCH);
1448	DUMP_REG(DC_DISP_H_PULSE0_CONTROL);
1449	DUMP_REG(DC_DISP_H_PULSE0_POSITION_A);
1450	DUMP_REG(DC_DISP_H_PULSE0_POSITION_B);
1451	DUMP_REG(DC_DISP_H_PULSE0_POSITION_C);
1452	DUMP_REG(DC_DISP_H_PULSE0_POSITION_D);
1453	DUMP_REG(DC_DISP_H_PULSE1_CONTROL);
1454	DUMP_REG(DC_DISP_H_PULSE1_POSITION_A);
1455	DUMP_REG(DC_DISP_H_PULSE1_POSITION_B);
1456	DUMP_REG(DC_DISP_H_PULSE1_POSITION_C);
1457	DUMP_REG(DC_DISP_H_PULSE1_POSITION_D);
1458	DUMP_REG(DC_DISP_H_PULSE2_CONTROL);
1459	DUMP_REG(DC_DISP_H_PULSE2_POSITION_A);
1460	DUMP_REG(DC_DISP_H_PULSE2_POSITION_B);
1461	DUMP_REG(DC_DISP_H_PULSE2_POSITION_C);
1462	DUMP_REG(DC_DISP_H_PULSE2_POSITION_D);
1463	DUMP_REG(DC_DISP_V_PULSE0_CONTROL);
1464	DUMP_REG(DC_DISP_V_PULSE0_POSITION_A);
1465	DUMP_REG(DC_DISP_V_PULSE0_POSITION_B);
1466	DUMP_REG(DC_DISP_V_PULSE0_POSITION_C);
1467	DUMP_REG(DC_DISP_V_PULSE1_CONTROL);
1468	DUMP_REG(DC_DISP_V_PULSE1_POSITION_A);
1469	DUMP_REG(DC_DISP_V_PULSE1_POSITION_B);
1470	DUMP_REG(DC_DISP_V_PULSE1_POSITION_C);
1471	DUMP_REG(DC_DISP_V_PULSE2_CONTROL);
1472	DUMP_REG(DC_DISP_V_PULSE2_POSITION_A);
1473	DUMP_REG(DC_DISP_V_PULSE3_CONTROL);
1474	DUMP_REG(DC_DISP_V_PULSE3_POSITION_A);
1475	DUMP_REG(DC_DISP_M0_CONTROL);
1476	DUMP_REG(DC_DISP_M1_CONTROL);
1477	DUMP_REG(DC_DISP_DI_CONTROL);
1478	DUMP_REG(DC_DISP_PP_CONTROL);
1479	DUMP_REG(DC_DISP_PP_SELECT_A);
1480	DUMP_REG(DC_DISP_PP_SELECT_B);
1481	DUMP_REG(DC_DISP_PP_SELECT_C);
1482	DUMP_REG(DC_DISP_PP_SELECT_D);
1483	DUMP_REG(DC_DISP_DISP_CLOCK_CONTROL);
1484	DUMP_REG(DC_DISP_DISP_INTERFACE_CONTROL);
1485	DUMP_REG(DC_DISP_DISP_COLOR_CONTROL);
1486	DUMP_REG(DC_DISP_SHIFT_CLOCK_OPTIONS);
1487	DUMP_REG(DC_DISP_DATA_ENABLE_OPTIONS);
1488	DUMP_REG(DC_DISP_SERIAL_INTERFACE_OPTIONS);
1489	DUMP_REG(DC_DISP_LCD_SPI_OPTIONS);
1490	DUMP_REG(DC_DISP_BORDER_COLOR);
1491	DUMP_REG(DC_DISP_COLOR_KEY0_LOWER);
1492	DUMP_REG(DC_DISP_COLOR_KEY0_UPPER);
1493	DUMP_REG(DC_DISP_COLOR_KEY1_LOWER);
1494	DUMP_REG(DC_DISP_COLOR_KEY1_UPPER);
1495	DUMP_REG(DC_DISP_CURSOR_FOREGROUND);
1496	DUMP_REG(DC_DISP_CURSOR_BACKGROUND);
1497	DUMP_REG(DC_DISP_CURSOR_START_ADDR);
1498	DUMP_REG(DC_DISP_CURSOR_START_ADDR_NS);
1499	DUMP_REG(DC_DISP_CURSOR_POSITION);
1500	DUMP_REG(DC_DISP_CURSOR_POSITION_NS);
1501	DUMP_REG(DC_DISP_INIT_SEQ_CONTROL);
1502	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_A);
1503	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_B);
1504	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_C);
1505	DUMP_REG(DC_DISP_SPI_INIT_SEQ_DATA_D);
1506	DUMP_REG(DC_DISP_DC_MCCIF_FIFOCTRL);
1507	DUMP_REG(DC_DISP_MCCIF_DISPLAY0A_HYST);
1508	DUMP_REG(DC_DISP_MCCIF_DISPLAY0B_HYST);
1509	DUMP_REG(DC_DISP_MCCIF_DISPLAY1A_HYST);
1510	DUMP_REG(DC_DISP_MCCIF_DISPLAY1B_HYST);
1511	DUMP_REG(DC_DISP_DAC_CRT_CTRL);
1512	DUMP_REG(DC_DISP_DISP_MISC_CONTROL);
1513	DUMP_REG(DC_DISP_SD_CONTROL);
1514	DUMP_REG(DC_DISP_SD_CSC_COEFF);
1515	DUMP_REG(DC_DISP_SD_LUT(0));
1516	DUMP_REG(DC_DISP_SD_LUT(1));
1517	DUMP_REG(DC_DISP_SD_LUT(2));
1518	DUMP_REG(DC_DISP_SD_LUT(3));
1519	DUMP_REG(DC_DISP_SD_LUT(4));
1520	DUMP_REG(DC_DISP_SD_LUT(5));
1521	DUMP_REG(DC_DISP_SD_LUT(6));
1522	DUMP_REG(DC_DISP_SD_LUT(7));
1523	DUMP_REG(DC_DISP_SD_LUT(8));
1524	DUMP_REG(DC_DISP_SD_FLICKER_CONTROL);
1525	DUMP_REG(DC_DISP_DC_PIXEL_COUNT);
1526	DUMP_REG(DC_DISP_SD_HISTOGRAM(0));
1527	DUMP_REG(DC_DISP_SD_HISTOGRAM(1));
1528	DUMP_REG(DC_DISP_SD_HISTOGRAM(2));
1529	DUMP_REG(DC_DISP_SD_HISTOGRAM(3));
1530	DUMP_REG(DC_DISP_SD_HISTOGRAM(4));
1531	DUMP_REG(DC_DISP_SD_HISTOGRAM(5));
1532	DUMP_REG(DC_DISP_SD_HISTOGRAM(6));
1533	DUMP_REG(DC_DISP_SD_HISTOGRAM(7));
1534	DUMP_REG(DC_DISP_SD_BL_TF(0));
1535	DUMP_REG(DC_DISP_SD_BL_TF(1));
1536	DUMP_REG(DC_DISP_SD_BL_TF(2));
1537	DUMP_REG(DC_DISP_SD_BL_TF(3));
1538	DUMP_REG(DC_DISP_SD_BL_CONTROL);
1539	DUMP_REG(DC_DISP_SD_HW_K_VALUES);
1540	DUMP_REG(DC_DISP_SD_MAN_K_VALUES);
1541	DUMP_REG(DC_DISP_CURSOR_START_ADDR_HI);
1542	DUMP_REG(DC_DISP_BLEND_CURSOR_CONTROL);
1543	DUMP_REG(DC_WIN_WIN_OPTIONS);
1544	DUMP_REG(DC_WIN_BYTE_SWAP);
1545	DUMP_REG(DC_WIN_BUFFER_CONTROL);
1546	DUMP_REG(DC_WIN_COLOR_DEPTH);
1547	DUMP_REG(DC_WIN_POSITION);
1548	DUMP_REG(DC_WIN_SIZE);
1549	DUMP_REG(DC_WIN_PRESCALED_SIZE);
1550	DUMP_REG(DC_WIN_H_INITIAL_DDA);
1551	DUMP_REG(DC_WIN_V_INITIAL_DDA);
1552	DUMP_REG(DC_WIN_DDA_INC);
1553	DUMP_REG(DC_WIN_LINE_STRIDE);
1554	DUMP_REG(DC_WIN_BUF_STRIDE);
1555	DUMP_REG(DC_WIN_UV_BUF_STRIDE);
1556	DUMP_REG(DC_WIN_BUFFER_ADDR_MODE);
1557	DUMP_REG(DC_WIN_DV_CONTROL);
1558	DUMP_REG(DC_WIN_BLEND_NOKEY);
1559	DUMP_REG(DC_WIN_BLEND_1WIN);
1560	DUMP_REG(DC_WIN_BLEND_2WIN_X);
1561	DUMP_REG(DC_WIN_BLEND_2WIN_Y);
1562	DUMP_REG(DC_WIN_BLEND_3WIN_XY);
1563	DUMP_REG(DC_WIN_HP_FETCH_CONTROL);
1564	DUMP_REG(DC_WINBUF_START_ADDR);
1565	DUMP_REG(DC_WINBUF_START_ADDR_NS);
1566	DUMP_REG(DC_WINBUF_START_ADDR_U);
1567	DUMP_REG(DC_WINBUF_START_ADDR_U_NS);
1568	DUMP_REG(DC_WINBUF_START_ADDR_V);
1569	DUMP_REG(DC_WINBUF_START_ADDR_V_NS);
1570	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET);
1571	DUMP_REG(DC_WINBUF_ADDR_H_OFFSET_NS);
1572	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET);
1573	DUMP_REG(DC_WINBUF_ADDR_V_OFFSET_NS);
1574	DUMP_REG(DC_WINBUF_UFLOW_STATUS);
1575	DUMP_REG(DC_WINBUF_AD_UFLOW_STATUS);
1576	DUMP_REG(DC_WINBUF_BD_UFLOW_STATUS);
1577	DUMP_REG(DC_WINBUF_CD_UFLOW_STATUS);
1578
1579#undef DUMP_REG
1580
1581unlock:
1582	drm_modeset_unlock_crtc(&dc->base);
1583	return err;
1584}
1585
1586static int tegra_dc_show_crc(struct seq_file *s, void *data)
1587{
1588	struct drm_info_node *node = s->private;
1589	struct tegra_dc *dc = node->info_ent->data;
1590	int err = 0;
1591	u32 value;
1592
1593	drm_modeset_lock_crtc(&dc->base, NULL);
1594
1595	if (!dc->base.state->active) {
1596		err = -EBUSY;
1597		goto unlock;
1598	}
1599
1600	value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1601	tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1602	tegra_dc_commit(dc);
1603
1604	drm_crtc_wait_one_vblank(&dc->base);
1605	drm_crtc_wait_one_vblank(&dc->base);
1606
1607	value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1608	seq_printf(s, "%08x\n", value);
1609
1610	tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1611
1612unlock:
1613	drm_modeset_unlock_crtc(&dc->base);
1614	return err;
1615}
1616
1617static int tegra_dc_show_stats(struct seq_file *s, void *data)
1618{
1619	struct drm_info_node *node = s->private;
1620	struct tegra_dc *dc = node->info_ent->data;
1621
1622	seq_printf(s, "frames: %lu\n", dc->stats.frames);
1623	seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1624	seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1625	seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1626
1627	return 0;
1628}
1629
1630static struct drm_info_list debugfs_files[] = {
1631	{ "regs", tegra_dc_show_regs, 0, NULL },
1632	{ "crc", tegra_dc_show_crc, 0, NULL },
1633	{ "stats", tegra_dc_show_stats, 0, NULL },
1634};
1635
1636static int tegra_dc_debugfs_init(struct tegra_dc *dc, struct drm_minor *minor)
1637{
1638	unsigned int i;
1639	char *name;
1640	int err;
1641
1642	name = kasprintf(GFP_KERNEL, "dc.%d", dc->pipe);
1643	dc->debugfs = debugfs_create_dir(name, minor->debugfs_root);
1644	kfree(name);
1645
1646	if (!dc->debugfs)
1647		return -ENOMEM;
1648
1649	dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1650				    GFP_KERNEL);
1651	if (!dc->debugfs_files) {
1652		err = -ENOMEM;
1653		goto remove;
1654	}
1655
1656	for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
1657		dc->debugfs_files[i].data = dc;
1658
1659	err = drm_debugfs_create_files(dc->debugfs_files,
1660				       ARRAY_SIZE(debugfs_files),
1661				       dc->debugfs, minor);
1662	if (err < 0)
1663		goto free;
1664
1665	dc->minor = minor;
1666
1667	return 0;
1668
1669free:
1670	kfree(dc->debugfs_files);
1671	dc->debugfs_files = NULL;
1672remove:
1673	debugfs_remove(dc->debugfs);
1674	dc->debugfs = NULL;
1675
1676	return err;
1677}
1678
1679static int tegra_dc_debugfs_exit(struct tegra_dc *dc)
1680{
1681	drm_debugfs_remove_files(dc->debugfs_files, ARRAY_SIZE(debugfs_files),
1682				 dc->minor);
1683	dc->minor = NULL;
1684
1685	kfree(dc->debugfs_files);
1686	dc->debugfs_files = NULL;
1687
1688	debugfs_remove(dc->debugfs);
1689	dc->debugfs = NULL;
1690
1691	return 0;
1692}
1693
1694static int tegra_dc_init(struct host1x_client *client)
1695{
1696	struct drm_device *drm = dev_get_drvdata(client->parent);
1697	unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
1698	struct tegra_dc *dc = host1x_client_to_dc(client);
1699	struct tegra_drm *tegra = drm->dev_private;
1700	struct drm_plane *primary = NULL;
1701	struct drm_plane *cursor = NULL;
1702	u32 value;
1703	int err;
1704
1705	dc->syncpt = host1x_syncpt_request(dc->dev, flags);
1706	if (!dc->syncpt)
1707		dev_warn(dc->dev, "failed to allocate syncpoint\n");
1708
1709	if (tegra->domain) {
1710		err = iommu_attach_device(tegra->domain, dc->dev);
1711		if (err < 0) {
1712			dev_err(dc->dev, "failed to attach to domain: %d\n",
1713				err);
1714			return err;
1715		}
1716
1717		dc->domain = tegra->domain;
1718	}
1719
1720	primary = tegra_dc_primary_plane_create(drm, dc);
1721	if (IS_ERR(primary)) {
1722		err = PTR_ERR(primary);
1723		goto cleanup;
1724	}
1725
1726	if (dc->soc->supports_cursor) {
1727		cursor = tegra_dc_cursor_plane_create(drm, dc);
1728		if (IS_ERR(cursor)) {
1729			err = PTR_ERR(cursor);
1730			goto cleanup;
1731		}
1732	}
1733
1734	err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
1735					&tegra_crtc_funcs);
1736	if (err < 0)
1737		goto cleanup;
1738
1739	drm_mode_crtc_set_gamma_size(&dc->base, 256);
1740	drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
1741
1742	/*
1743	 * Keep track of the minimum pitch alignment across all display
1744	 * controllers.
1745	 */
1746	if (dc->soc->pitch_align > tegra->pitch_align)
1747		tegra->pitch_align = dc->soc->pitch_align;
1748
1749	err = tegra_dc_rgb_init(drm, dc);
1750	if (err < 0 && err != -ENODEV) {
1751		dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
1752		goto cleanup;
1753	}
1754
1755	err = tegra_dc_add_planes(drm, dc);
1756	if (err < 0)
1757		goto cleanup;
1758
1759	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1760		err = tegra_dc_debugfs_init(dc, drm->primary);
1761		if (err < 0)
1762			dev_err(dc->dev, "debugfs setup failed: %d\n", err);
1763	}
1764
1765	err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
1766			       dev_name(dc->dev), dc);
1767	if (err < 0) {
1768		dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
1769			err);
1770		goto cleanup;
1771	}
1772
1773	/* initialize display controller */
1774	if (dc->syncpt) {
1775		u32 syncpt = host1x_syncpt_id(dc->syncpt);
1776
1777		value = SYNCPT_CNTRL_NO_STALL;
1778		tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1779
1780		value = SYNCPT_VSYNC_ENABLE | syncpt;
1781		tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1782	}
1783
1784	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1785		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1786	tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1787
1788	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1789		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1790	tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1791
1792	/* initialize timer */
1793	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1794		WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1795	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1796
1797	value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1798		WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1799	tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1800
1801	value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1802		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1803	tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1804
1805	value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1806		WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1807	tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1808
1809	if (dc->soc->supports_border_color)
1810		tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1811
1812	tegra_dc_stats_reset(&dc->stats);
1813
1814	return 0;
1815
1816cleanup:
1817	if (cursor)
1818		drm_plane_cleanup(cursor);
1819
1820	if (primary)
1821		drm_plane_cleanup(primary);
1822
1823	if (tegra->domain) {
1824		iommu_detach_device(tegra->domain, dc->dev);
1825		dc->domain = NULL;
1826	}
1827
1828	return err;
1829}
1830
1831static int tegra_dc_exit(struct host1x_client *client)
1832{
1833	struct tegra_dc *dc = host1x_client_to_dc(client);
1834	int err;
1835
1836	devm_free_irq(dc->dev, dc->irq, dc);
1837
1838	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
1839		err = tegra_dc_debugfs_exit(dc);
1840		if (err < 0)
1841			dev_err(dc->dev, "debugfs cleanup failed: %d\n", err);
1842	}
1843
1844	err = tegra_dc_rgb_exit(dc);
1845	if (err) {
1846		dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
1847		return err;
1848	}
1849
1850	if (dc->domain) {
1851		iommu_detach_device(dc->domain, dc->dev);
1852		dc->domain = NULL;
1853	}
1854
1855	host1x_syncpt_free(dc->syncpt);
1856
1857	return 0;
1858}
1859
1860static const struct host1x_client_ops dc_client_ops = {
1861	.init = tegra_dc_init,
1862	.exit = tegra_dc_exit,
1863};
1864
1865static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
1866	.supports_border_color = true,
1867	.supports_interlacing = false,
1868	.supports_cursor = false,
1869	.supports_block_linear = false,
1870	.pitch_align = 8,
1871	.has_powergate = false,
1872};
1873
1874static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
1875	.supports_border_color = true,
1876	.supports_interlacing = false,
1877	.supports_cursor = false,
1878	.supports_block_linear = false,
1879	.pitch_align = 8,
1880	.has_powergate = false,
1881};
1882
1883static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
1884	.supports_border_color = true,
1885	.supports_interlacing = false,
1886	.supports_cursor = false,
1887	.supports_block_linear = false,
1888	.pitch_align = 64,
1889	.has_powergate = true,
1890};
1891
1892static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
1893	.supports_border_color = false,
1894	.supports_interlacing = true,
1895	.supports_cursor = true,
1896	.supports_block_linear = true,
1897	.pitch_align = 64,
1898	.has_powergate = true,
1899};
1900
1901static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
1902	.supports_border_color = false,
1903	.supports_interlacing = true,
1904	.supports_cursor = true,
1905	.supports_block_linear = true,
1906	.pitch_align = 64,
1907	.has_powergate = true,
1908};
1909
1910static const struct of_device_id tegra_dc_of_match[] = {
1911	{
1912		.compatible = "nvidia,tegra210-dc",
1913		.data = &tegra210_dc_soc_info,
1914	}, {
1915		.compatible = "nvidia,tegra124-dc",
1916		.data = &tegra124_dc_soc_info,
1917	}, {
1918		.compatible = "nvidia,tegra114-dc",
1919		.data = &tegra114_dc_soc_info,
1920	}, {
1921		.compatible = "nvidia,tegra30-dc",
1922		.data = &tegra30_dc_soc_info,
1923	}, {
1924		.compatible = "nvidia,tegra20-dc",
1925		.data = &tegra20_dc_soc_info,
1926	}, {
1927		/* sentinel */
1928	}
1929};
1930MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
1931
1932static int tegra_dc_parse_dt(struct tegra_dc *dc)
1933{
1934	struct device_node *np;
1935	u32 value = 0;
1936	int err;
1937
1938	err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
1939	if (err < 0) {
1940		dev_err(dc->dev, "missing \"nvidia,head\" property\n");
1941
1942		/*
1943		 * If the nvidia,head property isn't present, try to find the
1944		 * correct head number by looking up the position of this
1945		 * display controller's node within the device tree. Assuming
1946		 * that the nodes are ordered properly in the DTS file and
1947		 * that the translation into a flattened device tree blob
1948		 * preserves that ordering this will actually yield the right
1949		 * head number.
1950		 *
1951		 * If those assumptions don't hold, this will still work for
1952		 * cases where only a single display controller is used.
1953		 */
1954		for_each_matching_node(np, tegra_dc_of_match) {
1955			if (np == dc->dev->of_node)
1956				break;
1957
1958			value++;
1959		}
1960	}
1961
1962	dc->pipe = value;
1963
1964	return 0;
1965}
1966
1967static int tegra_dc_probe(struct platform_device *pdev)
1968{
1969	const struct of_device_id *id;
1970	struct resource *regs;
1971	struct tegra_dc *dc;
1972	int err;
1973
1974	dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
1975	if (!dc)
1976		return -ENOMEM;
1977
1978	id = of_match_node(tegra_dc_of_match, pdev->dev.of_node);
1979	if (!id)
1980		return -ENODEV;
1981
1982	spin_lock_init(&dc->lock);
1983	INIT_LIST_HEAD(&dc->list);
1984	dc->dev = &pdev->dev;
1985	dc->soc = id->data;
1986
1987	err = tegra_dc_parse_dt(dc);
1988	if (err < 0)
1989		return err;
1990
1991	dc->clk = devm_clk_get(&pdev->dev, NULL);
1992	if (IS_ERR(dc->clk)) {
1993		dev_err(&pdev->dev, "failed to get clock\n");
1994		return PTR_ERR(dc->clk);
1995	}
1996
1997	dc->rst = devm_reset_control_get(&pdev->dev, "dc");
1998	if (IS_ERR(dc->rst)) {
1999		dev_err(&pdev->dev, "failed to get reset\n");
2000		return PTR_ERR(dc->rst);
2001	}
2002
2003	if (dc->soc->has_powergate) {
2004		if (dc->pipe == 0)
2005			dc->powergate = TEGRA_POWERGATE_DIS;
2006		else
2007			dc->powergate = TEGRA_POWERGATE_DISB;
2008
2009		err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2010							dc->rst);
2011		if (err < 0) {
2012			dev_err(&pdev->dev, "failed to power partition: %d\n",
2013				err);
2014			return err;
2015		}
2016	} else {
2017		err = clk_prepare_enable(dc->clk);
2018		if (err < 0) {
2019			dev_err(&pdev->dev, "failed to enable clock: %d\n",
2020				err);
2021			return err;
2022		}
2023
2024		err = reset_control_deassert(dc->rst);
2025		if (err < 0) {
2026			dev_err(&pdev->dev, "failed to deassert reset: %d\n",
2027				err);
2028			return err;
2029		}
2030	}
2031
2032	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2033	dc->regs = devm_ioremap_resource(&pdev->dev, regs);
2034	if (IS_ERR(dc->regs))
2035		return PTR_ERR(dc->regs);
2036
2037	dc->irq = platform_get_irq(pdev, 0);
2038	if (dc->irq < 0) {
2039		dev_err(&pdev->dev, "failed to get IRQ\n");
2040		return -ENXIO;
2041	}
2042
2043	INIT_LIST_HEAD(&dc->client.list);
2044	dc->client.ops = &dc_client_ops;
2045	dc->client.dev = &pdev->dev;
2046
2047	err = tegra_dc_rgb_probe(dc);
2048	if (err < 0 && err != -ENODEV) {
2049		dev_err(&pdev->dev, "failed to probe RGB output: %d\n", err);
2050		return err;
2051	}
2052
2053	err = host1x_client_register(&dc->client);
2054	if (err < 0) {
2055		dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2056			err);
2057		return err;
2058	}
2059
2060	platform_set_drvdata(pdev, dc);
2061
2062	return 0;
2063}
2064
2065static int tegra_dc_remove(struct platform_device *pdev)
2066{
2067	struct tegra_dc *dc = platform_get_drvdata(pdev);
2068	int err;
2069
2070	err = host1x_client_unregister(&dc->client);
2071	if (err < 0) {
2072		dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2073			err);
2074		return err;
2075	}
2076
2077	err = tegra_dc_rgb_remove(dc);
2078	if (err < 0) {
2079		dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2080		return err;
2081	}
2082
2083	reset_control_assert(dc->rst);
2084
2085	if (dc->soc->has_powergate)
2086		tegra_powergate_power_off(dc->powergate);
2087
2088	clk_disable_unprepare(dc->clk);
2089
2090	return 0;
2091}
2092
2093struct platform_driver tegra_dc_driver = {
2094	.driver = {
2095		.name = "tegra-dc",
2096		.of_match_table = tegra_dc_of_match,
2097	},
2098	.probe = tegra_dc_probe,
2099	.remove = tegra_dc_remove,
2100};
2101