1/*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 *          Alex Deucher
26 *          Jerome Glisse
27 */
28#include <drm/drmP.h>
29#include <drm/radeon_drm.h>
30#include "radeon.h"
31#include "radeon_trace.h"
32
33/*
34 * GPUVM
35 * GPUVM is similar to the legacy gart on older asics, however
36 * rather than there being a single global gart table
37 * for the entire GPU, there are multiple VM page tables active
38 * at any given time.  The VM page tables can contain a mix
39 * vram pages and system memory pages and system memory pages
40 * can be mapped as snooped (cached system pages) or unsnooped
41 * (uncached system pages).
42 * Each VM has an ID associated with it and there is a page table
43 * associated with each VMID.  When execting a command buffer,
44 * the kernel tells the the ring what VMID to use for that command
45 * buffer.  VMIDs are allocated dynamically as commands are submitted.
46 * The userspace drivers maintain their own address space and the kernel
47 * sets up their pages tables accordingly when they submit their
48 * command buffers and a VMID is assigned.
49 * Cayman/Trinity support up to 8 active VMs at any given time;
50 * SI supports 16.
51 */
52
53/**
54 * radeon_vm_num_pde - return the number of page directory entries
55 *
56 * @rdev: radeon_device pointer
57 *
58 * Calculate the number of page directory entries (cayman+).
59 */
60static unsigned radeon_vm_num_pdes(struct radeon_device *rdev)
61{
62	return rdev->vm_manager.max_pfn >> radeon_vm_block_size;
63}
64
65/**
66 * radeon_vm_directory_size - returns the size of the page directory in bytes
67 *
68 * @rdev: radeon_device pointer
69 *
70 * Calculate the size of the page directory in bytes (cayman+).
71 */
72static unsigned radeon_vm_directory_size(struct radeon_device *rdev)
73{
74	return RADEON_GPU_PAGE_ALIGN(radeon_vm_num_pdes(rdev) * 8);
75}
76
77/**
78 * radeon_vm_manager_init - init the vm manager
79 *
80 * @rdev: radeon_device pointer
81 *
82 * Init the vm manager (cayman+).
83 * Returns 0 for success, error for failure.
84 */
85int radeon_vm_manager_init(struct radeon_device *rdev)
86{
87	int r;
88
89	if (!rdev->vm_manager.enabled) {
90		r = radeon_asic_vm_init(rdev);
91		if (r)
92			return r;
93
94		rdev->vm_manager.enabled = true;
95	}
96	return 0;
97}
98
99/**
100 * radeon_vm_manager_fini - tear down the vm manager
101 *
102 * @rdev: radeon_device pointer
103 *
104 * Tear down the VM manager (cayman+).
105 */
106void radeon_vm_manager_fini(struct radeon_device *rdev)
107{
108	int i;
109
110	if (!rdev->vm_manager.enabled)
111		return;
112
113	for (i = 0; i < RADEON_NUM_VM; ++i)
114		radeon_fence_unref(&rdev->vm_manager.active[i]);
115	radeon_asic_vm_fini(rdev);
116	rdev->vm_manager.enabled = false;
117}
118
119/**
120 * radeon_vm_get_bos - add the vm BOs to a validation list
121 *
122 * @vm: vm providing the BOs
123 * @head: head of validation list
124 *
125 * Add the page directory to the list of BOs to
126 * validate for command submission (cayman+).
127 */
128struct radeon_bo_list *radeon_vm_get_bos(struct radeon_device *rdev,
129					  struct radeon_vm *vm,
130					  struct list_head *head)
131{
132	struct radeon_bo_list *list;
133	unsigned i, idx;
134
135	list = drm_malloc_ab(vm->max_pde_used + 2,
136			     sizeof(struct radeon_bo_list));
137	if (!list)
138		return NULL;
139
140	/* add the vm page table to the list */
141	list[0].robj = vm->page_directory;
142	list[0].prefered_domains = RADEON_GEM_DOMAIN_VRAM;
143	list[0].allowed_domains = RADEON_GEM_DOMAIN_VRAM;
144	list[0].tv.bo = &vm->page_directory->tbo;
145	list[0].tv.shared = true;
146	list[0].tiling_flags = 0;
147	list_add(&list[0].tv.head, head);
148
149	for (i = 0, idx = 1; i <= vm->max_pde_used; i++) {
150		if (!vm->page_tables[i].bo)
151			continue;
152
153		list[idx].robj = vm->page_tables[i].bo;
154		list[idx].prefered_domains = RADEON_GEM_DOMAIN_VRAM;
155		list[idx].allowed_domains = RADEON_GEM_DOMAIN_VRAM;
156		list[idx].tv.bo = &list[idx].robj->tbo;
157		list[idx].tv.shared = true;
158		list[idx].tiling_flags = 0;
159		list_add(&list[idx++].tv.head, head);
160	}
161
162	return list;
163}
164
165/**
166 * radeon_vm_grab_id - allocate the next free VMID
167 *
168 * @rdev: radeon_device pointer
169 * @vm: vm to allocate id for
170 * @ring: ring we want to submit job to
171 *
172 * Allocate an id for the vm (cayman+).
173 * Returns the fence we need to sync to (if any).
174 *
175 * Global and local mutex must be locked!
176 */
177struct radeon_fence *radeon_vm_grab_id(struct radeon_device *rdev,
178				       struct radeon_vm *vm, int ring)
179{
180	struct radeon_fence *best[RADEON_NUM_RINGS] = {};
181	struct radeon_vm_id *vm_id = &vm->ids[ring];
182
183	unsigned choices[2] = {};
184	unsigned i;
185
186	/* check if the id is still valid */
187	if (vm_id->id && vm_id->last_id_use &&
188	    vm_id->last_id_use == rdev->vm_manager.active[vm_id->id])
189		return NULL;
190
191	/* we definately need to flush */
192	vm_id->pd_gpu_addr = ~0ll;
193
194	/* skip over VMID 0, since it is the system VM */
195	for (i = 1; i < rdev->vm_manager.nvm; ++i) {
196		struct radeon_fence *fence = rdev->vm_manager.active[i];
197
198		if (fence == NULL) {
199			/* found a free one */
200			vm_id->id = i;
201			trace_radeon_vm_grab_id(i, ring);
202			return NULL;
203		}
204
205		if (radeon_fence_is_earlier(fence, best[fence->ring])) {
206			best[fence->ring] = fence;
207			choices[fence->ring == ring ? 0 : 1] = i;
208		}
209	}
210
211	for (i = 0; i < 2; ++i) {
212		if (choices[i]) {
213			vm_id->id = choices[i];
214			trace_radeon_vm_grab_id(choices[i], ring);
215			return rdev->vm_manager.active[choices[i]];
216		}
217	}
218
219	/* should never happen */
220	BUG();
221	return NULL;
222}
223
224/**
225 * radeon_vm_flush - hardware flush the vm
226 *
227 * @rdev: radeon_device pointer
228 * @vm: vm we want to flush
229 * @ring: ring to use for flush
230 * @updates: last vm update that is waited for
231 *
232 * Flush the vm (cayman+).
233 *
234 * Global and local mutex must be locked!
235 */
236void radeon_vm_flush(struct radeon_device *rdev,
237		     struct radeon_vm *vm,
238		     int ring, struct radeon_fence *updates)
239{
240	uint64_t pd_addr = radeon_bo_gpu_offset(vm->page_directory);
241	struct radeon_vm_id *vm_id = &vm->ids[ring];
242
243	if (pd_addr != vm_id->pd_gpu_addr || !vm_id->flushed_updates ||
244	    radeon_fence_is_earlier(vm_id->flushed_updates, updates)) {
245
246		trace_radeon_vm_flush(pd_addr, ring, vm->ids[ring].id);
247		radeon_fence_unref(&vm_id->flushed_updates);
248		vm_id->flushed_updates = radeon_fence_ref(updates);
249		vm_id->pd_gpu_addr = pd_addr;
250		radeon_ring_vm_flush(rdev, &rdev->ring[ring],
251				     vm_id->id, vm_id->pd_gpu_addr);
252
253	}
254}
255
256/**
257 * radeon_vm_fence - remember fence for vm
258 *
259 * @rdev: radeon_device pointer
260 * @vm: vm we want to fence
261 * @fence: fence to remember
262 *
263 * Fence the vm (cayman+).
264 * Set the fence used to protect page table and id.
265 *
266 * Global and local mutex must be locked!
267 */
268void radeon_vm_fence(struct radeon_device *rdev,
269		     struct radeon_vm *vm,
270		     struct radeon_fence *fence)
271{
272	unsigned vm_id = vm->ids[fence->ring].id;
273
274	radeon_fence_unref(&rdev->vm_manager.active[vm_id]);
275	rdev->vm_manager.active[vm_id] = radeon_fence_ref(fence);
276
277	radeon_fence_unref(&vm->ids[fence->ring].last_id_use);
278	vm->ids[fence->ring].last_id_use = radeon_fence_ref(fence);
279}
280
281/**
282 * radeon_vm_bo_find - find the bo_va for a specific vm & bo
283 *
284 * @vm: requested vm
285 * @bo: requested buffer object
286 *
287 * Find @bo inside the requested vm (cayman+).
288 * Search inside the @bos vm list for the requested vm
289 * Returns the found bo_va or NULL if none is found
290 *
291 * Object has to be reserved!
292 */
293struct radeon_bo_va *radeon_vm_bo_find(struct radeon_vm *vm,
294				       struct radeon_bo *bo)
295{
296	struct radeon_bo_va *bo_va;
297
298	list_for_each_entry(bo_va, &bo->va, bo_list) {
299		if (bo_va->vm == vm) {
300			return bo_va;
301		}
302	}
303	return NULL;
304}
305
306/**
307 * radeon_vm_bo_add - add a bo to a specific vm
308 *
309 * @rdev: radeon_device pointer
310 * @vm: requested vm
311 * @bo: radeon buffer object
312 *
313 * Add @bo into the requested vm (cayman+).
314 * Add @bo to the list of bos associated with the vm
315 * Returns newly added bo_va or NULL for failure
316 *
317 * Object has to be reserved!
318 */
319struct radeon_bo_va *radeon_vm_bo_add(struct radeon_device *rdev,
320				      struct radeon_vm *vm,
321				      struct radeon_bo *bo)
322{
323	struct radeon_bo_va *bo_va;
324
325	bo_va = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
326	if (bo_va == NULL) {
327		return NULL;
328	}
329	bo_va->vm = vm;
330	bo_va->bo = bo;
331	bo_va->it.start = 0;
332	bo_va->it.last = 0;
333	bo_va->flags = 0;
334	bo_va->ref_count = 1;
335	INIT_LIST_HEAD(&bo_va->bo_list);
336	INIT_LIST_HEAD(&bo_va->vm_status);
337
338	mutex_lock(&vm->mutex);
339	list_add_tail(&bo_va->bo_list, &bo->va);
340	mutex_unlock(&vm->mutex);
341
342	return bo_va;
343}
344
345/**
346 * radeon_vm_set_pages - helper to call the right asic function
347 *
348 * @rdev: radeon_device pointer
349 * @ib: indirect buffer to fill with commands
350 * @pe: addr of the page entry
351 * @addr: dst addr to write into pe
352 * @count: number of page entries to update
353 * @incr: increase next addr by incr bytes
354 * @flags: hw access flags
355 *
356 * Traces the parameters and calls the right asic functions
357 * to setup the page table using the DMA.
358 */
359static void radeon_vm_set_pages(struct radeon_device *rdev,
360				struct radeon_ib *ib,
361				uint64_t pe,
362				uint64_t addr, unsigned count,
363				uint32_t incr, uint32_t flags)
364{
365	trace_radeon_vm_set_page(pe, addr, count, incr, flags);
366
367	if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) {
368		uint64_t src = rdev->gart.table_addr + (addr >> 12) * 8;
369		radeon_asic_vm_copy_pages(rdev, ib, pe, src, count);
370
371	} else if ((flags & R600_PTE_SYSTEM) || (count < 3)) {
372		radeon_asic_vm_write_pages(rdev, ib, pe, addr,
373					   count, incr, flags);
374
375	} else {
376		radeon_asic_vm_set_pages(rdev, ib, pe, addr,
377					 count, incr, flags);
378	}
379}
380
381/**
382 * radeon_vm_clear_bo - initially clear the page dir/table
383 *
384 * @rdev: radeon_device pointer
385 * @bo: bo to clear
386 */
387static int radeon_vm_clear_bo(struct radeon_device *rdev,
388			      struct radeon_bo *bo)
389{
390	struct radeon_ib ib;
391	unsigned entries;
392	uint64_t addr;
393	int r;
394
395	r = radeon_bo_reserve(bo, false);
396	if (r)
397		return r;
398
399	r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
400	if (r)
401		goto error_unreserve;
402
403	addr = radeon_bo_gpu_offset(bo);
404	entries = radeon_bo_size(bo) / 8;
405
406	r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, 256);
407	if (r)
408		goto error_unreserve;
409
410	ib.length_dw = 0;
411
412	radeon_vm_set_pages(rdev, &ib, addr, 0, entries, 0, 0);
413	radeon_asic_vm_pad_ib(rdev, &ib);
414	WARN_ON(ib.length_dw > 64);
415
416	r = radeon_ib_schedule(rdev, &ib, NULL, false);
417	if (r)
418		goto error_free;
419
420	ib.fence->is_vm_update = true;
421	radeon_bo_fence(bo, ib.fence, false);
422
423error_free:
424	radeon_ib_free(rdev, &ib);
425
426error_unreserve:
427	radeon_bo_unreserve(bo);
428	return r;
429}
430
431/**
432 * radeon_vm_bo_set_addr - set bos virtual address inside a vm
433 *
434 * @rdev: radeon_device pointer
435 * @bo_va: bo_va to store the address
436 * @soffset: requested offset of the buffer in the VM address space
437 * @flags: attributes of pages (read/write/valid/etc.)
438 *
439 * Set offset of @bo_va (cayman+).
440 * Validate and set the offset requested within the vm address space.
441 * Returns 0 for success, error for failure.
442 *
443 * Object has to be reserved and gets unreserved by this function!
444 */
445int radeon_vm_bo_set_addr(struct radeon_device *rdev,
446			  struct radeon_bo_va *bo_va,
447			  uint64_t soffset,
448			  uint32_t flags)
449{
450	uint64_t size = radeon_bo_size(bo_va->bo);
451	struct radeon_vm *vm = bo_va->vm;
452	unsigned last_pfn, pt_idx;
453	uint64_t eoffset;
454	int r;
455
456	if (soffset) {
457		/* make sure object fit at this offset */
458		eoffset = soffset + size - 1;
459		if (soffset >= eoffset) {
460			r = -EINVAL;
461			goto error_unreserve;
462		}
463
464		last_pfn = eoffset / RADEON_GPU_PAGE_SIZE;
465		if (last_pfn >= rdev->vm_manager.max_pfn) {
466			dev_err(rdev->dev, "va above limit (0x%08X >= 0x%08X)\n",
467				last_pfn, rdev->vm_manager.max_pfn);
468			r = -EINVAL;
469			goto error_unreserve;
470		}
471
472	} else {
473		eoffset = last_pfn = 0;
474	}
475
476	mutex_lock(&vm->mutex);
477	soffset /= RADEON_GPU_PAGE_SIZE;
478	eoffset /= RADEON_GPU_PAGE_SIZE;
479	if (soffset || eoffset) {
480		struct interval_tree_node *it;
481		it = interval_tree_iter_first(&vm->va, soffset, eoffset);
482		if (it && it != &bo_va->it) {
483			struct radeon_bo_va *tmp;
484			tmp = container_of(it, struct radeon_bo_va, it);
485			/* bo and tmp overlap, invalid offset */
486			dev_err(rdev->dev, "bo %p va 0x%010Lx conflict with "
487				"(bo %p 0x%010lx 0x%010lx)\n", bo_va->bo,
488				soffset, tmp->bo, tmp->it.start, tmp->it.last);
489			mutex_unlock(&vm->mutex);
490			r = -EINVAL;
491			goto error_unreserve;
492		}
493	}
494
495	if (bo_va->it.start || bo_va->it.last) {
496		/* add a clone of the bo_va to clear the old address */
497		struct radeon_bo_va *tmp;
498		tmp = kzalloc(sizeof(struct radeon_bo_va), GFP_KERNEL);
499		if (!tmp) {
500			mutex_unlock(&vm->mutex);
501			r = -ENOMEM;
502			goto error_unreserve;
503		}
504		tmp->it.start = bo_va->it.start;
505		tmp->it.last = bo_va->it.last;
506		tmp->vm = vm;
507		tmp->bo = radeon_bo_ref(bo_va->bo);
508
509		interval_tree_remove(&bo_va->it, &vm->va);
510		spin_lock(&vm->status_lock);
511		bo_va->it.start = 0;
512		bo_va->it.last = 0;
513		list_del_init(&bo_va->vm_status);
514		list_add(&tmp->vm_status, &vm->freed);
515		spin_unlock(&vm->status_lock);
516	}
517
518	if (soffset || eoffset) {
519		spin_lock(&vm->status_lock);
520		bo_va->it.start = soffset;
521		bo_va->it.last = eoffset;
522		list_add(&bo_va->vm_status, &vm->cleared);
523		spin_unlock(&vm->status_lock);
524		interval_tree_insert(&bo_va->it, &vm->va);
525	}
526
527	bo_va->flags = flags;
528
529	soffset >>= radeon_vm_block_size;
530	eoffset >>= radeon_vm_block_size;
531
532	BUG_ON(eoffset >= radeon_vm_num_pdes(rdev));
533
534	if (eoffset > vm->max_pde_used)
535		vm->max_pde_used = eoffset;
536
537	radeon_bo_unreserve(bo_va->bo);
538
539	/* walk over the address space and allocate the page tables */
540	for (pt_idx = soffset; pt_idx <= eoffset; ++pt_idx) {
541		struct radeon_bo *pt;
542
543		if (vm->page_tables[pt_idx].bo)
544			continue;
545
546		/* drop mutex to allocate and clear page table */
547		mutex_unlock(&vm->mutex);
548
549		r = radeon_bo_create(rdev, RADEON_VM_PTE_COUNT * 8,
550				     RADEON_GPU_PAGE_SIZE, true,
551				     RADEON_GEM_DOMAIN_VRAM, 0,
552				     NULL, NULL, &pt);
553		if (r)
554			return r;
555
556		r = radeon_vm_clear_bo(rdev, pt);
557		if (r) {
558			radeon_bo_unref(&pt);
559			return r;
560		}
561
562		/* aquire mutex again */
563		mutex_lock(&vm->mutex);
564		if (vm->page_tables[pt_idx].bo) {
565			/* someone else allocated the pt in the meantime */
566			mutex_unlock(&vm->mutex);
567			radeon_bo_unref(&pt);
568			mutex_lock(&vm->mutex);
569			continue;
570		}
571
572		vm->page_tables[pt_idx].addr = 0;
573		vm->page_tables[pt_idx].bo = pt;
574	}
575
576	mutex_unlock(&vm->mutex);
577	return 0;
578
579error_unreserve:
580	radeon_bo_unreserve(bo_va->bo);
581	return r;
582}
583
584/**
585 * radeon_vm_map_gart - get the physical address of a gart page
586 *
587 * @rdev: radeon_device pointer
588 * @addr: the unmapped addr
589 *
590 * Look up the physical address of the page that the pte resolves
591 * to (cayman+).
592 * Returns the physical address of the page.
593 */
594uint64_t radeon_vm_map_gart(struct radeon_device *rdev, uint64_t addr)
595{
596	uint64_t result;
597
598	/* page table offset */
599	result = rdev->gart.pages_entry[addr >> RADEON_GPU_PAGE_SHIFT];
600	result &= ~RADEON_GPU_PAGE_MASK;
601
602	return result;
603}
604
605/**
606 * radeon_vm_page_flags - translate page flags to what the hw uses
607 *
608 * @flags: flags comming from userspace
609 *
610 * Translate the flags the userspace ABI uses to hw flags.
611 */
612static uint32_t radeon_vm_page_flags(uint32_t flags)
613{
614        uint32_t hw_flags = 0;
615        hw_flags |= (flags & RADEON_VM_PAGE_VALID) ? R600_PTE_VALID : 0;
616        hw_flags |= (flags & RADEON_VM_PAGE_READABLE) ? R600_PTE_READABLE : 0;
617        hw_flags |= (flags & RADEON_VM_PAGE_WRITEABLE) ? R600_PTE_WRITEABLE : 0;
618        if (flags & RADEON_VM_PAGE_SYSTEM) {
619                hw_flags |= R600_PTE_SYSTEM;
620                hw_flags |= (flags & RADEON_VM_PAGE_SNOOPED) ? R600_PTE_SNOOPED : 0;
621        }
622        return hw_flags;
623}
624
625/**
626 * radeon_vm_update_pdes - make sure that page directory is valid
627 *
628 * @rdev: radeon_device pointer
629 * @vm: requested vm
630 * @start: start of GPU address range
631 * @end: end of GPU address range
632 *
633 * Allocates new page tables if necessary
634 * and updates the page directory (cayman+).
635 * Returns 0 for success, error for failure.
636 *
637 * Global and local mutex must be locked!
638 */
639int radeon_vm_update_page_directory(struct radeon_device *rdev,
640				    struct radeon_vm *vm)
641{
642	struct radeon_bo *pd = vm->page_directory;
643	uint64_t pd_addr = radeon_bo_gpu_offset(pd);
644	uint32_t incr = RADEON_VM_PTE_COUNT * 8;
645	uint64_t last_pde = ~0, last_pt = ~0;
646	unsigned count = 0, pt_idx, ndw;
647	struct radeon_ib ib;
648	int r;
649
650	/* padding, etc. */
651	ndw = 64;
652
653	/* assume the worst case */
654	ndw += vm->max_pde_used * 6;
655
656	/* update too big for an IB */
657	if (ndw > 0xfffff)
658		return -ENOMEM;
659
660	r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4);
661	if (r)
662		return r;
663	ib.length_dw = 0;
664
665	/* walk over the address space and update the page directory */
666	for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
667		struct radeon_bo *bo = vm->page_tables[pt_idx].bo;
668		uint64_t pde, pt;
669
670		if (bo == NULL)
671			continue;
672
673		pt = radeon_bo_gpu_offset(bo);
674		if (vm->page_tables[pt_idx].addr == pt)
675			continue;
676		vm->page_tables[pt_idx].addr = pt;
677
678		pde = pd_addr + pt_idx * 8;
679		if (((last_pde + 8 * count) != pde) ||
680		    ((last_pt + incr * count) != pt)) {
681
682			if (count) {
683				radeon_vm_set_pages(rdev, &ib, last_pde,
684						    last_pt, count, incr,
685						    R600_PTE_VALID);
686			}
687
688			count = 1;
689			last_pde = pde;
690			last_pt = pt;
691		} else {
692			++count;
693		}
694	}
695
696	if (count)
697		radeon_vm_set_pages(rdev, &ib, last_pde, last_pt, count,
698				    incr, R600_PTE_VALID);
699
700	if (ib.length_dw != 0) {
701		radeon_asic_vm_pad_ib(rdev, &ib);
702
703		radeon_sync_resv(rdev, &ib.sync, pd->tbo.resv, true);
704		WARN_ON(ib.length_dw > ndw);
705		r = radeon_ib_schedule(rdev, &ib, NULL, false);
706		if (r) {
707			radeon_ib_free(rdev, &ib);
708			return r;
709		}
710		ib.fence->is_vm_update = true;
711		radeon_bo_fence(pd, ib.fence, false);
712	}
713	radeon_ib_free(rdev, &ib);
714
715	return 0;
716}
717
718/**
719 * radeon_vm_frag_ptes - add fragment information to PTEs
720 *
721 * @rdev: radeon_device pointer
722 * @ib: IB for the update
723 * @pe_start: first PTE to handle
724 * @pe_end: last PTE to handle
725 * @addr: addr those PTEs should point to
726 * @flags: hw mapping flags
727 *
728 * Global and local mutex must be locked!
729 */
730static void radeon_vm_frag_ptes(struct radeon_device *rdev,
731				struct radeon_ib *ib,
732				uint64_t pe_start, uint64_t pe_end,
733				uint64_t addr, uint32_t flags)
734{
735	/**
736	 * The MC L1 TLB supports variable sized pages, based on a fragment
737	 * field in the PTE. When this field is set to a non-zero value, page
738	 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
739	 * flags are considered valid for all PTEs within the fragment range
740	 * and corresponding mappings are assumed to be physically contiguous.
741	 *
742	 * The L1 TLB can store a single PTE for the whole fragment,
743	 * significantly increasing the space available for translation
744	 * caching. This leads to large improvements in throughput when the
745	 * TLB is under pressure.
746	 *
747	 * The L2 TLB distributes small and large fragments into two
748	 * asymmetric partitions. The large fragment cache is significantly
749	 * larger. Thus, we try to use large fragments wherever possible.
750	 * Userspace can support this by aligning virtual base address and
751	 * allocation size to the fragment size.
752	 */
753
754	/* NI is optimized for 256KB fragments, SI and newer for 64KB */
755	uint64_t frag_flags = ((rdev->family == CHIP_CAYMAN) ||
756			       (rdev->family == CHIP_ARUBA)) ?
757			R600_PTE_FRAG_256KB : R600_PTE_FRAG_64KB;
758	uint64_t frag_align = ((rdev->family == CHIP_CAYMAN) ||
759			       (rdev->family == CHIP_ARUBA)) ? 0x200 : 0x80;
760
761	uint64_t frag_start = ALIGN(pe_start, frag_align);
762	uint64_t frag_end = pe_end & ~(frag_align - 1);
763
764	unsigned count;
765
766	/* system pages are non continuously */
767	if ((flags & R600_PTE_SYSTEM) || !(flags & R600_PTE_VALID) ||
768	    (frag_start >= frag_end)) {
769
770		count = (pe_end - pe_start) / 8;
771		radeon_vm_set_pages(rdev, ib, pe_start, addr, count,
772				    RADEON_GPU_PAGE_SIZE, flags);
773		return;
774	}
775
776	/* handle the 4K area at the beginning */
777	if (pe_start != frag_start) {
778		count = (frag_start - pe_start) / 8;
779		radeon_vm_set_pages(rdev, ib, pe_start, addr, count,
780				    RADEON_GPU_PAGE_SIZE, flags);
781		addr += RADEON_GPU_PAGE_SIZE * count;
782	}
783
784	/* handle the area in the middle */
785	count = (frag_end - frag_start) / 8;
786	radeon_vm_set_pages(rdev, ib, frag_start, addr, count,
787			    RADEON_GPU_PAGE_SIZE, flags | frag_flags);
788
789	/* handle the 4K area at the end */
790	if (frag_end != pe_end) {
791		addr += RADEON_GPU_PAGE_SIZE * count;
792		count = (pe_end - frag_end) / 8;
793		radeon_vm_set_pages(rdev, ib, frag_end, addr, count,
794				    RADEON_GPU_PAGE_SIZE, flags);
795	}
796}
797
798/**
799 * radeon_vm_update_ptes - make sure that page tables are valid
800 *
801 * @rdev: radeon_device pointer
802 * @vm: requested vm
803 * @start: start of GPU address range
804 * @end: end of GPU address range
805 * @dst: destination address to map to
806 * @flags: mapping flags
807 *
808 * Update the page tables in the range @start - @end (cayman+).
809 *
810 * Global and local mutex must be locked!
811 */
812static int radeon_vm_update_ptes(struct radeon_device *rdev,
813				 struct radeon_vm *vm,
814				 struct radeon_ib *ib,
815				 uint64_t start, uint64_t end,
816				 uint64_t dst, uint32_t flags)
817{
818	uint64_t mask = RADEON_VM_PTE_COUNT - 1;
819	uint64_t last_pte = ~0, last_dst = ~0;
820	unsigned count = 0;
821	uint64_t addr;
822
823	/* walk over the address space and update the page tables */
824	for (addr = start; addr < end; ) {
825		uint64_t pt_idx = addr >> radeon_vm_block_size;
826		struct radeon_bo *pt = vm->page_tables[pt_idx].bo;
827		unsigned nptes;
828		uint64_t pte;
829		int r;
830
831		radeon_sync_resv(rdev, &ib->sync, pt->tbo.resv, true);
832		r = reservation_object_reserve_shared(pt->tbo.resv);
833		if (r)
834			return r;
835
836		if ((addr & ~mask) == (end & ~mask))
837			nptes = end - addr;
838		else
839			nptes = RADEON_VM_PTE_COUNT - (addr & mask);
840
841		pte = radeon_bo_gpu_offset(pt);
842		pte += (addr & mask) * 8;
843
844		if ((last_pte + 8 * count) != pte) {
845
846			if (count) {
847				radeon_vm_frag_ptes(rdev, ib, last_pte,
848						    last_pte + 8 * count,
849						    last_dst, flags);
850			}
851
852			count = nptes;
853			last_pte = pte;
854			last_dst = dst;
855		} else {
856			count += nptes;
857		}
858
859		addr += nptes;
860		dst += nptes * RADEON_GPU_PAGE_SIZE;
861	}
862
863	if (count) {
864		radeon_vm_frag_ptes(rdev, ib, last_pte,
865				    last_pte + 8 * count,
866				    last_dst, flags);
867	}
868
869	return 0;
870}
871
872/**
873 * radeon_vm_fence_pts - fence page tables after an update
874 *
875 * @vm: requested vm
876 * @start: start of GPU address range
877 * @end: end of GPU address range
878 * @fence: fence to use
879 *
880 * Fence the page tables in the range @start - @end (cayman+).
881 *
882 * Global and local mutex must be locked!
883 */
884static void radeon_vm_fence_pts(struct radeon_vm *vm,
885				uint64_t start, uint64_t end,
886				struct radeon_fence *fence)
887{
888	unsigned i;
889
890	start >>= radeon_vm_block_size;
891	end = (end - 1) >> radeon_vm_block_size;
892
893	for (i = start; i <= end; ++i)
894		radeon_bo_fence(vm->page_tables[i].bo, fence, true);
895}
896
897/**
898 * radeon_vm_bo_update - map a bo into the vm page table
899 *
900 * @rdev: radeon_device pointer
901 * @vm: requested vm
902 * @bo: radeon buffer object
903 * @mem: ttm mem
904 *
905 * Fill in the page table entries for @bo (cayman+).
906 * Returns 0 for success, -EINVAL for failure.
907 *
908 * Object have to be reserved and mutex must be locked!
909 */
910int radeon_vm_bo_update(struct radeon_device *rdev,
911			struct radeon_bo_va *bo_va,
912			struct ttm_mem_reg *mem)
913{
914	struct radeon_vm *vm = bo_va->vm;
915	struct radeon_ib ib;
916	unsigned nptes, ncmds, ndw;
917	uint64_t addr;
918	uint32_t flags;
919	int r;
920
921	if (!bo_va->it.start) {
922		dev_err(rdev->dev, "bo %p don't has a mapping in vm %p\n",
923			bo_va->bo, vm);
924		return -EINVAL;
925	}
926
927	spin_lock(&vm->status_lock);
928	if (mem) {
929		if (list_empty(&bo_va->vm_status)) {
930			spin_unlock(&vm->status_lock);
931			return 0;
932		}
933		list_del_init(&bo_va->vm_status);
934	} else {
935		list_del(&bo_va->vm_status);
936		list_add(&bo_va->vm_status, &vm->cleared);
937	}
938	spin_unlock(&vm->status_lock);
939
940	bo_va->flags &= ~RADEON_VM_PAGE_VALID;
941	bo_va->flags &= ~RADEON_VM_PAGE_SYSTEM;
942	bo_va->flags &= ~RADEON_VM_PAGE_SNOOPED;
943	if (bo_va->bo && radeon_ttm_tt_is_readonly(bo_va->bo->tbo.ttm))
944		bo_va->flags &= ~RADEON_VM_PAGE_WRITEABLE;
945
946	if (mem) {
947		addr = mem->start << PAGE_SHIFT;
948		if (mem->mem_type != TTM_PL_SYSTEM) {
949			bo_va->flags |= RADEON_VM_PAGE_VALID;
950		}
951		if (mem->mem_type == TTM_PL_TT) {
952			bo_va->flags |= RADEON_VM_PAGE_SYSTEM;
953			if (!(bo_va->bo->flags & (RADEON_GEM_GTT_WC | RADEON_GEM_GTT_UC)))
954				bo_va->flags |= RADEON_VM_PAGE_SNOOPED;
955
956		} else {
957			addr += rdev->vm_manager.vram_base_offset;
958		}
959	} else {
960		addr = 0;
961	}
962
963	trace_radeon_vm_bo_update(bo_va);
964
965	nptes = bo_va->it.last - bo_va->it.start + 1;
966
967	/* reserve space for one command every (1 << BLOCK_SIZE) entries
968	   or 2k dwords (whatever is smaller) */
969	ncmds = (nptes >> min(radeon_vm_block_size, 11)) + 1;
970
971	/* padding, etc. */
972	ndw = 64;
973
974	flags = radeon_vm_page_flags(bo_va->flags);
975	if ((flags & R600_PTE_GART_MASK) == R600_PTE_GART_MASK) {
976		/* only copy commands needed */
977		ndw += ncmds * 7;
978
979	} else if (flags & R600_PTE_SYSTEM) {
980		/* header for write data commands */
981		ndw += ncmds * 4;
982
983		/* body of write data command */
984		ndw += nptes * 2;
985
986	} else {
987		/* set page commands needed */
988		ndw += ncmds * 10;
989
990		/* two extra commands for begin/end of fragment */
991		ndw += 2 * 10;
992	}
993
994	/* update too big for an IB */
995	if (ndw > 0xfffff)
996		return -ENOMEM;
997
998	r = radeon_ib_get(rdev, R600_RING_TYPE_DMA_INDEX, &ib, NULL, ndw * 4);
999	if (r)
1000		return r;
1001	ib.length_dw = 0;
1002
1003	if (!(bo_va->flags & RADEON_VM_PAGE_VALID)) {
1004		unsigned i;
1005
1006		for (i = 0; i < RADEON_NUM_RINGS; ++i)
1007			radeon_sync_fence(&ib.sync, vm->ids[i].last_id_use);
1008	}
1009
1010	r = radeon_vm_update_ptes(rdev, vm, &ib, bo_va->it.start,
1011				  bo_va->it.last + 1, addr,
1012				  radeon_vm_page_flags(bo_va->flags));
1013	if (r) {
1014		radeon_ib_free(rdev, &ib);
1015		return r;
1016	}
1017
1018	radeon_asic_vm_pad_ib(rdev, &ib);
1019	WARN_ON(ib.length_dw > ndw);
1020
1021	r = radeon_ib_schedule(rdev, &ib, NULL, false);
1022	if (r) {
1023		radeon_ib_free(rdev, &ib);
1024		return r;
1025	}
1026	ib.fence->is_vm_update = true;
1027	radeon_vm_fence_pts(vm, bo_va->it.start, bo_va->it.last + 1, ib.fence);
1028	radeon_fence_unref(&bo_va->last_pt_update);
1029	bo_va->last_pt_update = radeon_fence_ref(ib.fence);
1030	radeon_ib_free(rdev, &ib);
1031
1032	return 0;
1033}
1034
1035/**
1036 * radeon_vm_clear_freed - clear freed BOs in the PT
1037 *
1038 * @rdev: radeon_device pointer
1039 * @vm: requested vm
1040 *
1041 * Make sure all freed BOs are cleared in the PT.
1042 * Returns 0 for success.
1043 *
1044 * PTs have to be reserved and mutex must be locked!
1045 */
1046int radeon_vm_clear_freed(struct radeon_device *rdev,
1047			  struct radeon_vm *vm)
1048{
1049	struct radeon_bo_va *bo_va;
1050	int r = 0;
1051
1052	spin_lock(&vm->status_lock);
1053	while (!list_empty(&vm->freed)) {
1054		bo_va = list_first_entry(&vm->freed,
1055			struct radeon_bo_va, vm_status);
1056		spin_unlock(&vm->status_lock);
1057
1058		r = radeon_vm_bo_update(rdev, bo_va, NULL);
1059		radeon_bo_unref(&bo_va->bo);
1060		radeon_fence_unref(&bo_va->last_pt_update);
1061		spin_lock(&vm->status_lock);
1062		list_del(&bo_va->vm_status);
1063		kfree(bo_va);
1064		if (r)
1065			break;
1066
1067	}
1068	spin_unlock(&vm->status_lock);
1069	return r;
1070
1071}
1072
1073/**
1074 * radeon_vm_clear_invalids - clear invalidated BOs in the PT
1075 *
1076 * @rdev: radeon_device pointer
1077 * @vm: requested vm
1078 *
1079 * Make sure all invalidated BOs are cleared in the PT.
1080 * Returns 0 for success.
1081 *
1082 * PTs have to be reserved and mutex must be locked!
1083 */
1084int radeon_vm_clear_invalids(struct radeon_device *rdev,
1085			     struct radeon_vm *vm)
1086{
1087	struct radeon_bo_va *bo_va;
1088	int r;
1089
1090	spin_lock(&vm->status_lock);
1091	while (!list_empty(&vm->invalidated)) {
1092		bo_va = list_first_entry(&vm->invalidated,
1093			struct radeon_bo_va, vm_status);
1094		spin_unlock(&vm->status_lock);
1095
1096		r = radeon_vm_bo_update(rdev, bo_va, NULL);
1097		if (r)
1098			return r;
1099
1100		spin_lock(&vm->status_lock);
1101	}
1102	spin_unlock(&vm->status_lock);
1103
1104	return 0;
1105}
1106
1107/**
1108 * radeon_vm_bo_rmv - remove a bo to a specific vm
1109 *
1110 * @rdev: radeon_device pointer
1111 * @bo_va: requested bo_va
1112 *
1113 * Remove @bo_va->bo from the requested vm (cayman+).
1114 *
1115 * Object have to be reserved!
1116 */
1117void radeon_vm_bo_rmv(struct radeon_device *rdev,
1118		      struct radeon_bo_va *bo_va)
1119{
1120	struct radeon_vm *vm = bo_va->vm;
1121
1122	list_del(&bo_va->bo_list);
1123
1124	mutex_lock(&vm->mutex);
1125	if (bo_va->it.start || bo_va->it.last)
1126		interval_tree_remove(&bo_va->it, &vm->va);
1127
1128	spin_lock(&vm->status_lock);
1129	list_del(&bo_va->vm_status);
1130	if (bo_va->it.start || bo_va->it.last) {
1131		bo_va->bo = radeon_bo_ref(bo_va->bo);
1132		list_add(&bo_va->vm_status, &vm->freed);
1133	} else {
1134		radeon_fence_unref(&bo_va->last_pt_update);
1135		kfree(bo_va);
1136	}
1137	spin_unlock(&vm->status_lock);
1138
1139	mutex_unlock(&vm->mutex);
1140}
1141
1142/**
1143 * radeon_vm_bo_invalidate - mark the bo as invalid
1144 *
1145 * @rdev: radeon_device pointer
1146 * @vm: requested vm
1147 * @bo: radeon buffer object
1148 *
1149 * Mark @bo as invalid (cayman+).
1150 */
1151void radeon_vm_bo_invalidate(struct radeon_device *rdev,
1152			     struct radeon_bo *bo)
1153{
1154	struct radeon_bo_va *bo_va;
1155
1156	list_for_each_entry(bo_va, &bo->va, bo_list) {
1157		spin_lock(&bo_va->vm->status_lock);
1158		if (list_empty(&bo_va->vm_status) &&
1159		    (bo_va->it.start || bo_va->it.last))
1160			list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1161		spin_unlock(&bo_va->vm->status_lock);
1162	}
1163}
1164
1165/**
1166 * radeon_vm_init - initialize a vm instance
1167 *
1168 * @rdev: radeon_device pointer
1169 * @vm: requested vm
1170 *
1171 * Init @vm fields (cayman+).
1172 */
1173int radeon_vm_init(struct radeon_device *rdev, struct radeon_vm *vm)
1174{
1175	const unsigned align = min(RADEON_VM_PTB_ALIGN_SIZE,
1176		RADEON_VM_PTE_COUNT * 8);
1177	unsigned pd_size, pd_entries, pts_size;
1178	int i, r;
1179
1180	vm->ib_bo_va = NULL;
1181	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
1182		vm->ids[i].id = 0;
1183		vm->ids[i].flushed_updates = NULL;
1184		vm->ids[i].last_id_use = NULL;
1185	}
1186	mutex_init(&vm->mutex);
1187	vm->va = RB_ROOT;
1188	spin_lock_init(&vm->status_lock);
1189	INIT_LIST_HEAD(&vm->invalidated);
1190	INIT_LIST_HEAD(&vm->freed);
1191	INIT_LIST_HEAD(&vm->cleared);
1192
1193	pd_size = radeon_vm_directory_size(rdev);
1194	pd_entries = radeon_vm_num_pdes(rdev);
1195
1196	/* allocate page table array */
1197	pts_size = pd_entries * sizeof(struct radeon_vm_pt);
1198	vm->page_tables = kzalloc(pts_size, GFP_KERNEL);
1199	if (vm->page_tables == NULL) {
1200		DRM_ERROR("Cannot allocate memory for page table array\n");
1201		return -ENOMEM;
1202	}
1203
1204	r = radeon_bo_create(rdev, pd_size, align, true,
1205			     RADEON_GEM_DOMAIN_VRAM, 0, NULL,
1206			     NULL, &vm->page_directory);
1207	if (r)
1208		return r;
1209
1210	r = radeon_vm_clear_bo(rdev, vm->page_directory);
1211	if (r) {
1212		radeon_bo_unref(&vm->page_directory);
1213		vm->page_directory = NULL;
1214		return r;
1215	}
1216
1217	return 0;
1218}
1219
1220/**
1221 * radeon_vm_fini - tear down a vm instance
1222 *
1223 * @rdev: radeon_device pointer
1224 * @vm: requested vm
1225 *
1226 * Tear down @vm (cayman+).
1227 * Unbind the VM and remove all bos from the vm bo list
1228 */
1229void radeon_vm_fini(struct radeon_device *rdev, struct radeon_vm *vm)
1230{
1231	struct radeon_bo_va *bo_va, *tmp;
1232	int i, r;
1233
1234	if (!RB_EMPTY_ROOT(&vm->va)) {
1235		dev_err(rdev->dev, "still active bo inside vm\n");
1236	}
1237	rbtree_postorder_for_each_entry_safe(bo_va, tmp, &vm->va, it.rb) {
1238		interval_tree_remove(&bo_va->it, &vm->va);
1239		r = radeon_bo_reserve(bo_va->bo, false);
1240		if (!r) {
1241			list_del_init(&bo_va->bo_list);
1242			radeon_bo_unreserve(bo_va->bo);
1243			radeon_fence_unref(&bo_va->last_pt_update);
1244			kfree(bo_va);
1245		}
1246	}
1247	list_for_each_entry_safe(bo_va, tmp, &vm->freed, vm_status) {
1248		radeon_bo_unref(&bo_va->bo);
1249		radeon_fence_unref(&bo_va->last_pt_update);
1250		kfree(bo_va);
1251	}
1252
1253	for (i = 0; i < radeon_vm_num_pdes(rdev); i++)
1254		radeon_bo_unref(&vm->page_tables[i].bo);
1255	kfree(vm->page_tables);
1256
1257	radeon_bo_unref(&vm->page_directory);
1258
1259	for (i = 0; i < RADEON_NUM_RINGS; ++i) {
1260		radeon_fence_unref(&vm->ids[i].flushed_updates);
1261		radeon_fence_unref(&vm->ids[i].last_id_use);
1262	}
1263
1264	mutex_destroy(&vm->mutex);
1265}
1266