1/*
2 * Copyright 2012 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24#include "nv50.h"
25#include "pll.h"
26#include "seq.h"
27
28#include <subdev/bios.h>
29#include <subdev/bios/pll.h>
30
31static u32
32read_div(struct nv50_clk *clk)
33{
34	struct nvkm_device *device = clk->base.subdev.device;
35	switch (device->chipset) {
36	case 0x50: /* it exists, but only has bit 31, not the dividers.. */
37	case 0x84:
38	case 0x86:
39	case 0x98:
40	case 0xa0:
41		return nvkm_rd32(device, 0x004700);
42	case 0x92:
43	case 0x94:
44	case 0x96:
45		return nvkm_rd32(device, 0x004800);
46	default:
47		return 0x00000000;
48	}
49}
50
51static u32
52read_pll_src(struct nv50_clk *clk, u32 base)
53{
54	struct nvkm_subdev *subdev = &clk->base.subdev;
55	struct nvkm_device *device = subdev->device;
56	u32 coef, ref = nvkm_clk_read(&clk->base, nv_clk_src_crystal);
57	u32 rsel = nvkm_rd32(device, 0x00e18c);
58	int P, N, M, id;
59
60	switch (device->chipset) {
61	case 0x50:
62	case 0xa0:
63		switch (base) {
64		case 0x4020:
65		case 0x4028: id = !!(rsel & 0x00000004); break;
66		case 0x4008: id = !!(rsel & 0x00000008); break;
67		case 0x4030: id = 0; break;
68		default:
69			nvkm_error(subdev, "ref: bad pll %06x\n", base);
70			return 0;
71		}
72
73		coef = nvkm_rd32(device, 0x00e81c + (id * 0x0c));
74		ref *=  (coef & 0x01000000) ? 2 : 4;
75		P    =  (coef & 0x00070000) >> 16;
76		N    = ((coef & 0x0000ff00) >> 8) + 1;
77		M    = ((coef & 0x000000ff) >> 0) + 1;
78		break;
79	case 0x84:
80	case 0x86:
81	case 0x92:
82		coef = nvkm_rd32(device, 0x00e81c);
83		P    = (coef & 0x00070000) >> 16;
84		N    = (coef & 0x0000ff00) >> 8;
85		M    = (coef & 0x000000ff) >> 0;
86		break;
87	case 0x94:
88	case 0x96:
89	case 0x98:
90		rsel = nvkm_rd32(device, 0x00c050);
91		switch (base) {
92		case 0x4020: rsel = (rsel & 0x00000003) >> 0; break;
93		case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break;
94		case 0x4028: rsel = (rsel & 0x00001800) >> 11; break;
95		case 0x4030: rsel = 3; break;
96		default:
97			nvkm_error(subdev, "ref: bad pll %06x\n", base);
98			return 0;
99		}
100
101		switch (rsel) {
102		case 0: id = 1; break;
103		case 1: return nvkm_clk_read(&clk->base, nv_clk_src_crystal);
104		case 2: return nvkm_clk_read(&clk->base, nv_clk_src_href);
105		case 3: id = 0; break;
106		}
107
108		coef =  nvkm_rd32(device, 0x00e81c + (id * 0x28));
109		P    = (nvkm_rd32(device, 0x00e824 + (id * 0x28)) >> 16) & 7;
110		P   += (coef & 0x00070000) >> 16;
111		N    = (coef & 0x0000ff00) >> 8;
112		M    = (coef & 0x000000ff) >> 0;
113		break;
114	default:
115		BUG_ON(1);
116	}
117
118	if (M)
119		return (ref * N / M) >> P;
120
121	return 0;
122}
123
124static u32
125read_pll_ref(struct nv50_clk *clk, u32 base)
126{
127	struct nvkm_subdev *subdev = &clk->base.subdev;
128	struct nvkm_device *device = subdev->device;
129	u32 src, mast = nvkm_rd32(device, 0x00c040);
130
131	switch (base) {
132	case 0x004028:
133		src = !!(mast & 0x00200000);
134		break;
135	case 0x004020:
136		src = !!(mast & 0x00400000);
137		break;
138	case 0x004008:
139		src = !!(mast & 0x00010000);
140		break;
141	case 0x004030:
142		src = !!(mast & 0x02000000);
143		break;
144	case 0x00e810:
145		return nvkm_clk_read(&clk->base, nv_clk_src_crystal);
146	default:
147		nvkm_error(subdev, "bad pll %06x\n", base);
148		return 0;
149	}
150
151	if (src)
152		return nvkm_clk_read(&clk->base, nv_clk_src_href);
153
154	return read_pll_src(clk, base);
155}
156
157static u32
158read_pll(struct nv50_clk *clk, u32 base)
159{
160	struct nvkm_device *device = clk->base.subdev.device;
161	u32 mast = nvkm_rd32(device, 0x00c040);
162	u32 ctrl = nvkm_rd32(device, base + 0);
163	u32 coef = nvkm_rd32(device, base + 4);
164	u32 ref = read_pll_ref(clk, base);
165	u32 freq = 0;
166	int N1, N2, M1, M2;
167
168	if (base == 0x004028 && (mast & 0x00100000)) {
169		/* wtf, appears to only disable post-divider on gt200 */
170		if (device->chipset != 0xa0)
171			return nvkm_clk_read(&clk->base, nv_clk_src_dom6);
172	}
173
174	N2 = (coef & 0xff000000) >> 24;
175	M2 = (coef & 0x00ff0000) >> 16;
176	N1 = (coef & 0x0000ff00) >> 8;
177	M1 = (coef & 0x000000ff);
178	if ((ctrl & 0x80000000) && M1) {
179		freq = ref * N1 / M1;
180		if ((ctrl & 0x40000100) == 0x40000000) {
181			if (M2)
182				freq = freq * N2 / M2;
183			else
184				freq = 0;
185		}
186	}
187
188	return freq;
189}
190
191int
192nv50_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
193{
194	struct nv50_clk *clk = nv50_clk(base);
195	struct nvkm_subdev *subdev = &clk->base.subdev;
196	struct nvkm_device *device = subdev->device;
197	u32 mast = nvkm_rd32(device, 0x00c040);
198	u32 P = 0;
199
200	switch (src) {
201	case nv_clk_src_crystal:
202		return device->crystal;
203	case nv_clk_src_href:
204		return 100000; /* PCIE reference clock */
205	case nv_clk_src_hclk:
206		return div_u64((u64)nvkm_clk_read(&clk->base, nv_clk_src_href) * 27778, 10000);
207	case nv_clk_src_hclkm3:
208		return nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3;
209	case nv_clk_src_hclkm3d2:
210		return nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3 / 2;
211	case nv_clk_src_host:
212		switch (mast & 0x30000000) {
213		case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_href);
214		case 0x10000000: break;
215		case 0x20000000: /* !0x50 */
216		case 0x30000000: return nvkm_clk_read(&clk->base, nv_clk_src_hclk);
217		}
218		break;
219	case nv_clk_src_core:
220		if (!(mast & 0x00100000))
221			P = (nvkm_rd32(device, 0x004028) & 0x00070000) >> 16;
222		switch (mast & 0x00000003) {
223		case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
224		case 0x00000001: return nvkm_clk_read(&clk->base, nv_clk_src_dom6);
225		case 0x00000002: return read_pll(clk, 0x004020) >> P;
226		case 0x00000003: return read_pll(clk, 0x004028) >> P;
227		}
228		break;
229	case nv_clk_src_shader:
230		P = (nvkm_rd32(device, 0x004020) & 0x00070000) >> 16;
231		switch (mast & 0x00000030) {
232		case 0x00000000:
233			if (mast & 0x00000080)
234				return nvkm_clk_read(&clk->base, nv_clk_src_host) >> P;
235			return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
236		case 0x00000010: break;
237		case 0x00000020: return read_pll(clk, 0x004028) >> P;
238		case 0x00000030: return read_pll(clk, 0x004020) >> P;
239		}
240		break;
241	case nv_clk_src_mem:
242		P = (nvkm_rd32(device, 0x004008) & 0x00070000) >> 16;
243		if (nvkm_rd32(device, 0x004008) & 0x00000200) {
244			switch (mast & 0x0000c000) {
245			case 0x00000000:
246				return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
247			case 0x00008000:
248			case 0x0000c000:
249				return nvkm_clk_read(&clk->base, nv_clk_src_href) >> P;
250			}
251		} else {
252			return read_pll(clk, 0x004008) >> P;
253		}
254		break;
255	case nv_clk_src_vdec:
256		P = (read_div(clk) & 0x00000700) >> 8;
257		switch (device->chipset) {
258		case 0x84:
259		case 0x86:
260		case 0x92:
261		case 0x94:
262		case 0x96:
263		case 0xa0:
264			switch (mast & 0x00000c00) {
265			case 0x00000000:
266				if (device->chipset == 0xa0) /* wtf?? */
267					return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
268				return nvkm_clk_read(&clk->base, nv_clk_src_crystal) >> P;
269			case 0x00000400:
270				return 0;
271			case 0x00000800:
272				if (mast & 0x01000000)
273					return read_pll(clk, 0x004028) >> P;
274				return read_pll(clk, 0x004030) >> P;
275			case 0x00000c00:
276				return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
277			}
278			break;
279		case 0x98:
280			switch (mast & 0x00000c00) {
281			case 0x00000000:
282				return nvkm_clk_read(&clk->base, nv_clk_src_core) >> P;
283			case 0x00000400:
284				return 0;
285			case 0x00000800:
286				return nvkm_clk_read(&clk->base, nv_clk_src_hclkm3d2) >> P;
287			case 0x00000c00:
288				return nvkm_clk_read(&clk->base, nv_clk_src_mem) >> P;
289			}
290			break;
291		}
292		break;
293	case nv_clk_src_dom6:
294		switch (device->chipset) {
295		case 0x50:
296		case 0xa0:
297			return read_pll(clk, 0x00e810) >> 2;
298		case 0x84:
299		case 0x86:
300		case 0x92:
301		case 0x94:
302		case 0x96:
303		case 0x98:
304			P = (read_div(clk) & 0x00000007) >> 0;
305			switch (mast & 0x0c000000) {
306			case 0x00000000: return nvkm_clk_read(&clk->base, nv_clk_src_href);
307			case 0x04000000: break;
308			case 0x08000000: return nvkm_clk_read(&clk->base, nv_clk_src_hclk);
309			case 0x0c000000:
310				return nvkm_clk_read(&clk->base, nv_clk_src_hclkm3) >> P;
311			}
312			break;
313		default:
314			break;
315		}
316	default:
317		break;
318	}
319
320	nvkm_debug(subdev, "unknown clock source %d %08x\n", src, mast);
321	return -EINVAL;
322}
323
324static u32
325calc_pll(struct nv50_clk *clk, u32 reg, u32 idx, int *N, int *M, int *P)
326{
327	struct nvkm_subdev *subdev = &clk->base.subdev;
328	struct nvbios_pll pll;
329	int ret;
330
331	ret = nvbios_pll_parse(subdev->device->bios, reg, &pll);
332	if (ret)
333		return 0;
334
335	pll.vco2.max_freq = 0;
336	pll.refclk = read_pll_ref(clk, reg);
337	if (!pll.refclk)
338		return 0;
339
340	return nv04_pll_calc(subdev, &pll, idx, N, M, NULL, NULL, P);
341}
342
343static inline u32
344calc_div(u32 src, u32 target, int *div)
345{
346	u32 clk0 = src, clk1 = src;
347	for (*div = 0; *div <= 7; (*div)++) {
348		if (clk0 <= target) {
349			clk1 = clk0 << (*div ? 1 : 0);
350			break;
351		}
352		clk0 >>= 1;
353	}
354
355	if (target - clk0 <= clk1 - target)
356		return clk0;
357	(*div)--;
358	return clk1;
359}
360
361static inline u32
362clk_same(u32 a, u32 b)
363{
364	return ((a / 1000) == (b / 1000));
365}
366
367int
368nv50_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
369{
370	struct nv50_clk *clk = nv50_clk(base);
371	struct nv50_clk_hwsq *hwsq = &clk->hwsq;
372	struct nvkm_subdev *subdev = &clk->base.subdev;
373	struct nvkm_device *device = subdev->device;
374	const int shader = cstate->domain[nv_clk_src_shader];
375	const int core = cstate->domain[nv_clk_src_core];
376	const int vdec = cstate->domain[nv_clk_src_vdec];
377	const int dom6 = cstate->domain[nv_clk_src_dom6];
378	u32 mastm = 0, mastv = 0;
379	u32 divsm = 0, divsv = 0;
380	int N, M, P1, P2;
381	int freq, out;
382
383	/* prepare a hwsq script from which we'll perform the reclock */
384	out = clk_init(hwsq, subdev);
385	if (out)
386		return out;
387
388	clk_wr32(hwsq, fifo, 0x00000001); /* block fifo */
389	clk_nsec(hwsq, 8000);
390	clk_setf(hwsq, 0x10, 0x00); /* disable fb */
391	clk_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
392
393	/* vdec: avoid modifying xpll until we know exactly how the other
394	 * clock domains work, i suspect at least some of them can also be
395	 * tied to xpll...
396	 */
397	if (vdec) {
398		/* see how close we can get using nvclk as a source */
399		freq = calc_div(core, vdec, &P1);
400
401		/* see how close we can get using xpll/hclk as a source */
402		if (device->chipset != 0x98)
403			out = read_pll(clk, 0x004030);
404		else
405			out = nvkm_clk_read(&clk->base, nv_clk_src_hclkm3d2);
406		out = calc_div(out, vdec, &P2);
407
408		/* select whichever gets us closest */
409		if (abs(vdec - freq) <= abs(vdec - out)) {
410			if (device->chipset != 0x98)
411				mastv |= 0x00000c00;
412			divsv |= P1 << 8;
413		} else {
414			mastv |= 0x00000800;
415			divsv |= P2 << 8;
416		}
417
418		mastm |= 0x00000c00;
419		divsm |= 0x00000700;
420	}
421
422	/* dom6: nfi what this is, but we're limited to various combinations
423	 * of the host clock frequency
424	 */
425	if (dom6) {
426		if (clk_same(dom6, nvkm_clk_read(&clk->base, nv_clk_src_href))) {
427			mastv |= 0x00000000;
428		} else
429		if (clk_same(dom6, nvkm_clk_read(&clk->base, nv_clk_src_hclk))) {
430			mastv |= 0x08000000;
431		} else {
432			freq = nvkm_clk_read(&clk->base, nv_clk_src_hclk) * 3;
433			calc_div(freq, dom6, &P1);
434
435			mastv |= 0x0c000000;
436			divsv |= P1;
437		}
438
439		mastm |= 0x0c000000;
440		divsm |= 0x00000007;
441	}
442
443	/* vdec/dom6: switch to "safe" clocks temporarily, update dividers
444	 * and then switch to target clocks
445	 */
446	clk_mask(hwsq, mast, mastm, 0x00000000);
447	clk_mask(hwsq, divs, divsm, divsv);
448	clk_mask(hwsq, mast, mastm, mastv);
449
450	/* core/shader: disconnect nvclk/sclk from their PLLs (nvclk to dom6,
451	 * sclk to hclk) before reprogramming
452	 */
453	if (device->chipset < 0x92)
454		clk_mask(hwsq, mast, 0x001000b0, 0x00100080);
455	else
456		clk_mask(hwsq, mast, 0x000000b3, 0x00000081);
457
458	/* core: for the moment at least, always use nvpll */
459	freq = calc_pll(clk, 0x4028, core, &N, &M, &P1);
460	if (freq == 0)
461		return -ERANGE;
462
463	clk_mask(hwsq, nvpll[0], 0xc03f0100,
464				 0x80000000 | (P1 << 19) | (P1 << 16));
465	clk_mask(hwsq, nvpll[1], 0x0000ffff, (N << 8) | M);
466
467	/* shader: tie to nvclk if possible, otherwise use spll.  have to be
468	 * very careful that the shader clock is at least twice the core, or
469	 * some chipsets will be very unhappy.  i expect most or all of these
470	 * cases will be handled by tying to nvclk, but it's possible there's
471	 * corners
472	 */
473	if (P1-- && shader == (core << 1)) {
474		clk_mask(hwsq, spll[0], 0xc03f0100, (P1 << 19) | (P1 << 16));
475		clk_mask(hwsq, mast, 0x00100033, 0x00000023);
476	} else {
477		freq = calc_pll(clk, 0x4020, shader, &N, &M, &P1);
478		if (freq == 0)
479			return -ERANGE;
480
481		clk_mask(hwsq, spll[0], 0xc03f0100,
482					0x80000000 | (P1 << 19) | (P1 << 16));
483		clk_mask(hwsq, spll[1], 0x0000ffff, (N << 8) | M);
484		clk_mask(hwsq, mast, 0x00100033, 0x00000033);
485	}
486
487	/* restore normal operation */
488	clk_setf(hwsq, 0x10, 0x01); /* enable fb */
489	clk_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
490	clk_wr32(hwsq, fifo, 0x00000000); /* un-block fifo */
491	return 0;
492}
493
494int
495nv50_clk_prog(struct nvkm_clk *base)
496{
497	struct nv50_clk *clk = nv50_clk(base);
498	return clk_exec(&clk->hwsq, true);
499}
500
501void
502nv50_clk_tidy(struct nvkm_clk *base)
503{
504	struct nv50_clk *clk = nv50_clk(base);
505	clk_exec(&clk->hwsq, false);
506}
507
508int
509nv50_clk_new_(const struct nvkm_clk_func *func, struct nvkm_device *device,
510	      int index, bool allow_reclock, struct nvkm_clk **pclk)
511{
512	struct nv50_clk *clk;
513	int ret;
514
515	if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
516		return -ENOMEM;
517	ret = nvkm_clk_ctor(func, device, index, allow_reclock, &clk->base);
518	*pclk = &clk->base;
519	if (ret)
520		return ret;
521
522	clk->hwsq.r_fifo = hwsq_reg(0x002504);
523	clk->hwsq.r_spll[0] = hwsq_reg(0x004020);
524	clk->hwsq.r_spll[1] = hwsq_reg(0x004024);
525	clk->hwsq.r_nvpll[0] = hwsq_reg(0x004028);
526	clk->hwsq.r_nvpll[1] = hwsq_reg(0x00402c);
527	switch (device->chipset) {
528	case 0x92:
529	case 0x94:
530	case 0x96:
531		clk->hwsq.r_divs = hwsq_reg(0x004800);
532		break;
533	default:
534		clk->hwsq.r_divs = hwsq_reg(0x004700);
535		break;
536	}
537	clk->hwsq.r_mast = hwsq_reg(0x00c040);
538	return 0;
539}
540
541static const struct nvkm_clk_func
542nv50_clk = {
543	.read = nv50_clk_read,
544	.calc = nv50_clk_calc,
545	.prog = nv50_clk_prog,
546	.tidy = nv50_clk_tidy,
547	.domains = {
548		{ nv_clk_src_crystal, 0xff },
549		{ nv_clk_src_href   , 0xff },
550		{ nv_clk_src_core   , 0xff, 0, "core", 1000 },
551		{ nv_clk_src_shader , 0xff, 0, "shader", 1000 },
552		{ nv_clk_src_mem    , 0xff, 0, "memory", 1000 },
553		{ nv_clk_src_max }
554	}
555};
556
557int
558nv50_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
559{
560	return nv50_clk_new_(&nv50_clk, device, index, false, pclk);
561}
562