1/*
2 * Copyright �� 2010 Daniel Vetter
3 * Copyright �� 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26#include <linux/seq_file.h>
27#include <drm/drmP.h>
28#include <drm/i915_drm.h>
29#include "i915_drv.h"
30#include "i915_vgpu.h"
31#include "i915_trace.h"
32#include "intel_drv.h"
33
34/**
35 * DOC: Global GTT views
36 *
37 * Background and previous state
38 *
39 * Historically objects could exists (be bound) in global GTT space only as
40 * singular instances with a view representing all of the object's backing pages
41 * in a linear fashion. This view will be called a normal view.
42 *
43 * To support multiple views of the same object, where the number of mapped
44 * pages is not equal to the backing store, or where the layout of the pages
45 * is not linear, concept of a GGTT view was added.
46 *
47 * One example of an alternative view is a stereo display driven by a single
48 * image. In this case we would have a framebuffer looking like this
49 * (2x2 pages):
50 *
51 *    12
52 *    34
53 *
54 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
55 * rendering. In contrast, fed to the display engine would be an alternative
56 * view which could look something like this:
57 *
58 *   1212
59 *   3434
60 *
61 * In this example both the size and layout of pages in the alternative view is
62 * different from the normal view.
63 *
64 * Implementation and usage
65 *
66 * GGTT views are implemented using VMAs and are distinguished via enum
67 * i915_ggtt_view_type and struct i915_ggtt_view.
68 *
69 * A new flavour of core GEM functions which work with GGTT bound objects were
70 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
71 * renaming  in large amounts of code. They take the struct i915_ggtt_view
72 * parameter encapsulating all metadata required to implement a view.
73 *
74 * As a helper for callers which are only interested in the normal view,
75 * globally const i915_ggtt_view_normal singleton instance exists. All old core
76 * GEM API functions, the ones not taking the view parameter, are operating on,
77 * or with the normal GGTT view.
78 *
79 * Code wanting to add or use a new GGTT view needs to:
80 *
81 * 1. Add a new enum with a suitable name.
82 * 2. Extend the metadata in the i915_ggtt_view structure if required.
83 * 3. Add support to i915_get_vma_pages().
84 *
85 * New views are required to build a scatter-gather table from within the
86 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
87 * exists for the lifetime of an VMA.
88 *
89 * Core API is designed to have copy semantics which means that passed in
90 * struct i915_ggtt_view does not need to be persistent (left around after
91 * calling the core API functions).
92 *
93 */
94
95static int
96i915_get_ggtt_vma_pages(struct i915_vma *vma);
97
98const struct i915_ggtt_view i915_ggtt_view_normal;
99const struct i915_ggtt_view i915_ggtt_view_rotated = {
100        .type = I915_GGTT_VIEW_ROTATED
101};
102
103static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
104{
105	bool has_aliasing_ppgtt;
106	bool has_full_ppgtt;
107
108	has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
109	has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
110
111	if (intel_vgpu_active(dev))
112		has_full_ppgtt = false; /* emulation is too hard */
113
114	/*
115	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
116	 * execlists, the sole mechanism available to submit work.
117	 */
118	if (INTEL_INFO(dev)->gen < 9 &&
119	    (enable_ppgtt == 0 || !has_aliasing_ppgtt))
120		return 0;
121
122	if (enable_ppgtt == 1)
123		return 1;
124
125	if (enable_ppgtt == 2 && has_full_ppgtt)
126		return 2;
127
128#ifdef CONFIG_INTEL_IOMMU
129	/* Disable ppgtt on SNB if VT-d is on. */
130	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
131		DRM_INFO("Disabling PPGTT because VT-d is on\n");
132		return 0;
133	}
134#endif
135
136	/* Early VLV doesn't have this */
137	if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
138	    dev->pdev->revision < 0xb) {
139		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
140		return 0;
141	}
142
143	if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
144		return 2;
145	else
146		return has_aliasing_ppgtt ? 1 : 0;
147}
148
149static int ppgtt_bind_vma(struct i915_vma *vma,
150			  enum i915_cache_level cache_level,
151			  u32 unused)
152{
153	u32 pte_flags = 0;
154
155	/* Currently applicable only to VLV */
156	if (vma->obj->gt_ro)
157		pte_flags |= PTE_READ_ONLY;
158
159	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
160				cache_level, pte_flags);
161
162	return 0;
163}
164
165static void ppgtt_unbind_vma(struct i915_vma *vma)
166{
167	vma->vm->clear_range(vma->vm,
168			     vma->node.start,
169			     vma->obj->base.size,
170			     true);
171}
172
173static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
174				  enum i915_cache_level level,
175				  bool valid)
176{
177	gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
178	pte |= addr;
179
180	switch (level) {
181	case I915_CACHE_NONE:
182		pte |= PPAT_UNCACHED_INDEX;
183		break;
184	case I915_CACHE_WT:
185		pte |= PPAT_DISPLAY_ELLC_INDEX;
186		break;
187	default:
188		pte |= PPAT_CACHED_INDEX;
189		break;
190	}
191
192	return pte;
193}
194
195static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
196				  const enum i915_cache_level level)
197{
198	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
199	pde |= addr;
200	if (level != I915_CACHE_NONE)
201		pde |= PPAT_CACHED_PDE_INDEX;
202	else
203		pde |= PPAT_UNCACHED_INDEX;
204	return pde;
205}
206
207#define gen8_pdpe_encode gen8_pde_encode
208#define gen8_pml4e_encode gen8_pde_encode
209
210static gen6_pte_t snb_pte_encode(dma_addr_t addr,
211				 enum i915_cache_level level,
212				 bool valid, u32 unused)
213{
214	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
215	pte |= GEN6_PTE_ADDR_ENCODE(addr);
216
217	switch (level) {
218	case I915_CACHE_L3_LLC:
219	case I915_CACHE_LLC:
220		pte |= GEN6_PTE_CACHE_LLC;
221		break;
222	case I915_CACHE_NONE:
223		pte |= GEN6_PTE_UNCACHED;
224		break;
225	default:
226		MISSING_CASE(level);
227	}
228
229	return pte;
230}
231
232static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
233				 enum i915_cache_level level,
234				 bool valid, u32 unused)
235{
236	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
237	pte |= GEN6_PTE_ADDR_ENCODE(addr);
238
239	switch (level) {
240	case I915_CACHE_L3_LLC:
241		pte |= GEN7_PTE_CACHE_L3_LLC;
242		break;
243	case I915_CACHE_LLC:
244		pte |= GEN6_PTE_CACHE_LLC;
245		break;
246	case I915_CACHE_NONE:
247		pte |= GEN6_PTE_UNCACHED;
248		break;
249	default:
250		MISSING_CASE(level);
251	}
252
253	return pte;
254}
255
256static gen6_pte_t byt_pte_encode(dma_addr_t addr,
257				 enum i915_cache_level level,
258				 bool valid, u32 flags)
259{
260	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
261	pte |= GEN6_PTE_ADDR_ENCODE(addr);
262
263	if (!(flags & PTE_READ_ONLY))
264		pte |= BYT_PTE_WRITEABLE;
265
266	if (level != I915_CACHE_NONE)
267		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
268
269	return pte;
270}
271
272static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
273				 enum i915_cache_level level,
274				 bool valid, u32 unused)
275{
276	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
277	pte |= HSW_PTE_ADDR_ENCODE(addr);
278
279	if (level != I915_CACHE_NONE)
280		pte |= HSW_WB_LLC_AGE3;
281
282	return pte;
283}
284
285static gen6_pte_t iris_pte_encode(dma_addr_t addr,
286				  enum i915_cache_level level,
287				  bool valid, u32 unused)
288{
289	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
290	pte |= HSW_PTE_ADDR_ENCODE(addr);
291
292	switch (level) {
293	case I915_CACHE_NONE:
294		break;
295	case I915_CACHE_WT:
296		pte |= HSW_WT_ELLC_LLC_AGE3;
297		break;
298	default:
299		pte |= HSW_WB_ELLC_LLC_AGE3;
300		break;
301	}
302
303	return pte;
304}
305
306static int __setup_page_dma(struct drm_device *dev,
307			    struct i915_page_dma *p, gfp_t flags)
308{
309	struct device *device = &dev->pdev->dev;
310
311	p->page = alloc_page(flags);
312	if (!p->page)
313		return -ENOMEM;
314
315	p->daddr = dma_map_page(device,
316				p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
317
318	if (dma_mapping_error(device, p->daddr)) {
319		__free_page(p->page);
320		return -EINVAL;
321	}
322
323	return 0;
324}
325
326static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
327{
328	return __setup_page_dma(dev, p, GFP_KERNEL);
329}
330
331static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
332{
333	if (WARN_ON(!p->page))
334		return;
335
336	dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
337	__free_page(p->page);
338	memset(p, 0, sizeof(*p));
339}
340
341static void *kmap_page_dma(struct i915_page_dma *p)
342{
343	return kmap_atomic(p->page);
344}
345
346/* We use the flushing unmap only with ppgtt structures:
347 * page directories, page tables and scratch pages.
348 */
349static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
350{
351	/* There are only few exceptions for gen >=6. chv and bxt.
352	 * And we are not sure about the latter so play safe for now.
353	 */
354	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
355		drm_clflush_virt_range(vaddr, PAGE_SIZE);
356
357	kunmap_atomic(vaddr);
358}
359
360#define kmap_px(px) kmap_page_dma(px_base(px))
361#define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
362
363#define setup_px(dev, px) setup_page_dma((dev), px_base(px))
364#define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
365#define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
366#define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
367
368static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
369			  const uint64_t val)
370{
371	int i;
372	uint64_t * const vaddr = kmap_page_dma(p);
373
374	for (i = 0; i < 512; i++)
375		vaddr[i] = val;
376
377	kunmap_page_dma(dev, vaddr);
378}
379
380static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
381			     const uint32_t val32)
382{
383	uint64_t v = val32;
384
385	v = v << 32 | val32;
386
387	fill_page_dma(dev, p, v);
388}
389
390static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
391{
392	struct i915_page_scratch *sp;
393	int ret;
394
395	sp = kzalloc(sizeof(*sp), GFP_KERNEL);
396	if (sp == NULL)
397		return ERR_PTR(-ENOMEM);
398
399	ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
400	if (ret) {
401		kfree(sp);
402		return ERR_PTR(ret);
403	}
404
405	set_pages_uc(px_page(sp), 1);
406
407	return sp;
408}
409
410static void free_scratch_page(struct drm_device *dev,
411			      struct i915_page_scratch *sp)
412{
413	set_pages_wb(px_page(sp), 1);
414
415	cleanup_px(dev, sp);
416	kfree(sp);
417}
418
419static struct i915_page_table *alloc_pt(struct drm_device *dev)
420{
421	struct i915_page_table *pt;
422	const size_t count = INTEL_INFO(dev)->gen >= 8 ?
423		GEN8_PTES : GEN6_PTES;
424	int ret = -ENOMEM;
425
426	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
427	if (!pt)
428		return ERR_PTR(-ENOMEM);
429
430	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
431				GFP_KERNEL);
432
433	if (!pt->used_ptes)
434		goto fail_bitmap;
435
436	ret = setup_px(dev, pt);
437	if (ret)
438		goto fail_page_m;
439
440	return pt;
441
442fail_page_m:
443	kfree(pt->used_ptes);
444fail_bitmap:
445	kfree(pt);
446
447	return ERR_PTR(ret);
448}
449
450static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
451{
452	cleanup_px(dev, pt);
453	kfree(pt->used_ptes);
454	kfree(pt);
455}
456
457static void gen8_initialize_pt(struct i915_address_space *vm,
458			       struct i915_page_table *pt)
459{
460	gen8_pte_t scratch_pte;
461
462	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
463				      I915_CACHE_LLC, true);
464
465	fill_px(vm->dev, pt, scratch_pte);
466}
467
468static void gen6_initialize_pt(struct i915_address_space *vm,
469			       struct i915_page_table *pt)
470{
471	gen6_pte_t scratch_pte;
472
473	WARN_ON(px_dma(vm->scratch_page) == 0);
474
475	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
476				     I915_CACHE_LLC, true, 0);
477
478	fill32_px(vm->dev, pt, scratch_pte);
479}
480
481static struct i915_page_directory *alloc_pd(struct drm_device *dev)
482{
483	struct i915_page_directory *pd;
484	int ret = -ENOMEM;
485
486	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
487	if (!pd)
488		return ERR_PTR(-ENOMEM);
489
490	pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
491				sizeof(*pd->used_pdes), GFP_KERNEL);
492	if (!pd->used_pdes)
493		goto fail_bitmap;
494
495	ret = setup_px(dev, pd);
496	if (ret)
497		goto fail_page_m;
498
499	return pd;
500
501fail_page_m:
502	kfree(pd->used_pdes);
503fail_bitmap:
504	kfree(pd);
505
506	return ERR_PTR(ret);
507}
508
509static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
510{
511	if (px_page(pd)) {
512		cleanup_px(dev, pd);
513		kfree(pd->used_pdes);
514		kfree(pd);
515	}
516}
517
518static void gen8_initialize_pd(struct i915_address_space *vm,
519			       struct i915_page_directory *pd)
520{
521	gen8_pde_t scratch_pde;
522
523	scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
524
525	fill_px(vm->dev, pd, scratch_pde);
526}
527
528static int __pdp_init(struct drm_device *dev,
529		      struct i915_page_directory_pointer *pdp)
530{
531	size_t pdpes = I915_PDPES_PER_PDP(dev);
532
533	pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
534				  sizeof(unsigned long),
535				  GFP_KERNEL);
536	if (!pdp->used_pdpes)
537		return -ENOMEM;
538
539	pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
540				      GFP_KERNEL);
541	if (!pdp->page_directory) {
542		kfree(pdp->used_pdpes);
543		/* the PDP might be the statically allocated top level. Keep it
544		 * as clean as possible */
545		pdp->used_pdpes = NULL;
546		return -ENOMEM;
547	}
548
549	return 0;
550}
551
552static void __pdp_fini(struct i915_page_directory_pointer *pdp)
553{
554	kfree(pdp->used_pdpes);
555	kfree(pdp->page_directory);
556	pdp->page_directory = NULL;
557}
558
559static struct
560i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
561{
562	struct i915_page_directory_pointer *pdp;
563	int ret = -ENOMEM;
564
565	WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
566
567	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
568	if (!pdp)
569		return ERR_PTR(-ENOMEM);
570
571	ret = __pdp_init(dev, pdp);
572	if (ret)
573		goto fail_bitmap;
574
575	ret = setup_px(dev, pdp);
576	if (ret)
577		goto fail_page_m;
578
579	return pdp;
580
581fail_page_m:
582	__pdp_fini(pdp);
583fail_bitmap:
584	kfree(pdp);
585
586	return ERR_PTR(ret);
587}
588
589static void free_pdp(struct drm_device *dev,
590		     struct i915_page_directory_pointer *pdp)
591{
592	__pdp_fini(pdp);
593	if (USES_FULL_48BIT_PPGTT(dev)) {
594		cleanup_px(dev, pdp);
595		kfree(pdp);
596	}
597}
598
599static void gen8_initialize_pdp(struct i915_address_space *vm,
600				struct i915_page_directory_pointer *pdp)
601{
602	gen8_ppgtt_pdpe_t scratch_pdpe;
603
604	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
605
606	fill_px(vm->dev, pdp, scratch_pdpe);
607}
608
609static void gen8_initialize_pml4(struct i915_address_space *vm,
610				 struct i915_pml4 *pml4)
611{
612	gen8_ppgtt_pml4e_t scratch_pml4e;
613
614	scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
615					  I915_CACHE_LLC);
616
617	fill_px(vm->dev, pml4, scratch_pml4e);
618}
619
620static void
621gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
622			  struct i915_page_directory_pointer *pdp,
623			  struct i915_page_directory *pd,
624			  int index)
625{
626	gen8_ppgtt_pdpe_t *page_directorypo;
627
628	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
629		return;
630
631	page_directorypo = kmap_px(pdp);
632	page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
633	kunmap_px(ppgtt, page_directorypo);
634}
635
636static void
637gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
638				  struct i915_pml4 *pml4,
639				  struct i915_page_directory_pointer *pdp,
640				  int index)
641{
642	gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
643
644	WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
645	pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
646	kunmap_px(ppgtt, pagemap);
647}
648
649/* Broadwell Page Directory Pointer Descriptors */
650static int gen8_write_pdp(struct drm_i915_gem_request *req,
651			  unsigned entry,
652			  dma_addr_t addr)
653{
654	struct intel_engine_cs *ring = req->ring;
655	int ret;
656
657	BUG_ON(entry >= 4);
658
659	ret = intel_ring_begin(req, 6);
660	if (ret)
661		return ret;
662
663	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
664	intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
665	intel_ring_emit(ring, upper_32_bits(addr));
666	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
667	intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
668	intel_ring_emit(ring, lower_32_bits(addr));
669	intel_ring_advance(ring);
670
671	return 0;
672}
673
674static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
675				 struct drm_i915_gem_request *req)
676{
677	int i, ret;
678
679	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
680		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
681
682		ret = gen8_write_pdp(req, i, pd_daddr);
683		if (ret)
684			return ret;
685	}
686
687	return 0;
688}
689
690static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
691			      struct drm_i915_gem_request *req)
692{
693	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
694}
695
696static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
697				       struct i915_page_directory_pointer *pdp,
698				       uint64_t start,
699				       uint64_t length,
700				       gen8_pte_t scratch_pte)
701{
702	struct i915_hw_ppgtt *ppgtt =
703		container_of(vm, struct i915_hw_ppgtt, base);
704	gen8_pte_t *pt_vaddr;
705	unsigned pdpe = gen8_pdpe_index(start);
706	unsigned pde = gen8_pde_index(start);
707	unsigned pte = gen8_pte_index(start);
708	unsigned num_entries = length >> PAGE_SHIFT;
709	unsigned last_pte, i;
710
711	if (WARN_ON(!pdp))
712		return;
713
714	while (num_entries) {
715		struct i915_page_directory *pd;
716		struct i915_page_table *pt;
717
718		if (WARN_ON(!pdp->page_directory[pdpe]))
719			break;
720
721		pd = pdp->page_directory[pdpe];
722
723		if (WARN_ON(!pd->page_table[pde]))
724			break;
725
726		pt = pd->page_table[pde];
727
728		if (WARN_ON(!px_page(pt)))
729			break;
730
731		last_pte = pte + num_entries;
732		if (last_pte > GEN8_PTES)
733			last_pte = GEN8_PTES;
734
735		pt_vaddr = kmap_px(pt);
736
737		for (i = pte; i < last_pte; i++) {
738			pt_vaddr[i] = scratch_pte;
739			num_entries--;
740		}
741
742		kunmap_px(ppgtt, pt);
743
744		pte = 0;
745		if (++pde == I915_PDES) {
746			if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
747				break;
748			pde = 0;
749		}
750	}
751}
752
753static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
754				   uint64_t start,
755				   uint64_t length,
756				   bool use_scratch)
757{
758	struct i915_hw_ppgtt *ppgtt =
759		container_of(vm, struct i915_hw_ppgtt, base);
760	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
761						 I915_CACHE_LLC, use_scratch);
762
763	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
764		gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
765					   scratch_pte);
766	} else {
767		uint64_t templ4, pml4e;
768		struct i915_page_directory_pointer *pdp;
769
770		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4, pml4e) {
771			gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
772						   scratch_pte);
773		}
774	}
775}
776
777static void
778gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
779			      struct i915_page_directory_pointer *pdp,
780			      struct sg_page_iter *sg_iter,
781			      uint64_t start,
782			      enum i915_cache_level cache_level)
783{
784	struct i915_hw_ppgtt *ppgtt =
785		container_of(vm, struct i915_hw_ppgtt, base);
786	gen8_pte_t *pt_vaddr;
787	unsigned pdpe = gen8_pdpe_index(start);
788	unsigned pde = gen8_pde_index(start);
789	unsigned pte = gen8_pte_index(start);
790
791	pt_vaddr = NULL;
792
793	while (__sg_page_iter_next(sg_iter)) {
794		if (pt_vaddr == NULL) {
795			struct i915_page_directory *pd = pdp->page_directory[pdpe];
796			struct i915_page_table *pt = pd->page_table[pde];
797			pt_vaddr = kmap_px(pt);
798		}
799
800		pt_vaddr[pte] =
801			gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
802					cache_level, true);
803		if (++pte == GEN8_PTES) {
804			kunmap_px(ppgtt, pt_vaddr);
805			pt_vaddr = NULL;
806			if (++pde == I915_PDES) {
807				if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
808					break;
809				pde = 0;
810			}
811			pte = 0;
812		}
813	}
814
815	if (pt_vaddr)
816		kunmap_px(ppgtt, pt_vaddr);
817}
818
819static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
820				      struct sg_table *pages,
821				      uint64_t start,
822				      enum i915_cache_level cache_level,
823				      u32 unused)
824{
825	struct i915_hw_ppgtt *ppgtt =
826		container_of(vm, struct i915_hw_ppgtt, base);
827	struct sg_page_iter sg_iter;
828
829	__sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
830
831	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
832		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
833					      cache_level);
834	} else {
835		struct i915_page_directory_pointer *pdp;
836		uint64_t templ4, pml4e;
837		uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
838
839		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, templ4, pml4e) {
840			gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
841						      start, cache_level);
842		}
843	}
844}
845
846static void gen8_free_page_tables(struct drm_device *dev,
847				  struct i915_page_directory *pd)
848{
849	int i;
850
851	if (!px_page(pd))
852		return;
853
854	for_each_set_bit(i, pd->used_pdes, I915_PDES) {
855		if (WARN_ON(!pd->page_table[i]))
856			continue;
857
858		free_pt(dev, pd->page_table[i]);
859		pd->page_table[i] = NULL;
860	}
861}
862
863static int gen8_init_scratch(struct i915_address_space *vm)
864{
865	struct drm_device *dev = vm->dev;
866
867	vm->scratch_page = alloc_scratch_page(dev);
868	if (IS_ERR(vm->scratch_page))
869		return PTR_ERR(vm->scratch_page);
870
871	vm->scratch_pt = alloc_pt(dev);
872	if (IS_ERR(vm->scratch_pt)) {
873		free_scratch_page(dev, vm->scratch_page);
874		return PTR_ERR(vm->scratch_pt);
875	}
876
877	vm->scratch_pd = alloc_pd(dev);
878	if (IS_ERR(vm->scratch_pd)) {
879		free_pt(dev, vm->scratch_pt);
880		free_scratch_page(dev, vm->scratch_page);
881		return PTR_ERR(vm->scratch_pd);
882	}
883
884	if (USES_FULL_48BIT_PPGTT(dev)) {
885		vm->scratch_pdp = alloc_pdp(dev);
886		if (IS_ERR(vm->scratch_pdp)) {
887			free_pd(dev, vm->scratch_pd);
888			free_pt(dev, vm->scratch_pt);
889			free_scratch_page(dev, vm->scratch_page);
890			return PTR_ERR(vm->scratch_pdp);
891		}
892	}
893
894	gen8_initialize_pt(vm, vm->scratch_pt);
895	gen8_initialize_pd(vm, vm->scratch_pd);
896	if (USES_FULL_48BIT_PPGTT(dev))
897		gen8_initialize_pdp(vm, vm->scratch_pdp);
898
899	return 0;
900}
901
902static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
903{
904	enum vgt_g2v_type msg;
905	struct drm_device *dev = ppgtt->base.dev;
906	struct drm_i915_private *dev_priv = dev->dev_private;
907	unsigned int offset = vgtif_reg(pdp0_lo);
908	int i;
909
910	if (USES_FULL_48BIT_PPGTT(dev)) {
911		u64 daddr = px_dma(&ppgtt->pml4);
912
913		I915_WRITE(offset, lower_32_bits(daddr));
914		I915_WRITE(offset + 4, upper_32_bits(daddr));
915
916		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
917				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
918	} else {
919		for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
920			u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
921
922			I915_WRITE(offset, lower_32_bits(daddr));
923			I915_WRITE(offset + 4, upper_32_bits(daddr));
924
925			offset += 8;
926		}
927
928		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
929				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
930	}
931
932	I915_WRITE(vgtif_reg(g2v_notify), msg);
933
934	return 0;
935}
936
937static void gen8_free_scratch(struct i915_address_space *vm)
938{
939	struct drm_device *dev = vm->dev;
940
941	if (USES_FULL_48BIT_PPGTT(dev))
942		free_pdp(dev, vm->scratch_pdp);
943	free_pd(dev, vm->scratch_pd);
944	free_pt(dev, vm->scratch_pt);
945	free_scratch_page(dev, vm->scratch_page);
946}
947
948static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
949				    struct i915_page_directory_pointer *pdp)
950{
951	int i;
952
953	for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
954		if (WARN_ON(!pdp->page_directory[i]))
955			continue;
956
957		gen8_free_page_tables(dev, pdp->page_directory[i]);
958		free_pd(dev, pdp->page_directory[i]);
959	}
960
961	free_pdp(dev, pdp);
962}
963
964static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
965{
966	int i;
967
968	for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
969		if (WARN_ON(!ppgtt->pml4.pdps[i]))
970			continue;
971
972		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
973	}
974
975	cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
976}
977
978static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
979{
980	struct i915_hw_ppgtt *ppgtt =
981		container_of(vm, struct i915_hw_ppgtt, base);
982
983	if (intel_vgpu_active(vm->dev))
984		gen8_ppgtt_notify_vgt(ppgtt, false);
985
986	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
987		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
988	else
989		gen8_ppgtt_cleanup_4lvl(ppgtt);
990
991	gen8_free_scratch(vm);
992}
993
994/**
995 * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
996 * @vm:	Master vm structure.
997 * @pd:	Page directory for this address range.
998 * @start:	Starting virtual address to begin allocations.
999 * @length:	Size of the allocations.
1000 * @new_pts:	Bitmap set by function with new allocations. Likely used by the
1001 *		caller to free on error.
1002 *
1003 * Allocate the required number of page tables. Extremely similar to
1004 * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1005 * the page directory boundary (instead of the page directory pointer). That
1006 * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1007 * possible, and likely that the caller will need to use multiple calls of this
1008 * function to achieve the appropriate allocation.
1009 *
1010 * Return: 0 if success; negative error code otherwise.
1011 */
1012static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1013				     struct i915_page_directory *pd,
1014				     uint64_t start,
1015				     uint64_t length,
1016				     unsigned long *new_pts)
1017{
1018	struct drm_device *dev = vm->dev;
1019	struct i915_page_table *pt;
1020	uint64_t temp;
1021	uint32_t pde;
1022
1023	gen8_for_each_pde(pt, pd, start, length, temp, pde) {
1024		/* Don't reallocate page tables */
1025		if (test_bit(pde, pd->used_pdes)) {
1026			/* Scratch is never allocated this way */
1027			WARN_ON(pt == vm->scratch_pt);
1028			continue;
1029		}
1030
1031		pt = alloc_pt(dev);
1032		if (IS_ERR(pt))
1033			goto unwind_out;
1034
1035		gen8_initialize_pt(vm, pt);
1036		pd->page_table[pde] = pt;
1037		__set_bit(pde, new_pts);
1038		trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1039	}
1040
1041	return 0;
1042
1043unwind_out:
1044	for_each_set_bit(pde, new_pts, I915_PDES)
1045		free_pt(dev, pd->page_table[pde]);
1046
1047	return -ENOMEM;
1048}
1049
1050/**
1051 * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1052 * @vm:	Master vm structure.
1053 * @pdp:	Page directory pointer for this address range.
1054 * @start:	Starting virtual address to begin allocations.
1055 * @length:	Size of the allocations.
1056 * @new_pds:	Bitmap set by function with new allocations. Likely used by the
1057 *		caller to free on error.
1058 *
1059 * Allocate the required number of page directories starting at the pde index of
1060 * @start, and ending at the pde index @start + @length. This function will skip
1061 * over already allocated page directories within the range, and only allocate
1062 * new ones, setting the appropriate pointer within the pdp as well as the
1063 * correct position in the bitmap @new_pds.
1064 *
1065 * The function will only allocate the pages within the range for a give page
1066 * directory pointer. In other words, if @start + @length straddles a virtually
1067 * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1068 * required by the caller, This is not currently possible, and the BUG in the
1069 * code will prevent it.
1070 *
1071 * Return: 0 if success; negative error code otherwise.
1072 */
1073static int
1074gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1075				  struct i915_page_directory_pointer *pdp,
1076				  uint64_t start,
1077				  uint64_t length,
1078				  unsigned long *new_pds)
1079{
1080	struct drm_device *dev = vm->dev;
1081	struct i915_page_directory *pd;
1082	uint64_t temp;
1083	uint32_t pdpe;
1084	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1085
1086	WARN_ON(!bitmap_empty(new_pds, pdpes));
1087
1088	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1089		if (test_bit(pdpe, pdp->used_pdpes))
1090			continue;
1091
1092		pd = alloc_pd(dev);
1093		if (IS_ERR(pd))
1094			goto unwind_out;
1095
1096		gen8_initialize_pd(vm, pd);
1097		pdp->page_directory[pdpe] = pd;
1098		__set_bit(pdpe, new_pds);
1099		trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1100	}
1101
1102	return 0;
1103
1104unwind_out:
1105	for_each_set_bit(pdpe, new_pds, pdpes)
1106		free_pd(dev, pdp->page_directory[pdpe]);
1107
1108	return -ENOMEM;
1109}
1110
1111/**
1112 * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1113 * @vm:	Master vm structure.
1114 * @pml4:	Page map level 4 for this address range.
1115 * @start:	Starting virtual address to begin allocations.
1116 * @length:	Size of the allocations.
1117 * @new_pdps:	Bitmap set by function with new allocations. Likely used by the
1118 *		caller to free on error.
1119 *
1120 * Allocate the required number of page directory pointers. Extremely similar to
1121 * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1122 * The main difference is here we are limited by the pml4 boundary (instead of
1123 * the page directory pointer).
1124 *
1125 * Return: 0 if success; negative error code otherwise.
1126 */
1127static int
1128gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1129				  struct i915_pml4 *pml4,
1130				  uint64_t start,
1131				  uint64_t length,
1132				  unsigned long *new_pdps)
1133{
1134	struct drm_device *dev = vm->dev;
1135	struct i915_page_directory_pointer *pdp;
1136	uint64_t temp;
1137	uint32_t pml4e;
1138
1139	WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1140
1141	gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
1142		if (!test_bit(pml4e, pml4->used_pml4es)) {
1143			pdp = alloc_pdp(dev);
1144			if (IS_ERR(pdp))
1145				goto unwind_out;
1146
1147			gen8_initialize_pdp(vm, pdp);
1148			pml4->pdps[pml4e] = pdp;
1149			__set_bit(pml4e, new_pdps);
1150			trace_i915_page_directory_pointer_entry_alloc(vm,
1151								      pml4e,
1152								      start,
1153								      GEN8_PML4E_SHIFT);
1154		}
1155	}
1156
1157	return 0;
1158
1159unwind_out:
1160	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1161		free_pdp(dev, pml4->pdps[pml4e]);
1162
1163	return -ENOMEM;
1164}
1165
1166static void
1167free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1168{
1169	kfree(new_pts);
1170	kfree(new_pds);
1171}
1172
1173/* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1174 * of these are based on the number of PDPEs in the system.
1175 */
1176static
1177int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1178					 unsigned long **new_pts,
1179					 uint32_t pdpes)
1180{
1181	unsigned long *pds;
1182	unsigned long *pts;
1183
1184	pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1185	if (!pds)
1186		return -ENOMEM;
1187
1188	pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1189		      GFP_TEMPORARY);
1190	if (!pts)
1191		goto err_out;
1192
1193	*new_pds = pds;
1194	*new_pts = pts;
1195
1196	return 0;
1197
1198err_out:
1199	free_gen8_temp_bitmaps(pds, pts);
1200	return -ENOMEM;
1201}
1202
1203/* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1204 * the page table structures, we mark them dirty so that
1205 * context switching/execlist queuing code takes extra steps
1206 * to ensure that tlbs are flushed.
1207 */
1208static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1209{
1210	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1211}
1212
1213static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1214				    struct i915_page_directory_pointer *pdp,
1215				    uint64_t start,
1216				    uint64_t length)
1217{
1218	struct i915_hw_ppgtt *ppgtt =
1219		container_of(vm, struct i915_hw_ppgtt, base);
1220	unsigned long *new_page_dirs, *new_page_tables;
1221	struct drm_device *dev = vm->dev;
1222	struct i915_page_directory *pd;
1223	const uint64_t orig_start = start;
1224	const uint64_t orig_length = length;
1225	uint64_t temp;
1226	uint32_t pdpe;
1227	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1228	int ret;
1229
1230	/* Wrap is never okay since we can only represent 48b, and we don't
1231	 * actually use the other side of the canonical address space.
1232	 */
1233	if (WARN_ON(start + length < start))
1234		return -ENODEV;
1235
1236	if (WARN_ON(start + length > vm->total))
1237		return -ENODEV;
1238
1239	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1240	if (ret)
1241		return ret;
1242
1243	/* Do the allocations first so we can easily bail out */
1244	ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1245						new_page_dirs);
1246	if (ret) {
1247		free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1248		return ret;
1249	}
1250
1251	/* For every page directory referenced, allocate page tables */
1252	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1253		ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1254						new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1255		if (ret)
1256			goto err_out;
1257	}
1258
1259	start = orig_start;
1260	length = orig_length;
1261
1262	/* Allocations have completed successfully, so set the bitmaps, and do
1263	 * the mappings. */
1264	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1265		gen8_pde_t *const page_directory = kmap_px(pd);
1266		struct i915_page_table *pt;
1267		uint64_t pd_len = length;
1268		uint64_t pd_start = start;
1269		uint32_t pde;
1270
1271		/* Every pd should be allocated, we just did that above. */
1272		WARN_ON(!pd);
1273
1274		gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
1275			/* Same reasoning as pd */
1276			WARN_ON(!pt);
1277			WARN_ON(!pd_len);
1278			WARN_ON(!gen8_pte_count(pd_start, pd_len));
1279
1280			/* Set our used ptes within the page table */
1281			bitmap_set(pt->used_ptes,
1282				   gen8_pte_index(pd_start),
1283				   gen8_pte_count(pd_start, pd_len));
1284
1285			/* Our pde is now pointing to the pagetable, pt */
1286			__set_bit(pde, pd->used_pdes);
1287
1288			/* Map the PDE to the page table */
1289			page_directory[pde] = gen8_pde_encode(px_dma(pt),
1290							      I915_CACHE_LLC);
1291			trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1292							gen8_pte_index(start),
1293							gen8_pte_count(start, length),
1294							GEN8_PTES);
1295
1296			/* NB: We haven't yet mapped ptes to pages. At this
1297			 * point we're still relying on insert_entries() */
1298		}
1299
1300		kunmap_px(ppgtt, page_directory);
1301		__set_bit(pdpe, pdp->used_pdpes);
1302		gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1303	}
1304
1305	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1306	mark_tlbs_dirty(ppgtt);
1307	return 0;
1308
1309err_out:
1310	while (pdpe--) {
1311		for_each_set_bit(temp, new_page_tables + pdpe *
1312				BITS_TO_LONGS(I915_PDES), I915_PDES)
1313			free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1314	}
1315
1316	for_each_set_bit(pdpe, new_page_dirs, pdpes)
1317		free_pd(dev, pdp->page_directory[pdpe]);
1318
1319	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1320	mark_tlbs_dirty(ppgtt);
1321	return ret;
1322}
1323
1324static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1325				    struct i915_pml4 *pml4,
1326				    uint64_t start,
1327				    uint64_t length)
1328{
1329	DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1330	struct i915_hw_ppgtt *ppgtt =
1331			container_of(vm, struct i915_hw_ppgtt, base);
1332	struct i915_page_directory_pointer *pdp;
1333	uint64_t temp, pml4e;
1334	int ret = 0;
1335
1336	/* Do the pml4 allocations first, so we don't need to track the newly
1337	 * allocated tables below the pdp */
1338	bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1339
1340	/* The pagedirectory and pagetable allocations are done in the shared 3
1341	 * and 4 level code. Just allocate the pdps.
1342	 */
1343	ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1344						new_pdps);
1345	if (ret)
1346		return ret;
1347
1348	WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1349	     "The allocation has spanned more than 512GB. "
1350	     "It is highly likely this is incorrect.");
1351
1352	gen8_for_each_pml4e(pdp, pml4, start, length, temp, pml4e) {
1353		WARN_ON(!pdp);
1354
1355		ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1356		if (ret)
1357			goto err_out;
1358
1359		gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1360	}
1361
1362	bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1363		  GEN8_PML4ES_PER_PML4);
1364
1365	return 0;
1366
1367err_out:
1368	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1369		gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1370
1371	return ret;
1372}
1373
1374static int gen8_alloc_va_range(struct i915_address_space *vm,
1375			       uint64_t start, uint64_t length)
1376{
1377	struct i915_hw_ppgtt *ppgtt =
1378		container_of(vm, struct i915_hw_ppgtt, base);
1379
1380	if (USES_FULL_48BIT_PPGTT(vm->dev))
1381		return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1382	else
1383		return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1384}
1385
1386static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1387			  uint64_t start, uint64_t length,
1388			  gen8_pte_t scratch_pte,
1389			  struct seq_file *m)
1390{
1391	struct i915_page_directory *pd;
1392	uint64_t temp;
1393	uint32_t pdpe;
1394
1395	gen8_for_each_pdpe(pd, pdp, start, length, temp, pdpe) {
1396		struct i915_page_table *pt;
1397		uint64_t pd_len = length;
1398		uint64_t pd_start = start;
1399		uint32_t pde;
1400
1401		if (!test_bit(pdpe, pdp->used_pdpes))
1402			continue;
1403
1404		seq_printf(m, "\tPDPE #%d\n", pdpe);
1405		gen8_for_each_pde(pt, pd, pd_start, pd_len, temp, pde) {
1406			uint32_t  pte;
1407			gen8_pte_t *pt_vaddr;
1408
1409			if (!test_bit(pde, pd->used_pdes))
1410				continue;
1411
1412			pt_vaddr = kmap_px(pt);
1413			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1414				uint64_t va =
1415					(pdpe << GEN8_PDPE_SHIFT) |
1416					(pde << GEN8_PDE_SHIFT) |
1417					(pte << GEN8_PTE_SHIFT);
1418				int i;
1419				bool found = false;
1420
1421				for (i = 0; i < 4; i++)
1422					if (pt_vaddr[pte + i] != scratch_pte)
1423						found = true;
1424				if (!found)
1425					continue;
1426
1427				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1428				for (i = 0; i < 4; i++) {
1429					if (pt_vaddr[pte + i] != scratch_pte)
1430						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1431					else
1432						seq_puts(m, "  SCRATCH ");
1433				}
1434				seq_puts(m, "\n");
1435			}
1436			/* don't use kunmap_px, it could trigger
1437			 * an unnecessary flush.
1438			 */
1439			kunmap_atomic(pt_vaddr);
1440		}
1441	}
1442}
1443
1444static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1445{
1446	struct i915_address_space *vm = &ppgtt->base;
1447	uint64_t start = ppgtt->base.start;
1448	uint64_t length = ppgtt->base.total;
1449	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1450						 I915_CACHE_LLC, true);
1451
1452	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1453		gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1454	} else {
1455		uint64_t templ4, pml4e;
1456		struct i915_pml4 *pml4 = &ppgtt->pml4;
1457		struct i915_page_directory_pointer *pdp;
1458
1459		gen8_for_each_pml4e(pdp, pml4, start, length, templ4, pml4e) {
1460			if (!test_bit(pml4e, pml4->used_pml4es))
1461				continue;
1462
1463			seq_printf(m, "    PML4E #%llu\n", pml4e);
1464			gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1465		}
1466	}
1467}
1468
1469static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1470{
1471	unsigned long *new_page_dirs, *new_page_tables;
1472	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1473	int ret;
1474
1475	/* We allocate temp bitmap for page tables for no gain
1476	 * but as this is for init only, lets keep the things simple
1477	 */
1478	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1479	if (ret)
1480		return ret;
1481
1482	/* Allocate for all pdps regardless of how the ppgtt
1483	 * was defined.
1484	 */
1485	ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1486						0, 1ULL << 32,
1487						new_page_dirs);
1488	if (!ret)
1489		*ppgtt->pdp.used_pdpes = *new_page_dirs;
1490
1491	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1492
1493	return ret;
1494}
1495
1496/*
1497 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1498 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1499 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1500 * space.
1501 *
1502 */
1503static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1504{
1505	int ret;
1506
1507	ret = gen8_init_scratch(&ppgtt->base);
1508	if (ret)
1509		return ret;
1510
1511	ppgtt->base.start = 0;
1512	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1513	ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1514	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1515	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1516	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1517	ppgtt->base.bind_vma = ppgtt_bind_vma;
1518	ppgtt->debug_dump = gen8_dump_ppgtt;
1519
1520	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1521		ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1522		if (ret)
1523			goto free_scratch;
1524
1525		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1526
1527		ppgtt->base.total = 1ULL << 48;
1528		ppgtt->switch_mm = gen8_48b_mm_switch;
1529	} else {
1530		ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1531		if (ret)
1532			goto free_scratch;
1533
1534		ppgtt->base.total = 1ULL << 32;
1535		ppgtt->switch_mm = gen8_legacy_mm_switch;
1536		trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1537							      0, 0,
1538							      GEN8_PML4E_SHIFT);
1539
1540		if (intel_vgpu_active(ppgtt->base.dev)) {
1541			ret = gen8_preallocate_top_level_pdps(ppgtt);
1542			if (ret)
1543				goto free_scratch;
1544		}
1545	}
1546
1547	if (intel_vgpu_active(ppgtt->base.dev))
1548		gen8_ppgtt_notify_vgt(ppgtt, true);
1549
1550	return 0;
1551
1552free_scratch:
1553	gen8_free_scratch(&ppgtt->base);
1554	return ret;
1555}
1556
1557static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1558{
1559	struct i915_address_space *vm = &ppgtt->base;
1560	struct i915_page_table *unused;
1561	gen6_pte_t scratch_pte;
1562	uint32_t pd_entry;
1563	uint32_t  pte, pde, temp;
1564	uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1565
1566	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1567				     I915_CACHE_LLC, true, 0);
1568
1569	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1570		u32 expected;
1571		gen6_pte_t *pt_vaddr;
1572		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1573		pd_entry = readl(ppgtt->pd_addr + pde);
1574		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1575
1576		if (pd_entry != expected)
1577			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1578				   pde,
1579				   pd_entry,
1580				   expected);
1581		seq_printf(m, "\tPDE: %x\n", pd_entry);
1582
1583		pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1584
1585		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1586			unsigned long va =
1587				(pde * PAGE_SIZE * GEN6_PTES) +
1588				(pte * PAGE_SIZE);
1589			int i;
1590			bool found = false;
1591			for (i = 0; i < 4; i++)
1592				if (pt_vaddr[pte + i] != scratch_pte)
1593					found = true;
1594			if (!found)
1595				continue;
1596
1597			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1598			for (i = 0; i < 4; i++) {
1599				if (pt_vaddr[pte + i] != scratch_pte)
1600					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1601				else
1602					seq_puts(m, "  SCRATCH ");
1603			}
1604			seq_puts(m, "\n");
1605		}
1606		kunmap_px(ppgtt, pt_vaddr);
1607	}
1608}
1609
1610/* Write pde (index) from the page directory @pd to the page table @pt */
1611static void gen6_write_pde(struct i915_page_directory *pd,
1612			    const int pde, struct i915_page_table *pt)
1613{
1614	/* Caller needs to make sure the write completes if necessary */
1615	struct i915_hw_ppgtt *ppgtt =
1616		container_of(pd, struct i915_hw_ppgtt, pd);
1617	u32 pd_entry;
1618
1619	pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1620	pd_entry |= GEN6_PDE_VALID;
1621
1622	writel(pd_entry, ppgtt->pd_addr + pde);
1623}
1624
1625/* Write all the page tables found in the ppgtt structure to incrementing page
1626 * directories. */
1627static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1628				  struct i915_page_directory *pd,
1629				  uint32_t start, uint32_t length)
1630{
1631	struct i915_page_table *pt;
1632	uint32_t pde, temp;
1633
1634	gen6_for_each_pde(pt, pd, start, length, temp, pde)
1635		gen6_write_pde(pd, pde, pt);
1636
1637	/* Make sure write is complete before other code can use this page
1638	 * table. Also require for WC mapped PTEs */
1639	readl(dev_priv->gtt.gsm);
1640}
1641
1642static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1643{
1644	BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1645
1646	return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1647}
1648
1649static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1650			 struct drm_i915_gem_request *req)
1651{
1652	struct intel_engine_cs *ring = req->ring;
1653	int ret;
1654
1655	/* NB: TLBs must be flushed and invalidated before a switch */
1656	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1657	if (ret)
1658		return ret;
1659
1660	ret = intel_ring_begin(req, 6);
1661	if (ret)
1662		return ret;
1663
1664	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1665	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1666	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1667	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1668	intel_ring_emit(ring, get_pd_offset(ppgtt));
1669	intel_ring_emit(ring, MI_NOOP);
1670	intel_ring_advance(ring);
1671
1672	return 0;
1673}
1674
1675static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1676			  struct drm_i915_gem_request *req)
1677{
1678	struct intel_engine_cs *ring = req->ring;
1679	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1680
1681	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1682	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1683	return 0;
1684}
1685
1686static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1687			  struct drm_i915_gem_request *req)
1688{
1689	struct intel_engine_cs *ring = req->ring;
1690	int ret;
1691
1692	/* NB: TLBs must be flushed and invalidated before a switch */
1693	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1694	if (ret)
1695		return ret;
1696
1697	ret = intel_ring_begin(req, 6);
1698	if (ret)
1699		return ret;
1700
1701	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1702	intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
1703	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1704	intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
1705	intel_ring_emit(ring, get_pd_offset(ppgtt));
1706	intel_ring_emit(ring, MI_NOOP);
1707	intel_ring_advance(ring);
1708
1709	/* XXX: RCS is the only one to auto invalidate the TLBs? */
1710	if (ring->id != RCS) {
1711		ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1712		if (ret)
1713			return ret;
1714	}
1715
1716	return 0;
1717}
1718
1719static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1720			  struct drm_i915_gem_request *req)
1721{
1722	struct intel_engine_cs *ring = req->ring;
1723	struct drm_device *dev = ppgtt->base.dev;
1724	struct drm_i915_private *dev_priv = dev->dev_private;
1725
1726
1727	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1728	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1729
1730	POSTING_READ(RING_PP_DIR_DCLV(ring));
1731
1732	return 0;
1733}
1734
1735static void gen8_ppgtt_enable(struct drm_device *dev)
1736{
1737	struct drm_i915_private *dev_priv = dev->dev_private;
1738	struct intel_engine_cs *ring;
1739	int j;
1740
1741	for_each_ring(ring, dev_priv, j) {
1742		u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1743		I915_WRITE(RING_MODE_GEN7(ring),
1744			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1745	}
1746}
1747
1748static void gen7_ppgtt_enable(struct drm_device *dev)
1749{
1750	struct drm_i915_private *dev_priv = dev->dev_private;
1751	struct intel_engine_cs *ring;
1752	uint32_t ecochk, ecobits;
1753	int i;
1754
1755	ecobits = I915_READ(GAC_ECO_BITS);
1756	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1757
1758	ecochk = I915_READ(GAM_ECOCHK);
1759	if (IS_HASWELL(dev)) {
1760		ecochk |= ECOCHK_PPGTT_WB_HSW;
1761	} else {
1762		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1763		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1764	}
1765	I915_WRITE(GAM_ECOCHK, ecochk);
1766
1767	for_each_ring(ring, dev_priv, i) {
1768		/* GFX_MODE is per-ring on gen7+ */
1769		I915_WRITE(RING_MODE_GEN7(ring),
1770			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1771	}
1772}
1773
1774static void gen6_ppgtt_enable(struct drm_device *dev)
1775{
1776	struct drm_i915_private *dev_priv = dev->dev_private;
1777	uint32_t ecochk, gab_ctl, ecobits;
1778
1779	ecobits = I915_READ(GAC_ECO_BITS);
1780	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1781		   ECOBITS_PPGTT_CACHE64B);
1782
1783	gab_ctl = I915_READ(GAB_CTL);
1784	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1785
1786	ecochk = I915_READ(GAM_ECOCHK);
1787	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1788
1789	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1790}
1791
1792/* PPGTT support for Sandybdrige/Gen6 and later */
1793static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1794				   uint64_t start,
1795				   uint64_t length,
1796				   bool use_scratch)
1797{
1798	struct i915_hw_ppgtt *ppgtt =
1799		container_of(vm, struct i915_hw_ppgtt, base);
1800	gen6_pte_t *pt_vaddr, scratch_pte;
1801	unsigned first_entry = start >> PAGE_SHIFT;
1802	unsigned num_entries = length >> PAGE_SHIFT;
1803	unsigned act_pt = first_entry / GEN6_PTES;
1804	unsigned first_pte = first_entry % GEN6_PTES;
1805	unsigned last_pte, i;
1806
1807	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1808				     I915_CACHE_LLC, true, 0);
1809
1810	while (num_entries) {
1811		last_pte = first_pte + num_entries;
1812		if (last_pte > GEN6_PTES)
1813			last_pte = GEN6_PTES;
1814
1815		pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1816
1817		for (i = first_pte; i < last_pte; i++)
1818			pt_vaddr[i] = scratch_pte;
1819
1820		kunmap_px(ppgtt, pt_vaddr);
1821
1822		num_entries -= last_pte - first_pte;
1823		first_pte = 0;
1824		act_pt++;
1825	}
1826}
1827
1828static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1829				      struct sg_table *pages,
1830				      uint64_t start,
1831				      enum i915_cache_level cache_level, u32 flags)
1832{
1833	struct i915_hw_ppgtt *ppgtt =
1834		container_of(vm, struct i915_hw_ppgtt, base);
1835	gen6_pte_t *pt_vaddr;
1836	unsigned first_entry = start >> PAGE_SHIFT;
1837	unsigned act_pt = first_entry / GEN6_PTES;
1838	unsigned act_pte = first_entry % GEN6_PTES;
1839	struct sg_page_iter sg_iter;
1840
1841	pt_vaddr = NULL;
1842	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1843		if (pt_vaddr == NULL)
1844			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1845
1846		pt_vaddr[act_pte] =
1847			vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1848				       cache_level, true, flags);
1849
1850		if (++act_pte == GEN6_PTES) {
1851			kunmap_px(ppgtt, pt_vaddr);
1852			pt_vaddr = NULL;
1853			act_pt++;
1854			act_pte = 0;
1855		}
1856	}
1857	if (pt_vaddr)
1858		kunmap_px(ppgtt, pt_vaddr);
1859}
1860
1861static int gen6_alloc_va_range(struct i915_address_space *vm,
1862			       uint64_t start_in, uint64_t length_in)
1863{
1864	DECLARE_BITMAP(new_page_tables, I915_PDES);
1865	struct drm_device *dev = vm->dev;
1866	struct drm_i915_private *dev_priv = dev->dev_private;
1867	struct i915_hw_ppgtt *ppgtt =
1868				container_of(vm, struct i915_hw_ppgtt, base);
1869	struct i915_page_table *pt;
1870	uint32_t start, length, start_save, length_save;
1871	uint32_t pde, temp;
1872	int ret;
1873
1874	if (WARN_ON(start_in + length_in > ppgtt->base.total))
1875		return -ENODEV;
1876
1877	start = start_save = start_in;
1878	length = length_save = length_in;
1879
1880	bitmap_zero(new_page_tables, I915_PDES);
1881
1882	/* The allocation is done in two stages so that we can bail out with
1883	 * minimal amount of pain. The first stage finds new page tables that
1884	 * need allocation. The second stage marks use ptes within the page
1885	 * tables.
1886	 */
1887	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1888		if (pt != vm->scratch_pt) {
1889			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1890			continue;
1891		}
1892
1893		/* We've already allocated a page table */
1894		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1895
1896		pt = alloc_pt(dev);
1897		if (IS_ERR(pt)) {
1898			ret = PTR_ERR(pt);
1899			goto unwind_out;
1900		}
1901
1902		gen6_initialize_pt(vm, pt);
1903
1904		ppgtt->pd.page_table[pde] = pt;
1905		__set_bit(pde, new_page_tables);
1906		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1907	}
1908
1909	start = start_save;
1910	length = length_save;
1911
1912	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1913		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1914
1915		bitmap_zero(tmp_bitmap, GEN6_PTES);
1916		bitmap_set(tmp_bitmap, gen6_pte_index(start),
1917			   gen6_pte_count(start, length));
1918
1919		if (__test_and_clear_bit(pde, new_page_tables))
1920			gen6_write_pde(&ppgtt->pd, pde, pt);
1921
1922		trace_i915_page_table_entry_map(vm, pde, pt,
1923					 gen6_pte_index(start),
1924					 gen6_pte_count(start, length),
1925					 GEN6_PTES);
1926		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1927				GEN6_PTES);
1928	}
1929
1930	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1931
1932	/* Make sure write is complete before other code can use this page
1933	 * table. Also require for WC mapped PTEs */
1934	readl(dev_priv->gtt.gsm);
1935
1936	mark_tlbs_dirty(ppgtt);
1937	return 0;
1938
1939unwind_out:
1940	for_each_set_bit(pde, new_page_tables, I915_PDES) {
1941		struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1942
1943		ppgtt->pd.page_table[pde] = vm->scratch_pt;
1944		free_pt(vm->dev, pt);
1945	}
1946
1947	mark_tlbs_dirty(ppgtt);
1948	return ret;
1949}
1950
1951static int gen6_init_scratch(struct i915_address_space *vm)
1952{
1953	struct drm_device *dev = vm->dev;
1954
1955	vm->scratch_page = alloc_scratch_page(dev);
1956	if (IS_ERR(vm->scratch_page))
1957		return PTR_ERR(vm->scratch_page);
1958
1959	vm->scratch_pt = alloc_pt(dev);
1960	if (IS_ERR(vm->scratch_pt)) {
1961		free_scratch_page(dev, vm->scratch_page);
1962		return PTR_ERR(vm->scratch_pt);
1963	}
1964
1965	gen6_initialize_pt(vm, vm->scratch_pt);
1966
1967	return 0;
1968}
1969
1970static void gen6_free_scratch(struct i915_address_space *vm)
1971{
1972	struct drm_device *dev = vm->dev;
1973
1974	free_pt(dev, vm->scratch_pt);
1975	free_scratch_page(dev, vm->scratch_page);
1976}
1977
1978static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1979{
1980	struct i915_hw_ppgtt *ppgtt =
1981		container_of(vm, struct i915_hw_ppgtt, base);
1982	struct i915_page_table *pt;
1983	uint32_t pde;
1984
1985	drm_mm_remove_node(&ppgtt->node);
1986
1987	gen6_for_all_pdes(pt, ppgtt, pde) {
1988		if (pt != vm->scratch_pt)
1989			free_pt(ppgtt->base.dev, pt);
1990	}
1991
1992	gen6_free_scratch(vm);
1993}
1994
1995static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1996{
1997	struct i915_address_space *vm = &ppgtt->base;
1998	struct drm_device *dev = ppgtt->base.dev;
1999	struct drm_i915_private *dev_priv = dev->dev_private;
2000	bool retried = false;
2001	int ret;
2002
2003	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2004	 * allocator works in address space sizes, so it's multiplied by page
2005	 * size. We allocate at the top of the GTT to avoid fragmentation.
2006	 */
2007	BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
2008
2009	ret = gen6_init_scratch(vm);
2010	if (ret)
2011		return ret;
2012
2013alloc:
2014	ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
2015						  &ppgtt->node, GEN6_PD_SIZE,
2016						  GEN6_PD_ALIGN, 0,
2017						  0, dev_priv->gtt.base.total,
2018						  DRM_MM_TOPDOWN);
2019	if (ret == -ENOSPC && !retried) {
2020		ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
2021					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
2022					       I915_CACHE_NONE,
2023					       0, dev_priv->gtt.base.total,
2024					       0);
2025		if (ret)
2026			goto err_out;
2027
2028		retried = true;
2029		goto alloc;
2030	}
2031
2032	if (ret)
2033		goto err_out;
2034
2035
2036	if (ppgtt->node.start < dev_priv->gtt.mappable_end)
2037		DRM_DEBUG("Forced to use aperture for PDEs\n");
2038
2039	return 0;
2040
2041err_out:
2042	gen6_free_scratch(vm);
2043	return ret;
2044}
2045
2046static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2047{
2048	return gen6_ppgtt_allocate_page_directories(ppgtt);
2049}
2050
2051static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2052				  uint64_t start, uint64_t length)
2053{
2054	struct i915_page_table *unused;
2055	uint32_t pde, temp;
2056
2057	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
2058		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2059}
2060
2061static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2062{
2063	struct drm_device *dev = ppgtt->base.dev;
2064	struct drm_i915_private *dev_priv = dev->dev_private;
2065	int ret;
2066
2067	ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
2068	if (IS_GEN6(dev)) {
2069		ppgtt->switch_mm = gen6_mm_switch;
2070	} else if (IS_HASWELL(dev)) {
2071		ppgtt->switch_mm = hsw_mm_switch;
2072	} else if (IS_GEN7(dev)) {
2073		ppgtt->switch_mm = gen7_mm_switch;
2074	} else
2075		BUG();
2076
2077	if (intel_vgpu_active(dev))
2078		ppgtt->switch_mm = vgpu_mm_switch;
2079
2080	ret = gen6_ppgtt_alloc(ppgtt);
2081	if (ret)
2082		return ret;
2083
2084	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2085	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2086	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2087	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2088	ppgtt->base.bind_vma = ppgtt_bind_vma;
2089	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2090	ppgtt->base.start = 0;
2091	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2092	ppgtt->debug_dump = gen6_dump_ppgtt;
2093
2094	ppgtt->pd.base.ggtt_offset =
2095		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2096
2097	ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
2098		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2099
2100	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2101
2102	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2103
2104	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2105			 ppgtt->node.size >> 20,
2106			 ppgtt->node.start / PAGE_SIZE);
2107
2108	DRM_DEBUG("Adding PPGTT at offset %x\n",
2109		  ppgtt->pd.base.ggtt_offset << 10);
2110
2111	return 0;
2112}
2113
2114static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2115{
2116	ppgtt->base.dev = dev;
2117
2118	if (INTEL_INFO(dev)->gen < 8)
2119		return gen6_ppgtt_init(ppgtt);
2120	else
2121		return gen8_ppgtt_init(ppgtt);
2122}
2123
2124static void i915_address_space_init(struct i915_address_space *vm,
2125				    struct drm_i915_private *dev_priv)
2126{
2127	drm_mm_init(&vm->mm, vm->start, vm->total);
2128	vm->dev = dev_priv->dev;
2129	INIT_LIST_HEAD(&vm->active_list);
2130	INIT_LIST_HEAD(&vm->inactive_list);
2131	list_add_tail(&vm->global_link, &dev_priv->vm_list);
2132}
2133
2134int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2135{
2136	struct drm_i915_private *dev_priv = dev->dev_private;
2137	int ret = 0;
2138
2139	ret = __hw_ppgtt_init(dev, ppgtt);
2140	if (ret == 0) {
2141		kref_init(&ppgtt->ref);
2142		i915_address_space_init(&ppgtt->base, dev_priv);
2143	}
2144
2145	return ret;
2146}
2147
2148int i915_ppgtt_init_hw(struct drm_device *dev)
2149{
2150	/* In the case of execlists, PPGTT is enabled by the context descriptor
2151	 * and the PDPs are contained within the context itself.  We don't
2152	 * need to do anything here. */
2153	if (i915.enable_execlists)
2154		return 0;
2155
2156	if (!USES_PPGTT(dev))
2157		return 0;
2158
2159	if (IS_GEN6(dev))
2160		gen6_ppgtt_enable(dev);
2161	else if (IS_GEN7(dev))
2162		gen7_ppgtt_enable(dev);
2163	else if (INTEL_INFO(dev)->gen >= 8)
2164		gen8_ppgtt_enable(dev);
2165	else
2166		MISSING_CASE(INTEL_INFO(dev)->gen);
2167
2168	return 0;
2169}
2170
2171int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
2172{
2173	struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
2174	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2175
2176	if (i915.enable_execlists)
2177		return 0;
2178
2179	if (!ppgtt)
2180		return 0;
2181
2182	return ppgtt->switch_mm(ppgtt, req);
2183}
2184
2185struct i915_hw_ppgtt *
2186i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2187{
2188	struct i915_hw_ppgtt *ppgtt;
2189	int ret;
2190
2191	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2192	if (!ppgtt)
2193		return ERR_PTR(-ENOMEM);
2194
2195	ret = i915_ppgtt_init(dev, ppgtt);
2196	if (ret) {
2197		kfree(ppgtt);
2198		return ERR_PTR(ret);
2199	}
2200
2201	ppgtt->file_priv = fpriv;
2202
2203	trace_i915_ppgtt_create(&ppgtt->base);
2204
2205	return ppgtt;
2206}
2207
2208void  i915_ppgtt_release(struct kref *kref)
2209{
2210	struct i915_hw_ppgtt *ppgtt =
2211		container_of(kref, struct i915_hw_ppgtt, ref);
2212
2213	trace_i915_ppgtt_release(&ppgtt->base);
2214
2215	/* vmas should already be unbound */
2216	WARN_ON(!list_empty(&ppgtt->base.active_list));
2217	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2218
2219	list_del(&ppgtt->base.global_link);
2220	drm_mm_takedown(&ppgtt->base.mm);
2221
2222	ppgtt->base.cleanup(&ppgtt->base);
2223	kfree(ppgtt);
2224}
2225
2226extern int intel_iommu_gfx_mapped;
2227/* Certain Gen5 chipsets require require idling the GPU before
2228 * unmapping anything from the GTT when VT-d is enabled.
2229 */
2230static bool needs_idle_maps(struct drm_device *dev)
2231{
2232#ifdef CONFIG_INTEL_IOMMU
2233	/* Query intel_iommu to see if we need the workaround. Presumably that
2234	 * was loaded first.
2235	 */
2236	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2237		return true;
2238#endif
2239	return false;
2240}
2241
2242static bool do_idling(struct drm_i915_private *dev_priv)
2243{
2244	bool ret = dev_priv->mm.interruptible;
2245
2246	if (unlikely(dev_priv->gtt.do_idle_maps)) {
2247		dev_priv->mm.interruptible = false;
2248		if (i915_gpu_idle(dev_priv->dev)) {
2249			DRM_ERROR("Couldn't idle GPU\n");
2250			/* Wait a bit, in hopes it avoids the hang */
2251			udelay(10);
2252		}
2253	}
2254
2255	return ret;
2256}
2257
2258static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2259{
2260	if (unlikely(dev_priv->gtt.do_idle_maps))
2261		dev_priv->mm.interruptible = interruptible;
2262}
2263
2264void i915_check_and_clear_faults(struct drm_device *dev)
2265{
2266	struct drm_i915_private *dev_priv = dev->dev_private;
2267	struct intel_engine_cs *ring;
2268	int i;
2269
2270	if (INTEL_INFO(dev)->gen < 6)
2271		return;
2272
2273	for_each_ring(ring, dev_priv, i) {
2274		u32 fault_reg;
2275		fault_reg = I915_READ(RING_FAULT_REG(ring));
2276		if (fault_reg & RING_FAULT_VALID) {
2277			DRM_DEBUG_DRIVER("Unexpected fault\n"
2278					 "\tAddr: 0x%08lx\n"
2279					 "\tAddress space: %s\n"
2280					 "\tSource ID: %d\n"
2281					 "\tType: %d\n",
2282					 fault_reg & PAGE_MASK,
2283					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2284					 RING_FAULT_SRCID(fault_reg),
2285					 RING_FAULT_FAULT_TYPE(fault_reg));
2286			I915_WRITE(RING_FAULT_REG(ring),
2287				   fault_reg & ~RING_FAULT_VALID);
2288		}
2289	}
2290	POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
2291}
2292
2293static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2294{
2295	if (INTEL_INFO(dev_priv->dev)->gen < 6) {
2296		intel_gtt_chipset_flush();
2297	} else {
2298		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2299		POSTING_READ(GFX_FLSH_CNTL_GEN6);
2300	}
2301}
2302
2303void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2304{
2305	struct drm_i915_private *dev_priv = dev->dev_private;
2306
2307	/* Don't bother messing with faults pre GEN6 as we have little
2308	 * documentation supporting that it's a good idea.
2309	 */
2310	if (INTEL_INFO(dev)->gen < 6)
2311		return;
2312
2313	i915_check_and_clear_faults(dev);
2314
2315	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2316				       dev_priv->gtt.base.start,
2317				       dev_priv->gtt.base.total,
2318				       true);
2319
2320	i915_ggtt_flush(dev_priv);
2321}
2322
2323int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2324{
2325	if (!dma_map_sg(&obj->base.dev->pdev->dev,
2326			obj->pages->sgl, obj->pages->nents,
2327			PCI_DMA_BIDIRECTIONAL))
2328		return -ENOSPC;
2329
2330	return 0;
2331}
2332
2333static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2334{
2335#ifdef writeq
2336	writeq(pte, addr);
2337#else
2338	iowrite32((u32)pte, addr);
2339	iowrite32(pte >> 32, addr + 4);
2340#endif
2341}
2342
2343static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2344				     struct sg_table *st,
2345				     uint64_t start,
2346				     enum i915_cache_level level, u32 unused)
2347{
2348	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2349	unsigned first_entry = start >> PAGE_SHIFT;
2350	gen8_pte_t __iomem *gtt_entries =
2351		(gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2352	int i = 0;
2353	struct sg_page_iter sg_iter;
2354	dma_addr_t addr = 0; /* shut up gcc */
2355
2356	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2357		addr = sg_dma_address(sg_iter.sg) +
2358			(sg_iter.sg_pgoffset << PAGE_SHIFT);
2359		gen8_set_pte(&gtt_entries[i],
2360			     gen8_pte_encode(addr, level, true));
2361		i++;
2362	}
2363
2364	/*
2365	 * XXX: This serves as a posting read to make sure that the PTE has
2366	 * actually been updated. There is some concern that even though
2367	 * registers and PTEs are within the same BAR that they are potentially
2368	 * of NUMA access patterns. Therefore, even with the way we assume
2369	 * hardware should work, we must keep this posting read for paranoia.
2370	 */
2371	if (i != 0)
2372		WARN_ON(readq(&gtt_entries[i-1])
2373			!= gen8_pte_encode(addr, level, true));
2374
2375	/* This next bit makes the above posting read even more important. We
2376	 * want to flush the TLBs only after we're certain all the PTE updates
2377	 * have finished.
2378	 */
2379	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2380	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2381}
2382
2383/*
2384 * Binds an object into the global gtt with the specified cache level. The object
2385 * will be accessible to the GPU via commands whose operands reference offsets
2386 * within the global GTT as well as accessible by the GPU through the GMADR
2387 * mapped BAR (dev_priv->mm.gtt->gtt).
2388 */
2389static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2390				     struct sg_table *st,
2391				     uint64_t start,
2392				     enum i915_cache_level level, u32 flags)
2393{
2394	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2395	unsigned first_entry = start >> PAGE_SHIFT;
2396	gen6_pte_t __iomem *gtt_entries =
2397		(gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2398	int i = 0;
2399	struct sg_page_iter sg_iter;
2400	dma_addr_t addr = 0;
2401
2402	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2403		addr = sg_page_iter_dma_address(&sg_iter);
2404		iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
2405		i++;
2406	}
2407
2408	/* XXX: This serves as a posting read to make sure that the PTE has
2409	 * actually been updated. There is some concern that even though
2410	 * registers and PTEs are within the same BAR that they are potentially
2411	 * of NUMA access patterns. Therefore, even with the way we assume
2412	 * hardware should work, we must keep this posting read for paranoia.
2413	 */
2414	if (i != 0) {
2415		unsigned long gtt = readl(&gtt_entries[i-1]);
2416		WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
2417	}
2418
2419	/* This next bit makes the above posting read even more important. We
2420	 * want to flush the TLBs only after we're certain all the PTE updates
2421	 * have finished.
2422	 */
2423	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2424	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2425}
2426
2427static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2428				  uint64_t start,
2429				  uint64_t length,
2430				  bool use_scratch)
2431{
2432	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2433	unsigned first_entry = start >> PAGE_SHIFT;
2434	unsigned num_entries = length >> PAGE_SHIFT;
2435	gen8_pte_t scratch_pte, __iomem *gtt_base =
2436		(gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2437	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2438	int i;
2439
2440	if (WARN(num_entries > max_entries,
2441		 "First entry = %d; Num entries = %d (max=%d)\n",
2442		 first_entry, num_entries, max_entries))
2443		num_entries = max_entries;
2444
2445	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2446				      I915_CACHE_LLC,
2447				      use_scratch);
2448	for (i = 0; i < num_entries; i++)
2449		gen8_set_pte(&gtt_base[i], scratch_pte);
2450	readl(gtt_base);
2451}
2452
2453static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2454				  uint64_t start,
2455				  uint64_t length,
2456				  bool use_scratch)
2457{
2458	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2459	unsigned first_entry = start >> PAGE_SHIFT;
2460	unsigned num_entries = length >> PAGE_SHIFT;
2461	gen6_pte_t scratch_pte, __iomem *gtt_base =
2462		(gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2463	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2464	int i;
2465
2466	if (WARN(num_entries > max_entries,
2467		 "First entry = %d; Num entries = %d (max=%d)\n",
2468		 first_entry, num_entries, max_entries))
2469		num_entries = max_entries;
2470
2471	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2472				     I915_CACHE_LLC, use_scratch, 0);
2473
2474	for (i = 0; i < num_entries; i++)
2475		iowrite32(scratch_pte, &gtt_base[i]);
2476	readl(gtt_base);
2477}
2478
2479static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2480				     struct sg_table *pages,
2481				     uint64_t start,
2482				     enum i915_cache_level cache_level, u32 unused)
2483{
2484	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2485		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2486
2487	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2488
2489}
2490
2491static void i915_ggtt_clear_range(struct i915_address_space *vm,
2492				  uint64_t start,
2493				  uint64_t length,
2494				  bool unused)
2495{
2496	unsigned first_entry = start >> PAGE_SHIFT;
2497	unsigned num_entries = length >> PAGE_SHIFT;
2498	intel_gtt_clear_range(first_entry, num_entries);
2499}
2500
2501static int ggtt_bind_vma(struct i915_vma *vma,
2502			 enum i915_cache_level cache_level,
2503			 u32 flags)
2504{
2505	struct drm_i915_gem_object *obj = vma->obj;
2506	u32 pte_flags = 0;
2507	int ret;
2508
2509	ret = i915_get_ggtt_vma_pages(vma);
2510	if (ret)
2511		return ret;
2512
2513	/* Currently applicable only to VLV */
2514	if (obj->gt_ro)
2515		pte_flags |= PTE_READ_ONLY;
2516
2517	vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2518				vma->node.start,
2519				cache_level, pte_flags);
2520
2521	/*
2522	 * Without aliasing PPGTT there's no difference between
2523	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2524	 * upgrade to both bound if we bind either to avoid double-binding.
2525	 */
2526	vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2527
2528	return 0;
2529}
2530
2531static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2532				 enum i915_cache_level cache_level,
2533				 u32 flags)
2534{
2535	struct drm_device *dev = vma->vm->dev;
2536	struct drm_i915_private *dev_priv = dev->dev_private;
2537	struct drm_i915_gem_object *obj = vma->obj;
2538	struct sg_table *pages = obj->pages;
2539	u32 pte_flags = 0;
2540	int ret;
2541
2542	ret = i915_get_ggtt_vma_pages(vma);
2543	if (ret)
2544		return ret;
2545	pages = vma->ggtt_view.pages;
2546
2547	/* Currently applicable only to VLV */
2548	if (obj->gt_ro)
2549		pte_flags |= PTE_READ_ONLY;
2550
2551
2552	if (flags & GLOBAL_BIND) {
2553		vma->vm->insert_entries(vma->vm, pages,
2554					vma->node.start,
2555					cache_level, pte_flags);
2556	}
2557
2558	if (flags & LOCAL_BIND) {
2559		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2560		appgtt->base.insert_entries(&appgtt->base, pages,
2561					    vma->node.start,
2562					    cache_level, pte_flags);
2563	}
2564
2565	return 0;
2566}
2567
2568static void ggtt_unbind_vma(struct i915_vma *vma)
2569{
2570	struct drm_device *dev = vma->vm->dev;
2571	struct drm_i915_private *dev_priv = dev->dev_private;
2572	struct drm_i915_gem_object *obj = vma->obj;
2573	const uint64_t size = min_t(uint64_t,
2574				    obj->base.size,
2575				    vma->node.size);
2576
2577	if (vma->bound & GLOBAL_BIND) {
2578		vma->vm->clear_range(vma->vm,
2579				     vma->node.start,
2580				     size,
2581				     true);
2582	}
2583
2584	if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2585		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2586
2587		appgtt->base.clear_range(&appgtt->base,
2588					 vma->node.start,
2589					 size,
2590					 true);
2591	}
2592}
2593
2594void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2595{
2596	struct drm_device *dev = obj->base.dev;
2597	struct drm_i915_private *dev_priv = dev->dev_private;
2598	bool interruptible;
2599
2600	interruptible = do_idling(dev_priv);
2601
2602	dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2603		     PCI_DMA_BIDIRECTIONAL);
2604
2605	undo_idling(dev_priv, interruptible);
2606}
2607
2608static void i915_gtt_color_adjust(struct drm_mm_node *node,
2609				  unsigned long color,
2610				  u64 *start,
2611				  u64 *end)
2612{
2613	if (node->color != color)
2614		*start += 4096;
2615
2616	if (!list_empty(&node->node_list)) {
2617		node = list_entry(node->node_list.next,
2618				  struct drm_mm_node,
2619				  node_list);
2620		if (node->allocated && node->color != color)
2621			*end -= 4096;
2622	}
2623}
2624
2625static int i915_gem_setup_global_gtt(struct drm_device *dev,
2626				     u64 start,
2627				     u64 mappable_end,
2628				     u64 end)
2629{
2630	/* Let GEM Manage all of the aperture.
2631	 *
2632	 * However, leave one page at the end still bound to the scratch page.
2633	 * There are a number of places where the hardware apparently prefetches
2634	 * past the end of the object, and we've seen multiple hangs with the
2635	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2636	 * aperture.  One page should be enough to keep any prefetching inside
2637	 * of the aperture.
2638	 */
2639	struct drm_i915_private *dev_priv = dev->dev_private;
2640	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2641	struct drm_mm_node *entry;
2642	struct drm_i915_gem_object *obj;
2643	unsigned long hole_start, hole_end;
2644	int ret;
2645
2646	BUG_ON(mappable_end > end);
2647
2648	ggtt_vm->start = start;
2649
2650	/* Subtract the guard page before address space initialization to
2651	 * shrink the range used by drm_mm */
2652	ggtt_vm->total = end - start - PAGE_SIZE;
2653	i915_address_space_init(ggtt_vm, dev_priv);
2654	ggtt_vm->total += PAGE_SIZE;
2655
2656	if (intel_vgpu_active(dev)) {
2657		ret = intel_vgt_balloon(dev);
2658		if (ret)
2659			return ret;
2660	}
2661
2662	if (!HAS_LLC(dev))
2663		ggtt_vm->mm.color_adjust = i915_gtt_color_adjust;
2664
2665	/* Mark any preallocated objects as occupied */
2666	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2667		struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2668
2669		DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
2670			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
2671
2672		WARN_ON(i915_gem_obj_ggtt_bound(obj));
2673		ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2674		if (ret) {
2675			DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2676			return ret;
2677		}
2678		vma->bound |= GLOBAL_BIND;
2679		__i915_vma_set_map_and_fenceable(vma);
2680		list_add_tail(&vma->mm_list, &ggtt_vm->inactive_list);
2681	}
2682
2683	/* Clear any non-preallocated blocks */
2684	drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2685		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2686			      hole_start, hole_end);
2687		ggtt_vm->clear_range(ggtt_vm, hole_start,
2688				     hole_end - hole_start, true);
2689	}
2690
2691	/* And finally clear the reserved guard page */
2692	ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2693
2694	if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2695		struct i915_hw_ppgtt *ppgtt;
2696
2697		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2698		if (!ppgtt)
2699			return -ENOMEM;
2700
2701		ret = __hw_ppgtt_init(dev, ppgtt);
2702		if (ret) {
2703			ppgtt->base.cleanup(&ppgtt->base);
2704			kfree(ppgtt);
2705			return ret;
2706		}
2707
2708		if (ppgtt->base.allocate_va_range)
2709			ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2710							    ppgtt->base.total);
2711		if (ret) {
2712			ppgtt->base.cleanup(&ppgtt->base);
2713			kfree(ppgtt);
2714			return ret;
2715		}
2716
2717		ppgtt->base.clear_range(&ppgtt->base,
2718					ppgtt->base.start,
2719					ppgtt->base.total,
2720					true);
2721
2722		dev_priv->mm.aliasing_ppgtt = ppgtt;
2723		WARN_ON(dev_priv->gtt.base.bind_vma != ggtt_bind_vma);
2724		dev_priv->gtt.base.bind_vma = aliasing_gtt_bind_vma;
2725	}
2726
2727	return 0;
2728}
2729
2730void i915_gem_init_global_gtt(struct drm_device *dev)
2731{
2732	struct drm_i915_private *dev_priv = dev->dev_private;
2733	u64 gtt_size, mappable_size;
2734
2735	gtt_size = dev_priv->gtt.base.total;
2736	mappable_size = dev_priv->gtt.mappable_end;
2737
2738	i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2739}
2740
2741void i915_global_gtt_cleanup(struct drm_device *dev)
2742{
2743	struct drm_i915_private *dev_priv = dev->dev_private;
2744	struct i915_address_space *vm = &dev_priv->gtt.base;
2745
2746	if (dev_priv->mm.aliasing_ppgtt) {
2747		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2748
2749		ppgtt->base.cleanup(&ppgtt->base);
2750	}
2751
2752	if (drm_mm_initialized(&vm->mm)) {
2753		if (intel_vgpu_active(dev))
2754			intel_vgt_deballoon();
2755
2756		drm_mm_takedown(&vm->mm);
2757		list_del(&vm->global_link);
2758	}
2759
2760	vm->cleanup(vm);
2761}
2762
2763static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2764{
2765	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2766	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2767	return snb_gmch_ctl << 20;
2768}
2769
2770static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2771{
2772	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2773	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2774	if (bdw_gmch_ctl)
2775		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2776
2777#ifdef CONFIG_X86_32
2778	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2779	if (bdw_gmch_ctl > 4)
2780		bdw_gmch_ctl = 4;
2781#endif
2782
2783	return bdw_gmch_ctl << 20;
2784}
2785
2786static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2787{
2788	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2789	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2790
2791	if (gmch_ctrl)
2792		return 1 << (20 + gmch_ctrl);
2793
2794	return 0;
2795}
2796
2797static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2798{
2799	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2800	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2801	return snb_gmch_ctl << 25; /* 32 MB units */
2802}
2803
2804static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2805{
2806	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2807	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2808	return bdw_gmch_ctl << 25; /* 32 MB units */
2809}
2810
2811static size_t chv_get_stolen_size(u16 gmch_ctrl)
2812{
2813	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2814	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2815
2816	/*
2817	 * 0x0  to 0x10: 32MB increments starting at 0MB
2818	 * 0x11 to 0x16: 4MB increments starting at 8MB
2819	 * 0x17 to 0x1d: 4MB increments start at 36MB
2820	 */
2821	if (gmch_ctrl < 0x11)
2822		return gmch_ctrl << 25;
2823	else if (gmch_ctrl < 0x17)
2824		return (gmch_ctrl - 0x11 + 2) << 22;
2825	else
2826		return (gmch_ctrl - 0x17 + 9) << 22;
2827}
2828
2829static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2830{
2831	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2832	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2833
2834	if (gen9_gmch_ctl < 0xf0)
2835		return gen9_gmch_ctl << 25; /* 32 MB units */
2836	else
2837		/* 4MB increments starting at 0xf0 for 4MB */
2838		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2839}
2840
2841static int ggtt_probe_common(struct drm_device *dev,
2842			     size_t gtt_size)
2843{
2844	struct drm_i915_private *dev_priv = dev->dev_private;
2845	struct i915_page_scratch *scratch_page;
2846	phys_addr_t gtt_phys_addr;
2847
2848	/* For Modern GENs the PTEs and register space are split in the BAR */
2849	gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2850		(pci_resource_len(dev->pdev, 0) / 2);
2851
2852	/*
2853	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2854	 * dropped. For WC mappings in general we have 64 byte burst writes
2855	 * when the WC buffer is flushed, so we can't use it, but have to
2856	 * resort to an uncached mapping. The WC issue is easily caught by the
2857	 * readback check when writing GTT PTE entries.
2858	 */
2859	if (IS_BROXTON(dev))
2860		dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2861	else
2862		dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2863	if (!dev_priv->gtt.gsm) {
2864		DRM_ERROR("Failed to map the gtt page table\n");
2865		return -ENOMEM;
2866	}
2867
2868	scratch_page = alloc_scratch_page(dev);
2869	if (IS_ERR(scratch_page)) {
2870		DRM_ERROR("Scratch setup failed\n");
2871		/* iounmap will also get called at remove, but meh */
2872		iounmap(dev_priv->gtt.gsm);
2873		return PTR_ERR(scratch_page);
2874	}
2875
2876	dev_priv->gtt.base.scratch_page = scratch_page;
2877
2878	return 0;
2879}
2880
2881/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2882 * bits. When using advanced contexts each context stores its own PAT, but
2883 * writing this data shouldn't be harmful even in those cases. */
2884static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2885{
2886	uint64_t pat;
2887
2888	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2889	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2890	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2891	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2892	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2893	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2894	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2895	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2896
2897	if (!USES_PPGTT(dev_priv->dev))
2898		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2899		 * so RTL will always use the value corresponding to
2900		 * pat_sel = 000".
2901		 * So let's disable cache for GGTT to avoid screen corruptions.
2902		 * MOCS still can be used though.
2903		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2904		 * before this patch, i.e. the same uncached + snooping access
2905		 * like on gen6/7 seems to be in effect.
2906		 * - So this just fixes blitter/render access. Again it looks
2907		 * like it's not just uncached access, but uncached + snooping.
2908		 * So we can still hold onto all our assumptions wrt cpu
2909		 * clflushing on LLC machines.
2910		 */
2911		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2912
2913	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2914	 * write would work. */
2915	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2916	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2917}
2918
2919static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2920{
2921	uint64_t pat;
2922
2923	/*
2924	 * Map WB on BDW to snooped on CHV.
2925	 *
2926	 * Only the snoop bit has meaning for CHV, the rest is
2927	 * ignored.
2928	 *
2929	 * The hardware will never snoop for certain types of accesses:
2930	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
2931	 * - PPGTT page tables
2932	 * - some other special cycles
2933	 *
2934	 * As with BDW, we also need to consider the following for GT accesses:
2935	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
2936	 * so RTL will always use the value corresponding to
2937	 * pat_sel = 000".
2938	 * Which means we must set the snoop bit in PAT entry 0
2939	 * in order to keep the global status page working.
2940	 */
2941	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2942	      GEN8_PPAT(1, 0) |
2943	      GEN8_PPAT(2, 0) |
2944	      GEN8_PPAT(3, 0) |
2945	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2946	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2947	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2948	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
2949
2950	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2951	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2952}
2953
2954static int gen8_gmch_probe(struct drm_device *dev,
2955			   u64 *gtt_total,
2956			   size_t *stolen,
2957			   phys_addr_t *mappable_base,
2958			   u64 *mappable_end)
2959{
2960	struct drm_i915_private *dev_priv = dev->dev_private;
2961	u64 gtt_size;
2962	u16 snb_gmch_ctl;
2963	int ret;
2964
2965	/* TODO: We're not aware of mappable constraints on gen8 yet */
2966	*mappable_base = pci_resource_start(dev->pdev, 2);
2967	*mappable_end = pci_resource_len(dev->pdev, 2);
2968
2969	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
2970		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
2971
2972	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2973
2974	if (INTEL_INFO(dev)->gen >= 9) {
2975		*stolen = gen9_get_stolen_size(snb_gmch_ctl);
2976		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2977	} else if (IS_CHERRYVIEW(dev)) {
2978		*stolen = chv_get_stolen_size(snb_gmch_ctl);
2979		gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
2980	} else {
2981		*stolen = gen8_get_stolen_size(snb_gmch_ctl);
2982		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
2983	}
2984
2985	*gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2986
2987	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
2988		chv_setup_private_ppat(dev_priv);
2989	else
2990		bdw_setup_private_ppat(dev_priv);
2991
2992	ret = ggtt_probe_common(dev, gtt_size);
2993
2994	dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
2995	dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
2996	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
2997	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
2998
2999	return ret;
3000}
3001
3002static int gen6_gmch_probe(struct drm_device *dev,
3003			   u64 *gtt_total,
3004			   size_t *stolen,
3005			   phys_addr_t *mappable_base,
3006			   u64 *mappable_end)
3007{
3008	struct drm_i915_private *dev_priv = dev->dev_private;
3009	unsigned int gtt_size;
3010	u16 snb_gmch_ctl;
3011	int ret;
3012
3013	*mappable_base = pci_resource_start(dev->pdev, 2);
3014	*mappable_end = pci_resource_len(dev->pdev, 2);
3015
3016	/* 64/512MB is the current min/max we actually know of, but this is just
3017	 * a coarse sanity check.
3018	 */
3019	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
3020		DRM_ERROR("Unknown GMADR size (%llx)\n",
3021			  dev_priv->gtt.mappable_end);
3022		return -ENXIO;
3023	}
3024
3025	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3026		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3027	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3028
3029	*stolen = gen6_get_stolen_size(snb_gmch_ctl);
3030
3031	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
3032	*gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3033
3034	ret = ggtt_probe_common(dev, gtt_size);
3035
3036	dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
3037	dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
3038	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3039	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3040
3041	return ret;
3042}
3043
3044static void gen6_gmch_remove(struct i915_address_space *vm)
3045{
3046
3047	struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
3048
3049	iounmap(gtt->gsm);
3050	free_scratch_page(vm->dev, vm->scratch_page);
3051}
3052
3053static int i915_gmch_probe(struct drm_device *dev,
3054			   u64 *gtt_total,
3055			   size_t *stolen,
3056			   phys_addr_t *mappable_base,
3057			   u64 *mappable_end)
3058{
3059	struct drm_i915_private *dev_priv = dev->dev_private;
3060	int ret;
3061
3062	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
3063	if (!ret) {
3064		DRM_ERROR("failed to set up gmch\n");
3065		return -EIO;
3066	}
3067
3068	intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
3069
3070	dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
3071	dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
3072	dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
3073	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3074	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3075
3076	if (unlikely(dev_priv->gtt.do_idle_maps))
3077		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3078
3079	return 0;
3080}
3081
3082static void i915_gmch_remove(struct i915_address_space *vm)
3083{
3084	intel_gmch_remove();
3085}
3086
3087int i915_gem_gtt_init(struct drm_device *dev)
3088{
3089	struct drm_i915_private *dev_priv = dev->dev_private;
3090	struct i915_gtt *gtt = &dev_priv->gtt;
3091	int ret;
3092
3093	if (INTEL_INFO(dev)->gen <= 5) {
3094		gtt->gtt_probe = i915_gmch_probe;
3095		gtt->base.cleanup = i915_gmch_remove;
3096	} else if (INTEL_INFO(dev)->gen < 8) {
3097		gtt->gtt_probe = gen6_gmch_probe;
3098		gtt->base.cleanup = gen6_gmch_remove;
3099		if (IS_HASWELL(dev) && dev_priv->ellc_size)
3100			gtt->base.pte_encode = iris_pte_encode;
3101		else if (IS_HASWELL(dev))
3102			gtt->base.pte_encode = hsw_pte_encode;
3103		else if (IS_VALLEYVIEW(dev))
3104			gtt->base.pte_encode = byt_pte_encode;
3105		else if (INTEL_INFO(dev)->gen >= 7)
3106			gtt->base.pte_encode = ivb_pte_encode;
3107		else
3108			gtt->base.pte_encode = snb_pte_encode;
3109	} else {
3110		dev_priv->gtt.gtt_probe = gen8_gmch_probe;
3111		dev_priv->gtt.base.cleanup = gen6_gmch_remove;
3112	}
3113
3114	gtt->base.dev = dev;
3115
3116	ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
3117			     &gtt->mappable_base, &gtt->mappable_end);
3118	if (ret)
3119		return ret;
3120
3121	/* GMADR is the PCI mmio aperture into the global GTT. */
3122	DRM_INFO("Memory usable by graphics device = %lluM\n",
3123		 gtt->base.total >> 20);
3124	DRM_DEBUG_DRIVER("GMADR size = %lldM\n", gtt->mappable_end >> 20);
3125	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
3126#ifdef CONFIG_INTEL_IOMMU
3127	if (intel_iommu_gfx_mapped)
3128		DRM_INFO("VT-d active for gfx access\n");
3129#endif
3130	/*
3131	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
3132	 * user's requested state against the hardware/driver capabilities.  We
3133	 * do this now so that we can print out any log messages once rather
3134	 * than every time we check intel_enable_ppgtt().
3135	 */
3136	i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
3137	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
3138
3139	return 0;
3140}
3141
3142void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3143{
3144	struct drm_i915_private *dev_priv = dev->dev_private;
3145	struct drm_i915_gem_object *obj;
3146	struct i915_address_space *vm;
3147	struct i915_vma *vma;
3148	bool flush;
3149
3150	i915_check_and_clear_faults(dev);
3151
3152	/* First fill our portion of the GTT with scratch pages */
3153	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
3154				       dev_priv->gtt.base.start,
3155				       dev_priv->gtt.base.total,
3156				       true);
3157
3158	/* Cache flush objects bound into GGTT and rebind them. */
3159	vm = &dev_priv->gtt.base;
3160	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3161		flush = false;
3162		list_for_each_entry(vma, &obj->vma_list, vma_link) {
3163			if (vma->vm != vm)
3164				continue;
3165
3166			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3167					      PIN_UPDATE));
3168
3169			flush = true;
3170		}
3171
3172		if (flush)
3173			i915_gem_clflush_object(obj, obj->pin_display);
3174	}
3175
3176	if (INTEL_INFO(dev)->gen >= 8) {
3177		if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3178			chv_setup_private_ppat(dev_priv);
3179		else
3180			bdw_setup_private_ppat(dev_priv);
3181
3182		return;
3183	}
3184
3185	if (USES_PPGTT(dev)) {
3186		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3187			/* TODO: Perhaps it shouldn't be gen6 specific */
3188
3189			struct i915_hw_ppgtt *ppgtt =
3190					container_of(vm, struct i915_hw_ppgtt,
3191						     base);
3192
3193			if (i915_is_ggtt(vm))
3194				ppgtt = dev_priv->mm.aliasing_ppgtt;
3195
3196			gen6_write_page_range(dev_priv, &ppgtt->pd,
3197					      0, ppgtt->base.total);
3198		}
3199	}
3200
3201	i915_ggtt_flush(dev_priv);
3202}
3203
3204static struct i915_vma *
3205__i915_gem_vma_create(struct drm_i915_gem_object *obj,
3206		      struct i915_address_space *vm,
3207		      const struct i915_ggtt_view *ggtt_view)
3208{
3209	struct i915_vma *vma;
3210
3211	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3212		return ERR_PTR(-EINVAL);
3213
3214	vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3215	if (vma == NULL)
3216		return ERR_PTR(-ENOMEM);
3217
3218	INIT_LIST_HEAD(&vma->vma_link);
3219	INIT_LIST_HEAD(&vma->mm_list);
3220	INIT_LIST_HEAD(&vma->exec_list);
3221	vma->vm = vm;
3222	vma->obj = obj;
3223
3224	if (i915_is_ggtt(vm))
3225		vma->ggtt_view = *ggtt_view;
3226
3227	list_add_tail(&vma->vma_link, &obj->vma_list);
3228	if (!i915_is_ggtt(vm))
3229		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3230
3231	return vma;
3232}
3233
3234struct i915_vma *
3235i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3236				  struct i915_address_space *vm)
3237{
3238	struct i915_vma *vma;
3239
3240	vma = i915_gem_obj_to_vma(obj, vm);
3241	if (!vma)
3242		vma = __i915_gem_vma_create(obj, vm,
3243					    i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3244
3245	return vma;
3246}
3247
3248struct i915_vma *
3249i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3250				       const struct i915_ggtt_view *view)
3251{
3252	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
3253	struct i915_vma *vma;
3254
3255	if (WARN_ON(!view))
3256		return ERR_PTR(-EINVAL);
3257
3258	vma = i915_gem_obj_to_ggtt_view(obj, view);
3259
3260	if (IS_ERR(vma))
3261		return vma;
3262
3263	if (!vma)
3264		vma = __i915_gem_vma_create(obj, ggtt, view);
3265
3266	return vma;
3267
3268}
3269
3270static struct scatterlist *
3271rotate_pages(dma_addr_t *in, unsigned int offset,
3272	     unsigned int width, unsigned int height,
3273	     struct sg_table *st, struct scatterlist *sg)
3274{
3275	unsigned int column, row;
3276	unsigned int src_idx;
3277
3278	if (!sg) {
3279		st->nents = 0;
3280		sg = st->sgl;
3281	}
3282
3283	for (column = 0; column < width; column++) {
3284		src_idx = width * (height - 1) + column;
3285		for (row = 0; row < height; row++) {
3286			st->nents++;
3287			/* We don't need the pages, but need to initialize
3288			 * the entries so the sg list can be happily traversed.
3289			 * The only thing we need are DMA addresses.
3290			 */
3291			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3292			sg_dma_address(sg) = in[offset + src_idx];
3293			sg_dma_len(sg) = PAGE_SIZE;
3294			sg = sg_next(sg);
3295			src_idx -= width;
3296		}
3297	}
3298
3299	return sg;
3300}
3301
3302static struct sg_table *
3303intel_rotate_fb_obj_pages(struct i915_ggtt_view *ggtt_view,
3304			  struct drm_i915_gem_object *obj)
3305{
3306	struct intel_rotation_info *rot_info = &ggtt_view->rotation_info;
3307	unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
3308	unsigned int size_pages_uv;
3309	struct sg_page_iter sg_iter;
3310	unsigned long i;
3311	dma_addr_t *page_addr_list;
3312	struct sg_table *st;
3313	unsigned int uv_start_page;
3314	struct scatterlist *sg;
3315	int ret = -ENOMEM;
3316
3317	/* Allocate a temporary list of source pages for random access. */
3318	page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
3319				       sizeof(dma_addr_t));
3320	if (!page_addr_list)
3321		return ERR_PTR(ret);
3322
3323	/* Account for UV plane with NV12. */
3324	if (rot_info->pixel_format == DRM_FORMAT_NV12)
3325		size_pages_uv = rot_info->size_uv >> PAGE_SHIFT;
3326	else
3327		size_pages_uv = 0;
3328
3329	/* Allocate target SG list. */
3330	st = kmalloc(sizeof(*st), GFP_KERNEL);
3331	if (!st)
3332		goto err_st_alloc;
3333
3334	ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3335	if (ret)
3336		goto err_sg_alloc;
3337
3338	/* Populate source page list from the object. */
3339	i = 0;
3340	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
3341		page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
3342		i++;
3343	}
3344
3345	/* Rotate the pages. */
3346	sg = rotate_pages(page_addr_list, 0,
3347		     rot_info->width_pages, rot_info->height_pages,
3348		     st, NULL);
3349
3350	/* Append the UV plane if NV12. */
3351	if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3352		uv_start_page = size_pages;
3353
3354		/* Check for tile-row un-alignment. */
3355		if (offset_in_page(rot_info->uv_offset))
3356			uv_start_page--;
3357
3358		rot_info->uv_start_page = uv_start_page;
3359
3360		rotate_pages(page_addr_list, uv_start_page,
3361			     rot_info->width_pages_uv,
3362			     rot_info->height_pages_uv,
3363			     st, sg);
3364	}
3365
3366	DRM_DEBUG_KMS(
3367		      "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0)).\n",
3368		      obj->base.size, rot_info->pitch, rot_info->height,
3369		      rot_info->pixel_format, rot_info->width_pages,
3370		      rot_info->height_pages, size_pages + size_pages_uv,
3371		      size_pages);
3372
3373	drm_free_large(page_addr_list);
3374
3375	return st;
3376
3377err_sg_alloc:
3378	kfree(st);
3379err_st_alloc:
3380	drm_free_large(page_addr_list);
3381
3382	DRM_DEBUG_KMS(
3383		      "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0))\n",
3384		      obj->base.size, ret, rot_info->pitch, rot_info->height,
3385		      rot_info->pixel_format, rot_info->width_pages,
3386		      rot_info->height_pages, size_pages + size_pages_uv,
3387		      size_pages);
3388	return ERR_PTR(ret);
3389}
3390
3391static struct sg_table *
3392intel_partial_pages(const struct i915_ggtt_view *view,
3393		    struct drm_i915_gem_object *obj)
3394{
3395	struct sg_table *st;
3396	struct scatterlist *sg;
3397	struct sg_page_iter obj_sg_iter;
3398	int ret = -ENOMEM;
3399
3400	st = kmalloc(sizeof(*st), GFP_KERNEL);
3401	if (!st)
3402		goto err_st_alloc;
3403
3404	ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3405	if (ret)
3406		goto err_sg_alloc;
3407
3408	sg = st->sgl;
3409	st->nents = 0;
3410	for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3411		view->params.partial.offset)
3412	{
3413		if (st->nents >= view->params.partial.size)
3414			break;
3415
3416		sg_set_page(sg, NULL, PAGE_SIZE, 0);
3417		sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3418		sg_dma_len(sg) = PAGE_SIZE;
3419
3420		sg = sg_next(sg);
3421		st->nents++;
3422	}
3423
3424	return st;
3425
3426err_sg_alloc:
3427	kfree(st);
3428err_st_alloc:
3429	return ERR_PTR(ret);
3430}
3431
3432static int
3433i915_get_ggtt_vma_pages(struct i915_vma *vma)
3434{
3435	int ret = 0;
3436
3437	if (vma->ggtt_view.pages)
3438		return 0;
3439
3440	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3441		vma->ggtt_view.pages = vma->obj->pages;
3442	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3443		vma->ggtt_view.pages =
3444			intel_rotate_fb_obj_pages(&vma->ggtt_view, vma->obj);
3445	else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3446		vma->ggtt_view.pages =
3447			intel_partial_pages(&vma->ggtt_view, vma->obj);
3448	else
3449		WARN_ONCE(1, "GGTT view %u not implemented!\n",
3450			  vma->ggtt_view.type);
3451
3452	if (!vma->ggtt_view.pages) {
3453		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3454			  vma->ggtt_view.type);
3455		ret = -EINVAL;
3456	} else if (IS_ERR(vma->ggtt_view.pages)) {
3457		ret = PTR_ERR(vma->ggtt_view.pages);
3458		vma->ggtt_view.pages = NULL;
3459		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3460			  vma->ggtt_view.type, ret);
3461	}
3462
3463	return ret;
3464}
3465
3466/**
3467 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3468 * @vma: VMA to map
3469 * @cache_level: mapping cache level
3470 * @flags: flags like global or local mapping
3471 *
3472 * DMA addresses are taken from the scatter-gather table of this object (or of
3473 * this VMA in case of non-default GGTT views) and PTE entries set up.
3474 * Note that DMA addresses are also the only part of the SG table we care about.
3475 */
3476int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3477		  u32 flags)
3478{
3479	int ret;
3480	u32 bind_flags;
3481
3482	if (WARN_ON(flags == 0))
3483		return -EINVAL;
3484
3485	bind_flags = 0;
3486	if (flags & PIN_GLOBAL)
3487		bind_flags |= GLOBAL_BIND;
3488	if (flags & PIN_USER)
3489		bind_flags |= LOCAL_BIND;
3490
3491	if (flags & PIN_UPDATE)
3492		bind_flags |= vma->bound;
3493	else
3494		bind_flags &= ~vma->bound;
3495
3496	if (bind_flags == 0)
3497		return 0;
3498
3499	if (vma->bound == 0 && vma->vm->allocate_va_range) {
3500		trace_i915_va_alloc(vma->vm,
3501				    vma->node.start,
3502				    vma->node.size,
3503				    VM_TO_TRACE_NAME(vma->vm));
3504
3505		/* XXX: i915_vma_pin() will fix this +- hack */
3506		vma->pin_count++;
3507		ret = vma->vm->allocate_va_range(vma->vm,
3508						 vma->node.start,
3509						 vma->node.size);
3510		vma->pin_count--;
3511		if (ret)
3512			return ret;
3513	}
3514
3515	ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3516	if (ret)
3517		return ret;
3518
3519	vma->bound |= bind_flags;
3520
3521	return 0;
3522}
3523
3524/**
3525 * i915_ggtt_view_size - Get the size of a GGTT view.
3526 * @obj: Object the view is of.
3527 * @view: The view in question.
3528 *
3529 * @return The size of the GGTT view in bytes.
3530 */
3531size_t
3532i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3533		    const struct i915_ggtt_view *view)
3534{
3535	if (view->type == I915_GGTT_VIEW_NORMAL) {
3536		return obj->base.size;
3537	} else if (view->type == I915_GGTT_VIEW_ROTATED) {
3538		return view->rotation_info.size;
3539	} else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3540		return view->params.partial.size << PAGE_SHIFT;
3541	} else {
3542		WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3543		return obj->base.size;
3544	}
3545}
3546