1/*
2 * Copyright �� 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Keith Packard <keithp@keithp.com>
25 *
26 */
27
28#include <linux/i2c.h>
29#include <linux/slab.h>
30#include <linux/module.h>
31#include <drm/drmP.h>
32#include <drm/drm_crtc.h>
33#include <drm/drm_crtc_helper.h>
34#include "psb_drv.h"
35#include "psb_intel_drv.h"
36#include "psb_intel_reg.h"
37#include "gma_display.h"
38#include <drm/drm_dp_helper.h>
39
40/**
41 * struct i2c_algo_dp_aux_data - driver interface structure for i2c over dp
42 * 				 aux algorithm
43 * @running: set by the algo indicating whether an i2c is ongoing or whether
44 * 	     the i2c bus is quiescent
45 * @address: i2c target address for the currently ongoing transfer
46 * @aux_ch: driver callback to transfer a single byte of the i2c payload
47 */
48struct i2c_algo_dp_aux_data {
49	bool running;
50	u16 address;
51	int (*aux_ch) (struct i2c_adapter *adapter,
52		       int mode, uint8_t write_byte,
53		       uint8_t *read_byte);
54};
55
56/* Run a single AUX_CH I2C transaction, writing/reading data as necessary */
57static int
58i2c_algo_dp_aux_transaction(struct i2c_adapter *adapter, int mode,
59			    uint8_t write_byte, uint8_t *read_byte)
60{
61	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
62	int ret;
63
64	ret = (*algo_data->aux_ch)(adapter, mode,
65				   write_byte, read_byte);
66	return ret;
67}
68
69/*
70 * I2C over AUX CH
71 */
72
73/*
74 * Send the address. If the I2C link is running, this 'restarts'
75 * the connection with the new address, this is used for doing
76 * a write followed by a read (as needed for DDC)
77 */
78static int
79i2c_algo_dp_aux_address(struct i2c_adapter *adapter, u16 address, bool reading)
80{
81	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
82	int mode = MODE_I2C_START;
83	int ret;
84
85	if (reading)
86		mode |= MODE_I2C_READ;
87	else
88		mode |= MODE_I2C_WRITE;
89	algo_data->address = address;
90	algo_data->running = true;
91	ret = i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
92	return ret;
93}
94
95/*
96 * Stop the I2C transaction. This closes out the link, sending
97 * a bare address packet with the MOT bit turned off
98 */
99static void
100i2c_algo_dp_aux_stop(struct i2c_adapter *adapter, bool reading)
101{
102	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
103	int mode = MODE_I2C_STOP;
104
105	if (reading)
106		mode |= MODE_I2C_READ;
107	else
108		mode |= MODE_I2C_WRITE;
109	if (algo_data->running) {
110		(void) i2c_algo_dp_aux_transaction(adapter, mode, 0, NULL);
111		algo_data->running = false;
112	}
113}
114
115/*
116 * Write a single byte to the current I2C address, the
117 * the I2C link must be running or this returns -EIO
118 */
119static int
120i2c_algo_dp_aux_put_byte(struct i2c_adapter *adapter, u8 byte)
121{
122	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
123	int ret;
124
125	if (!algo_data->running)
126		return -EIO;
127
128	ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_WRITE, byte, NULL);
129	return ret;
130}
131
132/*
133 * Read a single byte from the current I2C address, the
134 * I2C link must be running or this returns -EIO
135 */
136static int
137i2c_algo_dp_aux_get_byte(struct i2c_adapter *adapter, u8 *byte_ret)
138{
139	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
140	int ret;
141
142	if (!algo_data->running)
143		return -EIO;
144
145	ret = i2c_algo_dp_aux_transaction(adapter, MODE_I2C_READ, 0, byte_ret);
146	return ret;
147}
148
149static int
150i2c_algo_dp_aux_xfer(struct i2c_adapter *adapter,
151		     struct i2c_msg *msgs,
152		     int num)
153{
154	int ret = 0;
155	bool reading = false;
156	int m;
157	int b;
158
159	for (m = 0; m < num; m++) {
160		u16 len = msgs[m].len;
161		u8 *buf = msgs[m].buf;
162		reading = (msgs[m].flags & I2C_M_RD) != 0;
163		ret = i2c_algo_dp_aux_address(adapter, msgs[m].addr, reading);
164		if (ret < 0)
165			break;
166		if (reading) {
167			for (b = 0; b < len; b++) {
168				ret = i2c_algo_dp_aux_get_byte(adapter, &buf[b]);
169				if (ret < 0)
170					break;
171			}
172		} else {
173			for (b = 0; b < len; b++) {
174				ret = i2c_algo_dp_aux_put_byte(adapter, buf[b]);
175				if (ret < 0)
176					break;
177			}
178		}
179		if (ret < 0)
180			break;
181	}
182	if (ret >= 0)
183		ret = num;
184	i2c_algo_dp_aux_stop(adapter, reading);
185	DRM_DEBUG_KMS("dp_aux_xfer return %d\n", ret);
186	return ret;
187}
188
189static u32
190i2c_algo_dp_aux_functionality(struct i2c_adapter *adapter)
191{
192	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
193	       I2C_FUNC_SMBUS_READ_BLOCK_DATA |
194	       I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
195	       I2C_FUNC_10BIT_ADDR;
196}
197
198static const struct i2c_algorithm i2c_dp_aux_algo = {
199	.master_xfer	= i2c_algo_dp_aux_xfer,
200	.functionality	= i2c_algo_dp_aux_functionality,
201};
202
203static void
204i2c_dp_aux_reset_bus(struct i2c_adapter *adapter)
205{
206	(void) i2c_algo_dp_aux_address(adapter, 0, false);
207	(void) i2c_algo_dp_aux_stop(adapter, false);
208}
209
210static int
211i2c_dp_aux_prepare_bus(struct i2c_adapter *adapter)
212{
213	adapter->algo = &i2c_dp_aux_algo;
214	adapter->retries = 3;
215	i2c_dp_aux_reset_bus(adapter);
216	return 0;
217}
218
219/*
220 * FIXME: This is the old dp aux helper, gma500 is the last driver that needs to
221 * be ported over to the new helper code in drm_dp_helper.c like i915 or radeon.
222 */
223static int __deprecated
224i2c_dp_aux_add_bus(struct i2c_adapter *adapter)
225{
226	int error;
227
228	error = i2c_dp_aux_prepare_bus(adapter);
229	if (error)
230		return error;
231	error = i2c_add_adapter(adapter);
232	return error;
233}
234
235#define _wait_for(COND, MS, W) ({ \
236        unsigned long timeout__ = jiffies + msecs_to_jiffies(MS);       \
237        int ret__ = 0;                                                  \
238        while (! (COND)) {                                              \
239                if (time_after(jiffies, timeout__)) {                   \
240                        ret__ = -ETIMEDOUT;                             \
241                        break;                                          \
242                }                                                       \
243                if (W && !in_dbg_master()) msleep(W);                   \
244        }                                                               \
245        ret__;                                                          \
246})
247
248#define wait_for(COND, MS) _wait_for(COND, MS, 1)
249
250#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)
251
252#define DP_LINK_CONFIGURATION_SIZE	9
253
254#define CDV_FAST_LINK_TRAIN	1
255
256struct cdv_intel_dp {
257	uint32_t output_reg;
258	uint32_t DP;
259	uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
260	bool has_audio;
261	int force_audio;
262	uint32_t color_range;
263	uint8_t link_bw;
264	uint8_t lane_count;
265	uint8_t dpcd[4];
266	struct gma_encoder *encoder;
267	struct i2c_adapter adapter;
268	struct i2c_algo_dp_aux_data algo;
269	uint8_t	train_set[4];
270	uint8_t link_status[DP_LINK_STATUS_SIZE];
271	int panel_power_up_delay;
272	int panel_power_down_delay;
273	int panel_power_cycle_delay;
274	int backlight_on_delay;
275	int backlight_off_delay;
276	struct drm_display_mode *panel_fixed_mode;  /* for eDP */
277	bool panel_on;
278};
279
280struct ddi_regoff {
281	uint32_t	PreEmph1;
282	uint32_t	PreEmph2;
283	uint32_t	VSwing1;
284	uint32_t	VSwing2;
285	uint32_t	VSwing3;
286	uint32_t	VSwing4;
287	uint32_t	VSwing5;
288};
289
290static struct ddi_regoff ddi_DP_train_table[] = {
291	{.PreEmph1 = 0x812c, .PreEmph2 = 0x8124, .VSwing1 = 0x8154,
292	.VSwing2 = 0x8148, .VSwing3 = 0x814C, .VSwing4 = 0x8150,
293	.VSwing5 = 0x8158,},
294	{.PreEmph1 = 0x822c, .PreEmph2 = 0x8224, .VSwing1 = 0x8254,
295	.VSwing2 = 0x8248, .VSwing3 = 0x824C, .VSwing4 = 0x8250,
296	.VSwing5 = 0x8258,},
297};
298
299static uint32_t dp_vswing_premph_table[] = {
300        0x55338954,	0x4000,
301        0x554d8954,	0x2000,
302        0x55668954,	0,
303        0x559ac0d4,	0x6000,
304};
305/**
306 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
307 * @intel_dp: DP struct
308 *
309 * If a CPU or PCH DP output is attached to an eDP panel, this function
310 * will return true, and false otherwise.
311 */
312static bool is_edp(struct gma_encoder *encoder)
313{
314	return encoder->type == INTEL_OUTPUT_EDP;
315}
316
317
318static void cdv_intel_dp_start_link_train(struct gma_encoder *encoder);
319static void cdv_intel_dp_complete_link_train(struct gma_encoder *encoder);
320static void cdv_intel_dp_link_down(struct gma_encoder *encoder);
321
322static int
323cdv_intel_dp_max_lane_count(struct gma_encoder *encoder)
324{
325	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
326	int max_lane_count = 4;
327
328	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
329		max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
330		switch (max_lane_count) {
331		case 1: case 2: case 4:
332			break;
333		default:
334			max_lane_count = 4;
335		}
336	}
337	return max_lane_count;
338}
339
340static int
341cdv_intel_dp_max_link_bw(struct gma_encoder *encoder)
342{
343	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
344	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
345
346	switch (max_link_bw) {
347	case DP_LINK_BW_1_62:
348	case DP_LINK_BW_2_7:
349		break;
350	default:
351		max_link_bw = DP_LINK_BW_1_62;
352		break;
353	}
354	return max_link_bw;
355}
356
357static int
358cdv_intel_dp_link_clock(uint8_t link_bw)
359{
360	if (link_bw == DP_LINK_BW_2_7)
361		return 270000;
362	else
363		return 162000;
364}
365
366static int
367cdv_intel_dp_link_required(int pixel_clock, int bpp)
368{
369	return (pixel_clock * bpp + 7) / 8;
370}
371
372static int
373cdv_intel_dp_max_data_rate(int max_link_clock, int max_lanes)
374{
375	return (max_link_clock * max_lanes * 19) / 20;
376}
377
378static void cdv_intel_edp_panel_vdd_on(struct gma_encoder *intel_encoder)
379{
380	struct drm_device *dev = intel_encoder->base.dev;
381	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
382	u32 pp;
383
384	if (intel_dp->panel_on) {
385		DRM_DEBUG_KMS("Skip VDD on because of panel on\n");
386		return;
387	}
388	DRM_DEBUG_KMS("\n");
389
390	pp = REG_READ(PP_CONTROL);
391
392	pp |= EDP_FORCE_VDD;
393	REG_WRITE(PP_CONTROL, pp);
394	REG_READ(PP_CONTROL);
395	msleep(intel_dp->panel_power_up_delay);
396}
397
398static void cdv_intel_edp_panel_vdd_off(struct gma_encoder *intel_encoder)
399{
400	struct drm_device *dev = intel_encoder->base.dev;
401	u32 pp;
402
403	DRM_DEBUG_KMS("\n");
404	pp = REG_READ(PP_CONTROL);
405
406	pp &= ~EDP_FORCE_VDD;
407	REG_WRITE(PP_CONTROL, pp);
408	REG_READ(PP_CONTROL);
409
410}
411
412/* Returns true if the panel was already on when called */
413static bool cdv_intel_edp_panel_on(struct gma_encoder *intel_encoder)
414{
415	struct drm_device *dev = intel_encoder->base.dev;
416	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
417	u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_NONE;
418
419	if (intel_dp->panel_on)
420		return true;
421
422	DRM_DEBUG_KMS("\n");
423	pp = REG_READ(PP_CONTROL);
424	pp &= ~PANEL_UNLOCK_MASK;
425
426	pp |= (PANEL_UNLOCK_REGS | POWER_TARGET_ON);
427	REG_WRITE(PP_CONTROL, pp);
428	REG_READ(PP_CONTROL);
429
430	if (wait_for(((REG_READ(PP_STATUS) & idle_on_mask) == idle_on_mask), 1000)) {
431		DRM_DEBUG_KMS("Error in Powering up eDP panel, status %x\n", REG_READ(PP_STATUS));
432		intel_dp->panel_on = false;
433	} else
434		intel_dp->panel_on = true;
435	msleep(intel_dp->panel_power_up_delay);
436
437	return false;
438}
439
440static void cdv_intel_edp_panel_off (struct gma_encoder *intel_encoder)
441{
442	struct drm_device *dev = intel_encoder->base.dev;
443	u32 pp, idle_off_mask = PP_ON ;
444	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
445
446	DRM_DEBUG_KMS("\n");
447
448	pp = REG_READ(PP_CONTROL);
449
450	if ((pp & POWER_TARGET_ON) == 0)
451		return;
452
453	intel_dp->panel_on = false;
454	pp &= ~PANEL_UNLOCK_MASK;
455	/* ILK workaround: disable reset around power sequence */
456
457	pp &= ~POWER_TARGET_ON;
458	pp &= ~EDP_FORCE_VDD;
459	pp &= ~EDP_BLC_ENABLE;
460	REG_WRITE(PP_CONTROL, pp);
461	REG_READ(PP_CONTROL);
462	DRM_DEBUG_KMS("PP_STATUS %x\n", REG_READ(PP_STATUS));
463
464	if (wait_for((REG_READ(PP_STATUS) & idle_off_mask) == 0, 1000)) {
465		DRM_DEBUG_KMS("Error in turning off Panel\n");
466	}
467
468	msleep(intel_dp->panel_power_cycle_delay);
469	DRM_DEBUG_KMS("Over\n");
470}
471
472static void cdv_intel_edp_backlight_on (struct gma_encoder *intel_encoder)
473{
474	struct drm_device *dev = intel_encoder->base.dev;
475	u32 pp;
476
477	DRM_DEBUG_KMS("\n");
478	/*
479	 * If we enable the backlight right away following a panel power
480	 * on, we may see slight flicker as the panel syncs with the eDP
481	 * link.  So delay a bit to make sure the image is solid before
482	 * allowing it to appear.
483	 */
484	msleep(300);
485	pp = REG_READ(PP_CONTROL);
486
487	pp |= EDP_BLC_ENABLE;
488	REG_WRITE(PP_CONTROL, pp);
489	gma_backlight_enable(dev);
490}
491
492static void cdv_intel_edp_backlight_off (struct gma_encoder *intel_encoder)
493{
494	struct drm_device *dev = intel_encoder->base.dev;
495	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
496	u32 pp;
497
498	DRM_DEBUG_KMS("\n");
499	gma_backlight_disable(dev);
500	msleep(10);
501	pp = REG_READ(PP_CONTROL);
502
503	pp &= ~EDP_BLC_ENABLE;
504	REG_WRITE(PP_CONTROL, pp);
505	msleep(intel_dp->backlight_off_delay);
506}
507
508static int
509cdv_intel_dp_mode_valid(struct drm_connector *connector,
510		    struct drm_display_mode *mode)
511{
512	struct gma_encoder *encoder = gma_attached_encoder(connector);
513	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
514	int max_link_clock = cdv_intel_dp_link_clock(cdv_intel_dp_max_link_bw(encoder));
515	int max_lanes = cdv_intel_dp_max_lane_count(encoder);
516	struct drm_psb_private *dev_priv = connector->dev->dev_private;
517
518	if (is_edp(encoder) && intel_dp->panel_fixed_mode) {
519		if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
520			return MODE_PANEL;
521		if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
522			return MODE_PANEL;
523	}
524
525	/* only refuse the mode on non eDP since we have seen some weird eDP panels
526	   which are outside spec tolerances but somehow work by magic */
527	if (!is_edp(encoder) &&
528	    (cdv_intel_dp_link_required(mode->clock, dev_priv->edp.bpp)
529	     > cdv_intel_dp_max_data_rate(max_link_clock, max_lanes)))
530		return MODE_CLOCK_HIGH;
531
532	if (is_edp(encoder)) {
533	    if (cdv_intel_dp_link_required(mode->clock, 24)
534	     	> cdv_intel_dp_max_data_rate(max_link_clock, max_lanes))
535		return MODE_CLOCK_HIGH;
536
537	}
538	if (mode->clock < 10000)
539		return MODE_CLOCK_LOW;
540
541	return MODE_OK;
542}
543
544static uint32_t
545pack_aux(uint8_t *src, int src_bytes)
546{
547	int	i;
548	uint32_t v = 0;
549
550	if (src_bytes > 4)
551		src_bytes = 4;
552	for (i = 0; i < src_bytes; i++)
553		v |= ((uint32_t) src[i]) << ((3-i) * 8);
554	return v;
555}
556
557static void
558unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
559{
560	int i;
561	if (dst_bytes > 4)
562		dst_bytes = 4;
563	for (i = 0; i < dst_bytes; i++)
564		dst[i] = src >> ((3-i) * 8);
565}
566
567static int
568cdv_intel_dp_aux_ch(struct gma_encoder *encoder,
569		uint8_t *send, int send_bytes,
570		uint8_t *recv, int recv_size)
571{
572	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
573	uint32_t output_reg = intel_dp->output_reg;
574	struct drm_device *dev = encoder->base.dev;
575	uint32_t ch_ctl = output_reg + 0x10;
576	uint32_t ch_data = ch_ctl + 4;
577	int i;
578	int recv_bytes;
579	uint32_t status;
580	uint32_t aux_clock_divider;
581	int try, precharge;
582
583	/* The clock divider is based off the hrawclk,
584	 * and would like to run at 2MHz. So, take the
585	 * hrawclk value and divide by 2 and use that
586	 * On CDV platform it uses 200MHz as hrawclk.
587	 *
588	 */
589	aux_clock_divider = 200 / 2;
590
591	precharge = 4;
592	if (is_edp(encoder))
593		precharge = 10;
594
595	if (REG_READ(ch_ctl) & DP_AUX_CH_CTL_SEND_BUSY) {
596		DRM_ERROR("dp_aux_ch not started status 0x%08x\n",
597			  REG_READ(ch_ctl));
598		return -EBUSY;
599	}
600
601	/* Must try at least 3 times according to DP spec */
602	for (try = 0; try < 5; try++) {
603		/* Load the send data into the aux channel data registers */
604		for (i = 0; i < send_bytes; i += 4)
605			REG_WRITE(ch_data + i,
606				   pack_aux(send + i, send_bytes - i));
607
608		/* Send the command and wait for it to complete */
609		REG_WRITE(ch_ctl,
610			   DP_AUX_CH_CTL_SEND_BUSY |
611			   DP_AUX_CH_CTL_TIME_OUT_400us |
612			   (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
613			   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
614			   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
615			   DP_AUX_CH_CTL_DONE |
616			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
617			   DP_AUX_CH_CTL_RECEIVE_ERROR);
618		for (;;) {
619			status = REG_READ(ch_ctl);
620			if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
621				break;
622			udelay(100);
623		}
624
625		/* Clear done status and any errors */
626		REG_WRITE(ch_ctl,
627			   status |
628			   DP_AUX_CH_CTL_DONE |
629			   DP_AUX_CH_CTL_TIME_OUT_ERROR |
630			   DP_AUX_CH_CTL_RECEIVE_ERROR);
631		if (status & DP_AUX_CH_CTL_DONE)
632			break;
633	}
634
635	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
636		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
637		return -EBUSY;
638	}
639
640	/* Check for timeout or receive error.
641	 * Timeouts occur when the sink is not connected
642	 */
643	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
644		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
645		return -EIO;
646	}
647
648	/* Timeouts occur when the device isn't connected, so they're
649	 * "normal" -- don't fill the kernel log with these */
650	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
651		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
652		return -ETIMEDOUT;
653	}
654
655	/* Unload any bytes sent back from the other side */
656	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
657		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
658	if (recv_bytes > recv_size)
659		recv_bytes = recv_size;
660
661	for (i = 0; i < recv_bytes; i += 4)
662		unpack_aux(REG_READ(ch_data + i),
663			   recv + i, recv_bytes - i);
664
665	return recv_bytes;
666}
667
668/* Write data to the aux channel in native mode */
669static int
670cdv_intel_dp_aux_native_write(struct gma_encoder *encoder,
671			  uint16_t address, uint8_t *send, int send_bytes)
672{
673	int ret;
674	uint8_t	msg[20];
675	int msg_bytes;
676	uint8_t	ack;
677
678	if (send_bytes > 16)
679		return -1;
680	msg[0] = DP_AUX_NATIVE_WRITE << 4;
681	msg[1] = address >> 8;
682	msg[2] = address & 0xff;
683	msg[3] = send_bytes - 1;
684	memcpy(&msg[4], send, send_bytes);
685	msg_bytes = send_bytes + 4;
686	for (;;) {
687		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes, &ack, 1);
688		if (ret < 0)
689			return ret;
690		ack >>= 4;
691		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK)
692			break;
693		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
694			udelay(100);
695		else
696			return -EIO;
697	}
698	return send_bytes;
699}
700
701/* Write a single byte to the aux channel in native mode */
702static int
703cdv_intel_dp_aux_native_write_1(struct gma_encoder *encoder,
704			    uint16_t address, uint8_t byte)
705{
706	return cdv_intel_dp_aux_native_write(encoder, address, &byte, 1);
707}
708
709/* read bytes from a native aux channel */
710static int
711cdv_intel_dp_aux_native_read(struct gma_encoder *encoder,
712			 uint16_t address, uint8_t *recv, int recv_bytes)
713{
714	uint8_t msg[4];
715	int msg_bytes;
716	uint8_t reply[20];
717	int reply_bytes;
718	uint8_t ack;
719	int ret;
720
721	msg[0] = DP_AUX_NATIVE_READ << 4;
722	msg[1] = address >> 8;
723	msg[2] = address & 0xff;
724	msg[3] = recv_bytes - 1;
725
726	msg_bytes = 4;
727	reply_bytes = recv_bytes + 1;
728
729	for (;;) {
730		ret = cdv_intel_dp_aux_ch(encoder, msg, msg_bytes,
731				      reply, reply_bytes);
732		if (ret == 0)
733			return -EPROTO;
734		if (ret < 0)
735			return ret;
736		ack = reply[0] >> 4;
737		if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_ACK) {
738			memcpy(recv, reply + 1, ret - 1);
739			return ret - 1;
740		}
741		else if ((ack & DP_AUX_NATIVE_REPLY_MASK) == DP_AUX_NATIVE_REPLY_DEFER)
742			udelay(100);
743		else
744			return -EIO;
745	}
746}
747
748static int
749cdv_intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
750		    uint8_t write_byte, uint8_t *read_byte)
751{
752	struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
753	struct cdv_intel_dp *intel_dp = container_of(adapter,
754						struct cdv_intel_dp,
755						adapter);
756	struct gma_encoder *encoder = intel_dp->encoder;
757	uint16_t address = algo_data->address;
758	uint8_t msg[5];
759	uint8_t reply[2];
760	unsigned retry;
761	int msg_bytes;
762	int reply_bytes;
763	int ret;
764
765	/* Set up the command byte */
766	if (mode & MODE_I2C_READ)
767		msg[0] = DP_AUX_I2C_READ << 4;
768	else
769		msg[0] = DP_AUX_I2C_WRITE << 4;
770
771	if (!(mode & MODE_I2C_STOP))
772		msg[0] |= DP_AUX_I2C_MOT << 4;
773
774	msg[1] = address >> 8;
775	msg[2] = address;
776
777	switch (mode) {
778	case MODE_I2C_WRITE:
779		msg[3] = 0;
780		msg[4] = write_byte;
781		msg_bytes = 5;
782		reply_bytes = 1;
783		break;
784	case MODE_I2C_READ:
785		msg[3] = 0;
786		msg_bytes = 4;
787		reply_bytes = 2;
788		break;
789	default:
790		msg_bytes = 3;
791		reply_bytes = 1;
792		break;
793	}
794
795	for (retry = 0; retry < 5; retry++) {
796		ret = cdv_intel_dp_aux_ch(encoder,
797				      msg, msg_bytes,
798				      reply, reply_bytes);
799		if (ret < 0) {
800			DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
801			return ret;
802		}
803
804		switch ((reply[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK) {
805		case DP_AUX_NATIVE_REPLY_ACK:
806			/* I2C-over-AUX Reply field is only valid
807			 * when paired with AUX ACK.
808			 */
809			break;
810		case DP_AUX_NATIVE_REPLY_NACK:
811			DRM_DEBUG_KMS("aux_ch native nack\n");
812			return -EREMOTEIO;
813		case DP_AUX_NATIVE_REPLY_DEFER:
814			udelay(100);
815			continue;
816		default:
817			DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
818				  reply[0]);
819			return -EREMOTEIO;
820		}
821
822		switch ((reply[0] >> 4) & DP_AUX_I2C_REPLY_MASK) {
823		case DP_AUX_I2C_REPLY_ACK:
824			if (mode == MODE_I2C_READ) {
825				*read_byte = reply[1];
826			}
827			return reply_bytes - 1;
828		case DP_AUX_I2C_REPLY_NACK:
829			DRM_DEBUG_KMS("aux_i2c nack\n");
830			return -EREMOTEIO;
831		case DP_AUX_I2C_REPLY_DEFER:
832			DRM_DEBUG_KMS("aux_i2c defer\n");
833			udelay(100);
834			break;
835		default:
836			DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
837			return -EREMOTEIO;
838		}
839	}
840
841	DRM_ERROR("too many retries, giving up\n");
842	return -EREMOTEIO;
843}
844
845static int
846cdv_intel_dp_i2c_init(struct gma_connector *connector,
847		      struct gma_encoder *encoder, const char *name)
848{
849	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
850	int ret;
851
852	DRM_DEBUG_KMS("i2c_init %s\n", name);
853
854	intel_dp->algo.running = false;
855	intel_dp->algo.address = 0;
856	intel_dp->algo.aux_ch = cdv_intel_dp_i2c_aux_ch;
857
858	memset(&intel_dp->adapter, '\0', sizeof (intel_dp->adapter));
859	intel_dp->adapter.owner = THIS_MODULE;
860	intel_dp->adapter.class = I2C_CLASS_DDC;
861	strncpy (intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
862	intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
863	intel_dp->adapter.algo_data = &intel_dp->algo;
864	intel_dp->adapter.dev.parent = connector->base.kdev;
865
866	if (is_edp(encoder))
867		cdv_intel_edp_panel_vdd_on(encoder);
868	ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
869	if (is_edp(encoder))
870		cdv_intel_edp_panel_vdd_off(encoder);
871
872	return ret;
873}
874
875static void cdv_intel_fixed_panel_mode(struct drm_display_mode *fixed_mode,
876	struct drm_display_mode *adjusted_mode)
877{
878	adjusted_mode->hdisplay = fixed_mode->hdisplay;
879	adjusted_mode->hsync_start = fixed_mode->hsync_start;
880	adjusted_mode->hsync_end = fixed_mode->hsync_end;
881	adjusted_mode->htotal = fixed_mode->htotal;
882
883	adjusted_mode->vdisplay = fixed_mode->vdisplay;
884	adjusted_mode->vsync_start = fixed_mode->vsync_start;
885	adjusted_mode->vsync_end = fixed_mode->vsync_end;
886	adjusted_mode->vtotal = fixed_mode->vtotal;
887
888	adjusted_mode->clock = fixed_mode->clock;
889
890	drm_mode_set_crtcinfo(adjusted_mode, CRTC_INTERLACE_HALVE_V);
891}
892
893static bool
894cdv_intel_dp_mode_fixup(struct drm_encoder *encoder, const struct drm_display_mode *mode,
895		    struct drm_display_mode *adjusted_mode)
896{
897	struct drm_psb_private *dev_priv = encoder->dev->dev_private;
898	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
899	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
900	int lane_count, clock;
901	int max_lane_count = cdv_intel_dp_max_lane_count(intel_encoder);
902	int max_clock = cdv_intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
903	static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
904	int refclock = mode->clock;
905	int bpp = 24;
906
907	if (is_edp(intel_encoder) && intel_dp->panel_fixed_mode) {
908		cdv_intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
909		refclock = intel_dp->panel_fixed_mode->clock;
910		bpp = dev_priv->edp.bpp;
911	}
912
913	for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
914		for (clock = max_clock; clock >= 0; clock--) {
915			int link_avail = cdv_intel_dp_max_data_rate(cdv_intel_dp_link_clock(bws[clock]), lane_count);
916
917			if (cdv_intel_dp_link_required(refclock, bpp) <= link_avail) {
918				intel_dp->link_bw = bws[clock];
919				intel_dp->lane_count = lane_count;
920				adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
921				DRM_DEBUG_KMS("Display port link bw %02x lane "
922						"count %d clock %d\n",
923				       intel_dp->link_bw, intel_dp->lane_count,
924				       adjusted_mode->clock);
925				return true;
926			}
927		}
928	}
929	if (is_edp(intel_encoder)) {
930		/* okay we failed just pick the highest */
931		intel_dp->lane_count = max_lane_count;
932		intel_dp->link_bw = bws[max_clock];
933		adjusted_mode->clock = cdv_intel_dp_link_clock(intel_dp->link_bw);
934		DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
935			      "count %d clock %d\n",
936			      intel_dp->link_bw, intel_dp->lane_count,
937			      adjusted_mode->clock);
938
939		return true;
940	}
941	return false;
942}
943
944struct cdv_intel_dp_m_n {
945	uint32_t	tu;
946	uint32_t	gmch_m;
947	uint32_t	gmch_n;
948	uint32_t	link_m;
949	uint32_t	link_n;
950};
951
952static void
953cdv_intel_reduce_ratio(uint32_t *num, uint32_t *den)
954{
955	/*
956	while (*num > 0xffffff || *den > 0xffffff) {
957		*num >>= 1;
958		*den >>= 1;
959	}*/
960	uint64_t value, m;
961	m = *num;
962	value = m * (0x800000);
963	m = do_div(value, *den);
964	*num = value;
965	*den = 0x800000;
966}
967
968static void
969cdv_intel_dp_compute_m_n(int bpp,
970		     int nlanes,
971		     int pixel_clock,
972		     int link_clock,
973		     struct cdv_intel_dp_m_n *m_n)
974{
975	m_n->tu = 64;
976	m_n->gmch_m = (pixel_clock * bpp + 7) >> 3;
977	m_n->gmch_n = link_clock * nlanes;
978	cdv_intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
979	m_n->link_m = pixel_clock;
980	m_n->link_n = link_clock;
981	cdv_intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
982}
983
984void
985cdv_intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
986		 struct drm_display_mode *adjusted_mode)
987{
988	struct drm_device *dev = crtc->dev;
989	struct drm_psb_private *dev_priv = dev->dev_private;
990	struct drm_mode_config *mode_config = &dev->mode_config;
991	struct drm_encoder *encoder;
992	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
993	int lane_count = 4, bpp = 24;
994	struct cdv_intel_dp_m_n m_n;
995	int pipe = gma_crtc->pipe;
996
997	/*
998	 * Find the lane count in the intel_encoder private
999	 */
1000	list_for_each_entry(encoder, &mode_config->encoder_list, head) {
1001		struct gma_encoder *intel_encoder;
1002		struct cdv_intel_dp *intel_dp;
1003
1004		if (encoder->crtc != crtc)
1005			continue;
1006
1007		intel_encoder = to_gma_encoder(encoder);
1008		intel_dp = intel_encoder->dev_priv;
1009		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
1010			lane_count = intel_dp->lane_count;
1011			break;
1012		} else if (is_edp(intel_encoder)) {
1013			lane_count = intel_dp->lane_count;
1014			bpp = dev_priv->edp.bpp;
1015			break;
1016		}
1017	}
1018
1019	/*
1020	 * Compute the GMCH and Link ratios. The '3' here is
1021	 * the number of bytes_per_pixel post-LUT, which we always
1022	 * set up for 8-bits of R/G/B, or 3 bytes total.
1023	 */
1024	cdv_intel_dp_compute_m_n(bpp, lane_count,
1025			     mode->clock, adjusted_mode->clock, &m_n);
1026
1027	{
1028		REG_WRITE(PIPE_GMCH_DATA_M(pipe),
1029			   ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
1030			   m_n.gmch_m);
1031		REG_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
1032		REG_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
1033		REG_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
1034	}
1035}
1036
1037static void
1038cdv_intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
1039		  struct drm_display_mode *adjusted_mode)
1040{
1041	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1042	struct drm_crtc *crtc = encoder->crtc;
1043	struct gma_crtc *gma_crtc = to_gma_crtc(crtc);
1044	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1045	struct drm_device *dev = encoder->dev;
1046
1047	intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1048	intel_dp->DP |= intel_dp->color_range;
1049
1050	if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
1051		intel_dp->DP |= DP_SYNC_HS_HIGH;
1052	if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
1053		intel_dp->DP |= DP_SYNC_VS_HIGH;
1054
1055	intel_dp->DP |= DP_LINK_TRAIN_OFF;
1056
1057	switch (intel_dp->lane_count) {
1058	case 1:
1059		intel_dp->DP |= DP_PORT_WIDTH_1;
1060		break;
1061	case 2:
1062		intel_dp->DP |= DP_PORT_WIDTH_2;
1063		break;
1064	case 4:
1065		intel_dp->DP |= DP_PORT_WIDTH_4;
1066		break;
1067	}
1068	if (intel_dp->has_audio)
1069		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1070
1071	memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
1072	intel_dp->link_configuration[0] = intel_dp->link_bw;
1073	intel_dp->link_configuration[1] = intel_dp->lane_count;
1074
1075	/*
1076	 * Check for DPCD version > 1.1 and enhanced framing support
1077	 */
1078	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1079	    (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
1080		intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
1081		intel_dp->DP |= DP_ENHANCED_FRAMING;
1082	}
1083
1084	/* CPT DP's pipe select is decided in TRANS_DP_CTL */
1085	if (gma_crtc->pipe == 1)
1086		intel_dp->DP |= DP_PIPEB_SELECT;
1087
1088	REG_WRITE(intel_dp->output_reg, (intel_dp->DP | DP_PORT_EN));
1089	DRM_DEBUG_KMS("DP expected reg is %x\n", intel_dp->DP);
1090	if (is_edp(intel_encoder)) {
1091		uint32_t pfit_control;
1092		cdv_intel_edp_panel_on(intel_encoder);
1093
1094		if (mode->hdisplay != adjusted_mode->hdisplay ||
1095			    mode->vdisplay != adjusted_mode->vdisplay)
1096			pfit_control = PFIT_ENABLE;
1097		else
1098			pfit_control = 0;
1099
1100		pfit_control |= gma_crtc->pipe << PFIT_PIPE_SHIFT;
1101
1102		REG_WRITE(PFIT_CONTROL, pfit_control);
1103	}
1104}
1105
1106
1107/* If the sink supports it, try to set the power state appropriately */
1108static void cdv_intel_dp_sink_dpms(struct gma_encoder *encoder, int mode)
1109{
1110	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1111	int ret, i;
1112
1113	/* Should have a valid DPCD by this point */
1114	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1115		return;
1116
1117	if (mode != DRM_MODE_DPMS_ON) {
1118		ret = cdv_intel_dp_aux_native_write_1(encoder, DP_SET_POWER,
1119						  DP_SET_POWER_D3);
1120		if (ret != 1)
1121			DRM_DEBUG_DRIVER("failed to write sink power state\n");
1122	} else {
1123		/*
1124		 * When turning on, we need to retry for 1ms to give the sink
1125		 * time to wake up.
1126		 */
1127		for (i = 0; i < 3; i++) {
1128			ret = cdv_intel_dp_aux_native_write_1(encoder,
1129							  DP_SET_POWER,
1130							  DP_SET_POWER_D0);
1131			if (ret == 1)
1132				break;
1133			udelay(1000);
1134		}
1135	}
1136}
1137
1138static void cdv_intel_dp_prepare(struct drm_encoder *encoder)
1139{
1140	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1141	int edp = is_edp(intel_encoder);
1142
1143	if (edp) {
1144		cdv_intel_edp_backlight_off(intel_encoder);
1145		cdv_intel_edp_panel_off(intel_encoder);
1146		cdv_intel_edp_panel_vdd_on(intel_encoder);
1147        }
1148	/* Wake up the sink first */
1149	cdv_intel_dp_sink_dpms(intel_encoder, DRM_MODE_DPMS_ON);
1150	cdv_intel_dp_link_down(intel_encoder);
1151	if (edp)
1152		cdv_intel_edp_panel_vdd_off(intel_encoder);
1153}
1154
1155static void cdv_intel_dp_commit(struct drm_encoder *encoder)
1156{
1157	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1158	int edp = is_edp(intel_encoder);
1159
1160	if (edp)
1161		cdv_intel_edp_panel_on(intel_encoder);
1162	cdv_intel_dp_start_link_train(intel_encoder);
1163	cdv_intel_dp_complete_link_train(intel_encoder);
1164	if (edp)
1165		cdv_intel_edp_backlight_on(intel_encoder);
1166}
1167
1168static void
1169cdv_intel_dp_dpms(struct drm_encoder *encoder, int mode)
1170{
1171	struct gma_encoder *intel_encoder = to_gma_encoder(encoder);
1172	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1173	struct drm_device *dev = encoder->dev;
1174	uint32_t dp_reg = REG_READ(intel_dp->output_reg);
1175	int edp = is_edp(intel_encoder);
1176
1177	if (mode != DRM_MODE_DPMS_ON) {
1178		if (edp) {
1179			cdv_intel_edp_backlight_off(intel_encoder);
1180			cdv_intel_edp_panel_vdd_on(intel_encoder);
1181		}
1182		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1183		cdv_intel_dp_link_down(intel_encoder);
1184		if (edp) {
1185			cdv_intel_edp_panel_vdd_off(intel_encoder);
1186			cdv_intel_edp_panel_off(intel_encoder);
1187		}
1188	} else {
1189        	if (edp)
1190			cdv_intel_edp_panel_on(intel_encoder);
1191		cdv_intel_dp_sink_dpms(intel_encoder, mode);
1192		if (!(dp_reg & DP_PORT_EN)) {
1193			cdv_intel_dp_start_link_train(intel_encoder);
1194			cdv_intel_dp_complete_link_train(intel_encoder);
1195		}
1196		if (edp)
1197        		cdv_intel_edp_backlight_on(intel_encoder);
1198	}
1199}
1200
1201/*
1202 * Native read with retry for link status and receiver capability reads for
1203 * cases where the sink may still be asleep.
1204 */
1205static bool
1206cdv_intel_dp_aux_native_read_retry(struct gma_encoder *encoder, uint16_t address,
1207			       uint8_t *recv, int recv_bytes)
1208{
1209	int ret, i;
1210
1211	/*
1212	 * Sinks are *supposed* to come up within 1ms from an off state,
1213	 * but we're also supposed to retry 3 times per the spec.
1214	 */
1215	for (i = 0; i < 3; i++) {
1216		ret = cdv_intel_dp_aux_native_read(encoder, address, recv,
1217					       recv_bytes);
1218		if (ret == recv_bytes)
1219			return true;
1220		udelay(1000);
1221	}
1222
1223	return false;
1224}
1225
1226/*
1227 * Fetch AUX CH registers 0x202 - 0x207 which contain
1228 * link status information
1229 */
1230static bool
1231cdv_intel_dp_get_link_status(struct gma_encoder *encoder)
1232{
1233	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1234	return cdv_intel_dp_aux_native_read_retry(encoder,
1235					      DP_LANE0_1_STATUS,
1236					      intel_dp->link_status,
1237					      DP_LINK_STATUS_SIZE);
1238}
1239
1240static uint8_t
1241cdv_intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1242		     int r)
1243{
1244	return link_status[r - DP_LANE0_1_STATUS];
1245}
1246
1247static uint8_t
1248cdv_intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1249				 int lane)
1250{
1251	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1252	int	    s = ((lane & 1) ?
1253			 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1254			 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1255	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1256
1257	return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1258}
1259
1260static uint8_t
1261cdv_intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1262				      int lane)
1263{
1264	int	    i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1265	int	    s = ((lane & 1) ?
1266			 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1267			 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1268	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1269
1270	return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1271}
1272
1273
1274#if 0
1275static char	*voltage_names[] = {
1276	"0.4V", "0.6V", "0.8V", "1.2V"
1277};
1278static char	*pre_emph_names[] = {
1279	"0dB", "3.5dB", "6dB", "9.5dB"
1280};
1281static char	*link_train_names[] = {
1282	"pattern 1", "pattern 2", "idle", "off"
1283};
1284#endif
1285
1286#define CDV_DP_VOLTAGE_MAX	    DP_TRAIN_VOLTAGE_SWING_LEVEL_3
1287/*
1288static uint8_t
1289cdv_intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1290{
1291	switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1292	case DP_TRAIN_VOLTAGE_SWING_400:
1293		return DP_TRAIN_PRE_EMPHASIS_6;
1294	case DP_TRAIN_VOLTAGE_SWING_600:
1295		return DP_TRAIN_PRE_EMPHASIS_6;
1296	case DP_TRAIN_VOLTAGE_SWING_800:
1297		return DP_TRAIN_PRE_EMPHASIS_3_5;
1298	case DP_TRAIN_VOLTAGE_SWING_1200:
1299	default:
1300		return DP_TRAIN_PRE_EMPHASIS_0;
1301	}
1302}
1303*/
1304static void
1305cdv_intel_get_adjust_train(struct gma_encoder *encoder)
1306{
1307	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1308	uint8_t v = 0;
1309	uint8_t p = 0;
1310	int lane;
1311
1312	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1313		uint8_t this_v = cdv_intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1314		uint8_t this_p = cdv_intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1315
1316		if (this_v > v)
1317			v = this_v;
1318		if (this_p > p)
1319			p = this_p;
1320	}
1321
1322	if (v >= CDV_DP_VOLTAGE_MAX)
1323		v = CDV_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1324
1325	if (p == DP_TRAIN_PRE_EMPHASIS_MASK)
1326		p |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1327
1328	for (lane = 0; lane < 4; lane++)
1329		intel_dp->train_set[lane] = v | p;
1330}
1331
1332
1333static uint8_t
1334cdv_intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1335		      int lane)
1336{
1337	int i = DP_LANE0_1_STATUS + (lane >> 1);
1338	int s = (lane & 1) * 4;
1339	uint8_t l = cdv_intel_dp_link_status(link_status, i);
1340
1341	return (l >> s) & 0xf;
1342}
1343
1344/* Check for clock recovery is done on all channels */
1345static bool
1346cdv_intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1347{
1348	int lane;
1349	uint8_t lane_status;
1350
1351	for (lane = 0; lane < lane_count; lane++) {
1352		lane_status = cdv_intel_get_lane_status(link_status, lane);
1353		if ((lane_status & DP_LANE_CR_DONE) == 0)
1354			return false;
1355	}
1356	return true;
1357}
1358
1359/* Check to see if channel eq is done on all channels */
1360#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1361			 DP_LANE_CHANNEL_EQ_DONE|\
1362			 DP_LANE_SYMBOL_LOCKED)
1363static bool
1364cdv_intel_channel_eq_ok(struct gma_encoder *encoder)
1365{
1366	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1367	uint8_t lane_align;
1368	uint8_t lane_status;
1369	int lane;
1370
1371	lane_align = cdv_intel_dp_link_status(intel_dp->link_status,
1372					  DP_LANE_ALIGN_STATUS_UPDATED);
1373	if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1374		return false;
1375	for (lane = 0; lane < intel_dp->lane_count; lane++) {
1376		lane_status = cdv_intel_get_lane_status(intel_dp->link_status, lane);
1377		if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1378			return false;
1379	}
1380	return true;
1381}
1382
1383static bool
1384cdv_intel_dp_set_link_train(struct gma_encoder *encoder,
1385			uint32_t dp_reg_value,
1386			uint8_t dp_train_pat)
1387{
1388
1389	struct drm_device *dev = encoder->base.dev;
1390	int ret;
1391	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1392
1393	REG_WRITE(intel_dp->output_reg, dp_reg_value);
1394	REG_READ(intel_dp->output_reg);
1395
1396	ret = cdv_intel_dp_aux_native_write_1(encoder,
1397				    DP_TRAINING_PATTERN_SET,
1398				    dp_train_pat);
1399
1400	if (ret != 1) {
1401		DRM_DEBUG_KMS("Failure in setting link pattern %x\n",
1402				dp_train_pat);
1403		return false;
1404	}
1405
1406	return true;
1407}
1408
1409
1410static bool
1411cdv_intel_dplink_set_level(struct gma_encoder *encoder,
1412			uint8_t dp_train_pat)
1413{
1414
1415	int ret;
1416	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1417
1418	ret = cdv_intel_dp_aux_native_write(encoder,
1419					DP_TRAINING_LANE0_SET,
1420					intel_dp->train_set,
1421					intel_dp->lane_count);
1422
1423	if (ret != intel_dp->lane_count) {
1424		DRM_DEBUG_KMS("Failure in setting level %d, lane_cnt= %d\n",
1425				intel_dp->train_set[0], intel_dp->lane_count);
1426		return false;
1427	}
1428	return true;
1429}
1430
1431static void
1432cdv_intel_dp_set_vswing_premph(struct gma_encoder *encoder, uint8_t signal_level)
1433{
1434	struct drm_device *dev = encoder->base.dev;
1435	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1436	struct ddi_regoff *ddi_reg;
1437	int vswing, premph, index;
1438
1439	if (intel_dp->output_reg == DP_B)
1440		ddi_reg = &ddi_DP_train_table[0];
1441	else
1442		ddi_reg = &ddi_DP_train_table[1];
1443
1444	vswing = (signal_level & DP_TRAIN_VOLTAGE_SWING_MASK);
1445	premph = ((signal_level & DP_TRAIN_PRE_EMPHASIS_MASK)) >>
1446				DP_TRAIN_PRE_EMPHASIS_SHIFT;
1447
1448	if (vswing + premph > 3)
1449		return;
1450#ifdef CDV_FAST_LINK_TRAIN
1451	return;
1452#endif
1453	DRM_DEBUG_KMS("Test2\n");
1454	//return ;
1455	cdv_sb_reset(dev);
1456	/* ;Swing voltage programming
1457        ;gfx_dpio_set_reg(0xc058, 0x0505313A) */
1458	cdv_sb_write(dev, ddi_reg->VSwing5, 0x0505313A);
1459
1460	/* ;gfx_dpio_set_reg(0x8154, 0x43406055) */
1461	cdv_sb_write(dev, ddi_reg->VSwing1, 0x43406055);
1462
1463	/* ;gfx_dpio_set_reg(0x8148, 0x55338954)
1464	 * The VSwing_PreEmph table is also considered based on the vswing/premp
1465	 */
1466	index = (vswing + premph) * 2;
1467	if (premph == 1 && vswing == 1) {
1468		cdv_sb_write(dev, ddi_reg->VSwing2, 0x055738954);
1469	} else
1470		cdv_sb_write(dev, ddi_reg->VSwing2, dp_vswing_premph_table[index]);
1471
1472	/* ;gfx_dpio_set_reg(0x814c, 0x40802040) */
1473	if ((vswing + premph) == DP_TRAIN_VOLTAGE_SWING_LEVEL_3)
1474		cdv_sb_write(dev, ddi_reg->VSwing3, 0x70802040);
1475	else
1476		cdv_sb_write(dev, ddi_reg->VSwing3, 0x40802040);
1477
1478	/* ;gfx_dpio_set_reg(0x8150, 0x2b405555) */
1479	/* cdv_sb_write(dev, ddi_reg->VSwing4, 0x2b405555); */
1480
1481	/* ;gfx_dpio_set_reg(0x8154, 0xc3406055) */
1482	cdv_sb_write(dev, ddi_reg->VSwing1, 0xc3406055);
1483
1484	/* ;Pre emphasis programming
1485	 * ;gfx_dpio_set_reg(0xc02c, 0x1f030040)
1486	 */
1487	cdv_sb_write(dev, ddi_reg->PreEmph1, 0x1f030040);
1488
1489	/* ;gfx_dpio_set_reg(0x8124, 0x00004000) */
1490	index = 2 * premph + 1;
1491	cdv_sb_write(dev, ddi_reg->PreEmph2, dp_vswing_premph_table[index]);
1492	return;
1493}
1494
1495
1496/* Enable corresponding port and start training pattern 1 */
1497static void
1498cdv_intel_dp_start_link_train(struct gma_encoder *encoder)
1499{
1500	struct drm_device *dev = encoder->base.dev;
1501	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1502	int i;
1503	uint8_t voltage;
1504	bool clock_recovery = false;
1505	int tries;
1506	u32 reg;
1507	uint32_t DP = intel_dp->DP;
1508
1509	DP |= DP_PORT_EN;
1510	DP &= ~DP_LINK_TRAIN_MASK;
1511
1512	reg = DP;
1513	reg |= DP_LINK_TRAIN_PAT_1;
1514	/* Enable output, wait for it to become active */
1515	REG_WRITE(intel_dp->output_reg, reg);
1516	REG_READ(intel_dp->output_reg);
1517	gma_wait_for_vblank(dev);
1518
1519	DRM_DEBUG_KMS("Link config\n");
1520	/* Write the link configuration data */
1521	cdv_intel_dp_aux_native_write(encoder, DP_LINK_BW_SET,
1522				  intel_dp->link_configuration,
1523				  2);
1524
1525	memset(intel_dp->train_set, 0, 4);
1526	voltage = 0;
1527	tries = 0;
1528	clock_recovery = false;
1529
1530	DRM_DEBUG_KMS("Start train\n");
1531		reg = DP | DP_LINK_TRAIN_PAT_1;
1532
1533
1534	for (;;) {
1535		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1536		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1537				intel_dp->train_set[0],
1538				intel_dp->link_configuration[0],
1539				intel_dp->link_configuration[1]);
1540
1541		if (!cdv_intel_dp_set_link_train(encoder, reg, DP_TRAINING_PATTERN_1)) {
1542			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 1\n");
1543		}
1544		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1545		/* Set training pattern 1 */
1546
1547		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_1);
1548
1549		udelay(200);
1550		if (!cdv_intel_dp_get_link_status(encoder))
1551			break;
1552
1553		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1554				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1555				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1556
1557		if (cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1558			DRM_DEBUG_KMS("PT1 train is done\n");
1559			clock_recovery = true;
1560			break;
1561		}
1562
1563		/* Check to see if we've tried the max voltage */
1564		for (i = 0; i < intel_dp->lane_count; i++)
1565			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1566				break;
1567		if (i == intel_dp->lane_count)
1568			break;
1569
1570		/* Check to see if we've tried the same voltage 5 times */
1571		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1572			++tries;
1573			if (tries == 5)
1574				break;
1575		} else
1576			tries = 0;
1577		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1578
1579		/* Compute new intel_dp->train_set as requested by target */
1580		cdv_intel_get_adjust_train(encoder);
1581
1582	}
1583
1584	if (!clock_recovery) {
1585		DRM_DEBUG_KMS("failure in DP patter 1 training, train set %x\n", intel_dp->train_set[0]);
1586	}
1587
1588	intel_dp->DP = DP;
1589}
1590
1591static void
1592cdv_intel_dp_complete_link_train(struct gma_encoder *encoder)
1593{
1594	struct drm_device *dev = encoder->base.dev;
1595	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1596	bool channel_eq = false;
1597	int tries, cr_tries;
1598	u32 reg;
1599	uint32_t DP = intel_dp->DP;
1600
1601	/* channel equalization */
1602	tries = 0;
1603	cr_tries = 0;
1604	channel_eq = false;
1605
1606	DRM_DEBUG_KMS("\n");
1607		reg = DP | DP_LINK_TRAIN_PAT_2;
1608
1609	for (;;) {
1610
1611		DRM_DEBUG_KMS("DP Link Train Set %x, Link_config %x, %x\n",
1612				intel_dp->train_set[0],
1613				intel_dp->link_configuration[0],
1614				intel_dp->link_configuration[1]);
1615        	/* channel eq pattern */
1616
1617		if (!cdv_intel_dp_set_link_train(encoder, reg,
1618					     DP_TRAINING_PATTERN_2)) {
1619			DRM_DEBUG_KMS("Failure in aux-transfer setting pattern 2\n");
1620		}
1621		/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1622
1623		if (cr_tries > 5) {
1624			DRM_ERROR("failed to train DP, aborting\n");
1625			cdv_intel_dp_link_down(encoder);
1626			break;
1627		}
1628
1629		cdv_intel_dp_set_vswing_premph(encoder, intel_dp->train_set[0]);
1630
1631		cdv_intel_dplink_set_level(encoder, DP_TRAINING_PATTERN_2);
1632
1633		udelay(1000);
1634		if (!cdv_intel_dp_get_link_status(encoder))
1635			break;
1636
1637		DRM_DEBUG_KMS("DP Link status %x, %x, %x, %x, %x, %x\n",
1638				intel_dp->link_status[0], intel_dp->link_status[1], intel_dp->link_status[2],
1639				intel_dp->link_status[3], intel_dp->link_status[4], intel_dp->link_status[5]);
1640
1641		/* Make sure clock is still ok */
1642		if (!cdv_intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1643			cdv_intel_dp_start_link_train(encoder);
1644			cr_tries++;
1645			continue;
1646		}
1647
1648		if (cdv_intel_channel_eq_ok(encoder)) {
1649			DRM_DEBUG_KMS("PT2 train is done\n");
1650			channel_eq = true;
1651			break;
1652		}
1653
1654		/* Try 5 times, then try clock recovery if that fails */
1655		if (tries > 5) {
1656			cdv_intel_dp_link_down(encoder);
1657			cdv_intel_dp_start_link_train(encoder);
1658			tries = 0;
1659			cr_tries++;
1660			continue;
1661		}
1662
1663		/* Compute new intel_dp->train_set as requested by target */
1664		cdv_intel_get_adjust_train(encoder);
1665		++tries;
1666
1667	}
1668
1669	reg = DP | DP_LINK_TRAIN_OFF;
1670
1671	REG_WRITE(intel_dp->output_reg, reg);
1672	REG_READ(intel_dp->output_reg);
1673	cdv_intel_dp_aux_native_write_1(encoder,
1674				    DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1675}
1676
1677static void
1678cdv_intel_dp_link_down(struct gma_encoder *encoder)
1679{
1680	struct drm_device *dev = encoder->base.dev;
1681	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1682	uint32_t DP = intel_dp->DP;
1683
1684	if ((REG_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1685		return;
1686
1687	DRM_DEBUG_KMS("\n");
1688
1689
1690	{
1691		DP &= ~DP_LINK_TRAIN_MASK;
1692		REG_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1693	}
1694	REG_READ(intel_dp->output_reg);
1695
1696	msleep(17);
1697
1698	REG_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1699	REG_READ(intel_dp->output_reg);
1700}
1701
1702static enum drm_connector_status cdv_dp_detect(struct gma_encoder *encoder)
1703{
1704	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1705	enum drm_connector_status status;
1706
1707	status = connector_status_disconnected;
1708	if (cdv_intel_dp_aux_native_read(encoder, 0x000, intel_dp->dpcd,
1709				     sizeof (intel_dp->dpcd)) == sizeof (intel_dp->dpcd))
1710	{
1711		if (intel_dp->dpcd[DP_DPCD_REV] != 0)
1712			status = connector_status_connected;
1713	}
1714	if (status == connector_status_connected)
1715		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
1716			intel_dp->dpcd[0], intel_dp->dpcd[1],
1717			intel_dp->dpcd[2], intel_dp->dpcd[3]);
1718	return status;
1719}
1720
1721/**
1722 * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1723 *
1724 * \return true if DP port is connected.
1725 * \return false if DP port is disconnected.
1726 */
1727static enum drm_connector_status
1728cdv_intel_dp_detect(struct drm_connector *connector, bool force)
1729{
1730	struct gma_encoder *encoder = gma_attached_encoder(connector);
1731	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1732	enum drm_connector_status status;
1733	struct edid *edid = NULL;
1734	int edp = is_edp(encoder);
1735
1736	intel_dp->has_audio = false;
1737
1738	if (edp)
1739		cdv_intel_edp_panel_vdd_on(encoder);
1740	status = cdv_dp_detect(encoder);
1741	if (status != connector_status_connected) {
1742		if (edp)
1743			cdv_intel_edp_panel_vdd_off(encoder);
1744		return status;
1745        }
1746
1747	if (intel_dp->force_audio) {
1748		intel_dp->has_audio = intel_dp->force_audio > 0;
1749	} else {
1750		edid = drm_get_edid(connector, &intel_dp->adapter);
1751		if (edid) {
1752			intel_dp->has_audio = drm_detect_monitor_audio(edid);
1753			kfree(edid);
1754		}
1755	}
1756	if (edp)
1757		cdv_intel_edp_panel_vdd_off(encoder);
1758
1759	return connector_status_connected;
1760}
1761
1762static int cdv_intel_dp_get_modes(struct drm_connector *connector)
1763{
1764	struct gma_encoder *intel_encoder = gma_attached_encoder(connector);
1765	struct cdv_intel_dp *intel_dp = intel_encoder->dev_priv;
1766	struct edid *edid = NULL;
1767	int ret = 0;
1768	int edp = is_edp(intel_encoder);
1769
1770
1771	edid = drm_get_edid(connector, &intel_dp->adapter);
1772	if (edid) {
1773		drm_mode_connector_update_edid_property(connector, edid);
1774		ret = drm_add_edid_modes(connector, edid);
1775		kfree(edid);
1776	}
1777
1778	if (is_edp(intel_encoder)) {
1779		struct drm_device *dev = connector->dev;
1780		struct drm_psb_private *dev_priv = dev->dev_private;
1781
1782		cdv_intel_edp_panel_vdd_off(intel_encoder);
1783		if (ret) {
1784			if (edp && !intel_dp->panel_fixed_mode) {
1785				struct drm_display_mode *newmode;
1786				list_for_each_entry(newmode, &connector->probed_modes,
1787					    head) {
1788					if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
1789						intel_dp->panel_fixed_mode =
1790							drm_mode_duplicate(dev, newmode);
1791						break;
1792					}
1793				}
1794			}
1795
1796			return ret;
1797		}
1798		if (!intel_dp->panel_fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
1799			intel_dp->panel_fixed_mode =
1800				drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
1801			if (intel_dp->panel_fixed_mode) {
1802				intel_dp->panel_fixed_mode->type |=
1803					DRM_MODE_TYPE_PREFERRED;
1804			}
1805		}
1806		if (intel_dp->panel_fixed_mode != NULL) {
1807			struct drm_display_mode *mode;
1808			mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
1809			drm_mode_probed_add(connector, mode);
1810			return 1;
1811		}
1812	}
1813
1814	return ret;
1815}
1816
1817static bool
1818cdv_intel_dp_detect_audio(struct drm_connector *connector)
1819{
1820	struct gma_encoder *encoder = gma_attached_encoder(connector);
1821	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1822	struct edid *edid;
1823	bool has_audio = false;
1824	int edp = is_edp(encoder);
1825
1826	if (edp)
1827		cdv_intel_edp_panel_vdd_on(encoder);
1828
1829	edid = drm_get_edid(connector, &intel_dp->adapter);
1830	if (edid) {
1831		has_audio = drm_detect_monitor_audio(edid);
1832		kfree(edid);
1833	}
1834	if (edp)
1835		cdv_intel_edp_panel_vdd_off(encoder);
1836
1837	return has_audio;
1838}
1839
1840static int
1841cdv_intel_dp_set_property(struct drm_connector *connector,
1842		      struct drm_property *property,
1843		      uint64_t val)
1844{
1845	struct drm_psb_private *dev_priv = connector->dev->dev_private;
1846	struct gma_encoder *encoder = gma_attached_encoder(connector);
1847	struct cdv_intel_dp *intel_dp = encoder->dev_priv;
1848	int ret;
1849
1850	ret = drm_object_property_set_value(&connector->base, property, val);
1851	if (ret)
1852		return ret;
1853
1854	if (property == dev_priv->force_audio_property) {
1855		int i = val;
1856		bool has_audio;
1857
1858		if (i == intel_dp->force_audio)
1859			return 0;
1860
1861		intel_dp->force_audio = i;
1862
1863		if (i == 0)
1864			has_audio = cdv_intel_dp_detect_audio(connector);
1865		else
1866			has_audio = i > 0;
1867
1868		if (has_audio == intel_dp->has_audio)
1869			return 0;
1870
1871		intel_dp->has_audio = has_audio;
1872		goto done;
1873	}
1874
1875	if (property == dev_priv->broadcast_rgb_property) {
1876		if (val == !!intel_dp->color_range)
1877			return 0;
1878
1879		intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
1880		goto done;
1881	}
1882
1883	return -EINVAL;
1884
1885done:
1886	if (encoder->base.crtc) {
1887		struct drm_crtc *crtc = encoder->base.crtc;
1888		drm_crtc_helper_set_mode(crtc, &crtc->mode,
1889					 crtc->x, crtc->y,
1890					 crtc->primary->fb);
1891	}
1892
1893	return 0;
1894}
1895
1896static void
1897cdv_intel_dp_destroy(struct drm_connector *connector)
1898{
1899	struct gma_encoder *gma_encoder = gma_attached_encoder(connector);
1900	struct cdv_intel_dp *intel_dp = gma_encoder->dev_priv;
1901
1902	if (is_edp(gma_encoder)) {
1903	/*	cdv_intel_panel_destroy_backlight(connector->dev); */
1904		if (intel_dp->panel_fixed_mode) {
1905			kfree(intel_dp->panel_fixed_mode);
1906			intel_dp->panel_fixed_mode = NULL;
1907		}
1908	}
1909	i2c_del_adapter(&intel_dp->adapter);
1910	drm_connector_unregister(connector);
1911	drm_connector_cleanup(connector);
1912	kfree(connector);
1913}
1914
1915static void cdv_intel_dp_encoder_destroy(struct drm_encoder *encoder)
1916{
1917	drm_encoder_cleanup(encoder);
1918}
1919
1920static const struct drm_encoder_helper_funcs cdv_intel_dp_helper_funcs = {
1921	.dpms = cdv_intel_dp_dpms,
1922	.mode_fixup = cdv_intel_dp_mode_fixup,
1923	.prepare = cdv_intel_dp_prepare,
1924	.mode_set = cdv_intel_dp_mode_set,
1925	.commit = cdv_intel_dp_commit,
1926};
1927
1928static const struct drm_connector_funcs cdv_intel_dp_connector_funcs = {
1929	.dpms = drm_helper_connector_dpms,
1930	.detect = cdv_intel_dp_detect,
1931	.fill_modes = drm_helper_probe_single_connector_modes,
1932	.set_property = cdv_intel_dp_set_property,
1933	.destroy = cdv_intel_dp_destroy,
1934};
1935
1936static const struct drm_connector_helper_funcs cdv_intel_dp_connector_helper_funcs = {
1937	.get_modes = cdv_intel_dp_get_modes,
1938	.mode_valid = cdv_intel_dp_mode_valid,
1939	.best_encoder = gma_best_encoder,
1940};
1941
1942static const struct drm_encoder_funcs cdv_intel_dp_enc_funcs = {
1943	.destroy = cdv_intel_dp_encoder_destroy,
1944};
1945
1946
1947static void cdv_intel_dp_add_properties(struct drm_connector *connector)
1948{
1949	cdv_intel_attach_force_audio_property(connector);
1950	cdv_intel_attach_broadcast_rgb_property(connector);
1951}
1952
1953/* check the VBT to see whether the eDP is on DP-D port */
1954static bool cdv_intel_dpc_is_edp(struct drm_device *dev)
1955{
1956	struct drm_psb_private *dev_priv = dev->dev_private;
1957	struct child_device_config *p_child;
1958	int i;
1959
1960	if (!dev_priv->child_dev_num)
1961		return false;
1962
1963	for (i = 0; i < dev_priv->child_dev_num; i++) {
1964		p_child = dev_priv->child_dev + i;
1965
1966		if (p_child->dvo_port == PORT_IDPC &&
1967		    p_child->device_type == DEVICE_TYPE_eDP)
1968			return true;
1969	}
1970	return false;
1971}
1972
1973/* Cedarview display clock gating
1974
1975   We need this disable dot get correct behaviour while enabling
1976   DP/eDP. TODO - investigate if we can turn it back to normality
1977   after enabling */
1978static void cdv_disable_intel_clock_gating(struct drm_device *dev)
1979{
1980	u32 reg_value;
1981	reg_value = REG_READ(DSPCLK_GATE_D);
1982
1983	reg_value |= (DPUNIT_PIPEB_GATE_DISABLE |
1984			DPUNIT_PIPEA_GATE_DISABLE |
1985			DPCUNIT_CLOCK_GATE_DISABLE |
1986			DPLSUNIT_CLOCK_GATE_DISABLE |
1987			DPOUNIT_CLOCK_GATE_DISABLE |
1988		 	DPIOUNIT_CLOCK_GATE_DISABLE);
1989
1990	REG_WRITE(DSPCLK_GATE_D, reg_value);
1991
1992	udelay(500);
1993}
1994
1995void
1996cdv_intel_dp_init(struct drm_device *dev, struct psb_intel_mode_device *mode_dev, int output_reg)
1997{
1998	struct gma_encoder *gma_encoder;
1999	struct gma_connector *gma_connector;
2000	struct drm_connector *connector;
2001	struct drm_encoder *encoder;
2002	struct cdv_intel_dp *intel_dp;
2003	const char *name = NULL;
2004	int type = DRM_MODE_CONNECTOR_DisplayPort;
2005
2006	gma_encoder = kzalloc(sizeof(struct gma_encoder), GFP_KERNEL);
2007	if (!gma_encoder)
2008		return;
2009        gma_connector = kzalloc(sizeof(struct gma_connector), GFP_KERNEL);
2010        if (!gma_connector)
2011                goto err_connector;
2012	intel_dp = kzalloc(sizeof(struct cdv_intel_dp), GFP_KERNEL);
2013	if (!intel_dp)
2014	        goto err_priv;
2015
2016	if ((output_reg == DP_C) && cdv_intel_dpc_is_edp(dev))
2017		type = DRM_MODE_CONNECTOR_eDP;
2018
2019	connector = &gma_connector->base;
2020	encoder = &gma_encoder->base;
2021
2022	drm_connector_init(dev, connector, &cdv_intel_dp_connector_funcs, type);
2023	drm_encoder_init(dev, encoder, &cdv_intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS);
2024
2025	gma_connector_attach_encoder(gma_connector, gma_encoder);
2026
2027	if (type == DRM_MODE_CONNECTOR_DisplayPort)
2028		gma_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2029        else
2030		gma_encoder->type = INTEL_OUTPUT_EDP;
2031
2032
2033	gma_encoder->dev_priv=intel_dp;
2034	intel_dp->encoder = gma_encoder;
2035	intel_dp->output_reg = output_reg;
2036
2037	drm_encoder_helper_add(encoder, &cdv_intel_dp_helper_funcs);
2038	drm_connector_helper_add(connector, &cdv_intel_dp_connector_helper_funcs);
2039
2040	connector->polled = DRM_CONNECTOR_POLL_HPD;
2041	connector->interlace_allowed = false;
2042	connector->doublescan_allowed = false;
2043
2044	drm_connector_register(connector);
2045
2046	/* Set up the DDC bus. */
2047	switch (output_reg) {
2048		case DP_B:
2049			name = "DPDDC-B";
2050			gma_encoder->ddi_select = (DP_MASK | DDI0_SELECT);
2051			break;
2052		case DP_C:
2053			name = "DPDDC-C";
2054			gma_encoder->ddi_select = (DP_MASK | DDI1_SELECT);
2055			break;
2056	}
2057
2058	cdv_disable_intel_clock_gating(dev);
2059
2060	cdv_intel_dp_i2c_init(gma_connector, gma_encoder, name);
2061        /* FIXME:fail check */
2062	cdv_intel_dp_add_properties(connector);
2063
2064	if (is_edp(gma_encoder)) {
2065		int ret;
2066		struct edp_power_seq cur;
2067                u32 pp_on, pp_off, pp_div;
2068		u32 pwm_ctrl;
2069
2070		pp_on = REG_READ(PP_CONTROL);
2071		pp_on &= ~PANEL_UNLOCK_MASK;
2072	        pp_on |= PANEL_UNLOCK_REGS;
2073
2074		REG_WRITE(PP_CONTROL, pp_on);
2075
2076		pwm_ctrl = REG_READ(BLC_PWM_CTL2);
2077		pwm_ctrl |= PWM_PIPE_B;
2078		REG_WRITE(BLC_PWM_CTL2, pwm_ctrl);
2079
2080                pp_on = REG_READ(PP_ON_DELAYS);
2081                pp_off = REG_READ(PP_OFF_DELAYS);
2082                pp_div = REG_READ(PP_DIVISOR);
2083
2084		/* Pull timing values out of registers */
2085                cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2086                        PANEL_POWER_UP_DELAY_SHIFT;
2087
2088                cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2089                        PANEL_LIGHT_ON_DELAY_SHIFT;
2090
2091                cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2092                        PANEL_LIGHT_OFF_DELAY_SHIFT;
2093
2094                cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2095                        PANEL_POWER_DOWN_DELAY_SHIFT;
2096
2097                cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2098                               PANEL_POWER_CYCLE_DELAY_SHIFT);
2099
2100                DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2101                              cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2102
2103
2104		intel_dp->panel_power_up_delay = cur.t1_t3 / 10;
2105                intel_dp->backlight_on_delay = cur.t8 / 10;
2106                intel_dp->backlight_off_delay = cur.t9 / 10;
2107                intel_dp->panel_power_down_delay = cur.t10 / 10;
2108                intel_dp->panel_power_cycle_delay = (cur.t11_t12 - 1) * 100;
2109
2110                DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2111                              intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2112                              intel_dp->panel_power_cycle_delay);
2113
2114                DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2115                              intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2116
2117
2118		cdv_intel_edp_panel_vdd_on(gma_encoder);
2119		ret = cdv_intel_dp_aux_native_read(gma_encoder, DP_DPCD_REV,
2120					       intel_dp->dpcd,
2121					       sizeof(intel_dp->dpcd));
2122		cdv_intel_edp_panel_vdd_off(gma_encoder);
2123		if (ret == 0) {
2124			/* if this fails, presume the device is a ghost */
2125			DRM_INFO("failed to retrieve link info, disabling eDP\n");
2126			cdv_intel_dp_encoder_destroy(encoder);
2127			cdv_intel_dp_destroy(connector);
2128			goto err_priv;
2129		} else {
2130        		DRM_DEBUG_KMS("DPCD: Rev=%x LN_Rate=%x LN_CNT=%x LN_DOWNSP=%x\n",
2131				intel_dp->dpcd[0], intel_dp->dpcd[1],
2132				intel_dp->dpcd[2], intel_dp->dpcd[3]);
2133
2134		}
2135		/* The CDV reference driver moves pnale backlight setup into the displays that
2136		   have a backlight: this is a good idea and one we should probably adopt, however
2137		   we need to migrate all the drivers before we can do that */
2138                /*cdv_intel_panel_setup_backlight(dev); */
2139	}
2140	return;
2141
2142err_priv:
2143	kfree(gma_connector);
2144err_connector:
2145	kfree(gma_encoder);
2146}
2147