1/*
2 * Copyright (c) 2006 Luc Verhaegen (quirks list)
3 * Copyright (c) 2007-2008 Intel Corporation
4 *   Jesse Barnes <jesse.barnes@intel.com>
5 * Copyright 2010 Red Hat, Inc.
6 *
7 * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from
8 * FB layer.
9 *   Copyright (C) 2006 Dennis Munsie <dmunsie@cecropia.com>
10 *
11 * Permission is hereby granted, free of charge, to any person obtaining a
12 * copy of this software and associated documentation files (the "Software"),
13 * to deal in the Software without restriction, including without limitation
14 * the rights to use, copy, modify, merge, publish, distribute, sub license,
15 * and/or sell copies of the Software, and to permit persons to whom the
16 * Software is furnished to do so, subject to the following conditions:
17 *
18 * The above copyright notice and this permission notice (including the
19 * next paragraph) shall be included in all copies or substantial portions
20 * of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
23 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
26 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
28 * DEALINGS IN THE SOFTWARE.
29 */
30#include <linux/kernel.h>
31#include <linux/slab.h>
32#include <linux/hdmi.h>
33#include <linux/i2c.h>
34#include <linux/module.h>
35#include <drm/drmP.h>
36#include <drm/drm_edid.h>
37#include <drm/drm_displayid.h>
38
39#define version_greater(edid, maj, min) \
40	(((edid)->version > (maj)) || \
41	 ((edid)->version == (maj) && (edid)->revision > (min)))
42
43#define EDID_EST_TIMINGS 16
44#define EDID_STD_TIMINGS 8
45#define EDID_DETAILED_TIMINGS 4
46
47/*
48 * EDID blocks out in the wild have a variety of bugs, try to collect
49 * them here (note that userspace may work around broken monitors first,
50 * but fixes should make their way here so that the kernel "just works"
51 * on as many displays as possible).
52 */
53
54/* First detailed mode wrong, use largest 60Hz mode */
55#define EDID_QUIRK_PREFER_LARGE_60		(1 << 0)
56/* Reported 135MHz pixel clock is too high, needs adjustment */
57#define EDID_QUIRK_135_CLOCK_TOO_HIGH		(1 << 1)
58/* Prefer the largest mode at 75 Hz */
59#define EDID_QUIRK_PREFER_LARGE_75		(1 << 2)
60/* Detail timing is in cm not mm */
61#define EDID_QUIRK_DETAILED_IN_CM		(1 << 3)
62/* Detailed timing descriptors have bogus size values, so just take the
63 * maximum size and use that.
64 */
65#define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	(1 << 4)
66/* Monitor forgot to set the first detailed is preferred bit. */
67#define EDID_QUIRK_FIRST_DETAILED_PREFERRED	(1 << 5)
68/* use +hsync +vsync for detailed mode */
69#define EDID_QUIRK_DETAILED_SYNC_PP		(1 << 6)
70/* Force reduced-blanking timings for detailed modes */
71#define EDID_QUIRK_FORCE_REDUCED_BLANKING	(1 << 7)
72/* Force 8bpc */
73#define EDID_QUIRK_FORCE_8BPC			(1 << 8)
74/* Force 12bpc */
75#define EDID_QUIRK_FORCE_12BPC			(1 << 9)
76
77struct detailed_mode_closure {
78	struct drm_connector *connector;
79	struct edid *edid;
80	bool preferred;
81	u32 quirks;
82	int modes;
83};
84
85#define LEVEL_DMT	0
86#define LEVEL_GTF	1
87#define LEVEL_GTF2	2
88#define LEVEL_CVT	3
89
90static struct edid_quirk {
91	char vendor[4];
92	int product_id;
93	u32 quirks;
94} edid_quirk_list[] = {
95	/* Acer AL1706 */
96	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
97	/* Acer F51 */
98	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
99	/* Unknown Acer */
100	{ "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
101
102	/* Belinea 10 15 55 */
103	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
104	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
105
106	/* Envision Peripherals, Inc. EN-7100e */
107	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
108	/* Envision EN2028 */
109	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
110
111	/* Funai Electronics PM36B */
112	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
113	  EDID_QUIRK_DETAILED_IN_CM },
114
115	/* LG Philips LCD LP154W01-A5 */
116	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
117	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
118
119	/* Philips 107p5 CRT */
120	{ "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
121
122	/* Proview AY765C */
123	{ "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
124
125	/* Samsung SyncMaster 205BW.  Note: irony */
126	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
127	/* Samsung SyncMaster 22[5-6]BW */
128	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
129	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
130
131	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
132	{ "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
133
134	/* ViewSonic VA2026w */
135	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
136
137	/* Medion MD 30217 PG */
138	{ "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
139
140	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
141	{ "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
142};
143
144/*
145 * Autogenerated from the DMT spec.
146 * This table is copied from xfree86/modes/xf86EdidModes.c.
147 */
148static const struct drm_display_mode drm_dmt_modes[] = {
149	/* 0x01 - 640x350@85Hz */
150	{ DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
151		   736, 832, 0, 350, 382, 385, 445, 0,
152		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
153	/* 0x02 - 640x400@85Hz */
154	{ DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
155		   736, 832, 0, 400, 401, 404, 445, 0,
156		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
157	/* 0x03 - 720x400@85Hz */
158	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
159		   828, 936, 0, 400, 401, 404, 446, 0,
160		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
161	/* 0x04 - 640x480@60Hz */
162	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
163		   752, 800, 0, 480, 490, 492, 525, 0,
164		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
165	/* 0x05 - 640x480@72Hz */
166	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
167		   704, 832, 0, 480, 489, 492, 520, 0,
168		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
169	/* 0x06 - 640x480@75Hz */
170	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
171		   720, 840, 0, 480, 481, 484, 500, 0,
172		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
173	/* 0x07 - 640x480@85Hz */
174	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
175		   752, 832, 0, 480, 481, 484, 509, 0,
176		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
177	/* 0x08 - 800x600@56Hz */
178	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
179		   896, 1024, 0, 600, 601, 603, 625, 0,
180		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
181	/* 0x09 - 800x600@60Hz */
182	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
183		   968, 1056, 0, 600, 601, 605, 628, 0,
184		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
185	/* 0x0a - 800x600@72Hz */
186	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
187		   976, 1040, 0, 600, 637, 643, 666, 0,
188		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
189	/* 0x0b - 800x600@75Hz */
190	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
191		   896, 1056, 0, 600, 601, 604, 625, 0,
192		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
193	/* 0x0c - 800x600@85Hz */
194	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
195		   896, 1048, 0, 600, 601, 604, 631, 0,
196		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
197	/* 0x0d - 800x600@120Hz RB */
198	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
199		   880, 960, 0, 600, 603, 607, 636, 0,
200		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
201	/* 0x0e - 848x480@60Hz */
202	{ DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
203		   976, 1088, 0, 480, 486, 494, 517, 0,
204		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
205	/* 0x0f - 1024x768@43Hz, interlace */
206	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
207		   1208, 1264, 0, 768, 768, 772, 817, 0,
208		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
209		   DRM_MODE_FLAG_INTERLACE) },
210	/* 0x10 - 1024x768@60Hz */
211	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
212		   1184, 1344, 0, 768, 771, 777, 806, 0,
213		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
214	/* 0x11 - 1024x768@70Hz */
215	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
216		   1184, 1328, 0, 768, 771, 777, 806, 0,
217		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
218	/* 0x12 - 1024x768@75Hz */
219	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
220		   1136, 1312, 0, 768, 769, 772, 800, 0,
221		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
222	/* 0x13 - 1024x768@85Hz */
223	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
224		   1168, 1376, 0, 768, 769, 772, 808, 0,
225		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
226	/* 0x14 - 1024x768@120Hz RB */
227	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
228		   1104, 1184, 0, 768, 771, 775, 813, 0,
229		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
230	/* 0x15 - 1152x864@75Hz */
231	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
232		   1344, 1600, 0, 864, 865, 868, 900, 0,
233		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
234	/* 0x55 - 1280x720@60Hz */
235	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
236		   1430, 1650, 0, 720, 725, 730, 750, 0,
237		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
238	/* 0x16 - 1280x768@60Hz RB */
239	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
240		   1360, 1440, 0, 768, 771, 778, 790, 0,
241		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
242	/* 0x17 - 1280x768@60Hz */
243	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
244		   1472, 1664, 0, 768, 771, 778, 798, 0,
245		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
246	/* 0x18 - 1280x768@75Hz */
247	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
248		   1488, 1696, 0, 768, 771, 778, 805, 0,
249		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
250	/* 0x19 - 1280x768@85Hz */
251	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
252		   1496, 1712, 0, 768, 771, 778, 809, 0,
253		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
254	/* 0x1a - 1280x768@120Hz RB */
255	{ DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
256		   1360, 1440, 0, 768, 771, 778, 813, 0,
257		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
258	/* 0x1b - 1280x800@60Hz RB */
259	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
260		   1360, 1440, 0, 800, 803, 809, 823, 0,
261		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
262	/* 0x1c - 1280x800@60Hz */
263	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
264		   1480, 1680, 0, 800, 803, 809, 831, 0,
265		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
266	/* 0x1d - 1280x800@75Hz */
267	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
268		   1488, 1696, 0, 800, 803, 809, 838, 0,
269		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
270	/* 0x1e - 1280x800@85Hz */
271	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
272		   1496, 1712, 0, 800, 803, 809, 843, 0,
273		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
274	/* 0x1f - 1280x800@120Hz RB */
275	{ DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
276		   1360, 1440, 0, 800, 803, 809, 847, 0,
277		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
278	/* 0x20 - 1280x960@60Hz */
279	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
280		   1488, 1800, 0, 960, 961, 964, 1000, 0,
281		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
282	/* 0x21 - 1280x960@85Hz */
283	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
284		   1504, 1728, 0, 960, 961, 964, 1011, 0,
285		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
286	/* 0x22 - 1280x960@120Hz RB */
287	{ DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
288		   1360, 1440, 0, 960, 963, 967, 1017, 0,
289		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
290	/* 0x23 - 1280x1024@60Hz */
291	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
292		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
293		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
294	/* 0x24 - 1280x1024@75Hz */
295	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
296		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
297		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
298	/* 0x25 - 1280x1024@85Hz */
299	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
300		   1504, 1728, 0, 1024, 1025, 1028, 1072, 0,
301		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
302	/* 0x26 - 1280x1024@120Hz RB */
303	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
304		   1360, 1440, 0, 1024, 1027, 1034, 1084, 0,
305		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
306	/* 0x27 - 1360x768@60Hz */
307	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
308		   1536, 1792, 0, 768, 771, 777, 795, 0,
309		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
310	/* 0x28 - 1360x768@120Hz RB */
311	{ DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
312		   1440, 1520, 0, 768, 771, 776, 813, 0,
313		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
314	/* 0x51 - 1366x768@60Hz */
315	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
316		   1579, 1792, 0, 768, 771, 774, 798, 0,
317		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
318	/* 0x56 - 1366x768@60Hz */
319	{ DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
320		   1436, 1500, 0, 768, 769, 772, 800, 0,
321		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
322	/* 0x29 - 1400x1050@60Hz RB */
323	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
324		   1480, 1560, 0, 1050, 1053, 1057, 1080, 0,
325		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
326	/* 0x2a - 1400x1050@60Hz */
327	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
328		   1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
329		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
330	/* 0x2b - 1400x1050@75Hz */
331	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
332		   1648, 1896, 0, 1050, 1053, 1057, 1099, 0,
333		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
334	/* 0x2c - 1400x1050@85Hz */
335	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
336		   1656, 1912, 0, 1050, 1053, 1057, 1105, 0,
337		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
338	/* 0x2d - 1400x1050@120Hz RB */
339	{ DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
340		   1480, 1560, 0, 1050, 1053, 1057, 1112, 0,
341		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
342	/* 0x2e - 1440x900@60Hz RB */
343	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
344		   1520, 1600, 0, 900, 903, 909, 926, 0,
345		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
346	/* 0x2f - 1440x900@60Hz */
347	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
348		   1672, 1904, 0, 900, 903, 909, 934, 0,
349		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
350	/* 0x30 - 1440x900@75Hz */
351	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
352		   1688, 1936, 0, 900, 903, 909, 942, 0,
353		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
354	/* 0x31 - 1440x900@85Hz */
355	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
356		   1696, 1952, 0, 900, 903, 909, 948, 0,
357		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
358	/* 0x32 - 1440x900@120Hz RB */
359	{ DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
360		   1520, 1600, 0, 900, 903, 909, 953, 0,
361		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
362	/* 0x53 - 1600x900@60Hz */
363	{ DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
364		   1704, 1800, 0, 900, 901, 904, 1000, 0,
365		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
366	/* 0x33 - 1600x1200@60Hz */
367	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
368		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
369		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
370	/* 0x34 - 1600x1200@65Hz */
371	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
372		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
373		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
374	/* 0x35 - 1600x1200@70Hz */
375	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
376		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
377		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
378	/* 0x36 - 1600x1200@75Hz */
379	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
380		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
381		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
382	/* 0x37 - 1600x1200@85Hz */
383	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
384		   1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
385		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
386	/* 0x38 - 1600x1200@120Hz RB */
387	{ DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
388		   1680, 1760, 0, 1200, 1203, 1207, 1271, 0,
389		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
390	/* 0x39 - 1680x1050@60Hz RB */
391	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
392		   1760, 1840, 0, 1050, 1053, 1059, 1080, 0,
393		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
394	/* 0x3a - 1680x1050@60Hz */
395	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
396		   1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
397		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
398	/* 0x3b - 1680x1050@75Hz */
399	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
400		   1976, 2272, 0, 1050, 1053, 1059, 1099, 0,
401		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
402	/* 0x3c - 1680x1050@85Hz */
403	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
404		   1984, 2288, 0, 1050, 1053, 1059, 1105, 0,
405		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
406	/* 0x3d - 1680x1050@120Hz RB */
407	{ DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
408		   1760, 1840, 0, 1050, 1053, 1059, 1112, 0,
409		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
410	/* 0x3e - 1792x1344@60Hz */
411	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
412		   2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
413		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
414	/* 0x3f - 1792x1344@75Hz */
415	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
416		   2104, 2456, 0, 1344, 1345, 1348, 1417, 0,
417		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
418	/* 0x40 - 1792x1344@120Hz RB */
419	{ DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
420		   1872, 1952, 0, 1344, 1347, 1351, 1423, 0,
421		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
422	/* 0x41 - 1856x1392@60Hz */
423	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
424		   2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
425		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
426	/* 0x42 - 1856x1392@75Hz */
427	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
428		   2208, 2560, 0, 1392, 1393, 1396, 1500, 0,
429		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
430	/* 0x43 - 1856x1392@120Hz RB */
431	{ DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
432		   1936, 2016, 0, 1392, 1395, 1399, 1474, 0,
433		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
434	/* 0x52 - 1920x1080@60Hz */
435	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
436		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
437		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
438	/* 0x44 - 1920x1200@60Hz RB */
439	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
440		   2000, 2080, 0, 1200, 1203, 1209, 1235, 0,
441		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
442	/* 0x45 - 1920x1200@60Hz */
443	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
444		   2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
445		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
446	/* 0x46 - 1920x1200@75Hz */
447	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
448		   2264, 2608, 0, 1200, 1203, 1209, 1255, 0,
449		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
450	/* 0x47 - 1920x1200@85Hz */
451	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
452		   2272, 2624, 0, 1200, 1203, 1209, 1262, 0,
453		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
454	/* 0x48 - 1920x1200@120Hz RB */
455	{ DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
456		   2000, 2080, 0, 1200, 1203, 1209, 1271, 0,
457		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
458	/* 0x49 - 1920x1440@60Hz */
459	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
460		   2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
461		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
462	/* 0x4a - 1920x1440@75Hz */
463	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
464		   2288, 2640, 0, 1440, 1441, 1444, 1500, 0,
465		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
466	/* 0x4b - 1920x1440@120Hz RB */
467	{ DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
468		   2000, 2080, 0, 1440, 1443, 1447, 1525, 0,
469		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
470	/* 0x54 - 2048x1152@60Hz */
471	{ DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
472		   2154, 2250, 0, 1152, 1153, 1156, 1200, 0,
473		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
474	/* 0x4c - 2560x1600@60Hz RB */
475	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
476		   2640, 2720, 0, 1600, 1603, 1609, 1646, 0,
477		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
478	/* 0x4d - 2560x1600@60Hz */
479	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
480		   3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
481		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
482	/* 0x4e - 2560x1600@75Hz */
483	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
484		   3048, 3536, 0, 1600, 1603, 1609, 1672, 0,
485		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
486	/* 0x4f - 2560x1600@85Hz */
487	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
488		   3048, 3536, 0, 1600, 1603, 1609, 1682, 0,
489		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
490	/* 0x50 - 2560x1600@120Hz RB */
491	{ DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
492		   2640, 2720, 0, 1600, 1603, 1609, 1694, 0,
493		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
494	/* 0x57 - 4096x2160@60Hz RB */
495	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
496		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
497		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
498	/* 0x58 - 4096x2160@59.94Hz RB */
499	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
500		   4136, 4176, 0, 2160, 2208, 2216, 2222, 0,
501		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
502};
503
504/*
505 * These more or less come from the DMT spec.  The 720x400 modes are
506 * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
507 * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
508 * should be 1152x870, again for the Mac, but instead we use the x864 DMT
509 * mode.
510 *
511 * The DMT modes have been fact-checked; the rest are mild guesses.
512 */
513static const struct drm_display_mode edid_est_modes[] = {
514	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
515		   968, 1056, 0, 600, 601, 605, 628, 0,
516		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */
517	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
518		   896, 1024, 0, 600, 601, 603,  625, 0,
519		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */
520	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
521		   720, 840, 0, 480, 481, 484, 500, 0,
522		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */
523	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
524		   704,  832, 0, 480, 489, 491, 520, 0,
525		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */
526	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
527		   768,  864, 0, 480, 483, 486, 525, 0,
528		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */
529	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25200, 640, 656,
530		   752, 800, 0, 480, 490, 492, 525, 0,
531		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */
532	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
533		   846, 900, 0, 400, 421, 423,  449, 0,
534		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */
535	{ DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
536		   846,  900, 0, 400, 412, 414, 449, 0,
537		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */
538	{ DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
539		   1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
540		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */
541	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78800, 1024, 1040,
542		   1136, 1312, 0,  768, 769, 772, 800, 0,
543		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */
544	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
545		   1184, 1328, 0,  768, 771, 777, 806, 0,
546		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */
547	{ DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
548		   1184, 1344, 0,  768, 771, 777, 806, 0,
549		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */
550	{ DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032,
551		   1208, 1264, 0, 768, 768, 776, 817, 0,
552		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */
553	{ DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
554		   928, 1152, 0, 624, 625, 628, 667, 0,
555		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */
556	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
557		   896, 1056, 0, 600, 601, 604,  625, 0,
558		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */
559	{ DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
560		   976, 1040, 0, 600, 637, 643, 666, 0,
561		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */
562	{ DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
563		   1344, 1600, 0,  864, 865, 868, 900, 0,
564		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */
565};
566
567struct minimode {
568	short w;
569	short h;
570	short r;
571	short rb;
572};
573
574static const struct minimode est3_modes[] = {
575	/* byte 6 */
576	{ 640, 350, 85, 0 },
577	{ 640, 400, 85, 0 },
578	{ 720, 400, 85, 0 },
579	{ 640, 480, 85, 0 },
580	{ 848, 480, 60, 0 },
581	{ 800, 600, 85, 0 },
582	{ 1024, 768, 85, 0 },
583	{ 1152, 864, 75, 0 },
584	/* byte 7 */
585	{ 1280, 768, 60, 1 },
586	{ 1280, 768, 60, 0 },
587	{ 1280, 768, 75, 0 },
588	{ 1280, 768, 85, 0 },
589	{ 1280, 960, 60, 0 },
590	{ 1280, 960, 85, 0 },
591	{ 1280, 1024, 60, 0 },
592	{ 1280, 1024, 85, 0 },
593	/* byte 8 */
594	{ 1360, 768, 60, 0 },
595	{ 1440, 900, 60, 1 },
596	{ 1440, 900, 60, 0 },
597	{ 1440, 900, 75, 0 },
598	{ 1440, 900, 85, 0 },
599	{ 1400, 1050, 60, 1 },
600	{ 1400, 1050, 60, 0 },
601	{ 1400, 1050, 75, 0 },
602	/* byte 9 */
603	{ 1400, 1050, 85, 0 },
604	{ 1680, 1050, 60, 1 },
605	{ 1680, 1050, 60, 0 },
606	{ 1680, 1050, 75, 0 },
607	{ 1680, 1050, 85, 0 },
608	{ 1600, 1200, 60, 0 },
609	{ 1600, 1200, 65, 0 },
610	{ 1600, 1200, 70, 0 },
611	/* byte 10 */
612	{ 1600, 1200, 75, 0 },
613	{ 1600, 1200, 85, 0 },
614	{ 1792, 1344, 60, 0 },
615	{ 1792, 1344, 75, 0 },
616	{ 1856, 1392, 60, 0 },
617	{ 1856, 1392, 75, 0 },
618	{ 1920, 1200, 60, 1 },
619	{ 1920, 1200, 60, 0 },
620	/* byte 11 */
621	{ 1920, 1200, 75, 0 },
622	{ 1920, 1200, 85, 0 },
623	{ 1920, 1440, 60, 0 },
624	{ 1920, 1440, 75, 0 },
625};
626
627static const struct minimode extra_modes[] = {
628	{ 1024, 576,  60, 0 },
629	{ 1366, 768,  60, 0 },
630	{ 1600, 900,  60, 0 },
631	{ 1680, 945,  60, 0 },
632	{ 1920, 1080, 60, 0 },
633	{ 2048, 1152, 60, 0 },
634	{ 2048, 1536, 60, 0 },
635};
636
637/*
638 * Probably taken from CEA-861 spec.
639 * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
640 */
641static const struct drm_display_mode edid_cea_modes[] = {
642	/* 1 - 640x480@60Hz */
643	{ DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
644		   752, 800, 0, 480, 490, 492, 525, 0,
645		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
646	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
647	/* 2 - 720x480@60Hz */
648	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
649		   798, 858, 0, 480, 489, 495, 525, 0,
650		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
651	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
652	/* 3 - 720x480@60Hz */
653	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
654		   798, 858, 0, 480, 489, 495, 525, 0,
655		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
656	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
657	/* 4 - 1280x720@60Hz */
658	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
659		   1430, 1650, 0, 720, 725, 730, 750, 0,
660		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
661	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
662	/* 5 - 1920x1080i@60Hz */
663	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
664		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
665		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
666			DRM_MODE_FLAG_INTERLACE),
667	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
668	/* 6 - 720(1440)x480i@60Hz */
669	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
670		   801, 858, 0, 480, 488, 494, 525, 0,
671		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
672			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
673	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
674	/* 7 - 720(1440)x480i@60Hz */
675	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
676		   801, 858, 0, 480, 488, 494, 525, 0,
677		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
678			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
679	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
680	/* 8 - 720(1440)x240@60Hz */
681	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
682		   801, 858, 0, 240, 244, 247, 262, 0,
683		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
684			DRM_MODE_FLAG_DBLCLK),
685	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
686	/* 9 - 720(1440)x240@60Hz */
687	{ DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
688		   801, 858, 0, 240, 244, 247, 262, 0,
689		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
690			DRM_MODE_FLAG_DBLCLK),
691	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
692	/* 10 - 2880x480i@60Hz */
693	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
694		   3204, 3432, 0, 480, 488, 494, 525, 0,
695		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
696			DRM_MODE_FLAG_INTERLACE),
697	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
698	/* 11 - 2880x480i@60Hz */
699	{ DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
700		   3204, 3432, 0, 480, 488, 494, 525, 0,
701		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
702			DRM_MODE_FLAG_INTERLACE),
703	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
704	/* 12 - 2880x240@60Hz */
705	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
706		   3204, 3432, 0, 240, 244, 247, 262, 0,
707		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
708	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
709	/* 13 - 2880x240@60Hz */
710	{ DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
711		   3204, 3432, 0, 240, 244, 247, 262, 0,
712		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
713	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
714	/* 14 - 1440x480@60Hz */
715	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
716		   1596, 1716, 0, 480, 489, 495, 525, 0,
717		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
718	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
719	/* 15 - 1440x480@60Hz */
720	{ DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
721		   1596, 1716, 0, 480, 489, 495, 525, 0,
722		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
723	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
724	/* 16 - 1920x1080@60Hz */
725	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
726		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
727		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
728	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
729	/* 17 - 720x576@50Hz */
730	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
731		   796, 864, 0, 576, 581, 586, 625, 0,
732		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
733	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
734	/* 18 - 720x576@50Hz */
735	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
736		   796, 864, 0, 576, 581, 586, 625, 0,
737		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
738	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
739	/* 19 - 1280x720@50Hz */
740	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
741		   1760, 1980, 0, 720, 725, 730, 750, 0,
742		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
743	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
744	/* 20 - 1920x1080i@50Hz */
745	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
746		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
747		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
748			DRM_MODE_FLAG_INTERLACE),
749	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
750	/* 21 - 720(1440)x576i@50Hz */
751	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
752		   795, 864, 0, 576, 580, 586, 625, 0,
753		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
754			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
755	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
756	/* 22 - 720(1440)x576i@50Hz */
757	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
758		   795, 864, 0, 576, 580, 586, 625, 0,
759		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
760			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
761	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
762	/* 23 - 720(1440)x288@50Hz */
763	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
764		   795, 864, 0, 288, 290, 293, 312, 0,
765		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
766			DRM_MODE_FLAG_DBLCLK),
767	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
768	/* 24 - 720(1440)x288@50Hz */
769	{ DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
770		   795, 864, 0, 288, 290, 293, 312, 0,
771		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
772			DRM_MODE_FLAG_DBLCLK),
773	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
774	/* 25 - 2880x576i@50Hz */
775	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
776		   3180, 3456, 0, 576, 580, 586, 625, 0,
777		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
778			DRM_MODE_FLAG_INTERLACE),
779	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
780	/* 26 - 2880x576i@50Hz */
781	{ DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
782		   3180, 3456, 0, 576, 580, 586, 625, 0,
783		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
784			DRM_MODE_FLAG_INTERLACE),
785	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
786	/* 27 - 2880x288@50Hz */
787	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
788		   3180, 3456, 0, 288, 290, 293, 312, 0,
789		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
790	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
791	/* 28 - 2880x288@50Hz */
792	{ DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
793		   3180, 3456, 0, 288, 290, 293, 312, 0,
794		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
795	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
796	/* 29 - 1440x576@50Hz */
797	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
798		   1592, 1728, 0, 576, 581, 586, 625, 0,
799		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
800	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
801	/* 30 - 1440x576@50Hz */
802	{ DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
803		   1592, 1728, 0, 576, 581, 586, 625, 0,
804		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
805	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
806	/* 31 - 1920x1080@50Hz */
807	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
808		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
809		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
810	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
811	/* 32 - 1920x1080@24Hz */
812	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
813		   2602, 2750, 0, 1080, 1084, 1089, 1125, 0,
814		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
815	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
816	/* 33 - 1920x1080@25Hz */
817	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
818		   2492, 2640, 0, 1080, 1084, 1089, 1125, 0,
819		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
820	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
821	/* 34 - 1920x1080@30Hz */
822	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
823		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
824		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
825	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
826	/* 35 - 2880x480@60Hz */
827	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
828		   3192, 3432, 0, 480, 489, 495, 525, 0,
829		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
830	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
831	/* 36 - 2880x480@60Hz */
832	{ DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
833		   3192, 3432, 0, 480, 489, 495, 525, 0,
834		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
835	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
836	/* 37 - 2880x576@50Hz */
837	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
838		   3184, 3456, 0, 576, 581, 586, 625, 0,
839		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
840	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
841	/* 38 - 2880x576@50Hz */
842	{ DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
843		   3184, 3456, 0, 576, 581, 586, 625, 0,
844		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
845	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
846	/* 39 - 1920x1080i@50Hz */
847	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
848		   2120, 2304, 0, 1080, 1126, 1136, 1250, 0,
849		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
850			DRM_MODE_FLAG_INTERLACE),
851	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
852	/* 40 - 1920x1080i@100Hz */
853	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
854		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
855		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
856			DRM_MODE_FLAG_INTERLACE),
857	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
858	/* 41 - 1280x720@100Hz */
859	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
860		   1760, 1980, 0, 720, 725, 730, 750, 0,
861		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
862	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
863	/* 42 - 720x576@100Hz */
864	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
865		   796, 864, 0, 576, 581, 586, 625, 0,
866		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
867	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
868	/* 43 - 720x576@100Hz */
869	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
870		   796, 864, 0, 576, 581, 586, 625, 0,
871		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
872	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
873	/* 44 - 720(1440)x576i@100Hz */
874	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
875		   795, 864, 0, 576, 580, 586, 625, 0,
876		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
877			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
878	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
879	/* 45 - 720(1440)x576i@100Hz */
880	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
881		   795, 864, 0, 576, 580, 586, 625, 0,
882		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
883			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
884	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
885	/* 46 - 1920x1080i@120Hz */
886	{ DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
887		   2052, 2200, 0, 1080, 1084, 1094, 1125, 0,
888		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
889			DRM_MODE_FLAG_INTERLACE),
890	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
891	/* 47 - 1280x720@120Hz */
892	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
893		   1430, 1650, 0, 720, 725, 730, 750, 0,
894		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
895	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
896	/* 48 - 720x480@120Hz */
897	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
898		   798, 858, 0, 480, 489, 495, 525, 0,
899		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
900	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
901	/* 49 - 720x480@120Hz */
902	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
903		   798, 858, 0, 480, 489, 495, 525, 0,
904		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
905	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
906	/* 50 - 720(1440)x480i@120Hz */
907	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
908		   801, 858, 0, 480, 488, 494, 525, 0,
909		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
910			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
911	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
912	/* 51 - 720(1440)x480i@120Hz */
913	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
914		   801, 858, 0, 480, 488, 494, 525, 0,
915		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
916			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
917	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
918	/* 52 - 720x576@200Hz */
919	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
920		   796, 864, 0, 576, 581, 586, 625, 0,
921		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
922	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
923	/* 53 - 720x576@200Hz */
924	{ DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
925		   796, 864, 0, 576, 581, 586, 625, 0,
926		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
927	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
928	/* 54 - 720(1440)x576i@200Hz */
929	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
930		   795, 864, 0, 576, 580, 586, 625, 0,
931		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
932			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
933	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
934	/* 55 - 720(1440)x576i@200Hz */
935	{ DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
936		   795, 864, 0, 576, 580, 586, 625, 0,
937		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
938			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
939	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
940	/* 56 - 720x480@240Hz */
941	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
942		   798, 858, 0, 480, 489, 495, 525, 0,
943		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
944	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
945	/* 57 - 720x480@240Hz */
946	{ DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
947		   798, 858, 0, 480, 489, 495, 525, 0,
948		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
949	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
950	/* 58 - 720(1440)x480i@240 */
951	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
952		   801, 858, 0, 480, 488, 494, 525, 0,
953		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
954			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
955	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
956	/* 59 - 720(1440)x480i@240 */
957	{ DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
958		   801, 858, 0, 480, 488, 494, 525, 0,
959		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
960			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
961	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
962	/* 60 - 1280x720@24Hz */
963	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
964		   3080, 3300, 0, 720, 725, 730, 750, 0,
965		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
966	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
967	/* 61 - 1280x720@25Hz */
968	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
969		   3740, 3960, 0, 720, 725, 730, 750, 0,
970		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
971	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
972	/* 62 - 1280x720@30Hz */
973	{ DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
974		   3080, 3300, 0, 720, 725, 730, 750, 0,
975		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
976	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
977	/* 63 - 1920x1080@120Hz */
978	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
979		   2052, 2200, 0, 1080, 1084, 1089, 1125, 0,
980		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
981	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
982	/* 64 - 1920x1080@100Hz */
983	{ DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
984		   2492, 2640, 0, 1080, 1084, 1094, 1125, 0,
985		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
986	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
987};
988
989/*
990 * HDMI 1.4 4k modes.
991 */
992static const struct drm_display_mode edid_4k_modes[] = {
993	/* 1 - 3840x2160@30Hz */
994	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
995		   3840, 4016, 4104, 4400, 0,
996		   2160, 2168, 2178, 2250, 0,
997		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
998	  .vrefresh = 30, },
999	/* 2 - 3840x2160@25Hz */
1000	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1001		   3840, 4896, 4984, 5280, 0,
1002		   2160, 2168, 2178, 2250, 0,
1003		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1004	  .vrefresh = 25, },
1005	/* 3 - 3840x2160@24Hz */
1006	{ DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000,
1007		   3840, 5116, 5204, 5500, 0,
1008		   2160, 2168, 2178, 2250, 0,
1009		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1010	  .vrefresh = 24, },
1011	/* 4 - 4096x2160@24Hz (SMPTE) */
1012	{ DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000,
1013		   4096, 5116, 5204, 5500, 0,
1014		   2160, 2168, 2178, 2250, 0,
1015		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1016	  .vrefresh = 24, },
1017};
1018
1019/*** DDC fetch and block validation ***/
1020
1021static const u8 edid_header[] = {
1022	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
1023};
1024
1025/**
1026 * drm_edid_header_is_valid - sanity check the header of the base EDID block
1027 * @raw_edid: pointer to raw base EDID block
1028 *
1029 * Sanity check the header of the base EDID block.
1030 *
1031 * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
1032 */
1033int drm_edid_header_is_valid(const u8 *raw_edid)
1034{
1035	int i, score = 0;
1036
1037	for (i = 0; i < sizeof(edid_header); i++)
1038		if (raw_edid[i] == edid_header[i])
1039			score++;
1040
1041	return score;
1042}
1043EXPORT_SYMBOL(drm_edid_header_is_valid);
1044
1045static int edid_fixup __read_mostly = 6;
1046module_param_named(edid_fixup, edid_fixup, int, 0400);
1047MODULE_PARM_DESC(edid_fixup,
1048		 "Minimum number of valid EDID header bytes (0-8, default 6)");
1049
1050static void drm_get_displayid(struct drm_connector *connector,
1051			      struct edid *edid);
1052
1053static int drm_edid_block_checksum(const u8 *raw_edid)
1054{
1055	int i;
1056	u8 csum = 0;
1057	for (i = 0; i < EDID_LENGTH; i++)
1058		csum += raw_edid[i];
1059
1060	return csum;
1061}
1062
1063static bool drm_edid_is_zero(const u8 *in_edid, int length)
1064{
1065	if (memchr_inv(in_edid, 0, length))
1066		return false;
1067
1068	return true;
1069}
1070
1071/**
1072 * drm_edid_block_valid - Sanity check the EDID block (base or extension)
1073 * @raw_edid: pointer to raw EDID block
1074 * @block: type of block to validate (0 for base, extension otherwise)
1075 * @print_bad_edid: if true, dump bad EDID blocks to the console
1076 * @edid_corrupt: if true, the header or checksum is invalid
1077 *
1078 * Validate a base or extension EDID block and optionally dump bad blocks to
1079 * the console.
1080 *
1081 * Return: True if the block is valid, false otherwise.
1082 */
1083bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
1084			  bool *edid_corrupt)
1085{
1086	u8 csum;
1087	struct edid *edid = (struct edid *)raw_edid;
1088
1089	if (WARN_ON(!raw_edid))
1090		return false;
1091
1092	if (edid_fixup > 8 || edid_fixup < 0)
1093		edid_fixup = 6;
1094
1095	if (block == 0) {
1096		int score = drm_edid_header_is_valid(raw_edid);
1097		if (score == 8) {
1098			if (edid_corrupt)
1099				*edid_corrupt = false;
1100		} else if (score >= edid_fixup) {
1101			/* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
1102			 * The corrupt flag needs to be set here otherwise, the
1103			 * fix-up code here will correct the problem, the
1104			 * checksum is correct and the test fails
1105			 */
1106			if (edid_corrupt)
1107				*edid_corrupt = true;
1108			DRM_DEBUG("Fixing EDID header, your hardware may be failing\n");
1109			memcpy(raw_edid, edid_header, sizeof(edid_header));
1110		} else {
1111			if (edid_corrupt)
1112				*edid_corrupt = true;
1113			goto bad;
1114		}
1115	}
1116
1117	csum = drm_edid_block_checksum(raw_edid);
1118	if (csum) {
1119		if (print_bad_edid) {
1120			DRM_ERROR("EDID checksum is invalid, remainder is %d\n", csum);
1121		}
1122
1123		if (edid_corrupt)
1124			*edid_corrupt = true;
1125
1126		/* allow CEA to slide through, switches mangle this */
1127		if (raw_edid[0] != 0x02)
1128			goto bad;
1129	}
1130
1131	/* per-block-type checks */
1132	switch (raw_edid[0]) {
1133	case 0: /* base */
1134		if (edid->version != 1) {
1135			DRM_ERROR("EDID has major version %d, instead of 1\n", edid->version);
1136			goto bad;
1137		}
1138
1139		if (edid->revision > 4)
1140			DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n");
1141		break;
1142
1143	default:
1144		break;
1145	}
1146
1147	return true;
1148
1149bad:
1150	if (print_bad_edid) {
1151		if (drm_edid_is_zero(raw_edid, EDID_LENGTH)) {
1152			printk(KERN_ERR "EDID block is all zeroes\n");
1153		} else {
1154			printk(KERN_ERR "Raw EDID:\n");
1155			print_hex_dump(KERN_ERR, " \t", DUMP_PREFIX_NONE, 16, 1,
1156			       raw_edid, EDID_LENGTH, false);
1157		}
1158	}
1159	return false;
1160}
1161EXPORT_SYMBOL(drm_edid_block_valid);
1162
1163/**
1164 * drm_edid_is_valid - sanity check EDID data
1165 * @edid: EDID data
1166 *
1167 * Sanity-check an entire EDID record (including extensions)
1168 *
1169 * Return: True if the EDID data is valid, false otherwise.
1170 */
1171bool drm_edid_is_valid(struct edid *edid)
1172{
1173	int i;
1174	u8 *raw = (u8 *)edid;
1175
1176	if (!edid)
1177		return false;
1178
1179	for (i = 0; i <= edid->extensions; i++)
1180		if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true, NULL))
1181			return false;
1182
1183	return true;
1184}
1185EXPORT_SYMBOL(drm_edid_is_valid);
1186
1187#define DDC_SEGMENT_ADDR 0x30
1188/**
1189 * drm_do_probe_ddc_edid() - get EDID information via I2C
1190 * @data: I2C device adapter
1191 * @buf: EDID data buffer to be filled
1192 * @block: 128 byte EDID block to start fetching from
1193 * @len: EDID data buffer length to fetch
1194 *
1195 * Try to fetch EDID information by calling I2C driver functions.
1196 *
1197 * Return: 0 on success or -1 on failure.
1198 */
1199static int
1200drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len)
1201{
1202	struct i2c_adapter *adapter = data;
1203	unsigned char start = block * EDID_LENGTH;
1204	unsigned char segment = block >> 1;
1205	unsigned char xfers = segment ? 3 : 2;
1206	int ret, retries = 5;
1207
1208	/*
1209	 * The core I2C driver will automatically retry the transfer if the
1210	 * adapter reports EAGAIN. However, we find that bit-banging transfers
1211	 * are susceptible to errors under a heavily loaded machine and
1212	 * generate spurious NAKs and timeouts. Retrying the transfer
1213	 * of the individual block a few times seems to overcome this.
1214	 */
1215	do {
1216		struct i2c_msg msgs[] = {
1217			{
1218				.addr	= DDC_SEGMENT_ADDR,
1219				.flags	= 0,
1220				.len	= 1,
1221				.buf	= &segment,
1222			}, {
1223				.addr	= DDC_ADDR,
1224				.flags	= 0,
1225				.len	= 1,
1226				.buf	= &start,
1227			}, {
1228				.addr	= DDC_ADDR,
1229				.flags	= I2C_M_RD,
1230				.len	= len,
1231				.buf	= buf,
1232			}
1233		};
1234
1235		/*
1236		 * Avoid sending the segment addr to not upset non-compliant
1237		 * DDC monitors.
1238		 */
1239		ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers);
1240
1241		if (ret == -ENXIO) {
1242			DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n",
1243					adapter->name);
1244			break;
1245		}
1246	} while (ret != xfers && --retries);
1247
1248	return ret == xfers ? 0 : -1;
1249}
1250
1251/**
1252 * drm_do_get_edid - get EDID data using a custom EDID block read function
1253 * @connector: connector we're probing
1254 * @get_edid_block: EDID block read function
1255 * @data: private data passed to the block read function
1256 *
1257 * When the I2C adapter connected to the DDC bus is hidden behind a device that
1258 * exposes a different interface to read EDID blocks this function can be used
1259 * to get EDID data using a custom block read function.
1260 *
1261 * As in the general case the DDC bus is accessible by the kernel at the I2C
1262 * level, drivers must make all reasonable efforts to expose it as an I2C
1263 * adapter and use drm_get_edid() instead of abusing this function.
1264 *
1265 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1266 */
1267struct edid *drm_do_get_edid(struct drm_connector *connector,
1268	int (*get_edid_block)(void *data, u8 *buf, unsigned int block,
1269			      size_t len),
1270	void *data)
1271{
1272	int i, j = 0, valid_extensions = 0;
1273	u8 *block, *new;
1274	bool print_bad_edid = !connector->bad_edid_counter || (drm_debug & DRM_UT_KMS);
1275
1276	if ((block = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL)
1277		return NULL;
1278
1279	/* base block fetch */
1280	for (i = 0; i < 4; i++) {
1281		if (get_edid_block(data, block, 0, EDID_LENGTH))
1282			goto out;
1283		if (drm_edid_block_valid(block, 0, print_bad_edid,
1284					 &connector->edid_corrupt))
1285			break;
1286		if (i == 0 && drm_edid_is_zero(block, EDID_LENGTH)) {
1287			connector->null_edid_counter++;
1288			goto carp;
1289		}
1290	}
1291	if (i == 4)
1292		goto carp;
1293
1294	/* if there's no extensions, we're done */
1295	if (block[0x7e] == 0)
1296		return (struct edid *)block;
1297
1298	new = krealloc(block, (block[0x7e] + 1) * EDID_LENGTH, GFP_KERNEL);
1299	if (!new)
1300		goto out;
1301	block = new;
1302
1303	for (j = 1; j <= block[0x7e]; j++) {
1304		for (i = 0; i < 4; i++) {
1305			if (get_edid_block(data,
1306				  block + (valid_extensions + 1) * EDID_LENGTH,
1307				  j, EDID_LENGTH))
1308				goto out;
1309			if (drm_edid_block_valid(block + (valid_extensions + 1)
1310						 * EDID_LENGTH, j,
1311						 print_bad_edid,
1312						 NULL)) {
1313				valid_extensions++;
1314				break;
1315			}
1316		}
1317
1318		if (i == 4 && print_bad_edid) {
1319			dev_warn(connector->dev->dev,
1320			 "%s: Ignoring invalid EDID block %d.\n",
1321			 connector->name, j);
1322
1323			connector->bad_edid_counter++;
1324		}
1325	}
1326
1327	if (valid_extensions != block[0x7e]) {
1328		block[EDID_LENGTH-1] += block[0x7e] - valid_extensions;
1329		block[0x7e] = valid_extensions;
1330		new = krealloc(block, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1331		if (!new)
1332			goto out;
1333		block = new;
1334	}
1335
1336	return (struct edid *)block;
1337
1338carp:
1339	if (print_bad_edid) {
1340		dev_warn(connector->dev->dev, "%s: EDID block %d invalid.\n",
1341			 connector->name, j);
1342	}
1343	connector->bad_edid_counter++;
1344
1345out:
1346	kfree(block);
1347	return NULL;
1348}
1349EXPORT_SYMBOL_GPL(drm_do_get_edid);
1350
1351/**
1352 * drm_probe_ddc() - probe DDC presence
1353 * @adapter: I2C adapter to probe
1354 *
1355 * Return: True on success, false on failure.
1356 */
1357bool
1358drm_probe_ddc(struct i2c_adapter *adapter)
1359{
1360	unsigned char out;
1361
1362	return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0);
1363}
1364EXPORT_SYMBOL(drm_probe_ddc);
1365
1366/**
1367 * drm_get_edid - get EDID data, if available
1368 * @connector: connector we're probing
1369 * @adapter: I2C adapter to use for DDC
1370 *
1371 * Poke the given I2C channel to grab EDID data if possible.  If found,
1372 * attach it to the connector.
1373 *
1374 * Return: Pointer to valid EDID or NULL if we couldn't find any.
1375 */
1376struct edid *drm_get_edid(struct drm_connector *connector,
1377			  struct i2c_adapter *adapter)
1378{
1379	struct edid *edid;
1380
1381	if (!drm_probe_ddc(adapter))
1382		return NULL;
1383
1384	edid = drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter);
1385	if (edid)
1386		drm_get_displayid(connector, edid);
1387	return edid;
1388}
1389EXPORT_SYMBOL(drm_get_edid);
1390
1391/**
1392 * drm_edid_duplicate - duplicate an EDID and the extensions
1393 * @edid: EDID to duplicate
1394 *
1395 * Return: Pointer to duplicated EDID or NULL on allocation failure.
1396 */
1397struct edid *drm_edid_duplicate(const struct edid *edid)
1398{
1399	return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL);
1400}
1401EXPORT_SYMBOL(drm_edid_duplicate);
1402
1403/*** EDID parsing ***/
1404
1405/**
1406 * edid_vendor - match a string against EDID's obfuscated vendor field
1407 * @edid: EDID to match
1408 * @vendor: vendor string
1409 *
1410 * Returns true if @vendor is in @edid, false otherwise
1411 */
1412static bool edid_vendor(struct edid *edid, char *vendor)
1413{
1414	char edid_vendor[3];
1415
1416	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1417	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1418			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1419	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1420
1421	return !strncmp(edid_vendor, vendor, 3);
1422}
1423
1424/**
1425 * edid_get_quirks - return quirk flags for a given EDID
1426 * @edid: EDID to process
1427 *
1428 * This tells subsequent routines what fixes they need to apply.
1429 */
1430static u32 edid_get_quirks(struct edid *edid)
1431{
1432	struct edid_quirk *quirk;
1433	int i;
1434
1435	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
1436		quirk = &edid_quirk_list[i];
1437
1438		if (edid_vendor(edid, quirk->vendor) &&
1439		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
1440			return quirk->quirks;
1441	}
1442
1443	return 0;
1444}
1445
1446#define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
1447#define MODE_REFRESH_DIFF(c,t) (abs((c) - (t)))
1448
1449/**
1450 * edid_fixup_preferred - set preferred modes based on quirk list
1451 * @connector: has mode list to fix up
1452 * @quirks: quirks list
1453 *
1454 * Walk the mode list for @connector, clearing the preferred status
1455 * on existing modes and setting it anew for the right mode ala @quirks.
1456 */
1457static void edid_fixup_preferred(struct drm_connector *connector,
1458				 u32 quirks)
1459{
1460	struct drm_display_mode *t, *cur_mode, *preferred_mode;
1461	int target_refresh = 0;
1462	int cur_vrefresh, preferred_vrefresh;
1463
1464	if (list_empty(&connector->probed_modes))
1465		return;
1466
1467	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
1468		target_refresh = 60;
1469	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
1470		target_refresh = 75;
1471
1472	preferred_mode = list_first_entry(&connector->probed_modes,
1473					  struct drm_display_mode, head);
1474
1475	list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) {
1476		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
1477
1478		if (cur_mode == preferred_mode)
1479			continue;
1480
1481		/* Largest mode is preferred */
1482		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
1483			preferred_mode = cur_mode;
1484
1485		cur_vrefresh = cur_mode->vrefresh ?
1486			cur_mode->vrefresh : drm_mode_vrefresh(cur_mode);
1487		preferred_vrefresh = preferred_mode->vrefresh ?
1488			preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode);
1489		/* At a given size, try to get closest to target refresh */
1490		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
1491		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
1492		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
1493			preferred_mode = cur_mode;
1494		}
1495	}
1496
1497	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
1498}
1499
1500static bool
1501mode_is_rb(const struct drm_display_mode *mode)
1502{
1503	return (mode->htotal - mode->hdisplay == 160) &&
1504	       (mode->hsync_end - mode->hdisplay == 80) &&
1505	       (mode->hsync_end - mode->hsync_start == 32) &&
1506	       (mode->vsync_start - mode->vdisplay == 3);
1507}
1508
1509/*
1510 * drm_mode_find_dmt - Create a copy of a mode if present in DMT
1511 * @dev: Device to duplicate against
1512 * @hsize: Mode width
1513 * @vsize: Mode height
1514 * @fresh: Mode refresh rate
1515 * @rb: Mode reduced-blanking-ness
1516 *
1517 * Walk the DMT mode list looking for a match for the given parameters.
1518 *
1519 * Return: A newly allocated copy of the mode, or NULL if not found.
1520 */
1521struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
1522					   int hsize, int vsize, int fresh,
1523					   bool rb)
1524{
1525	int i;
1526
1527	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
1528		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
1529		if (hsize != ptr->hdisplay)
1530			continue;
1531		if (vsize != ptr->vdisplay)
1532			continue;
1533		if (fresh != drm_mode_vrefresh(ptr))
1534			continue;
1535		if (rb != mode_is_rb(ptr))
1536			continue;
1537
1538		return drm_mode_duplicate(dev, ptr);
1539	}
1540
1541	return NULL;
1542}
1543EXPORT_SYMBOL(drm_mode_find_dmt);
1544
1545typedef void detailed_cb(struct detailed_timing *timing, void *closure);
1546
1547static void
1548cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1549{
1550	int i, n = 0;
1551	u8 d = ext[0x02];
1552	u8 *det_base = ext + d;
1553
1554	n = (127 - d) / 18;
1555	for (i = 0; i < n; i++)
1556		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1557}
1558
1559static void
1560vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
1561{
1562	unsigned int i, n = min((int)ext[0x02], 6);
1563	u8 *det_base = ext + 5;
1564
1565	if (ext[0x01] != 1)
1566		return; /* unknown version */
1567
1568	for (i = 0; i < n; i++)
1569		cb((struct detailed_timing *)(det_base + 18 * i), closure);
1570}
1571
1572static void
1573drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
1574{
1575	int i;
1576	struct edid *edid = (struct edid *)raw_edid;
1577
1578	if (edid == NULL)
1579		return;
1580
1581	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
1582		cb(&(edid->detailed_timings[i]), closure);
1583
1584	for (i = 1; i <= raw_edid[0x7e]; i++) {
1585		u8 *ext = raw_edid + (i * EDID_LENGTH);
1586		switch (*ext) {
1587		case CEA_EXT:
1588			cea_for_each_detailed_block(ext, cb, closure);
1589			break;
1590		case VTB_EXT:
1591			vtb_for_each_detailed_block(ext, cb, closure);
1592			break;
1593		default:
1594			break;
1595		}
1596	}
1597}
1598
1599static void
1600is_rb(struct detailed_timing *t, void *data)
1601{
1602	u8 *r = (u8 *)t;
1603	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
1604		if (r[15] & 0x10)
1605			*(bool *)data = true;
1606}
1607
1608/* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
1609static bool
1610drm_monitor_supports_rb(struct edid *edid)
1611{
1612	if (edid->revision >= 4) {
1613		bool ret = false;
1614		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
1615		return ret;
1616	}
1617
1618	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
1619}
1620
1621static void
1622find_gtf2(struct detailed_timing *t, void *data)
1623{
1624	u8 *r = (u8 *)t;
1625	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
1626		*(u8 **)data = r;
1627}
1628
1629/* Secondary GTF curve kicks in above some break frequency */
1630static int
1631drm_gtf2_hbreak(struct edid *edid)
1632{
1633	u8 *r = NULL;
1634	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1635	return r ? (r[12] * 2) : 0;
1636}
1637
1638static int
1639drm_gtf2_2c(struct edid *edid)
1640{
1641	u8 *r = NULL;
1642	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1643	return r ? r[13] : 0;
1644}
1645
1646static int
1647drm_gtf2_m(struct edid *edid)
1648{
1649	u8 *r = NULL;
1650	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1651	return r ? (r[15] << 8) + r[14] : 0;
1652}
1653
1654static int
1655drm_gtf2_k(struct edid *edid)
1656{
1657	u8 *r = NULL;
1658	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1659	return r ? r[16] : 0;
1660}
1661
1662static int
1663drm_gtf2_2j(struct edid *edid)
1664{
1665	u8 *r = NULL;
1666	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
1667	return r ? r[17] : 0;
1668}
1669
1670/**
1671 * standard_timing_level - get std. timing level(CVT/GTF/DMT)
1672 * @edid: EDID block to scan
1673 */
1674static int standard_timing_level(struct edid *edid)
1675{
1676	if (edid->revision >= 2) {
1677		if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
1678			return LEVEL_CVT;
1679		if (drm_gtf2_hbreak(edid))
1680			return LEVEL_GTF2;
1681		return LEVEL_GTF;
1682	}
1683	return LEVEL_DMT;
1684}
1685
1686/*
1687 * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
1688 * monitors fill with ascii space (0x20) instead.
1689 */
1690static int
1691bad_std_timing(u8 a, u8 b)
1692{
1693	return (a == 0x00 && b == 0x00) ||
1694	       (a == 0x01 && b == 0x01) ||
1695	       (a == 0x20 && b == 0x20);
1696}
1697
1698/**
1699 * drm_mode_std - convert standard mode info (width, height, refresh) into mode
1700 * @connector: connector of for the EDID block
1701 * @edid: EDID block to scan
1702 * @t: standard timing params
1703 *
1704 * Take the standard timing params (in this case width, aspect, and refresh)
1705 * and convert them into a real mode using CVT/GTF/DMT.
1706 */
1707static struct drm_display_mode *
1708drm_mode_std(struct drm_connector *connector, struct edid *edid,
1709	     struct std_timing *t)
1710{
1711	struct drm_device *dev = connector->dev;
1712	struct drm_display_mode *m, *mode = NULL;
1713	int hsize, vsize;
1714	int vrefresh_rate;
1715	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
1716		>> EDID_TIMING_ASPECT_SHIFT;
1717	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
1718		>> EDID_TIMING_VFREQ_SHIFT;
1719	int timing_level = standard_timing_level(edid);
1720
1721	if (bad_std_timing(t->hsize, t->vfreq_aspect))
1722		return NULL;
1723
1724	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
1725	hsize = t->hsize * 8 + 248;
1726	/* vrefresh_rate = vfreq + 60 */
1727	vrefresh_rate = vfreq + 60;
1728	/* the vdisplay is calculated based on the aspect ratio */
1729	if (aspect_ratio == 0) {
1730		if (edid->revision < 3)
1731			vsize = hsize;
1732		else
1733			vsize = (hsize * 10) / 16;
1734	} else if (aspect_ratio == 1)
1735		vsize = (hsize * 3) / 4;
1736	else if (aspect_ratio == 2)
1737		vsize = (hsize * 4) / 5;
1738	else
1739		vsize = (hsize * 9) / 16;
1740
1741	/* HDTV hack, part 1 */
1742	if (vrefresh_rate == 60 &&
1743	    ((hsize == 1360 && vsize == 765) ||
1744	     (hsize == 1368 && vsize == 769))) {
1745		hsize = 1366;
1746		vsize = 768;
1747	}
1748
1749	/*
1750	 * If this connector already has a mode for this size and refresh
1751	 * rate (because it came from detailed or CVT info), use that
1752	 * instead.  This way we don't have to guess at interlace or
1753	 * reduced blanking.
1754	 */
1755	list_for_each_entry(m, &connector->probed_modes, head)
1756		if (m->hdisplay == hsize && m->vdisplay == vsize &&
1757		    drm_mode_vrefresh(m) == vrefresh_rate)
1758			return NULL;
1759
1760	/* HDTV hack, part 2 */
1761	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
1762		mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0,
1763				    false);
1764		mode->hdisplay = 1366;
1765		mode->hsync_start = mode->hsync_start - 1;
1766		mode->hsync_end = mode->hsync_end - 1;
1767		return mode;
1768	}
1769
1770	/* check whether it can be found in default mode table */
1771	if (drm_monitor_supports_rb(edid)) {
1772		mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate,
1773					 true);
1774		if (mode)
1775			return mode;
1776	}
1777	mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false);
1778	if (mode)
1779		return mode;
1780
1781	/* okay, generate it */
1782	switch (timing_level) {
1783	case LEVEL_DMT:
1784		break;
1785	case LEVEL_GTF:
1786		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1787		break;
1788	case LEVEL_GTF2:
1789		/*
1790		 * This is potentially wrong if there's ever a monitor with
1791		 * more than one ranges section, each claiming a different
1792		 * secondary GTF curve.  Please don't do that.
1793		 */
1794		mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0);
1795		if (!mode)
1796			return NULL;
1797		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
1798			drm_mode_destroy(dev, mode);
1799			mode = drm_gtf_mode_complex(dev, hsize, vsize,
1800						    vrefresh_rate, 0, 0,
1801						    drm_gtf2_m(edid),
1802						    drm_gtf2_2c(edid),
1803						    drm_gtf2_k(edid),
1804						    drm_gtf2_2j(edid));
1805		}
1806		break;
1807	case LEVEL_CVT:
1808		mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0,
1809				    false);
1810		break;
1811	}
1812	return mode;
1813}
1814
1815/*
1816 * EDID is delightfully ambiguous about how interlaced modes are to be
1817 * encoded.  Our internal representation is of frame height, but some
1818 * HDTV detailed timings are encoded as field height.
1819 *
1820 * The format list here is from CEA, in frame size.  Technically we
1821 * should be checking refresh rate too.  Whatever.
1822 */
1823static void
1824drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
1825			    struct detailed_pixel_timing *pt)
1826{
1827	int i;
1828	static const struct {
1829		int w, h;
1830	} cea_interlaced[] = {
1831		{ 1920, 1080 },
1832		{  720,  480 },
1833		{ 1440,  480 },
1834		{ 2880,  480 },
1835		{  720,  576 },
1836		{ 1440,  576 },
1837		{ 2880,  576 },
1838	};
1839
1840	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
1841		return;
1842
1843	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
1844		if ((mode->hdisplay == cea_interlaced[i].w) &&
1845		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
1846			mode->vdisplay *= 2;
1847			mode->vsync_start *= 2;
1848			mode->vsync_end *= 2;
1849			mode->vtotal *= 2;
1850			mode->vtotal |= 1;
1851		}
1852	}
1853
1854	mode->flags |= DRM_MODE_FLAG_INTERLACE;
1855}
1856
1857/**
1858 * drm_mode_detailed - create a new mode from an EDID detailed timing section
1859 * @dev: DRM device (needed to create new mode)
1860 * @edid: EDID block
1861 * @timing: EDID detailed timing info
1862 * @quirks: quirks to apply
1863 *
1864 * An EDID detailed timing block contains enough info for us to create and
1865 * return a new struct drm_display_mode.
1866 */
1867static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev,
1868						  struct edid *edid,
1869						  struct detailed_timing *timing,
1870						  u32 quirks)
1871{
1872	struct drm_display_mode *mode;
1873	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
1874	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
1875	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
1876	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
1877	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
1878	unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo;
1879	unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo;
1880	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4;
1881	unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf);
1882
1883	/* ignore tiny modes */
1884	if (hactive < 64 || vactive < 64)
1885		return NULL;
1886
1887	if (pt->misc & DRM_EDID_PT_STEREO) {
1888		DRM_DEBUG_KMS("stereo mode not supported\n");
1889		return NULL;
1890	}
1891	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) {
1892		DRM_DEBUG_KMS("composite sync not supported\n");
1893	}
1894
1895	/* it is incorrect if hsync/vsync width is zero */
1896	if (!hsync_pulse_width || !vsync_pulse_width) {
1897		DRM_DEBUG_KMS("Incorrect Detailed timing. "
1898				"Wrong Hsync/Vsync pulse width\n");
1899		return NULL;
1900	}
1901
1902	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
1903		mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false);
1904		if (!mode)
1905			return NULL;
1906
1907		goto set_size;
1908	}
1909
1910	mode = drm_mode_create(dev);
1911	if (!mode)
1912		return NULL;
1913
1914	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
1915		timing->pixel_clock = cpu_to_le16(1088);
1916
1917	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
1918
1919	mode->hdisplay = hactive;
1920	mode->hsync_start = mode->hdisplay + hsync_offset;
1921	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
1922	mode->htotal = mode->hdisplay + hblank;
1923
1924	mode->vdisplay = vactive;
1925	mode->vsync_start = mode->vdisplay + vsync_offset;
1926	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
1927	mode->vtotal = mode->vdisplay + vblank;
1928
1929	/* Some EDIDs have bogus h/vtotal values */
1930	if (mode->hsync_end > mode->htotal)
1931		mode->htotal = mode->hsync_end + 1;
1932	if (mode->vsync_end > mode->vtotal)
1933		mode->vtotal = mode->vsync_end + 1;
1934
1935	drm_mode_do_interlace_quirk(mode, pt);
1936
1937	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) {
1938		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE;
1939	}
1940
1941	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
1942		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1943	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
1944		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1945
1946set_size:
1947	mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4;
1948	mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8;
1949
1950	if (quirks & EDID_QUIRK_DETAILED_IN_CM) {
1951		mode->width_mm *= 10;
1952		mode->height_mm *= 10;
1953	}
1954
1955	if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) {
1956		mode->width_mm = edid->width_cm * 10;
1957		mode->height_mm = edid->height_cm * 10;
1958	}
1959
1960	mode->type = DRM_MODE_TYPE_DRIVER;
1961	mode->vrefresh = drm_mode_vrefresh(mode);
1962	drm_mode_set_name(mode);
1963
1964	return mode;
1965}
1966
1967static bool
1968mode_in_hsync_range(const struct drm_display_mode *mode,
1969		    struct edid *edid, u8 *t)
1970{
1971	int hsync, hmin, hmax;
1972
1973	hmin = t[7];
1974	if (edid->revision >= 4)
1975	    hmin += ((t[4] & 0x04) ? 255 : 0);
1976	hmax = t[8];
1977	if (edid->revision >= 4)
1978	    hmax += ((t[4] & 0x08) ? 255 : 0);
1979	hsync = drm_mode_hsync(mode);
1980
1981	return (hsync <= hmax && hsync >= hmin);
1982}
1983
1984static bool
1985mode_in_vsync_range(const struct drm_display_mode *mode,
1986		    struct edid *edid, u8 *t)
1987{
1988	int vsync, vmin, vmax;
1989
1990	vmin = t[5];
1991	if (edid->revision >= 4)
1992	    vmin += ((t[4] & 0x01) ? 255 : 0);
1993	vmax = t[6];
1994	if (edid->revision >= 4)
1995	    vmax += ((t[4] & 0x02) ? 255 : 0);
1996	vsync = drm_mode_vrefresh(mode);
1997
1998	return (vsync <= vmax && vsync >= vmin);
1999}
2000
2001static u32
2002range_pixel_clock(struct edid *edid, u8 *t)
2003{
2004	/* unspecified */
2005	if (t[9] == 0 || t[9] == 255)
2006		return 0;
2007
2008	/* 1.4 with CVT support gives us real precision, yay */
2009	if (edid->revision >= 4 && t[10] == 0x04)
2010		return (t[9] * 10000) - ((t[12] >> 2) * 250);
2011
2012	/* 1.3 is pathetic, so fuzz up a bit */
2013	return t[9] * 10000 + 5001;
2014}
2015
2016static bool
2017mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
2018	      struct detailed_timing *timing)
2019{
2020	u32 max_clock;
2021	u8 *t = (u8 *)timing;
2022
2023	if (!mode_in_hsync_range(mode, edid, t))
2024		return false;
2025
2026	if (!mode_in_vsync_range(mode, edid, t))
2027		return false;
2028
2029	if ((max_clock = range_pixel_clock(edid, t)))
2030		if (mode->clock > max_clock)
2031			return false;
2032
2033	/* 1.4 max horizontal check */
2034	if (edid->revision >= 4 && t[10] == 0x04)
2035		if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3))))
2036			return false;
2037
2038	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
2039		return false;
2040
2041	return true;
2042}
2043
2044static bool valid_inferred_mode(const struct drm_connector *connector,
2045				const struct drm_display_mode *mode)
2046{
2047	const struct drm_display_mode *m;
2048	bool ok = false;
2049
2050	list_for_each_entry(m, &connector->probed_modes, head) {
2051		if (mode->hdisplay == m->hdisplay &&
2052		    mode->vdisplay == m->vdisplay &&
2053		    drm_mode_vrefresh(mode) == drm_mode_vrefresh(m))
2054			return false; /* duplicated */
2055		if (mode->hdisplay <= m->hdisplay &&
2056		    mode->vdisplay <= m->vdisplay)
2057			ok = true;
2058	}
2059	return ok;
2060}
2061
2062static int
2063drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2064			struct detailed_timing *timing)
2065{
2066	int i, modes = 0;
2067	struct drm_display_mode *newmode;
2068	struct drm_device *dev = connector->dev;
2069
2070	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
2071		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
2072		    valid_inferred_mode(connector, drm_dmt_modes + i)) {
2073			newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]);
2074			if (newmode) {
2075				drm_mode_probed_add(connector, newmode);
2076				modes++;
2077			}
2078		}
2079	}
2080
2081	return modes;
2082}
2083
2084/* fix up 1366x768 mode from 1368x768;
2085 * GFT/CVT can't express 1366 width which isn't dividable by 8
2086 */
2087static void fixup_mode_1366x768(struct drm_display_mode *mode)
2088{
2089	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
2090		mode->hdisplay = 1366;
2091		mode->hsync_start--;
2092		mode->hsync_end--;
2093		drm_mode_set_name(mode);
2094	}
2095}
2096
2097static int
2098drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid,
2099			struct detailed_timing *timing)
2100{
2101	int i, modes = 0;
2102	struct drm_display_mode *newmode;
2103	struct drm_device *dev = connector->dev;
2104
2105	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2106		const struct minimode *m = &extra_modes[i];
2107		newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0);
2108		if (!newmode)
2109			return modes;
2110
2111		fixup_mode_1366x768(newmode);
2112		if (!mode_in_range(newmode, edid, timing) ||
2113		    !valid_inferred_mode(connector, newmode)) {
2114			drm_mode_destroy(dev, newmode);
2115			continue;
2116		}
2117
2118		drm_mode_probed_add(connector, newmode);
2119		modes++;
2120	}
2121
2122	return modes;
2123}
2124
2125static int
2126drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid,
2127			struct detailed_timing *timing)
2128{
2129	int i, modes = 0;
2130	struct drm_display_mode *newmode;
2131	struct drm_device *dev = connector->dev;
2132	bool rb = drm_monitor_supports_rb(edid);
2133
2134	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
2135		const struct minimode *m = &extra_modes[i];
2136		newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0);
2137		if (!newmode)
2138			return modes;
2139
2140		fixup_mode_1366x768(newmode);
2141		if (!mode_in_range(newmode, edid, timing) ||
2142		    !valid_inferred_mode(connector, newmode)) {
2143			drm_mode_destroy(dev, newmode);
2144			continue;
2145		}
2146
2147		drm_mode_probed_add(connector, newmode);
2148		modes++;
2149	}
2150
2151	return modes;
2152}
2153
2154static void
2155do_inferred_modes(struct detailed_timing *timing, void *c)
2156{
2157	struct detailed_mode_closure *closure = c;
2158	struct detailed_non_pixel *data = &timing->data.other_data;
2159	struct detailed_data_monitor_range *range = &data->data.range;
2160
2161	if (data->type != EDID_DETAIL_MONITOR_RANGE)
2162		return;
2163
2164	closure->modes += drm_dmt_modes_for_range(closure->connector,
2165						  closure->edid,
2166						  timing);
2167
2168	if (!version_greater(closure->edid, 1, 1))
2169		return; /* GTF not defined yet */
2170
2171	switch (range->flags) {
2172	case 0x02: /* secondary gtf, XXX could do more */
2173	case 0x00: /* default gtf */
2174		closure->modes += drm_gtf_modes_for_range(closure->connector,
2175							  closure->edid,
2176							  timing);
2177		break;
2178	case 0x04: /* cvt, only in 1.4+ */
2179		if (!version_greater(closure->edid, 1, 3))
2180			break;
2181
2182		closure->modes += drm_cvt_modes_for_range(closure->connector,
2183							  closure->edid,
2184							  timing);
2185		break;
2186	case 0x01: /* just the ranges, no formula */
2187	default:
2188		break;
2189	}
2190}
2191
2192static int
2193add_inferred_modes(struct drm_connector *connector, struct edid *edid)
2194{
2195	struct detailed_mode_closure closure = {
2196		.connector = connector,
2197		.edid = edid,
2198	};
2199
2200	if (version_greater(edid, 1, 0))
2201		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
2202					    &closure);
2203
2204	return closure.modes;
2205}
2206
2207static int
2208drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing)
2209{
2210	int i, j, m, modes = 0;
2211	struct drm_display_mode *mode;
2212	u8 *est = ((u8 *)timing) + 5;
2213
2214	for (i = 0; i < 6; i++) {
2215		for (j = 7; j >= 0; j--) {
2216			m = (i * 8) + (7 - j);
2217			if (m >= ARRAY_SIZE(est3_modes))
2218				break;
2219			if (est[i] & (1 << j)) {
2220				mode = drm_mode_find_dmt(connector->dev,
2221							 est3_modes[m].w,
2222							 est3_modes[m].h,
2223							 est3_modes[m].r,
2224							 est3_modes[m].rb);
2225				if (mode) {
2226					drm_mode_probed_add(connector, mode);
2227					modes++;
2228				}
2229			}
2230		}
2231	}
2232
2233	return modes;
2234}
2235
2236static void
2237do_established_modes(struct detailed_timing *timing, void *c)
2238{
2239	struct detailed_mode_closure *closure = c;
2240	struct detailed_non_pixel *data = &timing->data.other_data;
2241
2242	if (data->type == EDID_DETAIL_EST_TIMINGS)
2243		closure->modes += drm_est3_modes(closure->connector, timing);
2244}
2245
2246/**
2247 * add_established_modes - get est. modes from EDID and add them
2248 * @connector: connector to add mode(s) to
2249 * @edid: EDID block to scan
2250 *
2251 * Each EDID block contains a bitmap of the supported "established modes" list
2252 * (defined above).  Tease them out and add them to the global modes list.
2253 */
2254static int
2255add_established_modes(struct drm_connector *connector, struct edid *edid)
2256{
2257	struct drm_device *dev = connector->dev;
2258	unsigned long est_bits = edid->established_timings.t1 |
2259		(edid->established_timings.t2 << 8) |
2260		((edid->established_timings.mfg_rsvd & 0x80) << 9);
2261	int i, modes = 0;
2262	struct detailed_mode_closure closure = {
2263		.connector = connector,
2264		.edid = edid,
2265	};
2266
2267	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
2268		if (est_bits & (1<<i)) {
2269			struct drm_display_mode *newmode;
2270			newmode = drm_mode_duplicate(dev, &edid_est_modes[i]);
2271			if (newmode) {
2272				drm_mode_probed_add(connector, newmode);
2273				modes++;
2274			}
2275		}
2276	}
2277
2278	if (version_greater(edid, 1, 0))
2279		    drm_for_each_detailed_block((u8 *)edid,
2280						do_established_modes, &closure);
2281
2282	return modes + closure.modes;
2283}
2284
2285static void
2286do_standard_modes(struct detailed_timing *timing, void *c)
2287{
2288	struct detailed_mode_closure *closure = c;
2289	struct detailed_non_pixel *data = &timing->data.other_data;
2290	struct drm_connector *connector = closure->connector;
2291	struct edid *edid = closure->edid;
2292
2293	if (data->type == EDID_DETAIL_STD_MODES) {
2294		int i;
2295		for (i = 0; i < 6; i++) {
2296			struct std_timing *std;
2297			struct drm_display_mode *newmode;
2298
2299			std = &data->data.timings[i];
2300			newmode = drm_mode_std(connector, edid, std);
2301			if (newmode) {
2302				drm_mode_probed_add(connector, newmode);
2303				closure->modes++;
2304			}
2305		}
2306	}
2307}
2308
2309/**
2310 * add_standard_modes - get std. modes from EDID and add them
2311 * @connector: connector to add mode(s) to
2312 * @edid: EDID block to scan
2313 *
2314 * Standard modes can be calculated using the appropriate standard (DMT,
2315 * GTF or CVT. Grab them from @edid and add them to the list.
2316 */
2317static int
2318add_standard_modes(struct drm_connector *connector, struct edid *edid)
2319{
2320	int i, modes = 0;
2321	struct detailed_mode_closure closure = {
2322		.connector = connector,
2323		.edid = edid,
2324	};
2325
2326	for (i = 0; i < EDID_STD_TIMINGS; i++) {
2327		struct drm_display_mode *newmode;
2328
2329		newmode = drm_mode_std(connector, edid,
2330				       &edid->standard_timings[i]);
2331		if (newmode) {
2332			drm_mode_probed_add(connector, newmode);
2333			modes++;
2334		}
2335	}
2336
2337	if (version_greater(edid, 1, 0))
2338		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
2339					    &closure);
2340
2341	/* XXX should also look for standard codes in VTB blocks */
2342
2343	return modes + closure.modes;
2344}
2345
2346static int drm_cvt_modes(struct drm_connector *connector,
2347			 struct detailed_timing *timing)
2348{
2349	int i, j, modes = 0;
2350	struct drm_display_mode *newmode;
2351	struct drm_device *dev = connector->dev;
2352	struct cvt_timing *cvt;
2353	const int rates[] = { 60, 85, 75, 60, 50 };
2354	const u8 empty[3] = { 0, 0, 0 };
2355
2356	for (i = 0; i < 4; i++) {
2357		int uninitialized_var(width), height;
2358		cvt = &(timing->data.other_data.data.cvt[i]);
2359
2360		if (!memcmp(cvt->code, empty, 3))
2361			continue;
2362
2363		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
2364		switch (cvt->code[1] & 0x0c) {
2365		case 0x00:
2366			width = height * 4 / 3;
2367			break;
2368		case 0x04:
2369			width = height * 16 / 9;
2370			break;
2371		case 0x08:
2372			width = height * 16 / 10;
2373			break;
2374		case 0x0c:
2375			width = height * 15 / 9;
2376			break;
2377		}
2378
2379		for (j = 1; j < 5; j++) {
2380			if (cvt->code[2] & (1 << j)) {
2381				newmode = drm_cvt_mode(dev, width, height,
2382						       rates[j], j == 0,
2383						       false, false);
2384				if (newmode) {
2385					drm_mode_probed_add(connector, newmode);
2386					modes++;
2387				}
2388			}
2389		}
2390	}
2391
2392	return modes;
2393}
2394
2395static void
2396do_cvt_mode(struct detailed_timing *timing, void *c)
2397{
2398	struct detailed_mode_closure *closure = c;
2399	struct detailed_non_pixel *data = &timing->data.other_data;
2400
2401	if (data->type == EDID_DETAIL_CVT_3BYTE)
2402		closure->modes += drm_cvt_modes(closure->connector, timing);
2403}
2404
2405static int
2406add_cvt_modes(struct drm_connector *connector, struct edid *edid)
2407{
2408	struct detailed_mode_closure closure = {
2409		.connector = connector,
2410		.edid = edid,
2411	};
2412
2413	if (version_greater(edid, 1, 2))
2414		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
2415
2416	/* XXX should also look for CVT codes in VTB blocks */
2417
2418	return closure.modes;
2419}
2420
2421static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode);
2422
2423static void
2424do_detailed_mode(struct detailed_timing *timing, void *c)
2425{
2426	struct detailed_mode_closure *closure = c;
2427	struct drm_display_mode *newmode;
2428
2429	if (timing->pixel_clock) {
2430		newmode = drm_mode_detailed(closure->connector->dev,
2431					    closure->edid, timing,
2432					    closure->quirks);
2433		if (!newmode)
2434			return;
2435
2436		if (closure->preferred)
2437			newmode->type |= DRM_MODE_TYPE_PREFERRED;
2438
2439		/*
2440		 * Detailed modes are limited to 10kHz pixel clock resolution,
2441		 * so fix up anything that looks like CEA/HDMI mode, but the clock
2442		 * is just slightly off.
2443		 */
2444		fixup_detailed_cea_mode_clock(newmode);
2445
2446		drm_mode_probed_add(closure->connector, newmode);
2447		closure->modes++;
2448		closure->preferred = 0;
2449	}
2450}
2451
2452/*
2453 * add_detailed_modes - Add modes from detailed timings
2454 * @connector: attached connector
2455 * @edid: EDID block to scan
2456 * @quirks: quirks to apply
2457 */
2458static int
2459add_detailed_modes(struct drm_connector *connector, struct edid *edid,
2460		   u32 quirks)
2461{
2462	struct detailed_mode_closure closure = {
2463		.connector = connector,
2464		.edid = edid,
2465		.preferred = 1,
2466		.quirks = quirks,
2467	};
2468
2469	if (closure.preferred && !version_greater(edid, 1, 3))
2470		closure.preferred =
2471		    (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
2472
2473	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
2474
2475	return closure.modes;
2476}
2477
2478#define AUDIO_BLOCK	0x01
2479#define VIDEO_BLOCK     0x02
2480#define VENDOR_BLOCK    0x03
2481#define SPEAKER_BLOCK	0x04
2482#define VIDEO_CAPABILITY_BLOCK	0x07
2483#define EDID_BASIC_AUDIO	(1 << 6)
2484#define EDID_CEA_YCRCB444	(1 << 5)
2485#define EDID_CEA_YCRCB422	(1 << 4)
2486#define EDID_CEA_VCDB_QS	(1 << 6)
2487
2488/*
2489 * Search EDID for CEA extension block.
2490 */
2491static u8 *drm_find_edid_extension(struct edid *edid, int ext_id)
2492{
2493	u8 *edid_ext = NULL;
2494	int i;
2495
2496	/* No EDID or EDID extensions */
2497	if (edid == NULL || edid->extensions == 0)
2498		return NULL;
2499
2500	/* Find CEA extension */
2501	for (i = 0; i < edid->extensions; i++) {
2502		edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1);
2503		if (edid_ext[0] == ext_id)
2504			break;
2505	}
2506
2507	if (i == edid->extensions)
2508		return NULL;
2509
2510	return edid_ext;
2511}
2512
2513static u8 *drm_find_cea_extension(struct edid *edid)
2514{
2515	return drm_find_edid_extension(edid, CEA_EXT);
2516}
2517
2518static u8 *drm_find_displayid_extension(struct edid *edid)
2519{
2520	return drm_find_edid_extension(edid, DISPLAYID_EXT);
2521}
2522
2523/*
2524 * Calculate the alternate clock for the CEA mode
2525 * (60Hz vs. 59.94Hz etc.)
2526 */
2527static unsigned int
2528cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
2529{
2530	unsigned int clock = cea_mode->clock;
2531
2532	if (cea_mode->vrefresh % 6 != 0)
2533		return clock;
2534
2535	/*
2536	 * edid_cea_modes contains the 59.94Hz
2537	 * variant for 240 and 480 line modes,
2538	 * and the 60Hz variant otherwise.
2539	 */
2540	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
2541		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
2542	else
2543		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
2544
2545	return clock;
2546}
2547
2548/**
2549 * drm_match_cea_mode - look for a CEA mode matching given mode
2550 * @to_match: display mode
2551 *
2552 * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861
2553 * mode.
2554 */
2555u8 drm_match_cea_mode(const struct drm_display_mode *to_match)
2556{
2557	u8 mode;
2558
2559	if (!to_match->clock)
2560		return 0;
2561
2562	for (mode = 0; mode < ARRAY_SIZE(edid_cea_modes); mode++) {
2563		const struct drm_display_mode *cea_mode = &edid_cea_modes[mode];
2564		unsigned int clock1, clock2;
2565
2566		/* Check both 60Hz and 59.94Hz */
2567		clock1 = cea_mode->clock;
2568		clock2 = cea_mode_alternate_clock(cea_mode);
2569
2570		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2571		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2572		    drm_mode_equal_no_clocks_no_stereo(to_match, cea_mode))
2573			return mode + 1;
2574	}
2575	return 0;
2576}
2577EXPORT_SYMBOL(drm_match_cea_mode);
2578
2579/**
2580 * drm_get_cea_aspect_ratio - get the picture aspect ratio corresponding to
2581 * the input VIC from the CEA mode list
2582 * @video_code: ID given to each of the CEA modes
2583 *
2584 * Returns picture aspect ratio
2585 */
2586enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
2587{
2588	/* return picture aspect ratio for video_code - 1 to access the
2589	 * right array element
2590	*/
2591	return edid_cea_modes[video_code-1].picture_aspect_ratio;
2592}
2593EXPORT_SYMBOL(drm_get_cea_aspect_ratio);
2594
2595/*
2596 * Calculate the alternate clock for HDMI modes (those from the HDMI vendor
2597 * specific block).
2598 *
2599 * It's almost like cea_mode_alternate_clock(), we just need to add an
2600 * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this
2601 * one.
2602 */
2603static unsigned int
2604hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
2605{
2606	if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
2607		return hdmi_mode->clock;
2608
2609	return cea_mode_alternate_clock(hdmi_mode);
2610}
2611
2612/*
2613 * drm_match_hdmi_mode - look for a HDMI mode matching given mode
2614 * @to_match: display mode
2615 *
2616 * An HDMI mode is one defined in the HDMI vendor specific block.
2617 *
2618 * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one.
2619 */
2620static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
2621{
2622	u8 mode;
2623
2624	if (!to_match->clock)
2625		return 0;
2626
2627	for (mode = 0; mode < ARRAY_SIZE(edid_4k_modes); mode++) {
2628		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[mode];
2629		unsigned int clock1, clock2;
2630
2631		/* Make sure to also match alternate clocks */
2632		clock1 = hdmi_mode->clock;
2633		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
2634
2635		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
2636		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
2637		    drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
2638			return mode + 1;
2639	}
2640	return 0;
2641}
2642
2643static int
2644add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid)
2645{
2646	struct drm_device *dev = connector->dev;
2647	struct drm_display_mode *mode, *tmp;
2648	LIST_HEAD(list);
2649	int modes = 0;
2650
2651	/* Don't add CEA modes if the CEA extension block is missing */
2652	if (!drm_find_cea_extension(edid))
2653		return 0;
2654
2655	/*
2656	 * Go through all probed modes and create a new mode
2657	 * with the alternate clock for certain CEA modes.
2658	 */
2659	list_for_each_entry(mode, &connector->probed_modes, head) {
2660		const struct drm_display_mode *cea_mode = NULL;
2661		struct drm_display_mode *newmode;
2662		u8 mode_idx = drm_match_cea_mode(mode) - 1;
2663		unsigned int clock1, clock2;
2664
2665		if (mode_idx < ARRAY_SIZE(edid_cea_modes)) {
2666			cea_mode = &edid_cea_modes[mode_idx];
2667			clock2 = cea_mode_alternate_clock(cea_mode);
2668		} else {
2669			mode_idx = drm_match_hdmi_mode(mode) - 1;
2670			if (mode_idx < ARRAY_SIZE(edid_4k_modes)) {
2671				cea_mode = &edid_4k_modes[mode_idx];
2672				clock2 = hdmi_mode_alternate_clock(cea_mode);
2673			}
2674		}
2675
2676		if (!cea_mode)
2677			continue;
2678
2679		clock1 = cea_mode->clock;
2680
2681		if (clock1 == clock2)
2682			continue;
2683
2684		if (mode->clock != clock1 && mode->clock != clock2)
2685			continue;
2686
2687		newmode = drm_mode_duplicate(dev, cea_mode);
2688		if (!newmode)
2689			continue;
2690
2691		/* Carry over the stereo flags */
2692		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
2693
2694		/*
2695		 * The current mode could be either variant. Make
2696		 * sure to pick the "other" clock for the new mode.
2697		 */
2698		if (mode->clock != clock1)
2699			newmode->clock = clock1;
2700		else
2701			newmode->clock = clock2;
2702
2703		list_add_tail(&newmode->head, &list);
2704	}
2705
2706	list_for_each_entry_safe(mode, tmp, &list, head) {
2707		list_del(&mode->head);
2708		drm_mode_probed_add(connector, mode);
2709		modes++;
2710	}
2711
2712	return modes;
2713}
2714
2715static struct drm_display_mode *
2716drm_display_mode_from_vic_index(struct drm_connector *connector,
2717				const u8 *video_db, u8 video_len,
2718				u8 video_index)
2719{
2720	struct drm_device *dev = connector->dev;
2721	struct drm_display_mode *newmode;
2722	u8 cea_mode;
2723
2724	if (video_db == NULL || video_index >= video_len)
2725		return NULL;
2726
2727	/* CEA modes are numbered 1..127 */
2728	cea_mode = (video_db[video_index] & 127) - 1;
2729	if (cea_mode >= ARRAY_SIZE(edid_cea_modes))
2730		return NULL;
2731
2732	newmode = drm_mode_duplicate(dev, &edid_cea_modes[cea_mode]);
2733	if (!newmode)
2734		return NULL;
2735
2736	newmode->vrefresh = 0;
2737
2738	return newmode;
2739}
2740
2741static int
2742do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len)
2743{
2744	int i, modes = 0;
2745
2746	for (i = 0; i < len; i++) {
2747		struct drm_display_mode *mode;
2748		mode = drm_display_mode_from_vic_index(connector, db, len, i);
2749		if (mode) {
2750			drm_mode_probed_add(connector, mode);
2751			modes++;
2752		}
2753	}
2754
2755	return modes;
2756}
2757
2758struct stereo_mandatory_mode {
2759	int width, height, vrefresh;
2760	unsigned int flags;
2761};
2762
2763static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
2764	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2765	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
2766	{ 1920, 1080, 50,
2767	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2768	{ 1920, 1080, 60,
2769	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2770	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2771	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
2772	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2773	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
2774};
2775
2776static bool
2777stereo_match_mandatory(const struct drm_display_mode *mode,
2778		       const struct stereo_mandatory_mode *stereo_mode)
2779{
2780	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
2781
2782	return mode->hdisplay == stereo_mode->width &&
2783	       mode->vdisplay == stereo_mode->height &&
2784	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
2785	       drm_mode_vrefresh(mode) == stereo_mode->vrefresh;
2786}
2787
2788static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector)
2789{
2790	struct drm_device *dev = connector->dev;
2791	const struct drm_display_mode *mode;
2792	struct list_head stereo_modes;
2793	int modes = 0, i;
2794
2795	INIT_LIST_HEAD(&stereo_modes);
2796
2797	list_for_each_entry(mode, &connector->probed_modes, head) {
2798		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
2799			const struct stereo_mandatory_mode *mandatory;
2800			struct drm_display_mode *new_mode;
2801
2802			if (!stereo_match_mandatory(mode,
2803						    &stereo_mandatory_modes[i]))
2804				continue;
2805
2806			mandatory = &stereo_mandatory_modes[i];
2807			new_mode = drm_mode_duplicate(dev, mode);
2808			if (!new_mode)
2809				continue;
2810
2811			new_mode->flags |= mandatory->flags;
2812			list_add_tail(&new_mode->head, &stereo_modes);
2813			modes++;
2814		}
2815	}
2816
2817	list_splice_tail(&stereo_modes, &connector->probed_modes);
2818
2819	return modes;
2820}
2821
2822static int add_hdmi_mode(struct drm_connector *connector, u8 vic)
2823{
2824	struct drm_device *dev = connector->dev;
2825	struct drm_display_mode *newmode;
2826
2827	vic--; /* VICs start at 1 */
2828	if (vic >= ARRAY_SIZE(edid_4k_modes)) {
2829		DRM_ERROR("Unknown HDMI VIC: %d\n", vic);
2830		return 0;
2831	}
2832
2833	newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]);
2834	if (!newmode)
2835		return 0;
2836
2837	drm_mode_probed_add(connector, newmode);
2838
2839	return 1;
2840}
2841
2842static int add_3d_struct_modes(struct drm_connector *connector, u16 structure,
2843			       const u8 *video_db, u8 video_len, u8 video_index)
2844{
2845	struct drm_display_mode *newmode;
2846	int modes = 0;
2847
2848	if (structure & (1 << 0)) {
2849		newmode = drm_display_mode_from_vic_index(connector, video_db,
2850							  video_len,
2851							  video_index);
2852		if (newmode) {
2853			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
2854			drm_mode_probed_add(connector, newmode);
2855			modes++;
2856		}
2857	}
2858	if (structure & (1 << 6)) {
2859		newmode = drm_display_mode_from_vic_index(connector, video_db,
2860							  video_len,
2861							  video_index);
2862		if (newmode) {
2863			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2864			drm_mode_probed_add(connector, newmode);
2865			modes++;
2866		}
2867	}
2868	if (structure & (1 << 8)) {
2869		newmode = drm_display_mode_from_vic_index(connector, video_db,
2870							  video_len,
2871							  video_index);
2872		if (newmode) {
2873			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2874			drm_mode_probed_add(connector, newmode);
2875			modes++;
2876		}
2877	}
2878
2879	return modes;
2880}
2881
2882/*
2883 * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
2884 * @connector: connector corresponding to the HDMI sink
2885 * @db: start of the CEA vendor specific block
2886 * @len: length of the CEA block payload, ie. one can access up to db[len]
2887 *
2888 * Parses the HDMI VSDB looking for modes to add to @connector. This function
2889 * also adds the stereo 3d modes when applicable.
2890 */
2891static int
2892do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len,
2893		   const u8 *video_db, u8 video_len)
2894{
2895	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
2896	u8 vic_len, hdmi_3d_len = 0;
2897	u16 mask;
2898	u16 structure_all;
2899
2900	if (len < 8)
2901		goto out;
2902
2903	/* no HDMI_Video_Present */
2904	if (!(db[8] & (1 << 5)))
2905		goto out;
2906
2907	/* Latency_Fields_Present */
2908	if (db[8] & (1 << 7))
2909		offset += 2;
2910
2911	/* I_Latency_Fields_Present */
2912	if (db[8] & (1 << 6))
2913		offset += 2;
2914
2915	/* the declared length is not long enough for the 2 first bytes
2916	 * of additional video format capabilities */
2917	if (len < (8 + offset + 2))
2918		goto out;
2919
2920	/* 3D_Present */
2921	offset++;
2922	if (db[8 + offset] & (1 << 7)) {
2923		modes += add_hdmi_mandatory_stereo_modes(connector);
2924
2925		/* 3D_Multi_present */
2926		multi_present = (db[8 + offset] & 0x60) >> 5;
2927	}
2928
2929	offset++;
2930	vic_len = db[8 + offset] >> 5;
2931	hdmi_3d_len = db[8 + offset] & 0x1f;
2932
2933	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
2934		u8 vic;
2935
2936		vic = db[9 + offset + i];
2937		modes += add_hdmi_mode(connector, vic);
2938	}
2939	offset += 1 + vic_len;
2940
2941	if (multi_present == 1)
2942		multi_len = 2;
2943	else if (multi_present == 2)
2944		multi_len = 4;
2945	else
2946		multi_len = 0;
2947
2948	if (len < (8 + offset + hdmi_3d_len - 1))
2949		goto out;
2950
2951	if (hdmi_3d_len < multi_len)
2952		goto out;
2953
2954	if (multi_present == 1 || multi_present == 2) {
2955		/* 3D_Structure_ALL */
2956		structure_all = (db[8 + offset] << 8) | db[9 + offset];
2957
2958		/* check if 3D_MASK is present */
2959		if (multi_present == 2)
2960			mask = (db[10 + offset] << 8) | db[11 + offset];
2961		else
2962			mask = 0xffff;
2963
2964		for (i = 0; i < 16; i++) {
2965			if (mask & (1 << i))
2966				modes += add_3d_struct_modes(connector,
2967						structure_all,
2968						video_db,
2969						video_len, i);
2970		}
2971	}
2972
2973	offset += multi_len;
2974
2975	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
2976		int vic_index;
2977		struct drm_display_mode *newmode = NULL;
2978		unsigned int newflag = 0;
2979		bool detail_present;
2980
2981		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
2982
2983		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
2984			break;
2985
2986		/* 2D_VIC_order_X */
2987		vic_index = db[8 + offset + i] >> 4;
2988
2989		/* 3D_Structure_X */
2990		switch (db[8 + offset + i] & 0x0f) {
2991		case 0:
2992			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
2993			break;
2994		case 6:
2995			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2996			break;
2997		case 8:
2998			/* 3D_Detail_X */
2999			if ((db[9 + offset + i] >> 4) == 1)
3000				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3001			break;
3002		}
3003
3004		if (newflag != 0) {
3005			newmode = drm_display_mode_from_vic_index(connector,
3006								  video_db,
3007								  video_len,
3008								  vic_index);
3009
3010			if (newmode) {
3011				newmode->flags |= newflag;
3012				drm_mode_probed_add(connector, newmode);
3013				modes++;
3014			}
3015		}
3016
3017		if (detail_present)
3018			i++;
3019	}
3020
3021out:
3022	return modes;
3023}
3024
3025static int
3026cea_db_payload_len(const u8 *db)
3027{
3028	return db[0] & 0x1f;
3029}
3030
3031static int
3032cea_db_tag(const u8 *db)
3033{
3034	return db[0] >> 5;
3035}
3036
3037static int
3038cea_revision(const u8 *cea)
3039{
3040	return cea[1];
3041}
3042
3043static int
3044cea_db_offsets(const u8 *cea, int *start, int *end)
3045{
3046	/* Data block offset in CEA extension block */
3047	*start = 4;
3048	*end = cea[2];
3049	if (*end == 0)
3050		*end = 127;
3051	if (*end < 4 || *end > 127)
3052		return -ERANGE;
3053	return 0;
3054}
3055
3056static bool cea_db_is_hdmi_vsdb(const u8 *db)
3057{
3058	int hdmi_id;
3059
3060	if (cea_db_tag(db) != VENDOR_BLOCK)
3061		return false;
3062
3063	if (cea_db_payload_len(db) < 5)
3064		return false;
3065
3066	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
3067
3068	return hdmi_id == HDMI_IEEE_OUI;
3069}
3070
3071#define for_each_cea_db(cea, i, start, end) \
3072	for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
3073
3074static int
3075add_cea_modes(struct drm_connector *connector, struct edid *edid)
3076{
3077	const u8 *cea = drm_find_cea_extension(edid);
3078	const u8 *db, *hdmi = NULL, *video = NULL;
3079	u8 dbl, hdmi_len, video_len = 0;
3080	int modes = 0;
3081
3082	if (cea && cea_revision(cea) >= 3) {
3083		int i, start, end;
3084
3085		if (cea_db_offsets(cea, &start, &end))
3086			return 0;
3087
3088		for_each_cea_db(cea, i, start, end) {
3089			db = &cea[i];
3090			dbl = cea_db_payload_len(db);
3091
3092			if (cea_db_tag(db) == VIDEO_BLOCK) {
3093				video = db + 1;
3094				video_len = dbl;
3095				modes += do_cea_modes(connector, video, dbl);
3096			}
3097			else if (cea_db_is_hdmi_vsdb(db)) {
3098				hdmi = db;
3099				hdmi_len = dbl;
3100			}
3101		}
3102	}
3103
3104	/*
3105	 * We parse the HDMI VSDB after having added the cea modes as we will
3106	 * be patching their flags when the sink supports stereo 3D.
3107	 */
3108	if (hdmi)
3109		modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video,
3110					    video_len);
3111
3112	return modes;
3113}
3114
3115static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
3116{
3117	const struct drm_display_mode *cea_mode;
3118	int clock1, clock2, clock;
3119	u8 mode_idx;
3120	const char *type;
3121
3122	mode_idx = drm_match_cea_mode(mode) - 1;
3123	if (mode_idx < ARRAY_SIZE(edid_cea_modes)) {
3124		type = "CEA";
3125		cea_mode = &edid_cea_modes[mode_idx];
3126		clock1 = cea_mode->clock;
3127		clock2 = cea_mode_alternate_clock(cea_mode);
3128	} else {
3129		mode_idx = drm_match_hdmi_mode(mode) - 1;
3130		if (mode_idx < ARRAY_SIZE(edid_4k_modes)) {
3131			type = "HDMI";
3132			cea_mode = &edid_4k_modes[mode_idx];
3133			clock1 = cea_mode->clock;
3134			clock2 = hdmi_mode_alternate_clock(cea_mode);
3135		} else {
3136			return;
3137		}
3138	}
3139
3140	/* pick whichever is closest */
3141	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
3142		clock = clock1;
3143	else
3144		clock = clock2;
3145
3146	if (mode->clock == clock)
3147		return;
3148
3149	DRM_DEBUG("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
3150		  type, mode_idx + 1, mode->clock, clock);
3151	mode->clock = clock;
3152}
3153
3154static void
3155parse_hdmi_vsdb(struct drm_connector *connector, const u8 *db)
3156{
3157	u8 len = cea_db_payload_len(db);
3158
3159	if (len >= 6) {
3160		connector->eld[5] |= (db[6] >> 7) << 1;  /* Supports_AI */
3161		connector->dvi_dual = db[6] & 1;
3162	}
3163	if (len >= 7)
3164		connector->max_tmds_clock = db[7] * 5;
3165	if (len >= 8) {
3166		connector->latency_present[0] = db[8] >> 7;
3167		connector->latency_present[1] = (db[8] >> 6) & 1;
3168	}
3169	if (len >= 9)
3170		connector->video_latency[0] = db[9];
3171	if (len >= 10)
3172		connector->audio_latency[0] = db[10];
3173	if (len >= 11)
3174		connector->video_latency[1] = db[11];
3175	if (len >= 12)
3176		connector->audio_latency[1] = db[12];
3177
3178	DRM_DEBUG_KMS("HDMI: DVI dual %d, "
3179		    "max TMDS clock %d, "
3180		    "latency present %d %d, "
3181		    "video latency %d %d, "
3182		    "audio latency %d %d\n",
3183		    connector->dvi_dual,
3184		    connector->max_tmds_clock,
3185	      (int) connector->latency_present[0],
3186	      (int) connector->latency_present[1],
3187		    connector->video_latency[0],
3188		    connector->video_latency[1],
3189		    connector->audio_latency[0],
3190		    connector->audio_latency[1]);
3191}
3192
3193static void
3194monitor_name(struct detailed_timing *t, void *data)
3195{
3196	if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME)
3197		*(u8 **)data = t->data.other_data.data.str.str;
3198}
3199
3200/**
3201 * drm_edid_to_eld - build ELD from EDID
3202 * @connector: connector corresponding to the HDMI/DP sink
3203 * @edid: EDID to parse
3204 *
3205 * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The
3206 * Conn_Type, HDCP and Port_ID ELD fields are left for the graphics driver to
3207 * fill in.
3208 */
3209void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid)
3210{
3211	uint8_t *eld = connector->eld;
3212	u8 *cea;
3213	u8 *name;
3214	u8 *db;
3215	int sad_count = 0;
3216	int mnl;
3217	int dbl;
3218
3219	memset(eld, 0, sizeof(connector->eld));
3220
3221	cea = drm_find_cea_extension(edid);
3222	if (!cea) {
3223		DRM_DEBUG_KMS("ELD: no CEA Extension found\n");
3224		return;
3225	}
3226
3227	name = NULL;
3228	drm_for_each_detailed_block((u8 *)edid, monitor_name, &name);
3229	for (mnl = 0; name && mnl < 13; mnl++) {
3230		if (name[mnl] == 0x0a)
3231			break;
3232		eld[20 + mnl] = name[mnl];
3233	}
3234	eld[4] = (cea[1] << 5) | mnl;
3235	DRM_DEBUG_KMS("ELD monitor %s\n", eld + 20);
3236
3237	eld[0] = 2 << 3;		/* ELD version: 2 */
3238
3239	eld[16] = edid->mfg_id[0];
3240	eld[17] = edid->mfg_id[1];
3241	eld[18] = edid->prod_code[0];
3242	eld[19] = edid->prod_code[1];
3243
3244	if (cea_revision(cea) >= 3) {
3245		int i, start, end;
3246
3247		if (cea_db_offsets(cea, &start, &end)) {
3248			start = 0;
3249			end = 0;
3250		}
3251
3252		for_each_cea_db(cea, i, start, end) {
3253			db = &cea[i];
3254			dbl = cea_db_payload_len(db);
3255
3256			switch (cea_db_tag(db)) {
3257			case AUDIO_BLOCK:
3258				/* Audio Data Block, contains SADs */
3259				sad_count = dbl / 3;
3260				if (dbl >= 1)
3261					memcpy(eld + 20 + mnl, &db[1], dbl);
3262				break;
3263			case SPEAKER_BLOCK:
3264				/* Speaker Allocation Data Block */
3265				if (dbl >= 1)
3266					eld[7] = db[1];
3267				break;
3268			case VENDOR_BLOCK:
3269				/* HDMI Vendor-Specific Data Block */
3270				if (cea_db_is_hdmi_vsdb(db))
3271					parse_hdmi_vsdb(connector, db);
3272				break;
3273			default:
3274				break;
3275			}
3276		}
3277	}
3278	eld[5] |= sad_count << 4;
3279
3280	eld[DRM_ELD_BASELINE_ELD_LEN] =
3281		DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4);
3282
3283	DRM_DEBUG_KMS("ELD size %d, SAD count %d\n",
3284		      drm_eld_size(eld), sad_count);
3285}
3286EXPORT_SYMBOL(drm_edid_to_eld);
3287
3288/**
3289 * drm_edid_to_sad - extracts SADs from EDID
3290 * @edid: EDID to parse
3291 * @sads: pointer that will be set to the extracted SADs
3292 *
3293 * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it.
3294 *
3295 * Note: The returned pointer needs to be freed using kfree().
3296 *
3297 * Return: The number of found SADs or negative number on error.
3298 */
3299int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads)
3300{
3301	int count = 0;
3302	int i, start, end, dbl;
3303	u8 *cea;
3304
3305	cea = drm_find_cea_extension(edid);
3306	if (!cea) {
3307		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3308		return -ENOENT;
3309	}
3310
3311	if (cea_revision(cea) < 3) {
3312		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3313		return -ENOTSUPP;
3314	}
3315
3316	if (cea_db_offsets(cea, &start, &end)) {
3317		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3318		return -EPROTO;
3319	}
3320
3321	for_each_cea_db(cea, i, start, end) {
3322		u8 *db = &cea[i];
3323
3324		if (cea_db_tag(db) == AUDIO_BLOCK) {
3325			int j;
3326			dbl = cea_db_payload_len(db);
3327
3328			count = dbl / 3; /* SAD is 3B */
3329			*sads = kcalloc(count, sizeof(**sads), GFP_KERNEL);
3330			if (!*sads)
3331				return -ENOMEM;
3332			for (j = 0; j < count; j++) {
3333				u8 *sad = &db[1 + j * 3];
3334
3335				(*sads)[j].format = (sad[0] & 0x78) >> 3;
3336				(*sads)[j].channels = sad[0] & 0x7;
3337				(*sads)[j].freq = sad[1] & 0x7F;
3338				(*sads)[j].byte2 = sad[2];
3339			}
3340			break;
3341		}
3342	}
3343
3344	return count;
3345}
3346EXPORT_SYMBOL(drm_edid_to_sad);
3347
3348/**
3349 * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID
3350 * @edid: EDID to parse
3351 * @sadb: pointer to the speaker block
3352 *
3353 * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it.
3354 *
3355 * Note: The returned pointer needs to be freed using kfree().
3356 *
3357 * Return: The number of found Speaker Allocation Blocks or negative number on
3358 * error.
3359 */
3360int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb)
3361{
3362	int count = 0;
3363	int i, start, end, dbl;
3364	const u8 *cea;
3365
3366	cea = drm_find_cea_extension(edid);
3367	if (!cea) {
3368		DRM_DEBUG_KMS("SAD: no CEA Extension found\n");
3369		return -ENOENT;
3370	}
3371
3372	if (cea_revision(cea) < 3) {
3373		DRM_DEBUG_KMS("SAD: wrong CEA revision\n");
3374		return -ENOTSUPP;
3375	}
3376
3377	if (cea_db_offsets(cea, &start, &end)) {
3378		DRM_DEBUG_KMS("SAD: invalid data block offsets\n");
3379		return -EPROTO;
3380	}
3381
3382	for_each_cea_db(cea, i, start, end) {
3383		const u8 *db = &cea[i];
3384
3385		if (cea_db_tag(db) == SPEAKER_BLOCK) {
3386			dbl = cea_db_payload_len(db);
3387
3388			/* Speaker Allocation Data Block */
3389			if (dbl == 3) {
3390				*sadb = kmemdup(&db[1], dbl, GFP_KERNEL);
3391				if (!*sadb)
3392					return -ENOMEM;
3393				count = dbl;
3394				break;
3395			}
3396		}
3397	}
3398
3399	return count;
3400}
3401EXPORT_SYMBOL(drm_edid_to_speaker_allocation);
3402
3403/**
3404 * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay
3405 * @connector: connector associated with the HDMI/DP sink
3406 * @mode: the display mode
3407 *
3408 * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if
3409 * the sink doesn't support audio or video.
3410 */
3411int drm_av_sync_delay(struct drm_connector *connector,
3412		      const struct drm_display_mode *mode)
3413{
3414	int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE);
3415	int a, v;
3416
3417	if (!connector->latency_present[0])
3418		return 0;
3419	if (!connector->latency_present[1])
3420		i = 0;
3421
3422	a = connector->audio_latency[i];
3423	v = connector->video_latency[i];
3424
3425	/*
3426	 * HDMI/DP sink doesn't support audio or video?
3427	 */
3428	if (a == 255 || v == 255)
3429		return 0;
3430
3431	/*
3432	 * Convert raw EDID values to millisecond.
3433	 * Treat unknown latency as 0ms.
3434	 */
3435	if (a)
3436		a = min(2 * (a - 1), 500);
3437	if (v)
3438		v = min(2 * (v - 1), 500);
3439
3440	return max(v - a, 0);
3441}
3442EXPORT_SYMBOL(drm_av_sync_delay);
3443
3444/**
3445 * drm_select_eld - select one ELD from multiple HDMI/DP sinks
3446 * @encoder: the encoder just changed display mode
3447 *
3448 * It's possible for one encoder to be associated with multiple HDMI/DP sinks.
3449 * The policy is now hard coded to simply use the first HDMI/DP sink's ELD.
3450 *
3451 * Return: The connector associated with the first HDMI/DP sink that has ELD
3452 * attached to it.
3453 */
3454struct drm_connector *drm_select_eld(struct drm_encoder *encoder)
3455{
3456	struct drm_connector *connector;
3457	struct drm_device *dev = encoder->dev;
3458
3459	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
3460	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
3461
3462	drm_for_each_connector(connector, dev)
3463		if (connector->encoder == encoder && connector->eld[0])
3464			return connector;
3465
3466	return NULL;
3467}
3468EXPORT_SYMBOL(drm_select_eld);
3469
3470/**
3471 * drm_detect_hdmi_monitor - detect whether monitor is HDMI
3472 * @edid: monitor EDID information
3473 *
3474 * Parse the CEA extension according to CEA-861-B.
3475 *
3476 * Return: True if the monitor is HDMI, false if not or unknown.
3477 */
3478bool drm_detect_hdmi_monitor(struct edid *edid)
3479{
3480	u8 *edid_ext;
3481	int i;
3482	int start_offset, end_offset;
3483
3484	edid_ext = drm_find_cea_extension(edid);
3485	if (!edid_ext)
3486		return false;
3487
3488	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3489		return false;
3490
3491	/*
3492	 * Because HDMI identifier is in Vendor Specific Block,
3493	 * search it from all data blocks of CEA extension.
3494	 */
3495	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3496		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
3497			return true;
3498	}
3499
3500	return false;
3501}
3502EXPORT_SYMBOL(drm_detect_hdmi_monitor);
3503
3504/**
3505 * drm_detect_monitor_audio - check monitor audio capability
3506 * @edid: EDID block to scan
3507 *
3508 * Monitor should have CEA extension block.
3509 * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
3510 * audio' only. If there is any audio extension block and supported
3511 * audio format, assume at least 'basic audio' support, even if 'basic
3512 * audio' is not defined in EDID.
3513 *
3514 * Return: True if the monitor supports audio, false otherwise.
3515 */
3516bool drm_detect_monitor_audio(struct edid *edid)
3517{
3518	u8 *edid_ext;
3519	int i, j;
3520	bool has_audio = false;
3521	int start_offset, end_offset;
3522
3523	edid_ext = drm_find_cea_extension(edid);
3524	if (!edid_ext)
3525		goto end;
3526
3527	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
3528
3529	if (has_audio) {
3530		DRM_DEBUG_KMS("Monitor has basic audio support\n");
3531		goto end;
3532	}
3533
3534	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3535		goto end;
3536
3537	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3538		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
3539			has_audio = true;
3540			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3)
3541				DRM_DEBUG_KMS("CEA audio format %d\n",
3542					      (edid_ext[i + j] >> 3) & 0xf);
3543			goto end;
3544		}
3545	}
3546end:
3547	return has_audio;
3548}
3549EXPORT_SYMBOL(drm_detect_monitor_audio);
3550
3551/**
3552 * drm_rgb_quant_range_selectable - is RGB quantization range selectable?
3553 * @edid: EDID block to scan
3554 *
3555 * Check whether the monitor reports the RGB quantization range selection
3556 * as supported. The AVI infoframe can then be used to inform the monitor
3557 * which quantization range (full or limited) is used.
3558 *
3559 * Return: True if the RGB quantization range is selectable, false otherwise.
3560 */
3561bool drm_rgb_quant_range_selectable(struct edid *edid)
3562{
3563	u8 *edid_ext;
3564	int i, start, end;
3565
3566	edid_ext = drm_find_cea_extension(edid);
3567	if (!edid_ext)
3568		return false;
3569
3570	if (cea_db_offsets(edid_ext, &start, &end))
3571		return false;
3572
3573	for_each_cea_db(edid_ext, i, start, end) {
3574		if (cea_db_tag(&edid_ext[i]) == VIDEO_CAPABILITY_BLOCK &&
3575		    cea_db_payload_len(&edid_ext[i]) == 2) {
3576			DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]);
3577			return edid_ext[i + 2] & EDID_CEA_VCDB_QS;
3578		}
3579	}
3580
3581	return false;
3582}
3583EXPORT_SYMBOL(drm_rgb_quant_range_selectable);
3584
3585/**
3586 * drm_assign_hdmi_deep_color_info - detect whether monitor supports
3587 * hdmi deep color modes and update drm_display_info if so.
3588 * @edid: monitor EDID information
3589 * @info: Updated with maximum supported deep color bpc and color format
3590 *        if deep color supported.
3591 * @connector: DRM connector, used only for debug output
3592 *
3593 * Parse the CEA extension according to CEA-861-B.
3594 * Return true if HDMI deep color supported, false if not or unknown.
3595 */
3596static bool drm_assign_hdmi_deep_color_info(struct edid *edid,
3597                                            struct drm_display_info *info,
3598                                            struct drm_connector *connector)
3599{
3600	u8 *edid_ext, *hdmi;
3601	int i;
3602	int start_offset, end_offset;
3603	unsigned int dc_bpc = 0;
3604
3605	edid_ext = drm_find_cea_extension(edid);
3606	if (!edid_ext)
3607		return false;
3608
3609	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3610		return false;
3611
3612	/*
3613	 * Because HDMI identifier is in Vendor Specific Block,
3614	 * search it from all data blocks of CEA extension.
3615	 */
3616	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3617		if (cea_db_is_hdmi_vsdb(&edid_ext[i])) {
3618			/* HDMI supports at least 8 bpc */
3619			info->bpc = 8;
3620
3621			hdmi = &edid_ext[i];
3622			if (cea_db_payload_len(hdmi) < 6)
3623				return false;
3624
3625			if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
3626				dc_bpc = 10;
3627				info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
3628				DRM_DEBUG("%s: HDMI sink does deep color 30.\n",
3629						  connector->name);
3630			}
3631
3632			if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
3633				dc_bpc = 12;
3634				info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
3635				DRM_DEBUG("%s: HDMI sink does deep color 36.\n",
3636						  connector->name);
3637			}
3638
3639			if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
3640				dc_bpc = 16;
3641				info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
3642				DRM_DEBUG("%s: HDMI sink does deep color 48.\n",
3643						  connector->name);
3644			}
3645
3646			if (dc_bpc > 0) {
3647				DRM_DEBUG("%s: Assigning HDMI sink color depth as %d bpc.\n",
3648						  connector->name, dc_bpc);
3649				info->bpc = dc_bpc;
3650
3651				/*
3652				 * Deep color support mandates RGB444 support for all video
3653				 * modes and forbids YCRCB422 support for all video modes per
3654				 * HDMI 1.3 spec.
3655				 */
3656				info->color_formats = DRM_COLOR_FORMAT_RGB444;
3657
3658				/* YCRCB444 is optional according to spec. */
3659				if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
3660					info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3661					DRM_DEBUG("%s: HDMI sink does YCRCB444 in deep color.\n",
3662							  connector->name);
3663				}
3664
3665				/*
3666				 * Spec says that if any deep color mode is supported at all,
3667				 * then deep color 36 bit must be supported.
3668				 */
3669				if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) {
3670					DRM_DEBUG("%s: HDMI sink should do DC_36, but does not!\n",
3671							  connector->name);
3672				}
3673
3674				return true;
3675			}
3676			else {
3677				DRM_DEBUG("%s: No deep color support on this HDMI sink.\n",
3678						  connector->name);
3679			}
3680		}
3681	}
3682
3683	return false;
3684}
3685
3686/**
3687 * drm_add_display_info - pull display info out if present
3688 * @edid: EDID data
3689 * @info: display info (attached to connector)
3690 * @connector: connector whose edid is used to build display info
3691 *
3692 * Grab any available display info and stuff it into the drm_display_info
3693 * structure that's part of the connector.  Useful for tracking bpp and
3694 * color spaces.
3695 */
3696static void drm_add_display_info(struct edid *edid,
3697                                 struct drm_display_info *info,
3698                                 struct drm_connector *connector)
3699{
3700	u8 *edid_ext;
3701
3702	info->width_mm = edid->width_cm * 10;
3703	info->height_mm = edid->height_cm * 10;
3704
3705	/* driver figures it out in this case */
3706	info->bpc = 0;
3707	info->color_formats = 0;
3708
3709	if (edid->revision < 3)
3710		return;
3711
3712	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
3713		return;
3714
3715	/* Get data from CEA blocks if present */
3716	edid_ext = drm_find_cea_extension(edid);
3717	if (edid_ext) {
3718		info->cea_rev = edid_ext[1];
3719
3720		/* The existence of a CEA block should imply RGB support */
3721		info->color_formats = DRM_COLOR_FORMAT_RGB444;
3722		if (edid_ext[3] & EDID_CEA_YCRCB444)
3723			info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3724		if (edid_ext[3] & EDID_CEA_YCRCB422)
3725			info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3726	}
3727
3728	/* HDMI deep color modes supported? Assign to info, if so */
3729	drm_assign_hdmi_deep_color_info(edid, info, connector);
3730
3731	/* Only defined for 1.4 with digital displays */
3732	if (edid->revision < 4)
3733		return;
3734
3735	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
3736	case DRM_EDID_DIGITAL_DEPTH_6:
3737		info->bpc = 6;
3738		break;
3739	case DRM_EDID_DIGITAL_DEPTH_8:
3740		info->bpc = 8;
3741		break;
3742	case DRM_EDID_DIGITAL_DEPTH_10:
3743		info->bpc = 10;
3744		break;
3745	case DRM_EDID_DIGITAL_DEPTH_12:
3746		info->bpc = 12;
3747		break;
3748	case DRM_EDID_DIGITAL_DEPTH_14:
3749		info->bpc = 14;
3750		break;
3751	case DRM_EDID_DIGITAL_DEPTH_16:
3752		info->bpc = 16;
3753		break;
3754	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
3755	default:
3756		info->bpc = 0;
3757		break;
3758	}
3759
3760	DRM_DEBUG("%s: Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
3761			  connector->name, info->bpc);
3762
3763	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
3764	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
3765		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3766	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
3767		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3768}
3769
3770/**
3771 * drm_add_edid_modes - add modes from EDID data, if available
3772 * @connector: connector we're probing
3773 * @edid: EDID data
3774 *
3775 * Add the specified modes to the connector's mode list.
3776 *
3777 * Return: The number of modes added or 0 if we couldn't find any.
3778 */
3779int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid)
3780{
3781	int num_modes = 0;
3782	u32 quirks;
3783
3784	if (edid == NULL) {
3785		return 0;
3786	}
3787	if (!drm_edid_is_valid(edid)) {
3788		dev_warn(connector->dev->dev, "%s: EDID invalid.\n",
3789			 connector->name);
3790		return 0;
3791	}
3792
3793	quirks = edid_get_quirks(edid);
3794
3795	/*
3796	 * EDID spec says modes should be preferred in this order:
3797	 * - preferred detailed mode
3798	 * - other detailed modes from base block
3799	 * - detailed modes from extension blocks
3800	 * - CVT 3-byte code modes
3801	 * - standard timing codes
3802	 * - established timing codes
3803	 * - modes inferred from GTF or CVT range information
3804	 *
3805	 * We get this pretty much right.
3806	 *
3807	 * XXX order for additional mode types in extension blocks?
3808	 */
3809	num_modes += add_detailed_modes(connector, edid, quirks);
3810	num_modes += add_cvt_modes(connector, edid);
3811	num_modes += add_standard_modes(connector, edid);
3812	num_modes += add_established_modes(connector, edid);
3813	num_modes += add_cea_modes(connector, edid);
3814	num_modes += add_alternate_cea_modes(connector, edid);
3815	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
3816		num_modes += add_inferred_modes(connector, edid);
3817
3818	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
3819		edid_fixup_preferred(connector, quirks);
3820
3821	drm_add_display_info(edid, &connector->display_info, connector);
3822
3823	if (quirks & EDID_QUIRK_FORCE_8BPC)
3824		connector->display_info.bpc = 8;
3825
3826	if (quirks & EDID_QUIRK_FORCE_12BPC)
3827		connector->display_info.bpc = 12;
3828
3829	return num_modes;
3830}
3831EXPORT_SYMBOL(drm_add_edid_modes);
3832
3833/**
3834 * drm_add_modes_noedid - add modes for the connectors without EDID
3835 * @connector: connector we're probing
3836 * @hdisplay: the horizontal display limit
3837 * @vdisplay: the vertical display limit
3838 *
3839 * Add the specified modes to the connector's mode list. Only when the
3840 * hdisplay/vdisplay is not beyond the given limit, it will be added.
3841 *
3842 * Return: The number of modes added or 0 if we couldn't find any.
3843 */
3844int drm_add_modes_noedid(struct drm_connector *connector,
3845			int hdisplay, int vdisplay)
3846{
3847	int i, count, num_modes = 0;
3848	struct drm_display_mode *mode;
3849	struct drm_device *dev = connector->dev;
3850
3851	count = ARRAY_SIZE(drm_dmt_modes);
3852	if (hdisplay < 0)
3853		hdisplay = 0;
3854	if (vdisplay < 0)
3855		vdisplay = 0;
3856
3857	for (i = 0; i < count; i++) {
3858		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
3859		if (hdisplay && vdisplay) {
3860			/*
3861			 * Only when two are valid, they will be used to check
3862			 * whether the mode should be added to the mode list of
3863			 * the connector.
3864			 */
3865			if (ptr->hdisplay > hdisplay ||
3866					ptr->vdisplay > vdisplay)
3867				continue;
3868		}
3869		if (drm_mode_vrefresh(ptr) > 61)
3870			continue;
3871		mode = drm_mode_duplicate(dev, ptr);
3872		if (mode) {
3873			drm_mode_probed_add(connector, mode);
3874			num_modes++;
3875		}
3876	}
3877	return num_modes;
3878}
3879EXPORT_SYMBOL(drm_add_modes_noedid);
3880
3881/**
3882 * drm_set_preferred_mode - Sets the preferred mode of a connector
3883 * @connector: connector whose mode list should be processed
3884 * @hpref: horizontal resolution of preferred mode
3885 * @vpref: vertical resolution of preferred mode
3886 *
3887 * Marks a mode as preferred if it matches the resolution specified by @hpref
3888 * and @vpref.
3889 */
3890void drm_set_preferred_mode(struct drm_connector *connector,
3891			   int hpref, int vpref)
3892{
3893	struct drm_display_mode *mode;
3894
3895	list_for_each_entry(mode, &connector->probed_modes, head) {
3896		if (mode->hdisplay == hpref &&
3897		    mode->vdisplay == vpref)
3898			mode->type |= DRM_MODE_TYPE_PREFERRED;
3899	}
3900}
3901EXPORT_SYMBOL(drm_set_preferred_mode);
3902
3903/**
3904 * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with
3905 *                                              data from a DRM display mode
3906 * @frame: HDMI AVI infoframe
3907 * @mode: DRM display mode
3908 *
3909 * Return: 0 on success or a negative error code on failure.
3910 */
3911int
3912drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
3913					 const struct drm_display_mode *mode)
3914{
3915	int err;
3916
3917	if (!frame || !mode)
3918		return -EINVAL;
3919
3920	err = hdmi_avi_infoframe_init(frame);
3921	if (err < 0)
3922		return err;
3923
3924	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
3925		frame->pixel_repeat = 1;
3926
3927	frame->video_code = drm_match_cea_mode(mode);
3928
3929	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
3930
3931	/*
3932	 * Populate picture aspect ratio from either
3933	 * user input (if specified) or from the CEA mode list.
3934	 */
3935	if (mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_4_3 ||
3936		mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_16_9)
3937		frame->picture_aspect = mode->picture_aspect_ratio;
3938	else if (frame->video_code > 0)
3939		frame->picture_aspect = drm_get_cea_aspect_ratio(
3940						frame->video_code);
3941
3942	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
3943	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
3944
3945	return 0;
3946}
3947EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode);
3948
3949static enum hdmi_3d_structure
3950s3d_structure_from_display_mode(const struct drm_display_mode *mode)
3951{
3952	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
3953
3954	switch (layout) {
3955	case DRM_MODE_FLAG_3D_FRAME_PACKING:
3956		return HDMI_3D_STRUCTURE_FRAME_PACKING;
3957	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
3958		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
3959	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
3960		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
3961	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
3962		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
3963	case DRM_MODE_FLAG_3D_L_DEPTH:
3964		return HDMI_3D_STRUCTURE_L_DEPTH;
3965	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
3966		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
3967	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
3968		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
3969	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
3970		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
3971	default:
3972		return HDMI_3D_STRUCTURE_INVALID;
3973	}
3974}
3975
3976/**
3977 * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with
3978 * data from a DRM display mode
3979 * @frame: HDMI vendor infoframe
3980 * @mode: DRM display mode
3981 *
3982 * Note that there's is a need to send HDMI vendor infoframes only when using a
3983 * 4k or stereoscopic 3D mode. So when giving any other mode as input this
3984 * function will return -EINVAL, error that can be safely ignored.
3985 *
3986 * Return: 0 on success or a negative error code on failure.
3987 */
3988int
3989drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
3990					    const struct drm_display_mode *mode)
3991{
3992	int err;
3993	u32 s3d_flags;
3994	u8 vic;
3995
3996	if (!frame || !mode)
3997		return -EINVAL;
3998
3999	vic = drm_match_hdmi_mode(mode);
4000	s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
4001
4002	if (!vic && !s3d_flags)
4003		return -EINVAL;
4004
4005	if (vic && s3d_flags)
4006		return -EINVAL;
4007
4008	err = hdmi_vendor_infoframe_init(frame);
4009	if (err < 0)
4010		return err;
4011
4012	if (vic)
4013		frame->vic = vic;
4014	else
4015		frame->s3d_struct = s3d_structure_from_display_mode(mode);
4016
4017	return 0;
4018}
4019EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode);
4020
4021static int drm_parse_display_id(struct drm_connector *connector,
4022				u8 *displayid, int length,
4023				bool is_edid_extension)
4024{
4025	/* if this is an EDID extension the first byte will be 0x70 */
4026	int idx = 0;
4027	struct displayid_hdr *base;
4028	struct displayid_block *block;
4029	u8 csum = 0;
4030	int i;
4031
4032	if (is_edid_extension)
4033		idx = 1;
4034
4035	base = (struct displayid_hdr *)&displayid[idx];
4036
4037	DRM_DEBUG_KMS("base revision 0x%x, length %d, %d %d\n",
4038		      base->rev, base->bytes, base->prod_id, base->ext_count);
4039
4040	if (base->bytes + 5 > length - idx)
4041		return -EINVAL;
4042
4043	for (i = idx; i <= base->bytes + 5; i++) {
4044		csum += displayid[i];
4045	}
4046	if (csum) {
4047		DRM_ERROR("DisplayID checksum invalid, remainder is %d\n", csum);
4048		return -EINVAL;
4049	}
4050
4051	block = (struct displayid_block *)&displayid[idx + 4];
4052	DRM_DEBUG_KMS("block id %d, rev %d, len %d\n",
4053		      block->tag, block->rev, block->num_bytes);
4054
4055	switch (block->tag) {
4056	case DATA_BLOCK_TILED_DISPLAY: {
4057		struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block;
4058
4059		u16 w, h;
4060		u8 tile_v_loc, tile_h_loc;
4061		u8 num_v_tile, num_h_tile;
4062		struct drm_tile_group *tg;
4063
4064		w = tile->tile_size[0] | tile->tile_size[1] << 8;
4065		h = tile->tile_size[2] | tile->tile_size[3] << 8;
4066
4067		num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30);
4068		num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30);
4069		tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4);
4070		tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4);
4071
4072		connector->has_tile = true;
4073		if (tile->tile_cap & 0x80)
4074			connector->tile_is_single_monitor = true;
4075
4076		connector->num_h_tile = num_h_tile + 1;
4077		connector->num_v_tile = num_v_tile + 1;
4078		connector->tile_h_loc = tile_h_loc;
4079		connector->tile_v_loc = tile_v_loc;
4080		connector->tile_h_size = w + 1;
4081		connector->tile_v_size = h + 1;
4082
4083		DRM_DEBUG_KMS("tile cap 0x%x\n", tile->tile_cap);
4084		DRM_DEBUG_KMS("tile_size %d x %d\n", w + 1, h + 1);
4085		DRM_DEBUG_KMS("topo num tiles %dx%d, location %dx%d\n",
4086		       num_h_tile + 1, num_v_tile + 1, tile_h_loc, tile_v_loc);
4087		DRM_DEBUG_KMS("vend %c%c%c\n", tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]);
4088
4089		tg = drm_mode_get_tile_group(connector->dev, tile->topology_id);
4090		if (!tg) {
4091			tg = drm_mode_create_tile_group(connector->dev, tile->topology_id);
4092		}
4093		if (!tg)
4094			return -ENOMEM;
4095
4096		if (connector->tile_group != tg) {
4097			/* if we haven't got a pointer,
4098			   take the reference, drop ref to old tile group */
4099			if (connector->tile_group) {
4100				drm_mode_put_tile_group(connector->dev, connector->tile_group);
4101			}
4102			connector->tile_group = tg;
4103		} else
4104			/* if same tile group, then release the ref we just took. */
4105			drm_mode_put_tile_group(connector->dev, tg);
4106	}
4107		break;
4108	default:
4109		printk("unknown displayid tag %d\n", block->tag);
4110		break;
4111	}
4112	return 0;
4113}
4114
4115static void drm_get_displayid(struct drm_connector *connector,
4116			      struct edid *edid)
4117{
4118	void *displayid = NULL;
4119	int ret;
4120	connector->has_tile = false;
4121	displayid = drm_find_displayid_extension(edid);
4122	if (!displayid) {
4123		/* drop reference to any tile group we had */
4124		goto out_drop_ref;
4125	}
4126
4127	ret = drm_parse_display_id(connector, displayid, EDID_LENGTH, true);
4128	if (ret < 0)
4129		goto out_drop_ref;
4130	if (!connector->has_tile)
4131		goto out_drop_ref;
4132	return;
4133out_drop_ref:
4134	if (connector->tile_group) {
4135		drm_mode_put_tile_group(connector->dev, connector->tile_group);
4136		connector->tile_group = NULL;
4137	}
4138	return;
4139}
4140