1/* 2 * Copyright 2014 Advanced Micro Devices, Inc. 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice shall be included in 12 * all copies or substantial portions of the Software. 13 * 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 20 * OTHER DEALINGS IN THE SOFTWARE. 21 */ 22 23#include <linux/mm_types.h> 24#include <linux/slab.h> 25#include <linux/types.h> 26#include <linux/sched.h> 27#include <linux/uaccess.h> 28#include <linux/mm.h> 29#include <linux/mman.h> 30#include <linux/memory.h> 31#include "kfd_priv.h" 32#include "kfd_events.h" 33#include <linux/device.h> 34 35/* 36 * A task can only be on a single wait_queue at a time, but we need to support 37 * waiting on multiple events (any/all). 38 * Instead of each event simply having a wait_queue with sleeping tasks, it 39 * has a singly-linked list of tasks. 40 * A thread that wants to sleep creates an array of these, one for each event 41 * and adds one to each event's waiter chain. 42 */ 43struct kfd_event_waiter { 44 struct list_head waiters; 45 struct task_struct *sleeping_task; 46 47 /* Transitions to true when the event this belongs to is signaled. */ 48 bool activated; 49 50 /* Event */ 51 struct kfd_event *event; 52 uint32_t input_index; 53}; 54 55/* 56 * Over-complicated pooled allocator for event notification slots. 57 * 58 * Each signal event needs a 64-bit signal slot where the signaler will write 59 * a 1 before sending an interrupt.l (This is needed because some interrupts 60 * do not contain enough spare data bits to identify an event.) 61 * We get whole pages from vmalloc and map them to the process VA. 62 * Individual signal events are then allocated a slot in a page. 63 */ 64 65struct signal_page { 66 struct list_head event_pages; /* kfd_process.signal_event_pages */ 67 uint64_t *kernel_address; 68 uint64_t __user *user_address; 69 uint32_t page_index; /* Index into the mmap aperture. */ 70 unsigned int free_slots; 71 unsigned long used_slot_bitmap[0]; 72}; 73 74#define SLOTS_PER_PAGE KFD_SIGNAL_EVENT_LIMIT 75#define SLOT_BITMAP_SIZE BITS_TO_LONGS(SLOTS_PER_PAGE) 76#define BITS_PER_PAGE (ilog2(SLOTS_PER_PAGE)+1) 77#define SIGNAL_PAGE_SIZE (sizeof(struct signal_page) + \ 78 SLOT_BITMAP_SIZE * sizeof(long)) 79 80/* 81 * For signal events, the event ID is used as the interrupt user data. 82 * For SQ s_sendmsg interrupts, this is limited to 8 bits. 83 */ 84 85#define INTERRUPT_DATA_BITS 8 86#define SIGNAL_EVENT_ID_SLOT_SHIFT 0 87 88static uint64_t *page_slots(struct signal_page *page) 89{ 90 return page->kernel_address; 91} 92 93static bool allocate_free_slot(struct kfd_process *process, 94 struct signal_page **out_page, 95 unsigned int *out_slot_index) 96{ 97 struct signal_page *page; 98 99 list_for_each_entry(page, &process->signal_event_pages, event_pages) { 100 if (page->free_slots > 0) { 101 unsigned int slot = 102 find_first_zero_bit(page->used_slot_bitmap, 103 SLOTS_PER_PAGE); 104 105 __set_bit(slot, page->used_slot_bitmap); 106 page->free_slots--; 107 108 page_slots(page)[slot] = UNSIGNALED_EVENT_SLOT; 109 110 *out_page = page; 111 *out_slot_index = slot; 112 113 pr_debug("allocated event signal slot in page %p, slot %d\n", 114 page, slot); 115 116 return true; 117 } 118 } 119 120 pr_debug("No free event signal slots were found for process %p\n", 121 process); 122 123 return false; 124} 125 126#define list_tail_entry(head, type, member) \ 127 list_entry((head)->prev, type, member) 128 129static bool allocate_signal_page(struct file *devkfd, struct kfd_process *p) 130{ 131 void *backing_store; 132 struct signal_page *page; 133 134 page = kzalloc(SIGNAL_PAGE_SIZE, GFP_KERNEL); 135 if (!page) 136 goto fail_alloc_signal_page; 137 138 page->free_slots = SLOTS_PER_PAGE; 139 140 backing_store = (void *) __get_free_pages(GFP_KERNEL | __GFP_ZERO, 141 get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); 142 if (!backing_store) 143 goto fail_alloc_signal_store; 144 145 /* prevent user-mode info leaks */ 146 memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT, 147 KFD_SIGNAL_EVENT_LIMIT * 8); 148 149 page->kernel_address = backing_store; 150 151 if (list_empty(&p->signal_event_pages)) 152 page->page_index = 0; 153 else 154 page->page_index = list_tail_entry(&p->signal_event_pages, 155 struct signal_page, 156 event_pages)->page_index + 1; 157 158 pr_debug("allocated new event signal page at %p, for process %p\n", 159 page, p); 160 pr_debug("page index is %d\n", page->page_index); 161 162 list_add(&page->event_pages, &p->signal_event_pages); 163 164 return true; 165 166fail_alloc_signal_store: 167 kfree(page); 168fail_alloc_signal_page: 169 return false; 170} 171 172static bool allocate_event_notification_slot(struct file *devkfd, 173 struct kfd_process *p, 174 struct signal_page **page, 175 unsigned int *signal_slot_index) 176{ 177 bool ret; 178 179 ret = allocate_free_slot(p, page, signal_slot_index); 180 if (ret == false) { 181 ret = allocate_signal_page(devkfd, p); 182 if (ret == true) 183 ret = allocate_free_slot(p, page, signal_slot_index); 184 } 185 186 return ret; 187} 188 189/* Assumes that the process's event_mutex is locked. */ 190static void release_event_notification_slot(struct signal_page *page, 191 size_t slot_index) 192{ 193 __clear_bit(slot_index, page->used_slot_bitmap); 194 page->free_slots++; 195 196 /* We don't free signal pages, they are retained by the process 197 * and reused until it exits. */ 198} 199 200static struct signal_page *lookup_signal_page_by_index(struct kfd_process *p, 201 unsigned int page_index) 202{ 203 struct signal_page *page; 204 205 /* 206 * This is safe because we don't delete signal pages until the 207 * process exits. 208 */ 209 list_for_each_entry(page, &p->signal_event_pages, event_pages) 210 if (page->page_index == page_index) 211 return page; 212 213 return NULL; 214} 215 216/* 217 * Assumes that p->event_mutex is held and of course that p is not going 218 * away (current or locked). 219 */ 220static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id) 221{ 222 struct kfd_event *ev; 223 224 hash_for_each_possible(p->events, ev, events, id) 225 if (ev->event_id == id) 226 return ev; 227 228 return NULL; 229} 230 231static u32 make_signal_event_id(struct signal_page *page, 232 unsigned int signal_slot_index) 233{ 234 return page->page_index | 235 (signal_slot_index << SIGNAL_EVENT_ID_SLOT_SHIFT); 236} 237 238/* 239 * Produce a kfd event id for a nonsignal event. 240 * These are arbitrary numbers, so we do a sequential search through 241 * the hash table for an unused number. 242 */ 243static u32 make_nonsignal_event_id(struct kfd_process *p) 244{ 245 u32 id; 246 247 for (id = p->next_nonsignal_event_id; 248 id < KFD_LAST_NONSIGNAL_EVENT_ID && 249 lookup_event_by_id(p, id) != NULL; 250 id++) 251 ; 252 253 if (id < KFD_LAST_NONSIGNAL_EVENT_ID) { 254 255 /* 256 * What if id == LAST_NONSIGNAL_EVENT_ID - 1? 257 * Then next_nonsignal_event_id = LAST_NONSIGNAL_EVENT_ID so 258 * the first loop fails immediately and we proceed with the 259 * wraparound loop below. 260 */ 261 p->next_nonsignal_event_id = id + 1; 262 263 return id; 264 } 265 266 for (id = KFD_FIRST_NONSIGNAL_EVENT_ID; 267 id < KFD_LAST_NONSIGNAL_EVENT_ID && 268 lookup_event_by_id(p, id) != NULL; 269 id++) 270 ; 271 272 273 if (id < KFD_LAST_NONSIGNAL_EVENT_ID) { 274 p->next_nonsignal_event_id = id + 1; 275 return id; 276 } 277 278 p->next_nonsignal_event_id = KFD_FIRST_NONSIGNAL_EVENT_ID; 279 return 0; 280} 281 282static struct kfd_event *lookup_event_by_page_slot(struct kfd_process *p, 283 struct signal_page *page, 284 unsigned int signal_slot) 285{ 286 return lookup_event_by_id(p, make_signal_event_id(page, signal_slot)); 287} 288 289static int create_signal_event(struct file *devkfd, 290 struct kfd_process *p, 291 struct kfd_event *ev) 292{ 293 if (p->signal_event_count == KFD_SIGNAL_EVENT_LIMIT) { 294 pr_warn("amdkfd: Signal event wasn't created because limit was reached\n"); 295 return -ENOMEM; 296 } 297 298 if (!allocate_event_notification_slot(devkfd, p, &ev->signal_page, 299 &ev->signal_slot_index)) { 300 pr_warn("amdkfd: Signal event wasn't created because out of kernel memory\n"); 301 return -ENOMEM; 302 } 303 304 p->signal_event_count++; 305 306 ev->user_signal_address = 307 &ev->signal_page->user_address[ev->signal_slot_index]; 308 309 ev->event_id = make_signal_event_id(ev->signal_page, 310 ev->signal_slot_index); 311 312 pr_debug("signal event number %zu created with id %d, address %p\n", 313 p->signal_event_count, ev->event_id, 314 ev->user_signal_address); 315 316 pr_debug("signal event number %zu created with id %d, address %p\n", 317 p->signal_event_count, ev->event_id, 318 ev->user_signal_address); 319 320 return 0; 321} 322 323/* 324 * No non-signal events are supported yet. 325 * We create them as events that never signal. 326 * Set event calls from user-mode are failed. 327 */ 328static int create_other_event(struct kfd_process *p, struct kfd_event *ev) 329{ 330 ev->event_id = make_nonsignal_event_id(p); 331 if (ev->event_id == 0) 332 return -ENOMEM; 333 334 return 0; 335} 336 337void kfd_event_init_process(struct kfd_process *p) 338{ 339 mutex_init(&p->event_mutex); 340 hash_init(p->events); 341 INIT_LIST_HEAD(&p->signal_event_pages); 342 p->next_nonsignal_event_id = KFD_FIRST_NONSIGNAL_EVENT_ID; 343 p->signal_event_count = 0; 344} 345 346static void destroy_event(struct kfd_process *p, struct kfd_event *ev) 347{ 348 if (ev->signal_page != NULL) { 349 release_event_notification_slot(ev->signal_page, 350 ev->signal_slot_index); 351 p->signal_event_count--; 352 } 353 354 /* 355 * Abandon the list of waiters. Individual waiting threads will 356 * clean up their own data. 357 */ 358 list_del(&ev->waiters); 359 360 hash_del(&ev->events); 361 kfree(ev); 362} 363 364static void destroy_events(struct kfd_process *p) 365{ 366 struct kfd_event *ev; 367 struct hlist_node *tmp; 368 unsigned int hash_bkt; 369 370 hash_for_each_safe(p->events, hash_bkt, tmp, ev, events) 371 destroy_event(p, ev); 372} 373 374/* 375 * We assume that the process is being destroyed and there is no need to 376 * unmap the pages or keep bookkeeping data in order. 377 */ 378static void shutdown_signal_pages(struct kfd_process *p) 379{ 380 struct signal_page *page, *tmp; 381 382 list_for_each_entry_safe(page, tmp, &p->signal_event_pages, 383 event_pages) { 384 free_pages((unsigned long)page->kernel_address, 385 get_order(KFD_SIGNAL_EVENT_LIMIT * 8)); 386 kfree(page); 387 } 388} 389 390void kfd_event_free_process(struct kfd_process *p) 391{ 392 destroy_events(p); 393 shutdown_signal_pages(p); 394} 395 396static bool event_can_be_gpu_signaled(const struct kfd_event *ev) 397{ 398 return ev->type == KFD_EVENT_TYPE_SIGNAL || 399 ev->type == KFD_EVENT_TYPE_DEBUG; 400} 401 402static bool event_can_be_cpu_signaled(const struct kfd_event *ev) 403{ 404 return ev->type == KFD_EVENT_TYPE_SIGNAL; 405} 406 407int kfd_event_create(struct file *devkfd, struct kfd_process *p, 408 uint32_t event_type, bool auto_reset, uint32_t node_id, 409 uint32_t *event_id, uint32_t *event_trigger_data, 410 uint64_t *event_page_offset, uint32_t *event_slot_index) 411{ 412 int ret = 0; 413 struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL); 414 415 if (!ev) 416 return -ENOMEM; 417 418 ev->type = event_type; 419 ev->auto_reset = auto_reset; 420 ev->signaled = false; 421 422 INIT_LIST_HEAD(&ev->waiters); 423 424 *event_page_offset = 0; 425 426 mutex_lock(&p->event_mutex); 427 428 switch (event_type) { 429 case KFD_EVENT_TYPE_SIGNAL: 430 case KFD_EVENT_TYPE_DEBUG: 431 ret = create_signal_event(devkfd, p, ev); 432 if (!ret) { 433 *event_page_offset = (ev->signal_page->page_index | 434 KFD_MMAP_EVENTS_MASK); 435 *event_page_offset <<= PAGE_SHIFT; 436 *event_slot_index = ev->signal_slot_index; 437 } 438 break; 439 default: 440 ret = create_other_event(p, ev); 441 break; 442 } 443 444 if (!ret) { 445 hash_add(p->events, &ev->events, ev->event_id); 446 447 *event_id = ev->event_id; 448 *event_trigger_data = ev->event_id; 449 } else { 450 kfree(ev); 451 } 452 453 mutex_unlock(&p->event_mutex); 454 455 return ret; 456} 457 458/* Assumes that p is current. */ 459int kfd_event_destroy(struct kfd_process *p, uint32_t event_id) 460{ 461 struct kfd_event *ev; 462 int ret = 0; 463 464 mutex_lock(&p->event_mutex); 465 466 ev = lookup_event_by_id(p, event_id); 467 468 if (ev) 469 destroy_event(p, ev); 470 else 471 ret = -EINVAL; 472 473 mutex_unlock(&p->event_mutex); 474 return ret; 475} 476 477static void set_event(struct kfd_event *ev) 478{ 479 struct kfd_event_waiter *waiter; 480 struct kfd_event_waiter *next; 481 482 /* Auto reset if the list is non-empty and we're waking someone. */ 483 ev->signaled = !ev->auto_reset || list_empty(&ev->waiters); 484 485 list_for_each_entry_safe(waiter, next, &ev->waiters, waiters) { 486 waiter->activated = true; 487 488 /* _init because free_waiters will call list_del */ 489 list_del_init(&waiter->waiters); 490 491 wake_up_process(waiter->sleeping_task); 492 } 493} 494 495/* Assumes that p is current. */ 496int kfd_set_event(struct kfd_process *p, uint32_t event_id) 497{ 498 int ret = 0; 499 struct kfd_event *ev; 500 501 mutex_lock(&p->event_mutex); 502 503 ev = lookup_event_by_id(p, event_id); 504 505 if (ev && event_can_be_cpu_signaled(ev)) 506 set_event(ev); 507 else 508 ret = -EINVAL; 509 510 mutex_unlock(&p->event_mutex); 511 return ret; 512} 513 514static void reset_event(struct kfd_event *ev) 515{ 516 ev->signaled = false; 517} 518 519/* Assumes that p is current. */ 520int kfd_reset_event(struct kfd_process *p, uint32_t event_id) 521{ 522 int ret = 0; 523 struct kfd_event *ev; 524 525 mutex_lock(&p->event_mutex); 526 527 ev = lookup_event_by_id(p, event_id); 528 529 if (ev && event_can_be_cpu_signaled(ev)) 530 reset_event(ev); 531 else 532 ret = -EINVAL; 533 534 mutex_unlock(&p->event_mutex); 535 return ret; 536 537} 538 539static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev) 540{ 541 page_slots(ev->signal_page)[ev->signal_slot_index] = 542 UNSIGNALED_EVENT_SLOT; 543} 544 545static bool is_slot_signaled(struct signal_page *page, unsigned int index) 546{ 547 return page_slots(page)[index] != UNSIGNALED_EVENT_SLOT; 548} 549 550static void set_event_from_interrupt(struct kfd_process *p, 551 struct kfd_event *ev) 552{ 553 if (ev && event_can_be_gpu_signaled(ev)) { 554 acknowledge_signal(p, ev); 555 set_event(ev); 556 } 557} 558 559void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id, 560 uint32_t valid_id_bits) 561{ 562 struct kfd_event *ev; 563 564 /* 565 * Because we are called from arbitrary context (workqueue) as opposed 566 * to process context, kfd_process could attempt to exit while we are 567 * running so the lookup function returns a locked process. 568 */ 569 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 570 571 if (!p) 572 return; /* Presumably process exited. */ 573 574 mutex_lock(&p->event_mutex); 575 576 if (valid_id_bits >= INTERRUPT_DATA_BITS) { 577 /* Partial ID is a full ID. */ 578 ev = lookup_event_by_id(p, partial_id); 579 set_event_from_interrupt(p, ev); 580 } else { 581 /* 582 * Partial ID is in fact partial. For now we completely 583 * ignore it, but we could use any bits we did receive to 584 * search faster. 585 */ 586 struct signal_page *page; 587 unsigned i; 588 589 list_for_each_entry(page, &p->signal_event_pages, event_pages) 590 for (i = 0; i < SLOTS_PER_PAGE; i++) 591 if (is_slot_signaled(page, i)) { 592 ev = lookup_event_by_page_slot(p, 593 page, i); 594 set_event_from_interrupt(p, ev); 595 } 596 } 597 598 mutex_unlock(&p->event_mutex); 599 mutex_unlock(&p->mutex); 600} 601 602static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events) 603{ 604 struct kfd_event_waiter *event_waiters; 605 uint32_t i; 606 607 event_waiters = kmalloc_array(num_events, 608 sizeof(struct kfd_event_waiter), 609 GFP_KERNEL); 610 611 for (i = 0; (event_waiters) && (i < num_events) ; i++) { 612 INIT_LIST_HEAD(&event_waiters[i].waiters); 613 event_waiters[i].sleeping_task = current; 614 event_waiters[i].activated = false; 615 } 616 617 return event_waiters; 618} 619 620static int init_event_waiter(struct kfd_process *p, 621 struct kfd_event_waiter *waiter, 622 uint32_t event_id, 623 uint32_t input_index) 624{ 625 struct kfd_event *ev = lookup_event_by_id(p, event_id); 626 627 if (!ev) 628 return -EINVAL; 629 630 waiter->event = ev; 631 waiter->input_index = input_index; 632 waiter->activated = ev->signaled; 633 ev->signaled = ev->signaled && !ev->auto_reset; 634 635 list_add(&waiter->waiters, &ev->waiters); 636 637 return 0; 638} 639 640static bool test_event_condition(bool all, uint32_t num_events, 641 struct kfd_event_waiter *event_waiters) 642{ 643 uint32_t i; 644 uint32_t activated_count = 0; 645 646 for (i = 0; i < num_events; i++) { 647 if (event_waiters[i].activated) { 648 if (!all) 649 return true; 650 651 activated_count++; 652 } 653 } 654 655 return activated_count == num_events; 656} 657 658/* 659 * Copy event specific data, if defined. 660 * Currently only memory exception events have additional data to copy to user 661 */ 662static bool copy_signaled_event_data(uint32_t num_events, 663 struct kfd_event_waiter *event_waiters, 664 struct kfd_event_data __user *data) 665{ 666 struct kfd_hsa_memory_exception_data *src; 667 struct kfd_hsa_memory_exception_data __user *dst; 668 struct kfd_event_waiter *waiter; 669 struct kfd_event *event; 670 uint32_t i; 671 672 for (i = 0; i < num_events; i++) { 673 waiter = &event_waiters[i]; 674 event = waiter->event; 675 if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) { 676 dst = &data[waiter->input_index].memory_exception_data; 677 src = &event->memory_exception_data; 678 if (copy_to_user(dst, src, 679 sizeof(struct kfd_hsa_memory_exception_data))) 680 return false; 681 } 682 } 683 684 return true; 685 686} 687 688 689 690static long user_timeout_to_jiffies(uint32_t user_timeout_ms) 691{ 692 if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE) 693 return 0; 694 695 if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE) 696 return MAX_SCHEDULE_TIMEOUT; 697 698 /* 699 * msecs_to_jiffies interprets all values above 2^31-1 as infinite, 700 * but we consider them finite. 701 * This hack is wrong, but nobody is likely to notice. 702 */ 703 user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF); 704 705 return msecs_to_jiffies(user_timeout_ms) + 1; 706} 707 708static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters) 709{ 710 uint32_t i; 711 712 for (i = 0; i < num_events; i++) 713 list_del(&waiters[i].waiters); 714 715 kfree(waiters); 716} 717 718int kfd_wait_on_events(struct kfd_process *p, 719 uint32_t num_events, void __user *data, 720 bool all, uint32_t user_timeout_ms, 721 enum kfd_event_wait_result *wait_result) 722{ 723 struct kfd_event_data __user *events = 724 (struct kfd_event_data __user *) data; 725 uint32_t i; 726 int ret = 0; 727 struct kfd_event_waiter *event_waiters = NULL; 728 long timeout = user_timeout_to_jiffies(user_timeout_ms); 729 730 mutex_lock(&p->event_mutex); 731 732 event_waiters = alloc_event_waiters(num_events); 733 if (!event_waiters) { 734 ret = -ENOMEM; 735 goto fail; 736 } 737 738 for (i = 0; i < num_events; i++) { 739 struct kfd_event_data event_data; 740 741 if (copy_from_user(&event_data, &events[i], 742 sizeof(struct kfd_event_data))) 743 goto fail; 744 745 ret = init_event_waiter(p, &event_waiters[i], 746 event_data.event_id, i); 747 if (ret) 748 goto fail; 749 } 750 751 mutex_unlock(&p->event_mutex); 752 753 while (true) { 754 if (fatal_signal_pending(current)) { 755 ret = -EINTR; 756 break; 757 } 758 759 if (signal_pending(current)) { 760 /* 761 * This is wrong when a nonzero, non-infinite timeout 762 * is specified. We need to use 763 * ERESTARTSYS_RESTARTBLOCK, but struct restart_block 764 * contains a union with data for each user and it's 765 * in generic kernel code that I don't want to 766 * touch yet. 767 */ 768 ret = -ERESTARTSYS; 769 break; 770 } 771 772 if (test_event_condition(all, num_events, event_waiters)) { 773 if (copy_signaled_event_data(num_events, 774 event_waiters, events)) 775 *wait_result = KFD_WAIT_COMPLETE; 776 else 777 *wait_result = KFD_WAIT_ERROR; 778 break; 779 } 780 781 if (timeout <= 0) { 782 *wait_result = KFD_WAIT_TIMEOUT; 783 break; 784 } 785 786 timeout = schedule_timeout_interruptible(timeout); 787 } 788 __set_current_state(TASK_RUNNING); 789 790 mutex_lock(&p->event_mutex); 791 free_waiters(num_events, event_waiters); 792 mutex_unlock(&p->event_mutex); 793 794 return ret; 795 796fail: 797 if (event_waiters) 798 free_waiters(num_events, event_waiters); 799 800 mutex_unlock(&p->event_mutex); 801 802 *wait_result = KFD_WAIT_ERROR; 803 804 return ret; 805} 806 807int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma) 808{ 809 810 unsigned int page_index; 811 unsigned long pfn; 812 struct signal_page *page; 813 814 /* check required size is logical */ 815 if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) != 816 get_order(vma->vm_end - vma->vm_start)) { 817 pr_err("amdkfd: event page mmap requested illegal size\n"); 818 return -EINVAL; 819 } 820 821 page_index = vma->vm_pgoff; 822 823 page = lookup_signal_page_by_index(p, page_index); 824 if (!page) { 825 /* Probably KFD bug, but mmap is user-accessible. */ 826 pr_debug("signal page could not be found for page_index %u\n", 827 page_index); 828 return -EINVAL; 829 } 830 831 pfn = __pa(page->kernel_address); 832 pfn >>= PAGE_SHIFT; 833 834 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE 835 | VM_DONTDUMP | VM_PFNMAP; 836 837 pr_debug("mapping signal page\n"); 838 pr_debug(" start user address == 0x%08lx\n", vma->vm_start); 839 pr_debug(" end user address == 0x%08lx\n", vma->vm_end); 840 pr_debug(" pfn == 0x%016lX\n", pfn); 841 pr_debug(" vm_flags == 0x%08lX\n", vma->vm_flags); 842 pr_debug(" size == 0x%08lX\n", 843 vma->vm_end - vma->vm_start); 844 845 page->user_address = (uint64_t __user *)vma->vm_start; 846 847 /* mapping the page to user process */ 848 return remap_pfn_range(vma, vma->vm_start, pfn, 849 vma->vm_end - vma->vm_start, vma->vm_page_prot); 850} 851 852/* 853 * Assumes that p->event_mutex is held and of course 854 * that p is not going away (current or locked). 855 */ 856static void lookup_events_by_type_and_signal(struct kfd_process *p, 857 int type, void *event_data) 858{ 859 struct kfd_hsa_memory_exception_data *ev_data; 860 struct kfd_event *ev; 861 int bkt; 862 bool send_signal = true; 863 864 ev_data = (struct kfd_hsa_memory_exception_data *) event_data; 865 866 hash_for_each(p->events, bkt, ev, events) 867 if (ev->type == type) { 868 send_signal = false; 869 dev_dbg(kfd_device, 870 "Event found: id %X type %d", 871 ev->event_id, ev->type); 872 set_event(ev); 873 if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data) 874 ev->memory_exception_data = *ev_data; 875 } 876 877 /* Send SIGTERM no event of type "type" has been found*/ 878 if (send_signal) { 879 if (send_sigterm) { 880 dev_warn(kfd_device, 881 "Sending SIGTERM to HSA Process with PID %d ", 882 p->lead_thread->pid); 883 send_sig(SIGTERM, p->lead_thread, 0); 884 } else { 885 dev_err(kfd_device, 886 "HSA Process (PID %d) got unhandled exception", 887 p->lead_thread->pid); 888 } 889 } 890} 891 892void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid, 893 unsigned long address, bool is_write_requested, 894 bool is_execute_requested) 895{ 896 struct kfd_hsa_memory_exception_data memory_exception_data; 897 struct vm_area_struct *vma; 898 899 /* 900 * Because we are called from arbitrary context (workqueue) as opposed 901 * to process context, kfd_process could attempt to exit while we are 902 * running so the lookup function returns a locked process. 903 */ 904 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 905 906 if (!p) 907 return; /* Presumably process exited. */ 908 909 memset(&memory_exception_data, 0, sizeof(memory_exception_data)); 910 911 down_read(&p->mm->mmap_sem); 912 vma = find_vma(p->mm, address); 913 914 memory_exception_data.gpu_id = dev->id; 915 memory_exception_data.va = address; 916 /* Set failure reason */ 917 memory_exception_data.failure.NotPresent = 1; 918 memory_exception_data.failure.NoExecute = 0; 919 memory_exception_data.failure.ReadOnly = 0; 920 if (vma) { 921 if (vma->vm_start > address) { 922 memory_exception_data.failure.NotPresent = 1; 923 memory_exception_data.failure.NoExecute = 0; 924 memory_exception_data.failure.ReadOnly = 0; 925 } else { 926 memory_exception_data.failure.NotPresent = 0; 927 if (is_write_requested && !(vma->vm_flags & VM_WRITE)) 928 memory_exception_data.failure.ReadOnly = 1; 929 else 930 memory_exception_data.failure.ReadOnly = 0; 931 if (is_execute_requested && !(vma->vm_flags & VM_EXEC)) 932 memory_exception_data.failure.NoExecute = 1; 933 else 934 memory_exception_data.failure.NoExecute = 0; 935 } 936 } 937 938 up_read(&p->mm->mmap_sem); 939 940 mutex_lock(&p->event_mutex); 941 942 /* Lookup events by type and signal them */ 943 lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY, 944 &memory_exception_data); 945 946 mutex_unlock(&p->event_mutex); 947 mutex_unlock(&p->mutex); 948} 949 950void kfd_signal_hw_exception_event(unsigned int pasid) 951{ 952 /* 953 * Because we are called from arbitrary context (workqueue) as opposed 954 * to process context, kfd_process could attempt to exit while we are 955 * running so the lookup function returns a locked process. 956 */ 957 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); 958 959 if (!p) 960 return; /* Presumably process exited. */ 961 962 mutex_lock(&p->event_mutex); 963 964 /* Lookup events by type and signal them */ 965 lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL); 966 967 mutex_unlock(&p->event_mutex); 968 mutex_unlock(&p->mutex); 969} 970