1/* 2 * edac_mc kernel module 3 * (C) 2005-2007 Linux Networx (http://lnxi.com) 4 * 5 * This file may be distributed under the terms of the 6 * GNU General Public License. 7 * 8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com 9 * 10 * (c) 2012-2013 - Mauro Carvalho Chehab 11 * The entire API were re-written, and ported to use struct device 12 * 13 */ 14 15#include <linux/ctype.h> 16#include <linux/slab.h> 17#include <linux/edac.h> 18#include <linux/bug.h> 19#include <linux/pm_runtime.h> 20#include <linux/uaccess.h> 21 22#include "edac_core.h" 23#include "edac_module.h" 24 25/* MC EDAC Controls, setable by module parameter, and sysfs */ 26static int edac_mc_log_ue = 1; 27static int edac_mc_log_ce = 1; 28static int edac_mc_panic_on_ue; 29static int edac_mc_poll_msec = 1000; 30 31/* Getter functions for above */ 32int edac_mc_get_log_ue(void) 33{ 34 return edac_mc_log_ue; 35} 36 37int edac_mc_get_log_ce(void) 38{ 39 return edac_mc_log_ce; 40} 41 42int edac_mc_get_panic_on_ue(void) 43{ 44 return edac_mc_panic_on_ue; 45} 46 47/* this is temporary */ 48int edac_mc_get_poll_msec(void) 49{ 50 return edac_mc_poll_msec; 51} 52 53static int edac_set_poll_msec(const char *val, struct kernel_param *kp) 54{ 55 unsigned long l; 56 int ret; 57 58 if (!val) 59 return -EINVAL; 60 61 ret = kstrtoul(val, 0, &l); 62 if (ret) 63 return ret; 64 65 if (l < 1000) 66 return -EINVAL; 67 68 *((unsigned long *)kp->arg) = l; 69 70 /* notify edac_mc engine to reset the poll period */ 71 edac_mc_reset_delay_period(l); 72 73 return 0; 74} 75 76/* Parameter declarations for above */ 77module_param(edac_mc_panic_on_ue, int, 0644); 78MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on"); 79module_param(edac_mc_log_ue, int, 0644); 80MODULE_PARM_DESC(edac_mc_log_ue, 81 "Log uncorrectable error to console: 0=off 1=on"); 82module_param(edac_mc_log_ce, int, 0644); 83MODULE_PARM_DESC(edac_mc_log_ce, 84 "Log correctable error to console: 0=off 1=on"); 85module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int, 86 &edac_mc_poll_msec, 0644); 87MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds"); 88 89static struct device *mci_pdev; 90 91/* 92 * various constants for Memory Controllers 93 */ 94static const char * const mem_types[] = { 95 [MEM_EMPTY] = "Empty", 96 [MEM_RESERVED] = "Reserved", 97 [MEM_UNKNOWN] = "Unknown", 98 [MEM_FPM] = "FPM", 99 [MEM_EDO] = "EDO", 100 [MEM_BEDO] = "BEDO", 101 [MEM_SDR] = "Unbuffered-SDR", 102 [MEM_RDR] = "Registered-SDR", 103 [MEM_DDR] = "Unbuffered-DDR", 104 [MEM_RDDR] = "Registered-DDR", 105 [MEM_RMBS] = "RMBS", 106 [MEM_DDR2] = "Unbuffered-DDR2", 107 [MEM_FB_DDR2] = "FullyBuffered-DDR2", 108 [MEM_RDDR2] = "Registered-DDR2", 109 [MEM_XDR] = "XDR", 110 [MEM_DDR3] = "Unbuffered-DDR3", 111 [MEM_RDDR3] = "Registered-DDR3", 112 [MEM_DDR4] = "Unbuffered-DDR4", 113 [MEM_RDDR4] = "Registered-DDR4" 114}; 115 116static const char * const dev_types[] = { 117 [DEV_UNKNOWN] = "Unknown", 118 [DEV_X1] = "x1", 119 [DEV_X2] = "x2", 120 [DEV_X4] = "x4", 121 [DEV_X8] = "x8", 122 [DEV_X16] = "x16", 123 [DEV_X32] = "x32", 124 [DEV_X64] = "x64" 125}; 126 127static const char * const edac_caps[] = { 128 [EDAC_UNKNOWN] = "Unknown", 129 [EDAC_NONE] = "None", 130 [EDAC_RESERVED] = "Reserved", 131 [EDAC_PARITY] = "PARITY", 132 [EDAC_EC] = "EC", 133 [EDAC_SECDED] = "SECDED", 134 [EDAC_S2ECD2ED] = "S2ECD2ED", 135 [EDAC_S4ECD4ED] = "S4ECD4ED", 136 [EDAC_S8ECD8ED] = "S8ECD8ED", 137 [EDAC_S16ECD16ED] = "S16ECD16ED" 138}; 139 140#ifdef CONFIG_EDAC_LEGACY_SYSFS 141/* 142 * EDAC sysfs CSROW data structures and methods 143 */ 144 145#define to_csrow(k) container_of(k, struct csrow_info, dev) 146 147/* 148 * We need it to avoid namespace conflicts between the legacy API 149 * and the per-dimm/per-rank one 150 */ 151#define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \ 152 static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store) 153 154struct dev_ch_attribute { 155 struct device_attribute attr; 156 int channel; 157}; 158 159#define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \ 160 static struct dev_ch_attribute dev_attr_legacy_##_name = \ 161 { __ATTR(_name, _mode, _show, _store), (_var) } 162 163#define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel) 164 165/* Set of more default csrow<id> attribute show/store functions */ 166static ssize_t csrow_ue_count_show(struct device *dev, 167 struct device_attribute *mattr, char *data) 168{ 169 struct csrow_info *csrow = to_csrow(dev); 170 171 return sprintf(data, "%u\n", csrow->ue_count); 172} 173 174static ssize_t csrow_ce_count_show(struct device *dev, 175 struct device_attribute *mattr, char *data) 176{ 177 struct csrow_info *csrow = to_csrow(dev); 178 179 return sprintf(data, "%u\n", csrow->ce_count); 180} 181 182static ssize_t csrow_size_show(struct device *dev, 183 struct device_attribute *mattr, char *data) 184{ 185 struct csrow_info *csrow = to_csrow(dev); 186 int i; 187 u32 nr_pages = 0; 188 189 for (i = 0; i < csrow->nr_channels; i++) 190 nr_pages += csrow->channels[i]->dimm->nr_pages; 191 return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages)); 192} 193 194static ssize_t csrow_mem_type_show(struct device *dev, 195 struct device_attribute *mattr, char *data) 196{ 197 struct csrow_info *csrow = to_csrow(dev); 198 199 return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]); 200} 201 202static ssize_t csrow_dev_type_show(struct device *dev, 203 struct device_attribute *mattr, char *data) 204{ 205 struct csrow_info *csrow = to_csrow(dev); 206 207 return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]); 208} 209 210static ssize_t csrow_edac_mode_show(struct device *dev, 211 struct device_attribute *mattr, 212 char *data) 213{ 214 struct csrow_info *csrow = to_csrow(dev); 215 216 return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]); 217} 218 219/* show/store functions for DIMM Label attributes */ 220static ssize_t channel_dimm_label_show(struct device *dev, 221 struct device_attribute *mattr, 222 char *data) 223{ 224 struct csrow_info *csrow = to_csrow(dev); 225 unsigned chan = to_channel(mattr); 226 struct rank_info *rank = csrow->channels[chan]; 227 228 /* if field has not been initialized, there is nothing to send */ 229 if (!rank->dimm->label[0]) 230 return 0; 231 232 return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n", 233 rank->dimm->label); 234} 235 236static ssize_t channel_dimm_label_store(struct device *dev, 237 struct device_attribute *mattr, 238 const char *data, size_t count) 239{ 240 struct csrow_info *csrow = to_csrow(dev); 241 unsigned chan = to_channel(mattr); 242 struct rank_info *rank = csrow->channels[chan]; 243 size_t copy_count = count; 244 245 if (count == 0) 246 return -EINVAL; 247 248 if (data[count - 1] == '\0' || data[count - 1] == '\n') 249 copy_count -= 1; 250 251 if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label)) 252 return -EINVAL; 253 254 strncpy(rank->dimm->label, data, copy_count); 255 rank->dimm->label[copy_count] = '\0'; 256 257 return count; 258} 259 260/* show function for dynamic chX_ce_count attribute */ 261static ssize_t channel_ce_count_show(struct device *dev, 262 struct device_attribute *mattr, char *data) 263{ 264 struct csrow_info *csrow = to_csrow(dev); 265 unsigned chan = to_channel(mattr); 266 struct rank_info *rank = csrow->channels[chan]; 267 268 return sprintf(data, "%u\n", rank->ce_count); 269} 270 271/* cwrow<id>/attribute files */ 272DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL); 273DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL); 274DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL); 275DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL); 276DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL); 277DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL); 278 279/* default attributes of the CSROW<id> object */ 280static struct attribute *csrow_attrs[] = { 281 &dev_attr_legacy_dev_type.attr, 282 &dev_attr_legacy_mem_type.attr, 283 &dev_attr_legacy_edac_mode.attr, 284 &dev_attr_legacy_size_mb.attr, 285 &dev_attr_legacy_ue_count.attr, 286 &dev_attr_legacy_ce_count.attr, 287 NULL, 288}; 289 290static struct attribute_group csrow_attr_grp = { 291 .attrs = csrow_attrs, 292}; 293 294static const struct attribute_group *csrow_attr_groups[] = { 295 &csrow_attr_grp, 296 NULL 297}; 298 299static void csrow_attr_release(struct device *dev) 300{ 301 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev); 302 303 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev)); 304 kfree(csrow); 305} 306 307static struct device_type csrow_attr_type = { 308 .groups = csrow_attr_groups, 309 .release = csrow_attr_release, 310}; 311 312/* 313 * possible dynamic channel DIMM Label attribute files 314 * 315 */ 316 317DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR, 318 channel_dimm_label_show, channel_dimm_label_store, 0); 319DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR, 320 channel_dimm_label_show, channel_dimm_label_store, 1); 321DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR, 322 channel_dimm_label_show, channel_dimm_label_store, 2); 323DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR, 324 channel_dimm_label_show, channel_dimm_label_store, 3); 325DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR, 326 channel_dimm_label_show, channel_dimm_label_store, 4); 327DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR, 328 channel_dimm_label_show, channel_dimm_label_store, 5); 329 330/* Total possible dynamic DIMM Label attribute file table */ 331static struct attribute *dynamic_csrow_dimm_attr[] = { 332 &dev_attr_legacy_ch0_dimm_label.attr.attr, 333 &dev_attr_legacy_ch1_dimm_label.attr.attr, 334 &dev_attr_legacy_ch2_dimm_label.attr.attr, 335 &dev_attr_legacy_ch3_dimm_label.attr.attr, 336 &dev_attr_legacy_ch4_dimm_label.attr.attr, 337 &dev_attr_legacy_ch5_dimm_label.attr.attr, 338 NULL 339}; 340 341/* possible dynamic channel ce_count attribute files */ 342DEVICE_CHANNEL(ch0_ce_count, S_IRUGO, 343 channel_ce_count_show, NULL, 0); 344DEVICE_CHANNEL(ch1_ce_count, S_IRUGO, 345 channel_ce_count_show, NULL, 1); 346DEVICE_CHANNEL(ch2_ce_count, S_IRUGO, 347 channel_ce_count_show, NULL, 2); 348DEVICE_CHANNEL(ch3_ce_count, S_IRUGO, 349 channel_ce_count_show, NULL, 3); 350DEVICE_CHANNEL(ch4_ce_count, S_IRUGO, 351 channel_ce_count_show, NULL, 4); 352DEVICE_CHANNEL(ch5_ce_count, S_IRUGO, 353 channel_ce_count_show, NULL, 5); 354 355/* Total possible dynamic ce_count attribute file table */ 356static struct attribute *dynamic_csrow_ce_count_attr[] = { 357 &dev_attr_legacy_ch0_ce_count.attr.attr, 358 &dev_attr_legacy_ch1_ce_count.attr.attr, 359 &dev_attr_legacy_ch2_ce_count.attr.attr, 360 &dev_attr_legacy_ch3_ce_count.attr.attr, 361 &dev_attr_legacy_ch4_ce_count.attr.attr, 362 &dev_attr_legacy_ch5_ce_count.attr.attr, 363 NULL 364}; 365 366static umode_t csrow_dev_is_visible(struct kobject *kobj, 367 struct attribute *attr, int idx) 368{ 369 struct device *dev = kobj_to_dev(kobj); 370 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev); 371 372 if (idx >= csrow->nr_channels) 373 return 0; 374 /* Only expose populated DIMMs */ 375 if (!csrow->channels[idx]->dimm->nr_pages) 376 return 0; 377 return attr->mode; 378} 379 380 381static const struct attribute_group csrow_dev_dimm_group = { 382 .attrs = dynamic_csrow_dimm_attr, 383 .is_visible = csrow_dev_is_visible, 384}; 385 386static const struct attribute_group csrow_dev_ce_count_group = { 387 .attrs = dynamic_csrow_ce_count_attr, 388 .is_visible = csrow_dev_is_visible, 389}; 390 391static const struct attribute_group *csrow_dev_groups[] = { 392 &csrow_dev_dimm_group, 393 &csrow_dev_ce_count_group, 394 NULL 395}; 396 397static inline int nr_pages_per_csrow(struct csrow_info *csrow) 398{ 399 int chan, nr_pages = 0; 400 401 for (chan = 0; chan < csrow->nr_channels; chan++) 402 nr_pages += csrow->channels[chan]->dimm->nr_pages; 403 404 return nr_pages; 405} 406 407/* Create a CSROW object under specifed edac_mc_device */ 408static int edac_create_csrow_object(struct mem_ctl_info *mci, 409 struct csrow_info *csrow, int index) 410{ 411 csrow->dev.type = &csrow_attr_type; 412 csrow->dev.bus = mci->bus; 413 csrow->dev.groups = csrow_dev_groups; 414 device_initialize(&csrow->dev); 415 csrow->dev.parent = &mci->dev; 416 csrow->mci = mci; 417 dev_set_name(&csrow->dev, "csrow%d", index); 418 dev_set_drvdata(&csrow->dev, csrow); 419 420 edac_dbg(0, "creating (virtual) csrow node %s\n", 421 dev_name(&csrow->dev)); 422 423 return device_add(&csrow->dev); 424} 425 426/* Create a CSROW object under specifed edac_mc_device */ 427static int edac_create_csrow_objects(struct mem_ctl_info *mci) 428{ 429 int err, i; 430 struct csrow_info *csrow; 431 432 for (i = 0; i < mci->nr_csrows; i++) { 433 csrow = mci->csrows[i]; 434 if (!nr_pages_per_csrow(csrow)) 435 continue; 436 err = edac_create_csrow_object(mci, mci->csrows[i], i); 437 if (err < 0) { 438 edac_dbg(1, 439 "failure: create csrow objects for csrow %d\n", 440 i); 441 goto error; 442 } 443 } 444 return 0; 445 446error: 447 for (--i; i >= 0; i--) { 448 csrow = mci->csrows[i]; 449 if (!nr_pages_per_csrow(csrow)) 450 continue; 451 put_device(&mci->csrows[i]->dev); 452 } 453 454 return err; 455} 456 457static void edac_delete_csrow_objects(struct mem_ctl_info *mci) 458{ 459 int i; 460 struct csrow_info *csrow; 461 462 for (i = mci->nr_csrows - 1; i >= 0; i--) { 463 csrow = mci->csrows[i]; 464 if (!nr_pages_per_csrow(csrow)) 465 continue; 466 device_unregister(&mci->csrows[i]->dev); 467 } 468} 469#endif 470 471/* 472 * Per-dimm (or per-rank) devices 473 */ 474 475#define to_dimm(k) container_of(k, struct dimm_info, dev) 476 477/* show/store functions for DIMM Label attributes */ 478static ssize_t dimmdev_location_show(struct device *dev, 479 struct device_attribute *mattr, char *data) 480{ 481 struct dimm_info *dimm = to_dimm(dev); 482 483 return edac_dimm_info_location(dimm, data, PAGE_SIZE); 484} 485 486static ssize_t dimmdev_label_show(struct device *dev, 487 struct device_attribute *mattr, char *data) 488{ 489 struct dimm_info *dimm = to_dimm(dev); 490 491 /* if field has not been initialized, there is nothing to send */ 492 if (!dimm->label[0]) 493 return 0; 494 495 return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label); 496} 497 498static ssize_t dimmdev_label_store(struct device *dev, 499 struct device_attribute *mattr, 500 const char *data, 501 size_t count) 502{ 503 struct dimm_info *dimm = to_dimm(dev); 504 size_t copy_count = count; 505 506 if (count == 0) 507 return -EINVAL; 508 509 if (data[count - 1] == '\0' || data[count - 1] == '\n') 510 copy_count -= 1; 511 512 if (copy_count == 0 || copy_count >= sizeof(dimm->label)) 513 return -EINVAL; 514 515 strncpy(dimm->label, data, copy_count); 516 dimm->label[copy_count] = '\0'; 517 518 return count; 519} 520 521static ssize_t dimmdev_size_show(struct device *dev, 522 struct device_attribute *mattr, char *data) 523{ 524 struct dimm_info *dimm = to_dimm(dev); 525 526 return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages)); 527} 528 529static ssize_t dimmdev_mem_type_show(struct device *dev, 530 struct device_attribute *mattr, char *data) 531{ 532 struct dimm_info *dimm = to_dimm(dev); 533 534 return sprintf(data, "%s\n", mem_types[dimm->mtype]); 535} 536 537static ssize_t dimmdev_dev_type_show(struct device *dev, 538 struct device_attribute *mattr, char *data) 539{ 540 struct dimm_info *dimm = to_dimm(dev); 541 542 return sprintf(data, "%s\n", dev_types[dimm->dtype]); 543} 544 545static ssize_t dimmdev_edac_mode_show(struct device *dev, 546 struct device_attribute *mattr, 547 char *data) 548{ 549 struct dimm_info *dimm = to_dimm(dev); 550 551 return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]); 552} 553 554/* dimm/rank attribute files */ 555static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR, 556 dimmdev_label_show, dimmdev_label_store); 557static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL); 558static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL); 559static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL); 560static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL); 561static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL); 562 563/* attributes of the dimm<id>/rank<id> object */ 564static struct attribute *dimm_attrs[] = { 565 &dev_attr_dimm_label.attr, 566 &dev_attr_dimm_location.attr, 567 &dev_attr_size.attr, 568 &dev_attr_dimm_mem_type.attr, 569 &dev_attr_dimm_dev_type.attr, 570 &dev_attr_dimm_edac_mode.attr, 571 NULL, 572}; 573 574static struct attribute_group dimm_attr_grp = { 575 .attrs = dimm_attrs, 576}; 577 578static const struct attribute_group *dimm_attr_groups[] = { 579 &dimm_attr_grp, 580 NULL 581}; 582 583static void dimm_attr_release(struct device *dev) 584{ 585 struct dimm_info *dimm = container_of(dev, struct dimm_info, dev); 586 587 edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev)); 588 kfree(dimm); 589} 590 591static struct device_type dimm_attr_type = { 592 .groups = dimm_attr_groups, 593 .release = dimm_attr_release, 594}; 595 596/* Create a DIMM object under specifed memory controller device */ 597static int edac_create_dimm_object(struct mem_ctl_info *mci, 598 struct dimm_info *dimm, 599 int index) 600{ 601 int err; 602 dimm->mci = mci; 603 604 dimm->dev.type = &dimm_attr_type; 605 dimm->dev.bus = mci->bus; 606 device_initialize(&dimm->dev); 607 608 dimm->dev.parent = &mci->dev; 609 if (mci->csbased) 610 dev_set_name(&dimm->dev, "rank%d", index); 611 else 612 dev_set_name(&dimm->dev, "dimm%d", index); 613 dev_set_drvdata(&dimm->dev, dimm); 614 pm_runtime_forbid(&mci->dev); 615 616 err = device_add(&dimm->dev); 617 618 edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev)); 619 620 return err; 621} 622 623/* 624 * Memory controller device 625 */ 626 627#define to_mci(k) container_of(k, struct mem_ctl_info, dev) 628 629static ssize_t mci_reset_counters_store(struct device *dev, 630 struct device_attribute *mattr, 631 const char *data, size_t count) 632{ 633 struct mem_ctl_info *mci = to_mci(dev); 634 int cnt, row, chan, i; 635 mci->ue_mc = 0; 636 mci->ce_mc = 0; 637 mci->ue_noinfo_count = 0; 638 mci->ce_noinfo_count = 0; 639 640 for (row = 0; row < mci->nr_csrows; row++) { 641 struct csrow_info *ri = mci->csrows[row]; 642 643 ri->ue_count = 0; 644 ri->ce_count = 0; 645 646 for (chan = 0; chan < ri->nr_channels; chan++) 647 ri->channels[chan]->ce_count = 0; 648 } 649 650 cnt = 1; 651 for (i = 0; i < mci->n_layers; i++) { 652 cnt *= mci->layers[i].size; 653 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32)); 654 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32)); 655 } 656 657 mci->start_time = jiffies; 658 return count; 659} 660 661/* Memory scrubbing interface: 662 * 663 * A MC driver can limit the scrubbing bandwidth based on the CPU type. 664 * Therefore, ->set_sdram_scrub_rate should be made to return the actual 665 * bandwidth that is accepted or 0 when scrubbing is to be disabled. 666 * 667 * Negative value still means that an error has occurred while setting 668 * the scrub rate. 669 */ 670static ssize_t mci_sdram_scrub_rate_store(struct device *dev, 671 struct device_attribute *mattr, 672 const char *data, size_t count) 673{ 674 struct mem_ctl_info *mci = to_mci(dev); 675 unsigned long bandwidth = 0; 676 int new_bw = 0; 677 678 if (kstrtoul(data, 10, &bandwidth) < 0) 679 return -EINVAL; 680 681 new_bw = mci->set_sdram_scrub_rate(mci, bandwidth); 682 if (new_bw < 0) { 683 edac_printk(KERN_WARNING, EDAC_MC, 684 "Error setting scrub rate to: %lu\n", bandwidth); 685 return -EINVAL; 686 } 687 688 return count; 689} 690 691/* 692 * ->get_sdram_scrub_rate() return value semantics same as above. 693 */ 694static ssize_t mci_sdram_scrub_rate_show(struct device *dev, 695 struct device_attribute *mattr, 696 char *data) 697{ 698 struct mem_ctl_info *mci = to_mci(dev); 699 int bandwidth = 0; 700 701 bandwidth = mci->get_sdram_scrub_rate(mci); 702 if (bandwidth < 0) { 703 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n"); 704 return bandwidth; 705 } 706 707 return sprintf(data, "%d\n", bandwidth); 708} 709 710/* default attribute files for the MCI object */ 711static ssize_t mci_ue_count_show(struct device *dev, 712 struct device_attribute *mattr, 713 char *data) 714{ 715 struct mem_ctl_info *mci = to_mci(dev); 716 717 return sprintf(data, "%d\n", mci->ue_mc); 718} 719 720static ssize_t mci_ce_count_show(struct device *dev, 721 struct device_attribute *mattr, 722 char *data) 723{ 724 struct mem_ctl_info *mci = to_mci(dev); 725 726 return sprintf(data, "%d\n", mci->ce_mc); 727} 728 729static ssize_t mci_ce_noinfo_show(struct device *dev, 730 struct device_attribute *mattr, 731 char *data) 732{ 733 struct mem_ctl_info *mci = to_mci(dev); 734 735 return sprintf(data, "%d\n", mci->ce_noinfo_count); 736} 737 738static ssize_t mci_ue_noinfo_show(struct device *dev, 739 struct device_attribute *mattr, 740 char *data) 741{ 742 struct mem_ctl_info *mci = to_mci(dev); 743 744 return sprintf(data, "%d\n", mci->ue_noinfo_count); 745} 746 747static ssize_t mci_seconds_show(struct device *dev, 748 struct device_attribute *mattr, 749 char *data) 750{ 751 struct mem_ctl_info *mci = to_mci(dev); 752 753 return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ); 754} 755 756static ssize_t mci_ctl_name_show(struct device *dev, 757 struct device_attribute *mattr, 758 char *data) 759{ 760 struct mem_ctl_info *mci = to_mci(dev); 761 762 return sprintf(data, "%s\n", mci->ctl_name); 763} 764 765static ssize_t mci_size_mb_show(struct device *dev, 766 struct device_attribute *mattr, 767 char *data) 768{ 769 struct mem_ctl_info *mci = to_mci(dev); 770 int total_pages = 0, csrow_idx, j; 771 772 for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) { 773 struct csrow_info *csrow = mci->csrows[csrow_idx]; 774 775 for (j = 0; j < csrow->nr_channels; j++) { 776 struct dimm_info *dimm = csrow->channels[j]->dimm; 777 778 total_pages += dimm->nr_pages; 779 } 780 } 781 782 return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages)); 783} 784 785static ssize_t mci_max_location_show(struct device *dev, 786 struct device_attribute *mattr, 787 char *data) 788{ 789 struct mem_ctl_info *mci = to_mci(dev); 790 int i; 791 char *p = data; 792 793 for (i = 0; i < mci->n_layers; i++) { 794 p += sprintf(p, "%s %d ", 795 edac_layer_name[mci->layers[i].type], 796 mci->layers[i].size - 1); 797 } 798 799 return p - data; 800} 801 802/* default Control file */ 803static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store); 804 805/* default Attribute files */ 806static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL); 807static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL); 808static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL); 809static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL); 810static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL); 811static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL); 812static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL); 813static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL); 814 815/* memory scrubber attribute file */ 816DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show, 817 mci_sdram_scrub_rate_store); /* umode set later in is_visible */ 818 819static struct attribute *mci_attrs[] = { 820 &dev_attr_reset_counters.attr, 821 &dev_attr_mc_name.attr, 822 &dev_attr_size_mb.attr, 823 &dev_attr_seconds_since_reset.attr, 824 &dev_attr_ue_noinfo_count.attr, 825 &dev_attr_ce_noinfo_count.attr, 826 &dev_attr_ue_count.attr, 827 &dev_attr_ce_count.attr, 828 &dev_attr_max_location.attr, 829 &dev_attr_sdram_scrub_rate.attr, 830 NULL 831}; 832 833static umode_t mci_attr_is_visible(struct kobject *kobj, 834 struct attribute *attr, int idx) 835{ 836 struct device *dev = kobj_to_dev(kobj); 837 struct mem_ctl_info *mci = to_mci(dev); 838 umode_t mode = 0; 839 840 if (attr != &dev_attr_sdram_scrub_rate.attr) 841 return attr->mode; 842 if (mci->get_sdram_scrub_rate) 843 mode |= S_IRUGO; 844 if (mci->set_sdram_scrub_rate) 845 mode |= S_IWUSR; 846 return mode; 847} 848 849static struct attribute_group mci_attr_grp = { 850 .attrs = mci_attrs, 851 .is_visible = mci_attr_is_visible, 852}; 853 854static const struct attribute_group *mci_attr_groups[] = { 855 &mci_attr_grp, 856 NULL 857}; 858 859static void mci_attr_release(struct device *dev) 860{ 861 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev); 862 863 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev)); 864 kfree(mci); 865} 866 867static struct device_type mci_attr_type = { 868 .groups = mci_attr_groups, 869 .release = mci_attr_release, 870}; 871 872/* 873 * Create a new Memory Controller kobject instance, 874 * mc<id> under the 'mc' directory 875 * 876 * Return: 877 * 0 Success 878 * !0 Failure 879 */ 880int edac_create_sysfs_mci_device(struct mem_ctl_info *mci, 881 const struct attribute_group **groups) 882{ 883 char *name; 884 int i, err; 885 886 /* 887 * The memory controller needs its own bus, in order to avoid 888 * namespace conflicts at /sys/bus/edac. 889 */ 890 name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx); 891 if (!name) 892 return -ENOMEM; 893 894 mci->bus->name = name; 895 896 edac_dbg(0, "creating bus %s\n", mci->bus->name); 897 898 err = bus_register(mci->bus); 899 if (err < 0) { 900 kfree(name); 901 return err; 902 } 903 904 /* get the /sys/devices/system/edac subsys reference */ 905 mci->dev.type = &mci_attr_type; 906 device_initialize(&mci->dev); 907 908 mci->dev.parent = mci_pdev; 909 mci->dev.bus = mci->bus; 910 mci->dev.groups = groups; 911 dev_set_name(&mci->dev, "mc%d", mci->mc_idx); 912 dev_set_drvdata(&mci->dev, mci); 913 pm_runtime_forbid(&mci->dev); 914 915 edac_dbg(0, "creating device %s\n", dev_name(&mci->dev)); 916 err = device_add(&mci->dev); 917 if (err < 0) { 918 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev)); 919 goto fail_unregister_bus; 920 } 921 922 /* 923 * Create the dimm/rank devices 924 */ 925 for (i = 0; i < mci->tot_dimms; i++) { 926 struct dimm_info *dimm = mci->dimms[i]; 927 /* Only expose populated DIMMs */ 928 if (!dimm->nr_pages) 929 continue; 930 931#ifdef CONFIG_EDAC_DEBUG 932 edac_dbg(1, "creating dimm%d, located at ", i); 933 if (edac_debug_level >= 1) { 934 int lay; 935 for (lay = 0; lay < mci->n_layers; lay++) 936 printk(KERN_CONT "%s %d ", 937 edac_layer_name[mci->layers[lay].type], 938 dimm->location[lay]); 939 printk(KERN_CONT "\n"); 940 } 941#endif 942 err = edac_create_dimm_object(mci, dimm, i); 943 if (err) { 944 edac_dbg(1, "failure: create dimm %d obj\n", i); 945 goto fail_unregister_dimm; 946 } 947 } 948 949#ifdef CONFIG_EDAC_LEGACY_SYSFS 950 err = edac_create_csrow_objects(mci); 951 if (err < 0) 952 goto fail_unregister_dimm; 953#endif 954 955 edac_create_debugfs_nodes(mci); 956 return 0; 957 958fail_unregister_dimm: 959 for (i--; i >= 0; i--) { 960 struct dimm_info *dimm = mci->dimms[i]; 961 if (!dimm->nr_pages) 962 continue; 963 964 device_unregister(&dimm->dev); 965 } 966 device_unregister(&mci->dev); 967fail_unregister_bus: 968 bus_unregister(mci->bus); 969 kfree(name); 970 971 return err; 972} 973 974/* 975 * remove a Memory Controller instance 976 */ 977void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci) 978{ 979 int i; 980 981 edac_dbg(0, "\n"); 982 983#ifdef CONFIG_EDAC_DEBUG 984 edac_debugfs_remove_recursive(mci->debugfs); 985#endif 986#ifdef CONFIG_EDAC_LEGACY_SYSFS 987 edac_delete_csrow_objects(mci); 988#endif 989 990 for (i = 0; i < mci->tot_dimms; i++) { 991 struct dimm_info *dimm = mci->dimms[i]; 992 if (dimm->nr_pages == 0) 993 continue; 994 edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev)); 995 device_unregister(&dimm->dev); 996 } 997} 998 999void edac_unregister_sysfs(struct mem_ctl_info *mci) 1000{ 1001 const char *name = mci->bus->name; 1002 1003 edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev)); 1004 device_unregister(&mci->dev); 1005 bus_unregister(mci->bus); 1006 kfree(name); 1007} 1008 1009static void mc_attr_release(struct device *dev) 1010{ 1011 /* 1012 * There's no container structure here, as this is just the mci 1013 * parent device, used to create the /sys/devices/mc sysfs node. 1014 * So, there are no attributes on it. 1015 */ 1016 edac_dbg(1, "Releasing device %s\n", dev_name(dev)); 1017 kfree(dev); 1018} 1019 1020static struct device_type mc_attr_type = { 1021 .release = mc_attr_release, 1022}; 1023/* 1024 * Init/exit code for the module. Basically, creates/removes /sys/class/rc 1025 */ 1026int __init edac_mc_sysfs_init(void) 1027{ 1028 struct bus_type *edac_subsys; 1029 int err; 1030 1031 /* get the /sys/devices/system/edac subsys reference */ 1032 edac_subsys = edac_get_sysfs_subsys(); 1033 if (edac_subsys == NULL) { 1034 edac_dbg(1, "no edac_subsys\n"); 1035 err = -EINVAL; 1036 goto out; 1037 } 1038 1039 mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL); 1040 if (!mci_pdev) { 1041 err = -ENOMEM; 1042 goto out_put_sysfs; 1043 } 1044 1045 mci_pdev->bus = edac_subsys; 1046 mci_pdev->type = &mc_attr_type; 1047 device_initialize(mci_pdev); 1048 dev_set_name(mci_pdev, "mc"); 1049 1050 err = device_add(mci_pdev); 1051 if (err < 0) 1052 goto out_dev_free; 1053 1054 edac_dbg(0, "device %s created\n", dev_name(mci_pdev)); 1055 1056 return 0; 1057 1058 out_dev_free: 1059 kfree(mci_pdev); 1060 out_put_sysfs: 1061 edac_put_sysfs_subsys(); 1062 out: 1063 return err; 1064} 1065 1066void edac_mc_sysfs_exit(void) 1067{ 1068 device_unregister(mci_pdev); 1069 edac_put_sysfs_subsys(); 1070} 1071