1/*
2 * Fence mechanism for dma-buf and to allow for asynchronous dma access
3 *
4 * Copyright (C) 2012 Canonical Ltd
5 * Copyright (C) 2012 Texas Instruments
6 *
7 * Authors:
8 * Rob Clark <robdclark@gmail.com>
9 * Maarten Lankhorst <maarten.lankhorst@canonical.com>
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License version 2 as published by
13 * the Free Software Foundation.
14 *
15 * This program is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18 * more details.
19 */
20
21#include <linux/slab.h>
22#include <linux/export.h>
23#include <linux/atomic.h>
24#include <linux/fence.h>
25
26#define CREATE_TRACE_POINTS
27#include <trace/events/fence.h>
28
29EXPORT_TRACEPOINT_SYMBOL(fence_annotate_wait_on);
30EXPORT_TRACEPOINT_SYMBOL(fence_emit);
31
32/*
33 * fence context counter: each execution context should have its own
34 * fence context, this allows checking if fences belong to the same
35 * context or not. One device can have multiple separate contexts,
36 * and they're used if some engine can run independently of another.
37 */
38static atomic_t fence_context_counter = ATOMIC_INIT(0);
39
40/**
41 * fence_context_alloc - allocate an array of fence contexts
42 * @num:	[in]	amount of contexts to allocate
43 *
44 * This function will return the first index of the number of fences allocated.
45 * The fence context is used for setting fence->context to a unique number.
46 */
47unsigned fence_context_alloc(unsigned num)
48{
49	BUG_ON(!num);
50	return atomic_add_return(num, &fence_context_counter) - num;
51}
52EXPORT_SYMBOL(fence_context_alloc);
53
54/**
55 * fence_signal_locked - signal completion of a fence
56 * @fence: the fence to signal
57 *
58 * Signal completion for software callbacks on a fence, this will unblock
59 * fence_wait() calls and run all the callbacks added with
60 * fence_add_callback(). Can be called multiple times, but since a fence
61 * can only go from unsignaled to signaled state, it will only be effective
62 * the first time.
63 *
64 * Unlike fence_signal, this function must be called with fence->lock held.
65 */
66int fence_signal_locked(struct fence *fence)
67{
68	struct fence_cb *cur, *tmp;
69	int ret = 0;
70
71	if (WARN_ON(!fence))
72		return -EINVAL;
73
74	if (!ktime_to_ns(fence->timestamp)) {
75		fence->timestamp = ktime_get();
76		smp_mb__before_atomic();
77	}
78
79	if (test_and_set_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
80		ret = -EINVAL;
81
82		/*
83		 * we might have raced with the unlocked fence_signal,
84		 * still run through all callbacks
85		 */
86	} else
87		trace_fence_signaled(fence);
88
89	list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
90		list_del_init(&cur->node);
91		cur->func(fence, cur);
92	}
93	return ret;
94}
95EXPORT_SYMBOL(fence_signal_locked);
96
97/**
98 * fence_signal - signal completion of a fence
99 * @fence: the fence to signal
100 *
101 * Signal completion for software callbacks on a fence, this will unblock
102 * fence_wait() calls and run all the callbacks added with
103 * fence_add_callback(). Can be called multiple times, but since a fence
104 * can only go from unsignaled to signaled state, it will only be effective
105 * the first time.
106 */
107int fence_signal(struct fence *fence)
108{
109	unsigned long flags;
110
111	if (!fence)
112		return -EINVAL;
113
114	if (!ktime_to_ns(fence->timestamp)) {
115		fence->timestamp = ktime_get();
116		smp_mb__before_atomic();
117	}
118
119	if (test_and_set_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
120		return -EINVAL;
121
122	trace_fence_signaled(fence);
123
124	if (test_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags)) {
125		struct fence_cb *cur, *tmp;
126
127		spin_lock_irqsave(fence->lock, flags);
128		list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
129			list_del_init(&cur->node);
130			cur->func(fence, cur);
131		}
132		spin_unlock_irqrestore(fence->lock, flags);
133	}
134	return 0;
135}
136EXPORT_SYMBOL(fence_signal);
137
138/**
139 * fence_wait_timeout - sleep until the fence gets signaled
140 * or until timeout elapses
141 * @fence:	[in]	the fence to wait on
142 * @intr:	[in]	if true, do an interruptible wait
143 * @timeout:	[in]	timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
144 *
145 * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
146 * remaining timeout in jiffies on success. Other error values may be
147 * returned on custom implementations.
148 *
149 * Performs a synchronous wait on this fence. It is assumed the caller
150 * directly or indirectly (buf-mgr between reservation and committing)
151 * holds a reference to the fence, otherwise the fence might be
152 * freed before return, resulting in undefined behavior.
153 */
154signed long
155fence_wait_timeout(struct fence *fence, bool intr, signed long timeout)
156{
157	signed long ret;
158
159	if (WARN_ON(timeout < 0))
160		return -EINVAL;
161
162	if (timeout == 0)
163		return fence_is_signaled(fence);
164
165	trace_fence_wait_start(fence);
166	ret = fence->ops->wait(fence, intr, timeout);
167	trace_fence_wait_end(fence);
168	return ret;
169}
170EXPORT_SYMBOL(fence_wait_timeout);
171
172void fence_release(struct kref *kref)
173{
174	struct fence *fence =
175			container_of(kref, struct fence, refcount);
176
177	trace_fence_destroy(fence);
178
179	BUG_ON(!list_empty(&fence->cb_list));
180
181	if (fence->ops->release)
182		fence->ops->release(fence);
183	else
184		fence_free(fence);
185}
186EXPORT_SYMBOL(fence_release);
187
188void fence_free(struct fence *fence)
189{
190	kfree_rcu(fence, rcu);
191}
192EXPORT_SYMBOL(fence_free);
193
194/**
195 * fence_enable_sw_signaling - enable signaling on fence
196 * @fence:	[in]	the fence to enable
197 *
198 * this will request for sw signaling to be enabled, to make the fence
199 * complete as soon as possible
200 */
201void fence_enable_sw_signaling(struct fence *fence)
202{
203	unsigned long flags;
204
205	if (!test_and_set_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags) &&
206	    !test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
207		trace_fence_enable_signal(fence);
208
209		spin_lock_irqsave(fence->lock, flags);
210
211		if (!fence->ops->enable_signaling(fence))
212			fence_signal_locked(fence);
213
214		spin_unlock_irqrestore(fence->lock, flags);
215	}
216}
217EXPORT_SYMBOL(fence_enable_sw_signaling);
218
219/**
220 * fence_add_callback - add a callback to be called when the fence
221 * is signaled
222 * @fence:	[in]	the fence to wait on
223 * @cb:		[in]	the callback to register
224 * @func:	[in]	the function to call
225 *
226 * cb will be initialized by fence_add_callback, no initialization
227 * by the caller is required. Any number of callbacks can be registered
228 * to a fence, but a callback can only be registered to one fence at a time.
229 *
230 * Note that the callback can be called from an atomic context.  If
231 * fence is already signaled, this function will return -ENOENT (and
232 * *not* call the callback)
233 *
234 * Add a software callback to the fence. Same restrictions apply to
235 * refcount as it does to fence_wait, however the caller doesn't need to
236 * keep a refcount to fence afterwards: when software access is enabled,
237 * the creator of the fence is required to keep the fence alive until
238 * after it signals with fence_signal. The callback itself can be called
239 * from irq context.
240 *
241 */
242int fence_add_callback(struct fence *fence, struct fence_cb *cb,
243		       fence_func_t func)
244{
245	unsigned long flags;
246	int ret = 0;
247	bool was_set;
248
249	if (WARN_ON(!fence || !func))
250		return -EINVAL;
251
252	if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
253		INIT_LIST_HEAD(&cb->node);
254		return -ENOENT;
255	}
256
257	spin_lock_irqsave(fence->lock, flags);
258
259	was_set = test_and_set_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags);
260
261	if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
262		ret = -ENOENT;
263	else if (!was_set) {
264		trace_fence_enable_signal(fence);
265
266		if (!fence->ops->enable_signaling(fence)) {
267			fence_signal_locked(fence);
268			ret = -ENOENT;
269		}
270	}
271
272	if (!ret) {
273		cb->func = func;
274		list_add_tail(&cb->node, &fence->cb_list);
275	} else
276		INIT_LIST_HEAD(&cb->node);
277	spin_unlock_irqrestore(fence->lock, flags);
278
279	return ret;
280}
281EXPORT_SYMBOL(fence_add_callback);
282
283/**
284 * fence_remove_callback - remove a callback from the signaling list
285 * @fence:	[in]	the fence to wait on
286 * @cb:		[in]	the callback to remove
287 *
288 * Remove a previously queued callback from the fence. This function returns
289 * true if the callback is successfully removed, or false if the fence has
290 * already been signaled.
291 *
292 * *WARNING*:
293 * Cancelling a callback should only be done if you really know what you're
294 * doing, since deadlocks and race conditions could occur all too easily. For
295 * this reason, it should only ever be done on hardware lockup recovery,
296 * with a reference held to the fence.
297 */
298bool
299fence_remove_callback(struct fence *fence, struct fence_cb *cb)
300{
301	unsigned long flags;
302	bool ret;
303
304	spin_lock_irqsave(fence->lock, flags);
305
306	ret = !list_empty(&cb->node);
307	if (ret)
308		list_del_init(&cb->node);
309
310	spin_unlock_irqrestore(fence->lock, flags);
311
312	return ret;
313}
314EXPORT_SYMBOL(fence_remove_callback);
315
316struct default_wait_cb {
317	struct fence_cb base;
318	struct task_struct *task;
319};
320
321static void
322fence_default_wait_cb(struct fence *fence, struct fence_cb *cb)
323{
324	struct default_wait_cb *wait =
325		container_of(cb, struct default_wait_cb, base);
326
327	wake_up_state(wait->task, TASK_NORMAL);
328}
329
330/**
331 * fence_default_wait - default sleep until the fence gets signaled
332 * or until timeout elapses
333 * @fence:	[in]	the fence to wait on
334 * @intr:	[in]	if true, do an interruptible wait
335 * @timeout:	[in]	timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
336 *
337 * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
338 * remaining timeout in jiffies on success.
339 */
340signed long
341fence_default_wait(struct fence *fence, bool intr, signed long timeout)
342{
343	struct default_wait_cb cb;
344	unsigned long flags;
345	signed long ret = timeout;
346	bool was_set;
347
348	if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
349		return timeout;
350
351	spin_lock_irqsave(fence->lock, flags);
352
353	if (intr && signal_pending(current)) {
354		ret = -ERESTARTSYS;
355		goto out;
356	}
357
358	was_set = test_and_set_bit(FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags);
359
360	if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
361		goto out;
362
363	if (!was_set) {
364		trace_fence_enable_signal(fence);
365
366		if (!fence->ops->enable_signaling(fence)) {
367			fence_signal_locked(fence);
368			goto out;
369		}
370	}
371
372	cb.base.func = fence_default_wait_cb;
373	cb.task = current;
374	list_add(&cb.base.node, &fence->cb_list);
375
376	while (!test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
377		if (intr)
378			__set_current_state(TASK_INTERRUPTIBLE);
379		else
380			__set_current_state(TASK_UNINTERRUPTIBLE);
381		spin_unlock_irqrestore(fence->lock, flags);
382
383		ret = schedule_timeout(ret);
384
385		spin_lock_irqsave(fence->lock, flags);
386		if (ret > 0 && intr && signal_pending(current))
387			ret = -ERESTARTSYS;
388	}
389
390	if (!list_empty(&cb.base.node))
391		list_del(&cb.base.node);
392	__set_current_state(TASK_RUNNING);
393
394out:
395	spin_unlock_irqrestore(fence->lock, flags);
396	return ret;
397}
398EXPORT_SYMBOL(fence_default_wait);
399
400static bool
401fence_test_signaled_any(struct fence **fences, uint32_t count)
402{
403	int i;
404
405	for (i = 0; i < count; ++i) {
406		struct fence *fence = fences[i];
407		if (test_bit(FENCE_FLAG_SIGNALED_BIT, &fence->flags))
408			return true;
409	}
410	return false;
411}
412
413/**
414 * fence_wait_any_timeout - sleep until any fence gets signaled
415 * or until timeout elapses
416 * @fences:	[in]	array of fences to wait on
417 * @count:	[in]	number of fences to wait on
418 * @intr:	[in]	if true, do an interruptible wait
419 * @timeout:	[in]	timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
420 *
421 * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
422 * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
423 * on success.
424 *
425 * Synchronous waits for the first fence in the array to be signaled. The
426 * caller needs to hold a reference to all fences in the array, otherwise a
427 * fence might be freed before return, resulting in undefined behavior.
428 */
429signed long
430fence_wait_any_timeout(struct fence **fences, uint32_t count,
431		       bool intr, signed long timeout)
432{
433	struct default_wait_cb *cb;
434	signed long ret = timeout;
435	unsigned i;
436
437	if (WARN_ON(!fences || !count || timeout < 0))
438		return -EINVAL;
439
440	if (timeout == 0) {
441		for (i = 0; i < count; ++i)
442			if (fence_is_signaled(fences[i]))
443				return 1;
444
445		return 0;
446	}
447
448	cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
449	if (cb == NULL) {
450		ret = -ENOMEM;
451		goto err_free_cb;
452	}
453
454	for (i = 0; i < count; ++i) {
455		struct fence *fence = fences[i];
456
457		if (fence->ops->wait != fence_default_wait) {
458			ret = -EINVAL;
459			goto fence_rm_cb;
460		}
461
462		cb[i].task = current;
463		if (fence_add_callback(fence, &cb[i].base,
464				       fence_default_wait_cb)) {
465			/* This fence is already signaled */
466			goto fence_rm_cb;
467		}
468	}
469
470	while (ret > 0) {
471		if (intr)
472			set_current_state(TASK_INTERRUPTIBLE);
473		else
474			set_current_state(TASK_UNINTERRUPTIBLE);
475
476		if (fence_test_signaled_any(fences, count))
477			break;
478
479		ret = schedule_timeout(ret);
480
481		if (ret > 0 && intr && signal_pending(current))
482			ret = -ERESTARTSYS;
483	}
484
485	__set_current_state(TASK_RUNNING);
486
487fence_rm_cb:
488	while (i-- > 0)
489		fence_remove_callback(fences[i], &cb[i].base);
490
491err_free_cb:
492	kfree(cb);
493
494	return ret;
495}
496EXPORT_SYMBOL(fence_wait_any_timeout);
497
498/**
499 * fence_init - Initialize a custom fence.
500 * @fence:	[in]	the fence to initialize
501 * @ops:	[in]	the fence_ops for operations on this fence
502 * @lock:	[in]	the irqsafe spinlock to use for locking this fence
503 * @context:	[in]	the execution context this fence is run on
504 * @seqno:	[in]	a linear increasing sequence number for this context
505 *
506 * Initializes an allocated fence, the caller doesn't have to keep its
507 * refcount after committing with this fence, but it will need to hold a
508 * refcount again if fence_ops.enable_signaling gets called. This can
509 * be used for other implementing other types of fence.
510 *
511 * context and seqno are used for easy comparison between fences, allowing
512 * to check which fence is later by simply using fence_later.
513 */
514void
515fence_init(struct fence *fence, const struct fence_ops *ops,
516	     spinlock_t *lock, unsigned context, unsigned seqno)
517{
518	BUG_ON(!lock);
519	BUG_ON(!ops || !ops->wait || !ops->enable_signaling ||
520	       !ops->get_driver_name || !ops->get_timeline_name);
521
522	kref_init(&fence->refcount);
523	fence->ops = ops;
524	INIT_LIST_HEAD(&fence->cb_list);
525	fence->lock = lock;
526	fence->context = context;
527	fence->seqno = seqno;
528	fence->flags = 0UL;
529
530	trace_fence_init(fence);
531}
532EXPORT_SYMBOL(fence_init);
533