1/*
2 * AMD Cryptographic Coprocessor (CCP) SHA crypto API support
3 *
4 * Copyright (C) 2013 Advanced Micro Devices, Inc.
5 *
6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/module.h>
14#include <linux/sched.h>
15#include <linux/delay.h>
16#include <linux/scatterlist.h>
17#include <linux/crypto.h>
18#include <crypto/algapi.h>
19#include <crypto/hash.h>
20#include <crypto/internal/hash.h>
21#include <crypto/sha.h>
22#include <crypto/scatterwalk.h>
23
24#include "ccp-crypto.h"
25
26static int ccp_sha_complete(struct crypto_async_request *async_req, int ret)
27{
28	struct ahash_request *req = ahash_request_cast(async_req);
29	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
30	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
31	unsigned int digest_size = crypto_ahash_digestsize(tfm);
32
33	if (ret)
34		goto e_free;
35
36	if (rctx->hash_rem) {
37		/* Save remaining data to buffer */
38		unsigned int offset = rctx->nbytes - rctx->hash_rem;
39
40		scatterwalk_map_and_copy(rctx->buf, rctx->src,
41					 offset, rctx->hash_rem, 0);
42		rctx->buf_count = rctx->hash_rem;
43	} else {
44		rctx->buf_count = 0;
45	}
46
47	/* Update result area if supplied */
48	if (req->result)
49		memcpy(req->result, rctx->ctx, digest_size);
50
51e_free:
52	sg_free_table(&rctx->data_sg);
53
54	return ret;
55}
56
57static int ccp_do_sha_update(struct ahash_request *req, unsigned int nbytes,
58			     unsigned int final)
59{
60	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
61	struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
62	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
63	struct scatterlist *sg;
64	unsigned int block_size =
65		crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
66	unsigned int sg_count;
67	gfp_t gfp;
68	u64 len;
69	int ret;
70
71	len = (u64)rctx->buf_count + (u64)nbytes;
72
73	if (!final && (len <= block_size)) {
74		scatterwalk_map_and_copy(rctx->buf + rctx->buf_count, req->src,
75					 0, nbytes, 0);
76		rctx->buf_count += nbytes;
77
78		return 0;
79	}
80
81	rctx->src = req->src;
82	rctx->nbytes = nbytes;
83
84	rctx->final = final;
85	rctx->hash_rem = final ? 0 : len & (block_size - 1);
86	rctx->hash_cnt = len - rctx->hash_rem;
87	if (!final && !rctx->hash_rem) {
88		/* CCP can't do zero length final, so keep some data around */
89		rctx->hash_cnt -= block_size;
90		rctx->hash_rem = block_size;
91	}
92
93	/* Initialize the context scatterlist */
94	sg_init_one(&rctx->ctx_sg, rctx->ctx, sizeof(rctx->ctx));
95
96	sg = NULL;
97	if (rctx->buf_count && nbytes) {
98		/* Build the data scatterlist table - allocate enough entries
99		 * for both data pieces (buffer and input data)
100		 */
101		gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
102			GFP_KERNEL : GFP_ATOMIC;
103		sg_count = sg_nents(req->src) + 1;
104		ret = sg_alloc_table(&rctx->data_sg, sg_count, gfp);
105		if (ret)
106			return ret;
107
108		sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
109		sg = ccp_crypto_sg_table_add(&rctx->data_sg, &rctx->buf_sg);
110		if (!sg) {
111			ret = -EINVAL;
112			goto e_free;
113		}
114		sg = ccp_crypto_sg_table_add(&rctx->data_sg, req->src);
115		if (!sg) {
116			ret = -EINVAL;
117			goto e_free;
118		}
119		sg_mark_end(sg);
120
121		sg = rctx->data_sg.sgl;
122	} else if (rctx->buf_count) {
123		sg_init_one(&rctx->buf_sg, rctx->buf, rctx->buf_count);
124
125		sg = &rctx->buf_sg;
126	} else if (nbytes) {
127		sg = req->src;
128	}
129
130	rctx->msg_bits += (rctx->hash_cnt << 3);	/* Total in bits */
131
132	memset(&rctx->cmd, 0, sizeof(rctx->cmd));
133	INIT_LIST_HEAD(&rctx->cmd.entry);
134	rctx->cmd.engine = CCP_ENGINE_SHA;
135	rctx->cmd.u.sha.type = rctx->type;
136	rctx->cmd.u.sha.ctx = &rctx->ctx_sg;
137	rctx->cmd.u.sha.ctx_len = sizeof(rctx->ctx);
138	rctx->cmd.u.sha.src = sg;
139	rctx->cmd.u.sha.src_len = rctx->hash_cnt;
140	rctx->cmd.u.sha.opad = ctx->u.sha.key_len ?
141		&ctx->u.sha.opad_sg : NULL;
142	rctx->cmd.u.sha.opad_len = ctx->u.sha.key_len ?
143		ctx->u.sha.opad_count : 0;
144	rctx->cmd.u.sha.first = rctx->first;
145	rctx->cmd.u.sha.final = rctx->final;
146	rctx->cmd.u.sha.msg_bits = rctx->msg_bits;
147
148	rctx->first = 0;
149
150	ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
151
152	return ret;
153
154e_free:
155	sg_free_table(&rctx->data_sg);
156
157	return ret;
158}
159
160static int ccp_sha_init(struct ahash_request *req)
161{
162	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
163	struct ccp_ctx *ctx = crypto_ahash_ctx(tfm);
164	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
165	struct ccp_crypto_ahash_alg *alg =
166		ccp_crypto_ahash_alg(crypto_ahash_tfm(tfm));
167	unsigned int block_size =
168		crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
169
170	memset(rctx, 0, sizeof(*rctx));
171
172	rctx->type = alg->type;
173	rctx->first = 1;
174
175	if (ctx->u.sha.key_len) {
176		/* Buffer the HMAC key for first update */
177		memcpy(rctx->buf, ctx->u.sha.ipad, block_size);
178		rctx->buf_count = block_size;
179	}
180
181	return 0;
182}
183
184static int ccp_sha_update(struct ahash_request *req)
185{
186	return ccp_do_sha_update(req, req->nbytes, 0);
187}
188
189static int ccp_sha_final(struct ahash_request *req)
190{
191	return ccp_do_sha_update(req, 0, 1);
192}
193
194static int ccp_sha_finup(struct ahash_request *req)
195{
196	return ccp_do_sha_update(req, req->nbytes, 1);
197}
198
199static int ccp_sha_digest(struct ahash_request *req)
200{
201	int ret;
202
203	ret = ccp_sha_init(req);
204	if (ret)
205		return ret;
206
207	return ccp_sha_finup(req);
208}
209
210static int ccp_sha_export(struct ahash_request *req, void *out)
211{
212	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
213	struct ccp_sha_exp_ctx state;
214
215	/* Don't let anything leak to 'out' */
216	memset(&state, 0, sizeof(state));
217
218	state.type = rctx->type;
219	state.msg_bits = rctx->msg_bits;
220	state.first = rctx->first;
221	memcpy(state.ctx, rctx->ctx, sizeof(state.ctx));
222	state.buf_count = rctx->buf_count;
223	memcpy(state.buf, rctx->buf, sizeof(state.buf));
224
225	/* 'out' may not be aligned so memcpy from local variable */
226	memcpy(out, &state, sizeof(state));
227
228	return 0;
229}
230
231static int ccp_sha_import(struct ahash_request *req, const void *in)
232{
233	struct ccp_sha_req_ctx *rctx = ahash_request_ctx(req);
234	struct ccp_sha_exp_ctx state;
235
236	/* 'in' may not be aligned so memcpy to local variable */
237	memcpy(&state, in, sizeof(state));
238
239	memset(rctx, 0, sizeof(*rctx));
240	rctx->type = state.type;
241	rctx->msg_bits = state.msg_bits;
242	rctx->first = state.first;
243	memcpy(rctx->ctx, state.ctx, sizeof(rctx->ctx));
244	rctx->buf_count = state.buf_count;
245	memcpy(rctx->buf, state.buf, sizeof(rctx->buf));
246
247	return 0;
248}
249
250static int ccp_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
251			  unsigned int key_len)
252{
253	struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
254	struct crypto_shash *shash = ctx->u.sha.hmac_tfm;
255
256	SHASH_DESC_ON_STACK(sdesc, shash);
257
258	unsigned int block_size = crypto_shash_blocksize(shash);
259	unsigned int digest_size = crypto_shash_digestsize(shash);
260	int i, ret;
261
262	/* Set to zero until complete */
263	ctx->u.sha.key_len = 0;
264
265	/* Clear key area to provide zero padding for keys smaller
266	 * than the block size
267	 */
268	memset(ctx->u.sha.key, 0, sizeof(ctx->u.sha.key));
269
270	if (key_len > block_size) {
271		/* Must hash the input key */
272		sdesc->tfm = shash;
273		sdesc->flags = crypto_ahash_get_flags(tfm) &
274			CRYPTO_TFM_REQ_MAY_SLEEP;
275
276		ret = crypto_shash_digest(sdesc, key, key_len,
277					  ctx->u.sha.key);
278		if (ret) {
279			crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
280			return -EINVAL;
281		}
282
283		key_len = digest_size;
284	} else {
285		memcpy(ctx->u.sha.key, key, key_len);
286	}
287
288	for (i = 0; i < block_size; i++) {
289		ctx->u.sha.ipad[i] = ctx->u.sha.key[i] ^ 0x36;
290		ctx->u.sha.opad[i] = ctx->u.sha.key[i] ^ 0x5c;
291	}
292
293	sg_init_one(&ctx->u.sha.opad_sg, ctx->u.sha.opad, block_size);
294	ctx->u.sha.opad_count = block_size;
295
296	ctx->u.sha.key_len = key_len;
297
298	return 0;
299}
300
301static int ccp_sha_cra_init(struct crypto_tfm *tfm)
302{
303	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
304	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
305
306	ctx->complete = ccp_sha_complete;
307	ctx->u.sha.key_len = 0;
308
309	crypto_ahash_set_reqsize(ahash, sizeof(struct ccp_sha_req_ctx));
310
311	return 0;
312}
313
314static void ccp_sha_cra_exit(struct crypto_tfm *tfm)
315{
316}
317
318static int ccp_hmac_sha_cra_init(struct crypto_tfm *tfm)
319{
320	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
321	struct ccp_crypto_ahash_alg *alg = ccp_crypto_ahash_alg(tfm);
322	struct crypto_shash *hmac_tfm;
323
324	hmac_tfm = crypto_alloc_shash(alg->child_alg, 0, 0);
325	if (IS_ERR(hmac_tfm)) {
326		pr_warn("could not load driver %s need for HMAC support\n",
327			alg->child_alg);
328		return PTR_ERR(hmac_tfm);
329	}
330
331	ctx->u.sha.hmac_tfm = hmac_tfm;
332
333	return ccp_sha_cra_init(tfm);
334}
335
336static void ccp_hmac_sha_cra_exit(struct crypto_tfm *tfm)
337{
338	struct ccp_ctx *ctx = crypto_tfm_ctx(tfm);
339
340	if (ctx->u.sha.hmac_tfm)
341		crypto_free_shash(ctx->u.sha.hmac_tfm);
342
343	ccp_sha_cra_exit(tfm);
344}
345
346struct ccp_sha_def {
347	const char *name;
348	const char *drv_name;
349	enum ccp_sha_type type;
350	u32 digest_size;
351	u32 block_size;
352};
353
354static struct ccp_sha_def sha_algs[] = {
355	{
356		.name		= "sha1",
357		.drv_name	= "sha1-ccp",
358		.type		= CCP_SHA_TYPE_1,
359		.digest_size	= SHA1_DIGEST_SIZE,
360		.block_size	= SHA1_BLOCK_SIZE,
361	},
362	{
363		.name		= "sha224",
364		.drv_name	= "sha224-ccp",
365		.type		= CCP_SHA_TYPE_224,
366		.digest_size	= SHA224_DIGEST_SIZE,
367		.block_size	= SHA224_BLOCK_SIZE,
368	},
369	{
370		.name		= "sha256",
371		.drv_name	= "sha256-ccp",
372		.type		= CCP_SHA_TYPE_256,
373		.digest_size	= SHA256_DIGEST_SIZE,
374		.block_size	= SHA256_BLOCK_SIZE,
375	},
376};
377
378static int ccp_register_hmac_alg(struct list_head *head,
379				 const struct ccp_sha_def *def,
380				 const struct ccp_crypto_ahash_alg *base_alg)
381{
382	struct ccp_crypto_ahash_alg *ccp_alg;
383	struct ahash_alg *alg;
384	struct hash_alg_common *halg;
385	struct crypto_alg *base;
386	int ret;
387
388	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
389	if (!ccp_alg)
390		return -ENOMEM;
391
392	/* Copy the base algorithm and only change what's necessary */
393	*ccp_alg = *base_alg;
394	INIT_LIST_HEAD(&ccp_alg->entry);
395
396	strncpy(ccp_alg->child_alg, def->name, CRYPTO_MAX_ALG_NAME);
397
398	alg = &ccp_alg->alg;
399	alg->setkey = ccp_sha_setkey;
400
401	halg = &alg->halg;
402
403	base = &halg->base;
404	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", def->name);
405	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s",
406		 def->drv_name);
407	base->cra_init = ccp_hmac_sha_cra_init;
408	base->cra_exit = ccp_hmac_sha_cra_exit;
409
410	ret = crypto_register_ahash(alg);
411	if (ret) {
412		pr_err("%s ahash algorithm registration error (%d)\n",
413		       base->cra_name, ret);
414		kfree(ccp_alg);
415		return ret;
416	}
417
418	list_add(&ccp_alg->entry, head);
419
420	return ret;
421}
422
423static int ccp_register_sha_alg(struct list_head *head,
424				const struct ccp_sha_def *def)
425{
426	struct ccp_crypto_ahash_alg *ccp_alg;
427	struct ahash_alg *alg;
428	struct hash_alg_common *halg;
429	struct crypto_alg *base;
430	int ret;
431
432	ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
433	if (!ccp_alg)
434		return -ENOMEM;
435
436	INIT_LIST_HEAD(&ccp_alg->entry);
437
438	ccp_alg->type = def->type;
439
440	alg = &ccp_alg->alg;
441	alg->init = ccp_sha_init;
442	alg->update = ccp_sha_update;
443	alg->final = ccp_sha_final;
444	alg->finup = ccp_sha_finup;
445	alg->digest = ccp_sha_digest;
446	alg->export = ccp_sha_export;
447	alg->import = ccp_sha_import;
448
449	halg = &alg->halg;
450	halg->digestsize = def->digest_size;
451	halg->statesize = sizeof(struct ccp_sha_exp_ctx);
452
453	base = &halg->base;
454	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
455	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
456		 def->drv_name);
457	base->cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC |
458			  CRYPTO_ALG_KERN_DRIVER_ONLY |
459			  CRYPTO_ALG_NEED_FALLBACK;
460	base->cra_blocksize = def->block_size;
461	base->cra_ctxsize = sizeof(struct ccp_ctx);
462	base->cra_priority = CCP_CRA_PRIORITY;
463	base->cra_type = &crypto_ahash_type;
464	base->cra_init = ccp_sha_cra_init;
465	base->cra_exit = ccp_sha_cra_exit;
466	base->cra_module = THIS_MODULE;
467
468	ret = crypto_register_ahash(alg);
469	if (ret) {
470		pr_err("%s ahash algorithm registration error (%d)\n",
471		       base->cra_name, ret);
472		kfree(ccp_alg);
473		return ret;
474	}
475
476	list_add(&ccp_alg->entry, head);
477
478	ret = ccp_register_hmac_alg(head, def, ccp_alg);
479
480	return ret;
481}
482
483int ccp_register_sha_algs(struct list_head *head)
484{
485	int i, ret;
486
487	for (i = 0; i < ARRAY_SIZE(sha_algs); i++) {
488		ret = ccp_register_sha_alg(head, &sha_algs[i]);
489		if (ret)
490			return ret;
491	}
492
493	return 0;
494}
495