1/* 2 * cpu-sa1100.c: clock scaling for the SA1100 3 * 4 * Copyright (C) 2000 2001, The Delft University of Technology 5 * 6 * Authors: 7 * - Johan Pouwelse (J.A.Pouwelse@its.tudelft.nl): initial version 8 * - Erik Mouw (J.A.K.Mouw@its.tudelft.nl): 9 * - major rewrite for linux-2.3.99 10 * - rewritten for the more generic power management scheme in 11 * linux-2.4.5-rmk1 12 * 13 * This software has been developed while working on the LART 14 * computing board (http://www.lartmaker.nl/), which is 15 * sponsored by the Mobile Multi-media Communications 16 * (http://www.mobimedia.org/) and Ubiquitous Communications 17 * (http://www.ubicom.tudelft.nl/) projects. 18 * 19 * The authors can be reached at: 20 * 21 * Erik Mouw 22 * Information and Communication Theory Group 23 * Faculty of Information Technology and Systems 24 * Delft University of Technology 25 * P.O. Box 5031 26 * 2600 GA Delft 27 * The Netherlands 28 * 29 * 30 * This program is free software; you can redistribute it and/or modify 31 * it under the terms of the GNU General Public License as published by 32 * the Free Software Foundation; either version 2 of the License, or 33 * (at your option) any later version. 34 * 35 * This program is distributed in the hope that it will be useful, 36 * but WITHOUT ANY WARRANTY; without even the implied warranty of 37 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 38 * GNU General Public License for more details. 39 * 40 * You should have received a copy of the GNU General Public License 41 * along with this program; if not, write to the Free Software 42 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 43 * 44 * 45 * Theory of operations 46 * ==================== 47 * 48 * Clock scaling can be used to lower the power consumption of the CPU 49 * core. This will give you a somewhat longer running time. 50 * 51 * The SA-1100 has a single register to change the core clock speed: 52 * 53 * PPCR 0x90020014 PLL config 54 * 55 * However, the DRAM timings are closely related to the core clock 56 * speed, so we need to change these, too. The used registers are: 57 * 58 * MDCNFG 0xA0000000 DRAM config 59 * MDCAS0 0xA0000004 Access waveform 60 * MDCAS1 0xA0000008 Access waveform 61 * MDCAS2 0xA000000C Access waveform 62 * 63 * Care must be taken to change the DRAM parameters the correct way, 64 * because otherwise the DRAM becomes unusable and the kernel will 65 * crash. 66 * 67 * The simple solution to avoid a kernel crash is to put the actual 68 * clock change in ROM and jump to that code from the kernel. The main 69 * disadvantage is that the ROM has to be modified, which is not 70 * possible on all SA-1100 platforms. Another disadvantage is that 71 * jumping to ROM makes clock switching unnecessary complicated. 72 * 73 * The idea behind this driver is that the memory configuration can be 74 * changed while running from DRAM (even with interrupts turned on!) 75 * as long as all re-configuration steps yield a valid DRAM 76 * configuration. The advantages are clear: it will run on all SA-1100 77 * platforms, and the code is very simple. 78 * 79 * If you really want to understand what is going on in 80 * sa1100_update_dram_timings(), you'll have to read sections 8.2, 81 * 9.5.7.3, and 10.2 from the "Intel StrongARM SA-1100 Microprocessor 82 * Developers Manual" (available for free from Intel). 83 * 84 */ 85 86#include <linux/kernel.h> 87#include <linux/types.h> 88#include <linux/init.h> 89#include <linux/cpufreq.h> 90#include <linux/io.h> 91 92#include <asm/cputype.h> 93 94#include <mach/generic.h> 95#include <mach/hardware.h> 96 97struct sa1100_dram_regs { 98 int speed; 99 u32 mdcnfg; 100 u32 mdcas0; 101 u32 mdcas1; 102 u32 mdcas2; 103}; 104 105 106static struct cpufreq_driver sa1100_driver; 107 108static struct sa1100_dram_regs sa1100_dram_settings[] = { 109 /*speed, mdcnfg, mdcas0, mdcas1, mdcas2, clock freq */ 110 { 59000, 0x00dc88a3, 0xcccccccf, 0xfffffffc, 0xffffffff},/* 59.0 MHz */ 111 { 73700, 0x011490a3, 0xcccccccf, 0xfffffffc, 0xffffffff},/* 73.7 MHz */ 112 { 88500, 0x014e90a3, 0xcccccccf, 0xfffffffc, 0xffffffff},/* 88.5 MHz */ 113 {103200, 0x01889923, 0xcccccccf, 0xfffffffc, 0xffffffff},/* 103.2 MHz */ 114 {118000, 0x01c29923, 0x9999998f, 0xfffffff9, 0xffffffff},/* 118.0 MHz */ 115 {132700, 0x01fb2123, 0x9999998f, 0xfffffff9, 0xffffffff},/* 132.7 MHz */ 116 {147500, 0x02352123, 0x3333330f, 0xfffffff3, 0xffffffff},/* 147.5 MHz */ 117 {162200, 0x026b29a3, 0x38e38e1f, 0xfff8e38e, 0xffffffff},/* 162.2 MHz */ 118 {176900, 0x02a329a3, 0x71c71c1f, 0xfff1c71c, 0xffffffff},/* 176.9 MHz */ 119 {191700, 0x02dd31a3, 0xe38e383f, 0xffe38e38, 0xffffffff},/* 191.7 MHz */ 120 {206400, 0x03153223, 0xc71c703f, 0xffc71c71, 0xffffffff},/* 206.4 MHz */ 121 {221200, 0x034fba23, 0xc71c703f, 0xffc71c71, 0xffffffff},/* 221.2 MHz */ 122 {235900, 0x03853a23, 0xe1e1e07f, 0xe1e1e1e1, 0xffffffe1},/* 235.9 MHz */ 123 {250700, 0x03bf3aa3, 0xc3c3c07f, 0xc3c3c3c3, 0xffffffc3},/* 250.7 MHz */ 124 {265400, 0x03f7c2a3, 0xc3c3c07f, 0xc3c3c3c3, 0xffffffc3},/* 265.4 MHz */ 125 {280200, 0x0431c2a3, 0x878780ff, 0x87878787, 0xffffff87},/* 280.2 MHz */ 126 { 0, 0, 0, 0, 0 } /* last entry */ 127}; 128 129static void sa1100_update_dram_timings(int current_speed, int new_speed) 130{ 131 struct sa1100_dram_regs *settings = sa1100_dram_settings; 132 133 /* find speed */ 134 while (settings->speed != 0) { 135 if (new_speed == settings->speed) 136 break; 137 138 settings++; 139 } 140 141 if (settings->speed == 0) { 142 panic("%s: couldn't find dram setting for speed %d\n", 143 __func__, new_speed); 144 } 145 146 /* No risk, no fun: run with interrupts on! */ 147 if (new_speed > current_speed) { 148 /* We're going FASTER, so first relax the memory 149 * timings before changing the core frequency 150 */ 151 152 /* Half the memory access clock */ 153 MDCNFG |= MDCNFG_CDB2; 154 155 /* The order of these statements IS important, keep 8 156 * pulses!! 157 */ 158 MDCAS2 = settings->mdcas2; 159 MDCAS1 = settings->mdcas1; 160 MDCAS0 = settings->mdcas0; 161 MDCNFG = settings->mdcnfg; 162 } else { 163 /* We're going SLOWER: first decrease the core 164 * frequency and then tighten the memory settings. 165 */ 166 167 /* Half the memory access clock */ 168 MDCNFG |= MDCNFG_CDB2; 169 170 /* The order of these statements IS important, keep 8 171 * pulses!! 172 */ 173 MDCAS0 = settings->mdcas0; 174 MDCAS1 = settings->mdcas1; 175 MDCAS2 = settings->mdcas2; 176 MDCNFG = settings->mdcnfg; 177 } 178} 179 180static int sa1100_target(struct cpufreq_policy *policy, unsigned int ppcr) 181{ 182 unsigned int cur = sa11x0_getspeed(0); 183 unsigned int new_freq; 184 185 new_freq = sa11x0_freq_table[ppcr].frequency; 186 187 if (new_freq > cur) 188 sa1100_update_dram_timings(cur, new_freq); 189 190 PPCR = ppcr; 191 192 if (new_freq < cur) 193 sa1100_update_dram_timings(cur, new_freq); 194 195 return 0; 196} 197 198static int __init sa1100_cpu_init(struct cpufreq_policy *policy) 199{ 200 return cpufreq_generic_init(policy, sa11x0_freq_table, CPUFREQ_ETERNAL); 201} 202 203static struct cpufreq_driver sa1100_driver __refdata = { 204 .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK, 205 .verify = cpufreq_generic_frequency_table_verify, 206 .target_index = sa1100_target, 207 .get = sa11x0_getspeed, 208 .init = sa1100_cpu_init, 209 .name = "sa1100", 210}; 211 212static int __init sa1100_dram_init(void) 213{ 214 if (cpu_is_sa1100()) 215 return cpufreq_register_driver(&sa1100_driver); 216 else 217 return -ENODEV; 218} 219 220arch_initcall(sa1100_dram_init); 221