1/* 2 * (C) Copyright 2009 Intel Corporation 3 * Author: Jacob Pan (jacob.jun.pan@intel.com) 4 * 5 * Shared with ARM platforms, Jamie Iles, Picochip 2011 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * Support for the Synopsys DesignWare APB Timers. 12 */ 13#include <linux/dw_apb_timer.h> 14#include <linux/delay.h> 15#include <linux/kernel.h> 16#include <linux/interrupt.h> 17#include <linux/irq.h> 18#include <linux/io.h> 19#include <linux/slab.h> 20 21#define APBT_MIN_PERIOD 4 22#define APBT_MIN_DELTA_USEC 200 23 24#define APBTMR_N_LOAD_COUNT 0x00 25#define APBTMR_N_CURRENT_VALUE 0x04 26#define APBTMR_N_CONTROL 0x08 27#define APBTMR_N_EOI 0x0c 28#define APBTMR_N_INT_STATUS 0x10 29 30#define APBTMRS_INT_STATUS 0xa0 31#define APBTMRS_EOI 0xa4 32#define APBTMRS_RAW_INT_STATUS 0xa8 33#define APBTMRS_COMP_VERSION 0xac 34 35#define APBTMR_CONTROL_ENABLE (1 << 0) 36/* 1: periodic, 0:free running. */ 37#define APBTMR_CONTROL_MODE_PERIODIC (1 << 1) 38#define APBTMR_CONTROL_INT (1 << 2) 39 40static inline struct dw_apb_clock_event_device * 41ced_to_dw_apb_ced(struct clock_event_device *evt) 42{ 43 return container_of(evt, struct dw_apb_clock_event_device, ced); 44} 45 46static inline struct dw_apb_clocksource * 47clocksource_to_dw_apb_clocksource(struct clocksource *cs) 48{ 49 return container_of(cs, struct dw_apb_clocksource, cs); 50} 51 52static unsigned long apbt_readl(struct dw_apb_timer *timer, unsigned long offs) 53{ 54 return readl(timer->base + offs); 55} 56 57static void apbt_writel(struct dw_apb_timer *timer, unsigned long val, 58 unsigned long offs) 59{ 60 writel(val, timer->base + offs); 61} 62 63static void apbt_disable_int(struct dw_apb_timer *timer) 64{ 65 unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL); 66 67 ctrl |= APBTMR_CONTROL_INT; 68 apbt_writel(timer, ctrl, APBTMR_N_CONTROL); 69} 70 71/** 72 * dw_apb_clockevent_pause() - stop the clock_event_device from running 73 * 74 * @dw_ced: The APB clock to stop generating events. 75 */ 76void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced) 77{ 78 disable_irq(dw_ced->timer.irq); 79 apbt_disable_int(&dw_ced->timer); 80} 81 82static void apbt_eoi(struct dw_apb_timer *timer) 83{ 84 apbt_readl(timer, APBTMR_N_EOI); 85} 86 87static irqreturn_t dw_apb_clockevent_irq(int irq, void *data) 88{ 89 struct clock_event_device *evt = data; 90 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); 91 92 if (!evt->event_handler) { 93 pr_info("Spurious APBT timer interrupt %d", irq); 94 return IRQ_NONE; 95 } 96 97 if (dw_ced->eoi) 98 dw_ced->eoi(&dw_ced->timer); 99 100 evt->event_handler(evt); 101 return IRQ_HANDLED; 102} 103 104static void apbt_enable_int(struct dw_apb_timer *timer) 105{ 106 unsigned long ctrl = apbt_readl(timer, APBTMR_N_CONTROL); 107 /* clear pending intr */ 108 apbt_readl(timer, APBTMR_N_EOI); 109 ctrl &= ~APBTMR_CONTROL_INT; 110 apbt_writel(timer, ctrl, APBTMR_N_CONTROL); 111} 112 113static int apbt_shutdown(struct clock_event_device *evt) 114{ 115 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); 116 unsigned long ctrl; 117 118 pr_debug("%s CPU %d state=shutdown\n", __func__, 119 cpumask_first(evt->cpumask)); 120 121 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL); 122 ctrl &= ~APBTMR_CONTROL_ENABLE; 123 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); 124 return 0; 125} 126 127static int apbt_set_oneshot(struct clock_event_device *evt) 128{ 129 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); 130 unsigned long ctrl; 131 132 pr_debug("%s CPU %d state=oneshot\n", __func__, 133 cpumask_first(evt->cpumask)); 134 135 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL); 136 /* 137 * set free running mode, this mode will let timer reload max 138 * timeout which will give time (3min on 25MHz clock) to rearm 139 * the next event, therefore emulate the one-shot mode. 140 */ 141 ctrl &= ~APBTMR_CONTROL_ENABLE; 142 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; 143 144 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); 145 /* write again to set free running mode */ 146 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); 147 148 /* 149 * DW APB p. 46, load counter with all 1s before starting free 150 * running mode. 151 */ 152 apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT); 153 ctrl &= ~APBTMR_CONTROL_INT; 154 ctrl |= APBTMR_CONTROL_ENABLE; 155 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); 156 return 0; 157} 158 159static int apbt_set_periodic(struct clock_event_device *evt) 160{ 161 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); 162 unsigned long period = DIV_ROUND_UP(dw_ced->timer.freq, HZ); 163 unsigned long ctrl; 164 165 pr_debug("%s CPU %d state=periodic\n", __func__, 166 cpumask_first(evt->cpumask)); 167 168 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL); 169 ctrl |= APBTMR_CONTROL_MODE_PERIODIC; 170 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); 171 /* 172 * DW APB p. 46, have to disable timer before load counter, 173 * may cause sync problem. 174 */ 175 ctrl &= ~APBTMR_CONTROL_ENABLE; 176 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); 177 udelay(1); 178 pr_debug("Setting clock period %lu for HZ %d\n", period, HZ); 179 apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT); 180 ctrl |= APBTMR_CONTROL_ENABLE; 181 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); 182 return 0; 183} 184 185static int apbt_resume(struct clock_event_device *evt) 186{ 187 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); 188 189 pr_debug("%s CPU %d state=resume\n", __func__, 190 cpumask_first(evt->cpumask)); 191 192 apbt_enable_int(&dw_ced->timer); 193 return 0; 194} 195 196static int apbt_next_event(unsigned long delta, 197 struct clock_event_device *evt) 198{ 199 unsigned long ctrl; 200 struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); 201 202 /* Disable timer */ 203 ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL); 204 ctrl &= ~APBTMR_CONTROL_ENABLE; 205 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); 206 /* write new count */ 207 apbt_writel(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT); 208 ctrl |= APBTMR_CONTROL_ENABLE; 209 apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); 210 211 return 0; 212} 213 214/** 215 * dw_apb_clockevent_init() - use an APB timer as a clock_event_device 216 * 217 * @cpu: The CPU the events will be targeted at. 218 * @name: The name used for the timer and the IRQ for it. 219 * @rating: The rating to give the timer. 220 * @base: I/O base for the timer registers. 221 * @irq: The interrupt number to use for the timer. 222 * @freq: The frequency that the timer counts at. 223 * 224 * This creates a clock_event_device for using with the generic clock layer 225 * but does not start and register it. This should be done with 226 * dw_apb_clockevent_register() as the next step. If this is the first time 227 * it has been called for a timer then the IRQ will be requested, if not it 228 * just be enabled to allow CPU hotplug to avoid repeatedly requesting and 229 * releasing the IRQ. 230 */ 231struct dw_apb_clock_event_device * 232dw_apb_clockevent_init(int cpu, const char *name, unsigned rating, 233 void __iomem *base, int irq, unsigned long freq) 234{ 235 struct dw_apb_clock_event_device *dw_ced = 236 kzalloc(sizeof(*dw_ced), GFP_KERNEL); 237 int err; 238 239 if (!dw_ced) 240 return NULL; 241 242 dw_ced->timer.base = base; 243 dw_ced->timer.irq = irq; 244 dw_ced->timer.freq = freq; 245 246 clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD); 247 dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff, 248 &dw_ced->ced); 249 dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced); 250 dw_ced->ced.cpumask = cpumask_of(cpu); 251 dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC | 252 CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ; 253 dw_ced->ced.set_state_shutdown = apbt_shutdown; 254 dw_ced->ced.set_state_periodic = apbt_set_periodic; 255 dw_ced->ced.set_state_oneshot = apbt_set_oneshot; 256 dw_ced->ced.tick_resume = apbt_resume; 257 dw_ced->ced.set_next_event = apbt_next_event; 258 dw_ced->ced.irq = dw_ced->timer.irq; 259 dw_ced->ced.rating = rating; 260 dw_ced->ced.name = name; 261 262 dw_ced->irqaction.name = dw_ced->ced.name; 263 dw_ced->irqaction.handler = dw_apb_clockevent_irq; 264 dw_ced->irqaction.dev_id = &dw_ced->ced; 265 dw_ced->irqaction.irq = irq; 266 dw_ced->irqaction.flags = IRQF_TIMER | IRQF_IRQPOLL | 267 IRQF_NOBALANCING; 268 269 dw_ced->eoi = apbt_eoi; 270 err = setup_irq(irq, &dw_ced->irqaction); 271 if (err) { 272 pr_err("failed to request timer irq\n"); 273 kfree(dw_ced); 274 dw_ced = NULL; 275 } 276 277 return dw_ced; 278} 279 280/** 281 * dw_apb_clockevent_resume() - resume a clock that has been paused. 282 * 283 * @dw_ced: The APB clock to resume. 284 */ 285void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced) 286{ 287 enable_irq(dw_ced->timer.irq); 288} 289 290/** 291 * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ. 292 * 293 * @dw_ced: The APB clock to stop generating the events. 294 */ 295void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced) 296{ 297 free_irq(dw_ced->timer.irq, &dw_ced->ced); 298} 299 300/** 301 * dw_apb_clockevent_register() - register the clock with the generic layer 302 * 303 * @dw_ced: The APB clock to register as a clock_event_device. 304 */ 305void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced) 306{ 307 apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL); 308 clockevents_register_device(&dw_ced->ced); 309 apbt_enable_int(&dw_ced->timer); 310} 311 312/** 313 * dw_apb_clocksource_start() - start the clocksource counting. 314 * 315 * @dw_cs: The clocksource to start. 316 * 317 * This is used to start the clocksource before registration and can be used 318 * to enable calibration of timers. 319 */ 320void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs) 321{ 322 /* 323 * start count down from 0xffff_ffff. this is done by toggling the 324 * enable bit then load initial load count to ~0. 325 */ 326 unsigned long ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL); 327 328 ctrl &= ~APBTMR_CONTROL_ENABLE; 329 apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL); 330 apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT); 331 /* enable, mask interrupt */ 332 ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; 333 ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT); 334 apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL); 335 /* read it once to get cached counter value initialized */ 336 dw_apb_clocksource_read(dw_cs); 337} 338 339static cycle_t __apbt_read_clocksource(struct clocksource *cs) 340{ 341 unsigned long current_count; 342 struct dw_apb_clocksource *dw_cs = 343 clocksource_to_dw_apb_clocksource(cs); 344 345 current_count = apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE); 346 347 return (cycle_t)~current_count; 348} 349 350static void apbt_restart_clocksource(struct clocksource *cs) 351{ 352 struct dw_apb_clocksource *dw_cs = 353 clocksource_to_dw_apb_clocksource(cs); 354 355 dw_apb_clocksource_start(dw_cs); 356} 357 358/** 359 * dw_apb_clocksource_init() - use an APB timer as a clocksource. 360 * 361 * @rating: The rating to give the clocksource. 362 * @name: The name for the clocksource. 363 * @base: The I/O base for the timer registers. 364 * @freq: The frequency that the timer counts at. 365 * 366 * This creates a clocksource using an APB timer but does not yet register it 367 * with the clocksource system. This should be done with 368 * dw_apb_clocksource_register() as the next step. 369 */ 370struct dw_apb_clocksource * 371dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base, 372 unsigned long freq) 373{ 374 struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL); 375 376 if (!dw_cs) 377 return NULL; 378 379 dw_cs->timer.base = base; 380 dw_cs->timer.freq = freq; 381 dw_cs->cs.name = name; 382 dw_cs->cs.rating = rating; 383 dw_cs->cs.read = __apbt_read_clocksource; 384 dw_cs->cs.mask = CLOCKSOURCE_MASK(32); 385 dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS; 386 dw_cs->cs.resume = apbt_restart_clocksource; 387 388 return dw_cs; 389} 390 391/** 392 * dw_apb_clocksource_register() - register the APB clocksource. 393 * 394 * @dw_cs: The clocksource to register. 395 */ 396void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs) 397{ 398 clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq); 399} 400 401/** 402 * dw_apb_clocksource_read() - read the current value of a clocksource. 403 * 404 * @dw_cs: The clocksource to read. 405 */ 406cycle_t dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs) 407{ 408 return (cycle_t)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE); 409} 410