1/*
2 * This file contains driver for the Cadence Triple Timer Counter Rev 06
3 *
4 *  Copyright (C) 2011-2013 Xilinx
5 *
6 * based on arch/mips/kernel/time.c timer driver
7 *
8 * This software is licensed under the terms of the GNU General Public
9 * License version 2, as published by the Free Software Foundation, and
10 * may be copied, distributed, and modified under those terms.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 */
17
18#include <linux/clk.h>
19#include <linux/interrupt.h>
20#include <linux/clockchips.h>
21#include <linux/of_address.h>
22#include <linux/of_irq.h>
23#include <linux/slab.h>
24#include <linux/sched_clock.h>
25
26/*
27 * This driver configures the 2 16/32-bit count-up timers as follows:
28 *
29 * T1: Timer 1, clocksource for generic timekeeping
30 * T2: Timer 2, clockevent source for hrtimers
31 * T3: Timer 3, <unused>
32 *
33 * The input frequency to the timer module for emulation is 2.5MHz which is
34 * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
35 * the timers are clocked at 78.125KHz (12.8 us resolution).
36
37 * The input frequency to the timer module in silicon is configurable and
38 * obtained from device tree. The pre-scaler of 32 is used.
39 */
40
41/*
42 * Timer Register Offset Definitions of Timer 1, Increment base address by 4
43 * and use same offsets for Timer 2
44 */
45#define TTC_CLK_CNTRL_OFFSET		0x00 /* Clock Control Reg, RW */
46#define TTC_CNT_CNTRL_OFFSET		0x0C /* Counter Control Reg, RW */
47#define TTC_COUNT_VAL_OFFSET		0x18 /* Counter Value Reg, RO */
48#define TTC_INTR_VAL_OFFSET		0x24 /* Interval Count Reg, RW */
49#define TTC_ISR_OFFSET		0x54 /* Interrupt Status Reg, RO */
50#define TTC_IER_OFFSET		0x60 /* Interrupt Enable Reg, RW */
51
52#define TTC_CNT_CNTRL_DISABLE_MASK	0x1
53
54#define TTC_CLK_CNTRL_CSRC_MASK		(1 << 5)	/* clock source */
55#define TTC_CLK_CNTRL_PSV_MASK		0x1e
56#define TTC_CLK_CNTRL_PSV_SHIFT		1
57
58/*
59 * Setup the timers to use pre-scaling, using a fixed value for now that will
60 * work across most input frequency, but it may need to be more dynamic
61 */
62#define PRESCALE_EXPONENT	11	/* 2 ^ PRESCALE_EXPONENT = PRESCALE */
63#define PRESCALE		2048	/* The exponent must match this */
64#define CLK_CNTRL_PRESCALE	((PRESCALE_EXPONENT - 1) << 1)
65#define CLK_CNTRL_PRESCALE_EN	1
66#define CNT_CNTRL_RESET		(1 << 4)
67
68#define MAX_F_ERR 50
69
70/**
71 * struct ttc_timer - This definition defines local timer structure
72 *
73 * @base_addr:	Base address of timer
74 * @freq:	Timer input clock frequency
75 * @clk:	Associated clock source
76 * @clk_rate_change_nb	Notifier block for clock rate changes
77 */
78struct ttc_timer {
79	void __iomem *base_addr;
80	unsigned long freq;
81	struct clk *clk;
82	struct notifier_block clk_rate_change_nb;
83};
84
85#define to_ttc_timer(x) \
86		container_of(x, struct ttc_timer, clk_rate_change_nb)
87
88struct ttc_timer_clocksource {
89	u32			scale_clk_ctrl_reg_old;
90	u32			scale_clk_ctrl_reg_new;
91	struct ttc_timer	ttc;
92	struct clocksource	cs;
93};
94
95#define to_ttc_timer_clksrc(x) \
96		container_of(x, struct ttc_timer_clocksource, cs)
97
98struct ttc_timer_clockevent {
99	struct ttc_timer		ttc;
100	struct clock_event_device	ce;
101};
102
103#define to_ttc_timer_clkevent(x) \
104		container_of(x, struct ttc_timer_clockevent, ce)
105
106static void __iomem *ttc_sched_clock_val_reg;
107
108/**
109 * ttc_set_interval - Set the timer interval value
110 *
111 * @timer:	Pointer to the timer instance
112 * @cycles:	Timer interval ticks
113 **/
114static void ttc_set_interval(struct ttc_timer *timer,
115					unsigned long cycles)
116{
117	u32 ctrl_reg;
118
119	/* Disable the counter, set the counter value  and re-enable counter */
120	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
121	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
122	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
123
124	writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);
125
126	/*
127	 * Reset the counter (0x10) so that it starts from 0, one-shot
128	 * mode makes this needed for timing to be right.
129	 */
130	ctrl_reg |= CNT_CNTRL_RESET;
131	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
132	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
133}
134
135/**
136 * ttc_clock_event_interrupt - Clock event timer interrupt handler
137 *
138 * @irq:	IRQ number of the Timer
139 * @dev_id:	void pointer to the ttc_timer instance
140 *
141 * returns: Always IRQ_HANDLED - success
142 **/
143static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
144{
145	struct ttc_timer_clockevent *ttce = dev_id;
146	struct ttc_timer *timer = &ttce->ttc;
147
148	/* Acknowledge the interrupt and call event handler */
149	readl_relaxed(timer->base_addr + TTC_ISR_OFFSET);
150
151	ttce->ce.event_handler(&ttce->ce);
152
153	return IRQ_HANDLED;
154}
155
156/**
157 * __ttc_clocksource_read - Reads the timer counter register
158 *
159 * returns: Current timer counter register value
160 **/
161static cycle_t __ttc_clocksource_read(struct clocksource *cs)
162{
163	struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;
164
165	return (cycle_t)readl_relaxed(timer->base_addr +
166				TTC_COUNT_VAL_OFFSET);
167}
168
169static u64 notrace ttc_sched_clock_read(void)
170{
171	return readl_relaxed(ttc_sched_clock_val_reg);
172}
173
174/**
175 * ttc_set_next_event - Sets the time interval for next event
176 *
177 * @cycles:	Timer interval ticks
178 * @evt:	Address of clock event instance
179 *
180 * returns: Always 0 - success
181 **/
182static int ttc_set_next_event(unsigned long cycles,
183					struct clock_event_device *evt)
184{
185	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
186	struct ttc_timer *timer = &ttce->ttc;
187
188	ttc_set_interval(timer, cycles);
189	return 0;
190}
191
192/**
193 * ttc_set_{shutdown|oneshot|periodic} - Sets the state of timer
194 *
195 * @evt:	Address of clock event instance
196 **/
197static int ttc_shutdown(struct clock_event_device *evt)
198{
199	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
200	struct ttc_timer *timer = &ttce->ttc;
201	u32 ctrl_reg;
202
203	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
204	ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
205	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
206	return 0;
207}
208
209static int ttc_set_periodic(struct clock_event_device *evt)
210{
211	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
212	struct ttc_timer *timer = &ttce->ttc;
213
214	ttc_set_interval(timer,
215			 DIV_ROUND_CLOSEST(ttce->ttc.freq, PRESCALE * HZ));
216	return 0;
217}
218
219static int ttc_resume(struct clock_event_device *evt)
220{
221	struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
222	struct ttc_timer *timer = &ttce->ttc;
223	u32 ctrl_reg;
224
225	ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
226	ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
227	writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
228	return 0;
229}
230
231static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
232		unsigned long event, void *data)
233{
234	struct clk_notifier_data *ndata = data;
235	struct ttc_timer *ttc = to_ttc_timer(nb);
236	struct ttc_timer_clocksource *ttccs = container_of(ttc,
237			struct ttc_timer_clocksource, ttc);
238
239	switch (event) {
240	case PRE_RATE_CHANGE:
241	{
242		u32 psv;
243		unsigned long factor, rate_low, rate_high;
244
245		if (ndata->new_rate > ndata->old_rate) {
246			factor = DIV_ROUND_CLOSEST(ndata->new_rate,
247					ndata->old_rate);
248			rate_low = ndata->old_rate;
249			rate_high = ndata->new_rate;
250		} else {
251			factor = DIV_ROUND_CLOSEST(ndata->old_rate,
252					ndata->new_rate);
253			rate_low = ndata->new_rate;
254			rate_high = ndata->old_rate;
255		}
256
257		if (!is_power_of_2(factor))
258				return NOTIFY_BAD;
259
260		if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR)
261			return NOTIFY_BAD;
262
263		factor = __ilog2_u32(factor);
264
265		/*
266		 * store timer clock ctrl register so we can restore it in case
267		 * of an abort.
268		 */
269		ttccs->scale_clk_ctrl_reg_old =
270			readl_relaxed(ttccs->ttc.base_addr +
271			TTC_CLK_CNTRL_OFFSET);
272
273		psv = (ttccs->scale_clk_ctrl_reg_old &
274				TTC_CLK_CNTRL_PSV_MASK) >>
275				TTC_CLK_CNTRL_PSV_SHIFT;
276		if (ndata->new_rate < ndata->old_rate)
277			psv -= factor;
278		else
279			psv += factor;
280
281		/* prescaler within legal range? */
282		if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT))
283			return NOTIFY_BAD;
284
285		ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old &
286			~TTC_CLK_CNTRL_PSV_MASK;
287		ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT;
288
289
290		/* scale down: adjust divider in post-change notification */
291		if (ndata->new_rate < ndata->old_rate)
292			return NOTIFY_DONE;
293
294		/* scale up: adjust divider now - before frequency change */
295		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
296			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
297		break;
298	}
299	case POST_RATE_CHANGE:
300		/* scale up: pre-change notification did the adjustment */
301		if (ndata->new_rate > ndata->old_rate)
302			return NOTIFY_OK;
303
304		/* scale down: adjust divider now - after frequency change */
305		writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
306			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
307		break;
308
309	case ABORT_RATE_CHANGE:
310		/* we have to undo the adjustment in case we scale up */
311		if (ndata->new_rate < ndata->old_rate)
312			return NOTIFY_OK;
313
314		/* restore original register value */
315		writel_relaxed(ttccs->scale_clk_ctrl_reg_old,
316			       ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
317		/* fall through */
318	default:
319		return NOTIFY_DONE;
320	}
321
322	return NOTIFY_DONE;
323}
324
325static void __init ttc_setup_clocksource(struct clk *clk, void __iomem *base,
326					 u32 timer_width)
327{
328	struct ttc_timer_clocksource *ttccs;
329	int err;
330
331	ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
332	if (WARN_ON(!ttccs))
333		return;
334
335	ttccs->ttc.clk = clk;
336
337	err = clk_prepare_enable(ttccs->ttc.clk);
338	if (WARN_ON(err)) {
339		kfree(ttccs);
340		return;
341	}
342
343	ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);
344
345	ttccs->ttc.clk_rate_change_nb.notifier_call =
346		ttc_rate_change_clocksource_cb;
347	ttccs->ttc.clk_rate_change_nb.next = NULL;
348	if (clk_notifier_register(ttccs->ttc.clk,
349				&ttccs->ttc.clk_rate_change_nb))
350		pr_warn("Unable to register clock notifier.\n");
351
352	ttccs->ttc.base_addr = base;
353	ttccs->cs.name = "ttc_clocksource";
354	ttccs->cs.rating = 200;
355	ttccs->cs.read = __ttc_clocksource_read;
356	ttccs->cs.mask = CLOCKSOURCE_MASK(timer_width);
357	ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
358
359	/*
360	 * Setup the clock source counter to be an incrementing counter
361	 * with no interrupt and it rolls over at 0xFFFF. Pre-scale
362	 * it by 32 also. Let it start running now.
363	 */
364	writel_relaxed(0x0,  ttccs->ttc.base_addr + TTC_IER_OFFSET);
365	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
366		     ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
367	writel_relaxed(CNT_CNTRL_RESET,
368		     ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
369
370	err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
371	if (WARN_ON(err)) {
372		kfree(ttccs);
373		return;
374	}
375
376	ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
377	sched_clock_register(ttc_sched_clock_read, timer_width,
378			     ttccs->ttc.freq / PRESCALE);
379}
380
381static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
382		unsigned long event, void *data)
383{
384	struct clk_notifier_data *ndata = data;
385	struct ttc_timer *ttc = to_ttc_timer(nb);
386	struct ttc_timer_clockevent *ttcce = container_of(ttc,
387			struct ttc_timer_clockevent, ttc);
388
389	switch (event) {
390	case POST_RATE_CHANGE:
391		/* update cached frequency */
392		ttc->freq = ndata->new_rate;
393
394		clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE);
395
396		/* fall through */
397	case PRE_RATE_CHANGE:
398	case ABORT_RATE_CHANGE:
399	default:
400		return NOTIFY_DONE;
401	}
402}
403
404static void __init ttc_setup_clockevent(struct clk *clk,
405						void __iomem *base, u32 irq)
406{
407	struct ttc_timer_clockevent *ttcce;
408	int err;
409
410	ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
411	if (WARN_ON(!ttcce))
412		return;
413
414	ttcce->ttc.clk = clk;
415
416	err = clk_prepare_enable(ttcce->ttc.clk);
417	if (WARN_ON(err)) {
418		kfree(ttcce);
419		return;
420	}
421
422	ttcce->ttc.clk_rate_change_nb.notifier_call =
423		ttc_rate_change_clockevent_cb;
424	ttcce->ttc.clk_rate_change_nb.next = NULL;
425	if (clk_notifier_register(ttcce->ttc.clk,
426				&ttcce->ttc.clk_rate_change_nb))
427		pr_warn("Unable to register clock notifier.\n");
428	ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);
429
430	ttcce->ttc.base_addr = base;
431	ttcce->ce.name = "ttc_clockevent";
432	ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
433	ttcce->ce.set_next_event = ttc_set_next_event;
434	ttcce->ce.set_state_shutdown = ttc_shutdown;
435	ttcce->ce.set_state_periodic = ttc_set_periodic;
436	ttcce->ce.set_state_oneshot = ttc_shutdown;
437	ttcce->ce.tick_resume = ttc_resume;
438	ttcce->ce.rating = 200;
439	ttcce->ce.irq = irq;
440	ttcce->ce.cpumask = cpu_possible_mask;
441
442	/*
443	 * Setup the clock event timer to be an interval timer which
444	 * is prescaled by 32 using the interval interrupt. Leave it
445	 * disabled for now.
446	 */
447	writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
448	writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
449		     ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
450	writel_relaxed(0x1,  ttcce->ttc.base_addr + TTC_IER_OFFSET);
451
452	err = request_irq(irq, ttc_clock_event_interrupt,
453			  IRQF_TIMER, ttcce->ce.name, ttcce);
454	if (WARN_ON(err)) {
455		kfree(ttcce);
456		return;
457	}
458
459	clockevents_config_and_register(&ttcce->ce,
460			ttcce->ttc.freq / PRESCALE, 1, 0xfffe);
461}
462
463/**
464 * ttc_timer_init - Initialize the timer
465 *
466 * Initializes the timer hardware and register the clock source and clock event
467 * timers with Linux kernal timer framework
468 */
469static void __init ttc_timer_init(struct device_node *timer)
470{
471	unsigned int irq;
472	void __iomem *timer_baseaddr;
473	struct clk *clk_cs, *clk_ce;
474	static int initialized;
475	int clksel;
476	u32 timer_width = 16;
477
478	if (initialized)
479		return;
480
481	initialized = 1;
482
483	/*
484	 * Get the 1st Triple Timer Counter (TTC) block from the device tree
485	 * and use it. Note that the event timer uses the interrupt and it's the
486	 * 2nd TTC hence the irq_of_parse_and_map(,1)
487	 */
488	timer_baseaddr = of_iomap(timer, 0);
489	if (!timer_baseaddr) {
490		pr_err("ERROR: invalid timer base address\n");
491		BUG();
492	}
493
494	irq = irq_of_parse_and_map(timer, 1);
495	if (irq <= 0) {
496		pr_err("ERROR: invalid interrupt number\n");
497		BUG();
498	}
499
500	of_property_read_u32(timer, "timer-width", &timer_width);
501
502	clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
503	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
504	clk_cs = of_clk_get(timer, clksel);
505	if (IS_ERR(clk_cs)) {
506		pr_err("ERROR: timer input clock not found\n");
507		BUG();
508	}
509
510	clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
511	clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
512	clk_ce = of_clk_get(timer, clksel);
513	if (IS_ERR(clk_ce)) {
514		pr_err("ERROR: timer input clock not found\n");
515		BUG();
516	}
517
518	ttc_setup_clocksource(clk_cs, timer_baseaddr, timer_width);
519	ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
520
521	pr_info("%s #0 at %p, irq=%d\n", timer->name, timer_baseaddr, irq);
522}
523
524CLOCKSOURCE_OF_DECLARE(ttc, "cdns,ttc", ttc_timer_init);
525