1/*
2 *  linux/drivers/clocksource/arm_arch_timer.c
3 *
4 *  Copyright (C) 2011 ARM Ltd.
5 *  All Rights Reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/init.h>
12#include <linux/kernel.h>
13#include <linux/device.h>
14#include <linux/smp.h>
15#include <linux/cpu.h>
16#include <linux/cpu_pm.h>
17#include <linux/clockchips.h>
18#include <linux/clocksource.h>
19#include <linux/interrupt.h>
20#include <linux/of_irq.h>
21#include <linux/of_address.h>
22#include <linux/io.h>
23#include <linux/slab.h>
24#include <linux/sched_clock.h>
25#include <linux/acpi.h>
26
27#include <asm/arch_timer.h>
28#include <asm/virt.h>
29
30#include <clocksource/arm_arch_timer.h>
31
32#define CNTTIDR		0x08
33#define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
34
35#define CNTVCT_LO	0x08
36#define CNTVCT_HI	0x0c
37#define CNTFRQ		0x10
38#define CNTP_TVAL	0x28
39#define CNTP_CTL	0x2c
40#define CNTV_TVAL	0x38
41#define CNTV_CTL	0x3c
42
43#define ARCH_CP15_TIMER	BIT(0)
44#define ARCH_MEM_TIMER	BIT(1)
45static unsigned arch_timers_present __initdata;
46
47static void __iomem *arch_counter_base;
48
49struct arch_timer {
50	void __iomem *base;
51	struct clock_event_device evt;
52};
53
54#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
55
56static u32 arch_timer_rate;
57
58enum ppi_nr {
59	PHYS_SECURE_PPI,
60	PHYS_NONSECURE_PPI,
61	VIRT_PPI,
62	HYP_PPI,
63	MAX_TIMER_PPI
64};
65
66static int arch_timer_ppi[MAX_TIMER_PPI];
67
68static struct clock_event_device __percpu *arch_timer_evt;
69
70static bool arch_timer_use_virtual = true;
71static bool arch_timer_c3stop;
72static bool arch_timer_mem_use_virtual;
73
74/*
75 * Architected system timer support.
76 */
77
78static __always_inline
79void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
80			  struct clock_event_device *clk)
81{
82	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
83		struct arch_timer *timer = to_arch_timer(clk);
84		switch (reg) {
85		case ARCH_TIMER_REG_CTRL:
86			writel_relaxed(val, timer->base + CNTP_CTL);
87			break;
88		case ARCH_TIMER_REG_TVAL:
89			writel_relaxed(val, timer->base + CNTP_TVAL);
90			break;
91		}
92	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
93		struct arch_timer *timer = to_arch_timer(clk);
94		switch (reg) {
95		case ARCH_TIMER_REG_CTRL:
96			writel_relaxed(val, timer->base + CNTV_CTL);
97			break;
98		case ARCH_TIMER_REG_TVAL:
99			writel_relaxed(val, timer->base + CNTV_TVAL);
100			break;
101		}
102	} else {
103		arch_timer_reg_write_cp15(access, reg, val);
104	}
105}
106
107static __always_inline
108u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
109			struct clock_event_device *clk)
110{
111	u32 val;
112
113	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
114		struct arch_timer *timer = to_arch_timer(clk);
115		switch (reg) {
116		case ARCH_TIMER_REG_CTRL:
117			val = readl_relaxed(timer->base + CNTP_CTL);
118			break;
119		case ARCH_TIMER_REG_TVAL:
120			val = readl_relaxed(timer->base + CNTP_TVAL);
121			break;
122		}
123	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
124		struct arch_timer *timer = to_arch_timer(clk);
125		switch (reg) {
126		case ARCH_TIMER_REG_CTRL:
127			val = readl_relaxed(timer->base + CNTV_CTL);
128			break;
129		case ARCH_TIMER_REG_TVAL:
130			val = readl_relaxed(timer->base + CNTV_TVAL);
131			break;
132		}
133	} else {
134		val = arch_timer_reg_read_cp15(access, reg);
135	}
136
137	return val;
138}
139
140static __always_inline irqreturn_t timer_handler(const int access,
141					struct clock_event_device *evt)
142{
143	unsigned long ctrl;
144
145	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
146	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
147		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
148		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
149		evt->event_handler(evt);
150		return IRQ_HANDLED;
151	}
152
153	return IRQ_NONE;
154}
155
156static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
157{
158	struct clock_event_device *evt = dev_id;
159
160	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
161}
162
163static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
164{
165	struct clock_event_device *evt = dev_id;
166
167	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
168}
169
170static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
171{
172	struct clock_event_device *evt = dev_id;
173
174	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
175}
176
177static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
178{
179	struct clock_event_device *evt = dev_id;
180
181	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
182}
183
184static __always_inline int timer_shutdown(const int access,
185					  struct clock_event_device *clk)
186{
187	unsigned long ctrl;
188
189	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
190	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
191	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
192
193	return 0;
194}
195
196static int arch_timer_shutdown_virt(struct clock_event_device *clk)
197{
198	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
199}
200
201static int arch_timer_shutdown_phys(struct clock_event_device *clk)
202{
203	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
204}
205
206static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
207{
208	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
209}
210
211static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
212{
213	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
214}
215
216static __always_inline void set_next_event(const int access, unsigned long evt,
217					   struct clock_event_device *clk)
218{
219	unsigned long ctrl;
220	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
221	ctrl |= ARCH_TIMER_CTRL_ENABLE;
222	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
223	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
224	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
225}
226
227static int arch_timer_set_next_event_virt(unsigned long evt,
228					  struct clock_event_device *clk)
229{
230	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
231	return 0;
232}
233
234static int arch_timer_set_next_event_phys(unsigned long evt,
235					  struct clock_event_device *clk)
236{
237	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
238	return 0;
239}
240
241static int arch_timer_set_next_event_virt_mem(unsigned long evt,
242					      struct clock_event_device *clk)
243{
244	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
245	return 0;
246}
247
248static int arch_timer_set_next_event_phys_mem(unsigned long evt,
249					      struct clock_event_device *clk)
250{
251	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
252	return 0;
253}
254
255static void __arch_timer_setup(unsigned type,
256			       struct clock_event_device *clk)
257{
258	clk->features = CLOCK_EVT_FEAT_ONESHOT;
259
260	if (type == ARCH_CP15_TIMER) {
261		if (arch_timer_c3stop)
262			clk->features |= CLOCK_EVT_FEAT_C3STOP;
263		clk->name = "arch_sys_timer";
264		clk->rating = 450;
265		clk->cpumask = cpumask_of(smp_processor_id());
266		if (arch_timer_use_virtual) {
267			clk->irq = arch_timer_ppi[VIRT_PPI];
268			clk->set_state_shutdown = arch_timer_shutdown_virt;
269			clk->set_next_event = arch_timer_set_next_event_virt;
270		} else {
271			clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
272			clk->set_state_shutdown = arch_timer_shutdown_phys;
273			clk->set_next_event = arch_timer_set_next_event_phys;
274		}
275	} else {
276		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
277		clk->name = "arch_mem_timer";
278		clk->rating = 400;
279		clk->cpumask = cpu_all_mask;
280		if (arch_timer_mem_use_virtual) {
281			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
282			clk->set_next_event =
283				arch_timer_set_next_event_virt_mem;
284		} else {
285			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
286			clk->set_next_event =
287				arch_timer_set_next_event_phys_mem;
288		}
289	}
290
291	clk->set_state_shutdown(clk);
292
293	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
294}
295
296static void arch_timer_evtstrm_enable(int divider)
297{
298	u32 cntkctl = arch_timer_get_cntkctl();
299
300	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
301	/* Set the divider and enable virtual event stream */
302	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
303			| ARCH_TIMER_VIRT_EVT_EN;
304	arch_timer_set_cntkctl(cntkctl);
305	elf_hwcap |= HWCAP_EVTSTRM;
306#ifdef CONFIG_COMPAT
307	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
308#endif
309}
310
311static void arch_timer_configure_evtstream(void)
312{
313	int evt_stream_div, pos;
314
315	/* Find the closest power of two to the divisor */
316	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
317	pos = fls(evt_stream_div);
318	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
319		pos--;
320	/* enable event stream */
321	arch_timer_evtstrm_enable(min(pos, 15));
322}
323
324static void arch_counter_set_user_access(void)
325{
326	u32 cntkctl = arch_timer_get_cntkctl();
327
328	/* Disable user access to the timers and the physical counter */
329	/* Also disable virtual event stream */
330	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
331			| ARCH_TIMER_USR_VT_ACCESS_EN
332			| ARCH_TIMER_VIRT_EVT_EN
333			| ARCH_TIMER_USR_PCT_ACCESS_EN);
334
335	/* Enable user access to the virtual counter */
336	cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
337
338	arch_timer_set_cntkctl(cntkctl);
339}
340
341static int arch_timer_setup(struct clock_event_device *clk)
342{
343	__arch_timer_setup(ARCH_CP15_TIMER, clk);
344
345	if (arch_timer_use_virtual)
346		enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
347	else {
348		enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
349		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
350			enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
351	}
352
353	arch_counter_set_user_access();
354	if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
355		arch_timer_configure_evtstream();
356
357	return 0;
358}
359
360static void
361arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
362{
363	/* Who has more than one independent system counter? */
364	if (arch_timer_rate)
365		return;
366
367	/*
368	 * Try to determine the frequency from the device tree or CNTFRQ,
369	 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
370	 */
371	if (!acpi_disabled ||
372	    of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
373		if (cntbase)
374			arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
375		else
376			arch_timer_rate = arch_timer_get_cntfrq();
377	}
378
379	/* Check the timer frequency. */
380	if (arch_timer_rate == 0)
381		pr_warn("Architected timer frequency not available\n");
382}
383
384static void arch_timer_banner(unsigned type)
385{
386	pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
387		     type & ARCH_CP15_TIMER ? "cp15" : "",
388		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
389		     type & ARCH_MEM_TIMER ? "mmio" : "",
390		     (unsigned long)arch_timer_rate / 1000000,
391		     (unsigned long)(arch_timer_rate / 10000) % 100,
392		     type & ARCH_CP15_TIMER ?
393			arch_timer_use_virtual ? "virt" : "phys" :
394			"",
395		     type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
396		     type & ARCH_MEM_TIMER ?
397			arch_timer_mem_use_virtual ? "virt" : "phys" :
398			"");
399}
400
401u32 arch_timer_get_rate(void)
402{
403	return arch_timer_rate;
404}
405
406static u64 arch_counter_get_cntvct_mem(void)
407{
408	u32 vct_lo, vct_hi, tmp_hi;
409
410	do {
411		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
412		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
413		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
414	} while (vct_hi != tmp_hi);
415
416	return ((u64) vct_hi << 32) | vct_lo;
417}
418
419/*
420 * Default to cp15 based access because arm64 uses this function for
421 * sched_clock() before DT is probed and the cp15 method is guaranteed
422 * to exist on arm64. arm doesn't use this before DT is probed so even
423 * if we don't have the cp15 accessors we won't have a problem.
424 */
425u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
426
427static cycle_t arch_counter_read(struct clocksource *cs)
428{
429	return arch_timer_read_counter();
430}
431
432static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
433{
434	return arch_timer_read_counter();
435}
436
437static struct clocksource clocksource_counter = {
438	.name	= "arch_sys_counter",
439	.rating	= 400,
440	.read	= arch_counter_read,
441	.mask	= CLOCKSOURCE_MASK(56),
442	.flags	= CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
443};
444
445static struct cyclecounter cyclecounter = {
446	.read	= arch_counter_read_cc,
447	.mask	= CLOCKSOURCE_MASK(56),
448};
449
450static struct timecounter timecounter;
451
452struct timecounter *arch_timer_get_timecounter(void)
453{
454	return &timecounter;
455}
456
457static void __init arch_counter_register(unsigned type)
458{
459	u64 start_count;
460
461	/* Register the CP15 based counter if we have one */
462	if (type & ARCH_CP15_TIMER) {
463		if (IS_ENABLED(CONFIG_ARM64) || arch_timer_use_virtual)
464			arch_timer_read_counter = arch_counter_get_cntvct;
465		else
466			arch_timer_read_counter = arch_counter_get_cntpct;
467	} else {
468		arch_timer_read_counter = arch_counter_get_cntvct_mem;
469
470		/* If the clocksource name is "arch_sys_counter" the
471		 * VDSO will attempt to read the CP15-based counter.
472		 * Ensure this does not happen when CP15-based
473		 * counter is not available.
474		 */
475		clocksource_counter.name = "arch_mem_counter";
476	}
477
478	start_count = arch_timer_read_counter();
479	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
480	cyclecounter.mult = clocksource_counter.mult;
481	cyclecounter.shift = clocksource_counter.shift;
482	timecounter_init(&timecounter, &cyclecounter, start_count);
483
484	/* 56 bits minimum, so we assume worst case rollover */
485	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
486}
487
488static void arch_timer_stop(struct clock_event_device *clk)
489{
490	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
491		 clk->irq, smp_processor_id());
492
493	if (arch_timer_use_virtual)
494		disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
495	else {
496		disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
497		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
498			disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
499	}
500
501	clk->set_state_shutdown(clk);
502}
503
504static int arch_timer_cpu_notify(struct notifier_block *self,
505					   unsigned long action, void *hcpu)
506{
507	/*
508	 * Grab cpu pointer in each case to avoid spurious
509	 * preemptible warnings
510	 */
511	switch (action & ~CPU_TASKS_FROZEN) {
512	case CPU_STARTING:
513		arch_timer_setup(this_cpu_ptr(arch_timer_evt));
514		break;
515	case CPU_DYING:
516		arch_timer_stop(this_cpu_ptr(arch_timer_evt));
517		break;
518	}
519
520	return NOTIFY_OK;
521}
522
523static struct notifier_block arch_timer_cpu_nb = {
524	.notifier_call = arch_timer_cpu_notify,
525};
526
527#ifdef CONFIG_CPU_PM
528static unsigned int saved_cntkctl;
529static int arch_timer_cpu_pm_notify(struct notifier_block *self,
530				    unsigned long action, void *hcpu)
531{
532	if (action == CPU_PM_ENTER)
533		saved_cntkctl = arch_timer_get_cntkctl();
534	else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
535		arch_timer_set_cntkctl(saved_cntkctl);
536	return NOTIFY_OK;
537}
538
539static struct notifier_block arch_timer_cpu_pm_notifier = {
540	.notifier_call = arch_timer_cpu_pm_notify,
541};
542
543static int __init arch_timer_cpu_pm_init(void)
544{
545	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
546}
547#else
548static int __init arch_timer_cpu_pm_init(void)
549{
550	return 0;
551}
552#endif
553
554static int __init arch_timer_register(void)
555{
556	int err;
557	int ppi;
558
559	arch_timer_evt = alloc_percpu(struct clock_event_device);
560	if (!arch_timer_evt) {
561		err = -ENOMEM;
562		goto out;
563	}
564
565	if (arch_timer_use_virtual) {
566		ppi = arch_timer_ppi[VIRT_PPI];
567		err = request_percpu_irq(ppi, arch_timer_handler_virt,
568					 "arch_timer", arch_timer_evt);
569	} else {
570		ppi = arch_timer_ppi[PHYS_SECURE_PPI];
571		err = request_percpu_irq(ppi, arch_timer_handler_phys,
572					 "arch_timer", arch_timer_evt);
573		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
574			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
575			err = request_percpu_irq(ppi, arch_timer_handler_phys,
576						 "arch_timer", arch_timer_evt);
577			if (err)
578				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
579						arch_timer_evt);
580		}
581	}
582
583	if (err) {
584		pr_err("arch_timer: can't register interrupt %d (%d)\n",
585		       ppi, err);
586		goto out_free;
587	}
588
589	err = register_cpu_notifier(&arch_timer_cpu_nb);
590	if (err)
591		goto out_free_irq;
592
593	err = arch_timer_cpu_pm_init();
594	if (err)
595		goto out_unreg_notify;
596
597	/* Immediately configure the timer on the boot CPU */
598	arch_timer_setup(this_cpu_ptr(arch_timer_evt));
599
600	return 0;
601
602out_unreg_notify:
603	unregister_cpu_notifier(&arch_timer_cpu_nb);
604out_free_irq:
605	if (arch_timer_use_virtual)
606		free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
607	else {
608		free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
609				arch_timer_evt);
610		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
611			free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
612					arch_timer_evt);
613	}
614
615out_free:
616	free_percpu(arch_timer_evt);
617out:
618	return err;
619}
620
621static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
622{
623	int ret;
624	irq_handler_t func;
625	struct arch_timer *t;
626
627	t = kzalloc(sizeof(*t), GFP_KERNEL);
628	if (!t)
629		return -ENOMEM;
630
631	t->base = base;
632	t->evt.irq = irq;
633	__arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
634
635	if (arch_timer_mem_use_virtual)
636		func = arch_timer_handler_virt_mem;
637	else
638		func = arch_timer_handler_phys_mem;
639
640	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
641	if (ret) {
642		pr_err("arch_timer: Failed to request mem timer irq\n");
643		kfree(t);
644	}
645
646	return ret;
647}
648
649static const struct of_device_id arch_timer_of_match[] __initconst = {
650	{ .compatible   = "arm,armv7-timer",    },
651	{ .compatible   = "arm,armv8-timer",    },
652	{},
653};
654
655static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
656	{ .compatible   = "arm,armv7-timer-mem", },
657	{},
658};
659
660static bool __init
661arch_timer_needs_probing(int type, const struct of_device_id *matches)
662{
663	struct device_node *dn;
664	bool needs_probing = false;
665
666	dn = of_find_matching_node(NULL, matches);
667	if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
668		needs_probing = true;
669	of_node_put(dn);
670
671	return needs_probing;
672}
673
674static void __init arch_timer_common_init(void)
675{
676	unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
677
678	/* Wait until both nodes are probed if we have two timers */
679	if ((arch_timers_present & mask) != mask) {
680		if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
681			return;
682		if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
683			return;
684	}
685
686	arch_timer_banner(arch_timers_present);
687	arch_counter_register(arch_timers_present);
688	arch_timer_arch_init();
689}
690
691static void __init arch_timer_init(void)
692{
693	/*
694	 * If HYP mode is available, we know that the physical timer
695	 * has been configured to be accessible from PL1. Use it, so
696	 * that a guest can use the virtual timer instead.
697	 *
698	 * If no interrupt provided for virtual timer, we'll have to
699	 * stick to the physical timer. It'd better be accessible...
700	 */
701	if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
702		arch_timer_use_virtual = false;
703
704		if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
705		    !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
706			pr_warn("arch_timer: No interrupt available, giving up\n");
707			return;
708		}
709	}
710
711	arch_timer_register();
712	arch_timer_common_init();
713}
714
715static void __init arch_timer_of_init(struct device_node *np)
716{
717	int i;
718
719	if (arch_timers_present & ARCH_CP15_TIMER) {
720		pr_warn("arch_timer: multiple nodes in dt, skipping\n");
721		return;
722	}
723
724	arch_timers_present |= ARCH_CP15_TIMER;
725	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
726		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
727
728	arch_timer_detect_rate(NULL, np);
729
730	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
731
732	/*
733	 * If we cannot rely on firmware initializing the timer registers then
734	 * we should use the physical timers instead.
735	 */
736	if (IS_ENABLED(CONFIG_ARM) &&
737	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
738			arch_timer_use_virtual = false;
739
740	arch_timer_init();
741}
742CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
743CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
744
745static void __init arch_timer_mem_init(struct device_node *np)
746{
747	struct device_node *frame, *best_frame = NULL;
748	void __iomem *cntctlbase, *base;
749	unsigned int irq;
750	u32 cnttidr;
751
752	arch_timers_present |= ARCH_MEM_TIMER;
753	cntctlbase = of_iomap(np, 0);
754	if (!cntctlbase) {
755		pr_err("arch_timer: Can't find CNTCTLBase\n");
756		return;
757	}
758
759	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
760	iounmap(cntctlbase);
761
762	/*
763	 * Try to find a virtual capable frame. Otherwise fall back to a
764	 * physical capable frame.
765	 */
766	for_each_available_child_of_node(np, frame) {
767		int n;
768
769		if (of_property_read_u32(frame, "frame-number", &n)) {
770			pr_err("arch_timer: Missing frame-number\n");
771			of_node_put(best_frame);
772			of_node_put(frame);
773			return;
774		}
775
776		if (cnttidr & CNTTIDR_VIRT(n)) {
777			of_node_put(best_frame);
778			best_frame = frame;
779			arch_timer_mem_use_virtual = true;
780			break;
781		}
782		of_node_put(best_frame);
783		best_frame = of_node_get(frame);
784	}
785
786	base = arch_counter_base = of_iomap(best_frame, 0);
787	if (!base) {
788		pr_err("arch_timer: Can't map frame's registers\n");
789		of_node_put(best_frame);
790		return;
791	}
792
793	if (arch_timer_mem_use_virtual)
794		irq = irq_of_parse_and_map(best_frame, 1);
795	else
796		irq = irq_of_parse_and_map(best_frame, 0);
797	of_node_put(best_frame);
798	if (!irq) {
799		pr_err("arch_timer: Frame missing %s irq",
800		       arch_timer_mem_use_virtual ? "virt" : "phys");
801		return;
802	}
803
804	arch_timer_detect_rate(base, np);
805	arch_timer_mem_register(base, irq);
806	arch_timer_common_init();
807}
808CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
809		       arch_timer_mem_init);
810
811#ifdef CONFIG_ACPI
812static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
813{
814	int trigger, polarity;
815
816	if (!interrupt)
817		return 0;
818
819	trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
820			: ACPI_LEVEL_SENSITIVE;
821
822	polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
823			: ACPI_ACTIVE_HIGH;
824
825	return acpi_register_gsi(NULL, interrupt, trigger, polarity);
826}
827
828/* Initialize per-processor generic timer */
829static int __init arch_timer_acpi_init(struct acpi_table_header *table)
830{
831	struct acpi_table_gtdt *gtdt;
832
833	if (arch_timers_present & ARCH_CP15_TIMER) {
834		pr_warn("arch_timer: already initialized, skipping\n");
835		return -EINVAL;
836	}
837
838	gtdt = container_of(table, struct acpi_table_gtdt, header);
839
840	arch_timers_present |= ARCH_CP15_TIMER;
841
842	arch_timer_ppi[PHYS_SECURE_PPI] =
843		map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
844		gtdt->secure_el1_flags);
845
846	arch_timer_ppi[PHYS_NONSECURE_PPI] =
847		map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
848		gtdt->non_secure_el1_flags);
849
850	arch_timer_ppi[VIRT_PPI] =
851		map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
852		gtdt->virtual_timer_flags);
853
854	arch_timer_ppi[HYP_PPI] =
855		map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
856		gtdt->non_secure_el2_flags);
857
858	/* Get the frequency from CNTFRQ */
859	arch_timer_detect_rate(NULL, NULL);
860
861	/* Always-on capability */
862	arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
863
864	arch_timer_init();
865	return 0;
866}
867CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
868#endif
869