1/* 2 * Copyright (c) 2014 Samsung Electronics Co., Ltd. 3 * Author: Thomas Abraham <thomas.ab@samsung.com> 4 * 5 * Copyright (c) 2015 Samsung Electronics Co., Ltd. 6 * Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 * 12 * This file contains the utility function to register CPU clock for Samsung 13 * Exynos platforms. A CPU clock is defined as a clock supplied to a CPU or a 14 * group of CPUs. The CPU clock is typically derived from a hierarchy of clock 15 * blocks which includes mux and divider blocks. There are a number of other 16 * auxiliary clocks supplied to the CPU domain such as the debug blocks and AXI 17 * clock for CPU domain. The rates of these auxiliary clocks are related to the 18 * CPU clock rate and this relation is usually specified in the hardware manual 19 * of the SoC or supplied after the SoC characterization. 20 * 21 * The below implementation of the CPU clock allows the rate changes of the CPU 22 * clock and the corresponding rate changes of the auxillary clocks of the CPU 23 * domain. The platform clock driver provides a clock register configuration 24 * for each configurable rate which is then used to program the clock hardware 25 * registers to acheive a fast co-oridinated rate change for all the CPU domain 26 * clocks. 27 * 28 * On a rate change request for the CPU clock, the rate change is propagated 29 * upto the PLL supplying the clock to the CPU domain clock blocks. While the 30 * CPU domain PLL is reconfigured, the CPU domain clocks are driven using an 31 * alternate clock source. If required, the alternate clock source is divided 32 * down in order to keep the output clock rate within the previous OPP limits. 33*/ 34 35#include <linux/errno.h> 36#include <linux/slab.h> 37#include <linux/clk.h> 38#include <linux/clk-provider.h> 39#include "clk-cpu.h" 40 41#define E4210_SRC_CPU 0x0 42#define E4210_STAT_CPU 0x200 43#define E4210_DIV_CPU0 0x300 44#define E4210_DIV_CPU1 0x304 45#define E4210_DIV_STAT_CPU0 0x400 46#define E4210_DIV_STAT_CPU1 0x404 47 48#define E4210_DIV0_RATIO0_MASK 0x7 49#define E4210_DIV1_HPM_MASK (0x7 << 4) 50#define E4210_DIV1_COPY_MASK (0x7 << 0) 51#define E4210_MUX_HPM_MASK (1 << 20) 52#define E4210_DIV0_ATB_SHIFT 16 53#define E4210_DIV0_ATB_MASK (DIV_MASK << E4210_DIV0_ATB_SHIFT) 54 55#define MAX_DIV 8 56#define DIV_MASK 7 57#define DIV_MASK_ALL 0xffffffff 58#define MUX_MASK 7 59 60/* 61 * Helper function to wait until divider(s) have stabilized after the divider 62 * value has changed. 63 */ 64static void wait_until_divider_stable(void __iomem *div_reg, unsigned long mask) 65{ 66 unsigned long timeout = jiffies + msecs_to_jiffies(10); 67 68 do { 69 if (!(readl(div_reg) & mask)) 70 return; 71 } while (time_before(jiffies, timeout)); 72 73 if (!(readl(div_reg) & mask)) 74 return; 75 76 pr_err("%s: timeout in divider stablization\n", __func__); 77} 78 79/* 80 * Helper function to wait until mux has stabilized after the mux selection 81 * value was changed. 82 */ 83static void wait_until_mux_stable(void __iomem *mux_reg, u32 mux_pos, 84 unsigned long mux_value) 85{ 86 unsigned long timeout = jiffies + msecs_to_jiffies(10); 87 88 do { 89 if (((readl(mux_reg) >> mux_pos) & MUX_MASK) == mux_value) 90 return; 91 } while (time_before(jiffies, timeout)); 92 93 if (((readl(mux_reg) >> mux_pos) & MUX_MASK) == mux_value) 94 return; 95 96 pr_err("%s: re-parenting mux timed-out\n", __func__); 97} 98 99/* common round rate callback useable for all types of CPU clocks */ 100static long exynos_cpuclk_round_rate(struct clk_hw *hw, 101 unsigned long drate, unsigned long *prate) 102{ 103 struct clk_hw *parent = clk_hw_get_parent(hw); 104 *prate = clk_hw_round_rate(parent, drate); 105 return *prate; 106} 107 108/* common recalc rate callback useable for all types of CPU clocks */ 109static unsigned long exynos_cpuclk_recalc_rate(struct clk_hw *hw, 110 unsigned long parent_rate) 111{ 112 /* 113 * The CPU clock output (armclk) rate is the same as its parent 114 * rate. Although there exist certain dividers inside the CPU 115 * clock block that could be used to divide the parent clock, 116 * the driver does not make use of them currently, except during 117 * frequency transitions. 118 */ 119 return parent_rate; 120} 121 122static const struct clk_ops exynos_cpuclk_clk_ops = { 123 .recalc_rate = exynos_cpuclk_recalc_rate, 124 .round_rate = exynos_cpuclk_round_rate, 125}; 126 127/* 128 * Helper function to set the 'safe' dividers for the CPU clock. The parameters 129 * div and mask contain the divider value and the register bit mask of the 130 * dividers to be programmed. 131 */ 132static void exynos_set_safe_div(void __iomem *base, unsigned long div, 133 unsigned long mask) 134{ 135 unsigned long div0; 136 137 div0 = readl(base + E4210_DIV_CPU0); 138 div0 = (div0 & ~mask) | (div & mask); 139 writel(div0, base + E4210_DIV_CPU0); 140 wait_until_divider_stable(base + E4210_DIV_STAT_CPU0, mask); 141} 142 143/* handler for pre-rate change notification from parent clock */ 144static int exynos_cpuclk_pre_rate_change(struct clk_notifier_data *ndata, 145 struct exynos_cpuclk *cpuclk, void __iomem *base) 146{ 147 const struct exynos_cpuclk_cfg_data *cfg_data = cpuclk->cfg; 148 unsigned long alt_prate = clk_get_rate(cpuclk->alt_parent); 149 unsigned long alt_div = 0, alt_div_mask = DIV_MASK; 150 unsigned long div0, div1 = 0, mux_reg; 151 unsigned long flags; 152 153 /* find out the divider values to use for clock data */ 154 while ((cfg_data->prate * 1000) != ndata->new_rate) { 155 if (cfg_data->prate == 0) 156 return -EINVAL; 157 cfg_data++; 158 } 159 160 spin_lock_irqsave(cpuclk->lock, flags); 161 162 /* 163 * For the selected PLL clock frequency, get the pre-defined divider 164 * values. If the clock for sclk_hpm is not sourced from apll, then 165 * the values for DIV_COPY and DIV_HPM dividers need not be set. 166 */ 167 div0 = cfg_data->div0; 168 if (cpuclk->flags & CLK_CPU_HAS_DIV1) { 169 div1 = cfg_data->div1; 170 if (readl(base + E4210_SRC_CPU) & E4210_MUX_HPM_MASK) 171 div1 = readl(base + E4210_DIV_CPU1) & 172 (E4210_DIV1_HPM_MASK | E4210_DIV1_COPY_MASK); 173 } 174 175 /* 176 * If the old parent clock speed is less than the clock speed of 177 * the alternate parent, then it should be ensured that at no point 178 * the armclk speed is more than the old_prate until the dividers are 179 * set. Also workaround the issue of the dividers being set to lower 180 * values before the parent clock speed is set to new lower speed 181 * (this can result in too high speed of armclk output clocks). 182 */ 183 if (alt_prate > ndata->old_rate || ndata->old_rate > ndata->new_rate) { 184 unsigned long tmp_rate = min(ndata->old_rate, ndata->new_rate); 185 186 alt_div = DIV_ROUND_UP(alt_prate, tmp_rate) - 1; 187 WARN_ON(alt_div >= MAX_DIV); 188 189 if (cpuclk->flags & CLK_CPU_NEEDS_DEBUG_ALT_DIV) { 190 /* 191 * In Exynos4210, ATB clock parent is also mout_core. So 192 * ATB clock also needs to be mantained at safe speed. 193 */ 194 alt_div |= E4210_DIV0_ATB_MASK; 195 alt_div_mask |= E4210_DIV0_ATB_MASK; 196 } 197 exynos_set_safe_div(base, alt_div, alt_div_mask); 198 div0 |= alt_div; 199 } 200 201 /* select sclk_mpll as the alternate parent */ 202 mux_reg = readl(base + E4210_SRC_CPU); 203 writel(mux_reg | (1 << 16), base + E4210_SRC_CPU); 204 wait_until_mux_stable(base + E4210_STAT_CPU, 16, 2); 205 206 /* alternate parent is active now. set the dividers */ 207 writel(div0, base + E4210_DIV_CPU0); 208 wait_until_divider_stable(base + E4210_DIV_STAT_CPU0, DIV_MASK_ALL); 209 210 if (cpuclk->flags & CLK_CPU_HAS_DIV1) { 211 writel(div1, base + E4210_DIV_CPU1); 212 wait_until_divider_stable(base + E4210_DIV_STAT_CPU1, 213 DIV_MASK_ALL); 214 } 215 216 spin_unlock_irqrestore(cpuclk->lock, flags); 217 return 0; 218} 219 220/* handler for post-rate change notification from parent clock */ 221static int exynos_cpuclk_post_rate_change(struct clk_notifier_data *ndata, 222 struct exynos_cpuclk *cpuclk, void __iomem *base) 223{ 224 const struct exynos_cpuclk_cfg_data *cfg_data = cpuclk->cfg; 225 unsigned long div = 0, div_mask = DIV_MASK; 226 unsigned long mux_reg; 227 unsigned long flags; 228 229 /* find out the divider values to use for clock data */ 230 if (cpuclk->flags & CLK_CPU_NEEDS_DEBUG_ALT_DIV) { 231 while ((cfg_data->prate * 1000) != ndata->new_rate) { 232 if (cfg_data->prate == 0) 233 return -EINVAL; 234 cfg_data++; 235 } 236 } 237 238 spin_lock_irqsave(cpuclk->lock, flags); 239 240 /* select mout_apll as the alternate parent */ 241 mux_reg = readl(base + E4210_SRC_CPU); 242 writel(mux_reg & ~(1 << 16), base + E4210_SRC_CPU); 243 wait_until_mux_stable(base + E4210_STAT_CPU, 16, 1); 244 245 if (cpuclk->flags & CLK_CPU_NEEDS_DEBUG_ALT_DIV) { 246 div |= (cfg_data->div0 & E4210_DIV0_ATB_MASK); 247 div_mask |= E4210_DIV0_ATB_MASK; 248 } 249 250 exynos_set_safe_div(base, div, div_mask); 251 spin_unlock_irqrestore(cpuclk->lock, flags); 252 return 0; 253} 254 255/* 256 * This notifier function is called for the pre-rate and post-rate change 257 * notifications of the parent clock of cpuclk. 258 */ 259static int exynos_cpuclk_notifier_cb(struct notifier_block *nb, 260 unsigned long event, void *data) 261{ 262 struct clk_notifier_data *ndata = data; 263 struct exynos_cpuclk *cpuclk; 264 void __iomem *base; 265 int err = 0; 266 267 cpuclk = container_of(nb, struct exynos_cpuclk, clk_nb); 268 base = cpuclk->ctrl_base; 269 270 if (event == PRE_RATE_CHANGE) 271 err = exynos_cpuclk_pre_rate_change(ndata, cpuclk, base); 272 else if (event == POST_RATE_CHANGE) 273 err = exynos_cpuclk_post_rate_change(ndata, cpuclk, base); 274 275 return notifier_from_errno(err); 276} 277 278/* helper function to register a CPU clock */ 279int __init exynos_register_cpu_clock(struct samsung_clk_provider *ctx, 280 unsigned int lookup_id, const char *name, const char *parent, 281 const char *alt_parent, unsigned long offset, 282 const struct exynos_cpuclk_cfg_data *cfg, 283 unsigned long num_cfgs, unsigned long flags) 284{ 285 struct exynos_cpuclk *cpuclk; 286 struct clk_init_data init; 287 struct clk *clk; 288 int ret = 0; 289 290 cpuclk = kzalloc(sizeof(*cpuclk), GFP_KERNEL); 291 if (!cpuclk) 292 return -ENOMEM; 293 294 init.name = name; 295 init.flags = CLK_SET_RATE_PARENT; 296 init.parent_names = &parent; 297 init.num_parents = 1; 298 init.ops = &exynos_cpuclk_clk_ops; 299 300 cpuclk->hw.init = &init; 301 cpuclk->ctrl_base = ctx->reg_base + offset; 302 cpuclk->lock = &ctx->lock; 303 cpuclk->flags = flags; 304 cpuclk->clk_nb.notifier_call = exynos_cpuclk_notifier_cb; 305 306 cpuclk->alt_parent = __clk_lookup(alt_parent); 307 if (!cpuclk->alt_parent) { 308 pr_err("%s: could not lookup alternate parent %s\n", 309 __func__, alt_parent); 310 ret = -EINVAL; 311 goto free_cpuclk; 312 } 313 314 clk = __clk_lookup(parent); 315 if (!clk) { 316 pr_err("%s: could not lookup parent clock %s\n", 317 __func__, parent); 318 ret = -EINVAL; 319 goto free_cpuclk; 320 } 321 322 ret = clk_notifier_register(clk, &cpuclk->clk_nb); 323 if (ret) { 324 pr_err("%s: failed to register clock notifier for %s\n", 325 __func__, name); 326 goto free_cpuclk; 327 } 328 329 cpuclk->cfg = kmemdup(cfg, sizeof(*cfg) * num_cfgs, GFP_KERNEL); 330 if (!cpuclk->cfg) { 331 pr_err("%s: could not allocate memory for cpuclk data\n", 332 __func__); 333 ret = -ENOMEM; 334 goto unregister_clk_nb; 335 } 336 337 clk = clk_register(NULL, &cpuclk->hw); 338 if (IS_ERR(clk)) { 339 pr_err("%s: could not register cpuclk %s\n", __func__, name); 340 ret = PTR_ERR(clk); 341 goto free_cpuclk_data; 342 } 343 344 samsung_clk_add_lookup(ctx, clk, lookup_id); 345 return 0; 346 347free_cpuclk_data: 348 kfree(cpuclk->cfg); 349unregister_clk_nb: 350 clk_notifier_unregister(__clk_lookup(parent), &cpuclk->clk_nb); 351free_cpuclk: 352 kfree(cpuclk); 353 return ret; 354} 355