1/*
2 * ipmi_msghandler.c
3 *
4 * Incoming and outgoing message routing for an IPMI interface.
5 *
6 * Author: MontaVista Software, Inc.
7 *         Corey Minyard <minyard@mvista.com>
8 *         source@mvista.com
9 *
10 * Copyright 2002 MontaVista Software Inc.
11 *
12 *  This program is free software; you can redistribute it and/or modify it
13 *  under the terms of the GNU General Public License as published by the
14 *  Free Software Foundation; either version 2 of the License, or (at your
15 *  option) any later version.
16 *
17 *
18 *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24 *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26 *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27 *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 *  You should have received a copy of the GNU General Public License along
30 *  with this program; if not, write to the Free Software Foundation, Inc.,
31 *  675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34#include <linux/module.h>
35#include <linux/errno.h>
36#include <linux/poll.h>
37#include <linux/sched.h>
38#include <linux/seq_file.h>
39#include <linux/spinlock.h>
40#include <linux/mutex.h>
41#include <linux/slab.h>
42#include <linux/ipmi.h>
43#include <linux/ipmi_smi.h>
44#include <linux/notifier.h>
45#include <linux/init.h>
46#include <linux/proc_fs.h>
47#include <linux/rcupdate.h>
48#include <linux/interrupt.h>
49
50#define PFX "IPMI message handler: "
51
52#define IPMI_DRIVER_VERSION "39.2"
53
54static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
55static int ipmi_init_msghandler(void);
56static void smi_recv_tasklet(unsigned long);
57static void handle_new_recv_msgs(ipmi_smi_t intf);
58static void need_waiter(ipmi_smi_t intf);
59static int handle_one_recv_msg(ipmi_smi_t          intf,
60			       struct ipmi_smi_msg *msg);
61
62static int initialized;
63
64#ifdef CONFIG_PROC_FS
65static struct proc_dir_entry *proc_ipmi_root;
66#endif /* CONFIG_PROC_FS */
67
68/* Remain in auto-maintenance mode for this amount of time (in ms). */
69#define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
70
71#define MAX_EVENTS_IN_QUEUE	25
72
73/*
74 * Don't let a message sit in a queue forever, always time it with at lest
75 * the max message timer.  This is in milliseconds.
76 */
77#define MAX_MSG_TIMEOUT		60000
78
79/* Call every ~1000 ms. */
80#define IPMI_TIMEOUT_TIME	1000
81
82/* How many jiffies does it take to get to the timeout time. */
83#define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
84
85/*
86 * Request events from the queue every second (this is the number of
87 * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
88 * future, IPMI will add a way to know immediately if an event is in
89 * the queue and this silliness can go away.
90 */
91#define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
92
93/*
94 * The main "user" data structure.
95 */
96struct ipmi_user {
97	struct list_head link;
98
99	/* Set to false when the user is destroyed. */
100	bool valid;
101
102	struct kref refcount;
103
104	/* The upper layer that handles receive messages. */
105	struct ipmi_user_hndl *handler;
106	void             *handler_data;
107
108	/* The interface this user is bound to. */
109	ipmi_smi_t intf;
110
111	/* Does this interface receive IPMI events? */
112	bool gets_events;
113};
114
115struct cmd_rcvr {
116	struct list_head link;
117
118	ipmi_user_t   user;
119	unsigned char netfn;
120	unsigned char cmd;
121	unsigned int  chans;
122
123	/*
124	 * This is used to form a linked lised during mass deletion.
125	 * Since this is in an RCU list, we cannot use the link above
126	 * or change any data until the RCU period completes.  So we
127	 * use this next variable during mass deletion so we can have
128	 * a list and don't have to wait and restart the search on
129	 * every individual deletion of a command.
130	 */
131	struct cmd_rcvr *next;
132};
133
134struct seq_table {
135	unsigned int         inuse : 1;
136	unsigned int         broadcast : 1;
137
138	unsigned long        timeout;
139	unsigned long        orig_timeout;
140	unsigned int         retries_left;
141
142	/*
143	 * To verify on an incoming send message response that this is
144	 * the message that the response is for, we keep a sequence id
145	 * and increment it every time we send a message.
146	 */
147	long                 seqid;
148
149	/*
150	 * This is held so we can properly respond to the message on a
151	 * timeout, and it is used to hold the temporary data for
152	 * retransmission, too.
153	 */
154	struct ipmi_recv_msg *recv_msg;
155};
156
157/*
158 * Store the information in a msgid (long) to allow us to find a
159 * sequence table entry from the msgid.
160 */
161#define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
162
163#define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
164	do {								\
165		seq = ((msgid >> 26) & 0x3f);				\
166		seqid = (msgid & 0x3fffff);				\
167	} while (0)
168
169#define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
170
171struct ipmi_channel {
172	unsigned char medium;
173	unsigned char protocol;
174
175	/*
176	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
177	 * but may be changed by the user.
178	 */
179	unsigned char address;
180
181	/*
182	 * My LUN.  This should generally stay the SMS LUN, but just in
183	 * case...
184	 */
185	unsigned char lun;
186};
187
188#ifdef CONFIG_PROC_FS
189struct ipmi_proc_entry {
190	char                   *name;
191	struct ipmi_proc_entry *next;
192};
193#endif
194
195struct bmc_device {
196	struct platform_device pdev;
197	struct ipmi_device_id  id;
198	unsigned char          guid[16];
199	int                    guid_set;
200	char                   name[16];
201	struct kref	       usecount;
202};
203#define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
204
205/*
206 * Various statistics for IPMI, these index stats[] in the ipmi_smi
207 * structure.
208 */
209enum ipmi_stat_indexes {
210	/* Commands we got from the user that were invalid. */
211	IPMI_STAT_sent_invalid_commands = 0,
212
213	/* Commands we sent to the MC. */
214	IPMI_STAT_sent_local_commands,
215
216	/* Responses from the MC that were delivered to a user. */
217	IPMI_STAT_handled_local_responses,
218
219	/* Responses from the MC that were not delivered to a user. */
220	IPMI_STAT_unhandled_local_responses,
221
222	/* Commands we sent out to the IPMB bus. */
223	IPMI_STAT_sent_ipmb_commands,
224
225	/* Commands sent on the IPMB that had errors on the SEND CMD */
226	IPMI_STAT_sent_ipmb_command_errs,
227
228	/* Each retransmit increments this count. */
229	IPMI_STAT_retransmitted_ipmb_commands,
230
231	/*
232	 * When a message times out (runs out of retransmits) this is
233	 * incremented.
234	 */
235	IPMI_STAT_timed_out_ipmb_commands,
236
237	/*
238	 * This is like above, but for broadcasts.  Broadcasts are
239	 * *not* included in the above count (they are expected to
240	 * time out).
241	 */
242	IPMI_STAT_timed_out_ipmb_broadcasts,
243
244	/* Responses I have sent to the IPMB bus. */
245	IPMI_STAT_sent_ipmb_responses,
246
247	/* The response was delivered to the user. */
248	IPMI_STAT_handled_ipmb_responses,
249
250	/* The response had invalid data in it. */
251	IPMI_STAT_invalid_ipmb_responses,
252
253	/* The response didn't have anyone waiting for it. */
254	IPMI_STAT_unhandled_ipmb_responses,
255
256	/* Commands we sent out to the IPMB bus. */
257	IPMI_STAT_sent_lan_commands,
258
259	/* Commands sent on the IPMB that had errors on the SEND CMD */
260	IPMI_STAT_sent_lan_command_errs,
261
262	/* Each retransmit increments this count. */
263	IPMI_STAT_retransmitted_lan_commands,
264
265	/*
266	 * When a message times out (runs out of retransmits) this is
267	 * incremented.
268	 */
269	IPMI_STAT_timed_out_lan_commands,
270
271	/* Responses I have sent to the IPMB bus. */
272	IPMI_STAT_sent_lan_responses,
273
274	/* The response was delivered to the user. */
275	IPMI_STAT_handled_lan_responses,
276
277	/* The response had invalid data in it. */
278	IPMI_STAT_invalid_lan_responses,
279
280	/* The response didn't have anyone waiting for it. */
281	IPMI_STAT_unhandled_lan_responses,
282
283	/* The command was delivered to the user. */
284	IPMI_STAT_handled_commands,
285
286	/* The command had invalid data in it. */
287	IPMI_STAT_invalid_commands,
288
289	/* The command didn't have anyone waiting for it. */
290	IPMI_STAT_unhandled_commands,
291
292	/* Invalid data in an event. */
293	IPMI_STAT_invalid_events,
294
295	/* Events that were received with the proper format. */
296	IPMI_STAT_events,
297
298	/* Retransmissions on IPMB that failed. */
299	IPMI_STAT_dropped_rexmit_ipmb_commands,
300
301	/* Retransmissions on LAN that failed. */
302	IPMI_STAT_dropped_rexmit_lan_commands,
303
304	/* This *must* remain last, add new values above this. */
305	IPMI_NUM_STATS
306};
307
308
309#define IPMI_IPMB_NUM_SEQ	64
310#define IPMI_MAX_CHANNELS       16
311struct ipmi_smi {
312	/* What interface number are we? */
313	int intf_num;
314
315	struct kref refcount;
316
317	/* Set when the interface is being unregistered. */
318	bool in_shutdown;
319
320	/* Used for a list of interfaces. */
321	struct list_head link;
322
323	/*
324	 * The list of upper layers that are using me.  seq_lock
325	 * protects this.
326	 */
327	struct list_head users;
328
329	/* Information to supply to users. */
330	unsigned char ipmi_version_major;
331	unsigned char ipmi_version_minor;
332
333	/* Used for wake ups at startup. */
334	wait_queue_head_t waitq;
335
336	struct bmc_device *bmc;
337	char *my_dev_name;
338
339	/*
340	 * This is the lower-layer's sender routine.  Note that you
341	 * must either be holding the ipmi_interfaces_mutex or be in
342	 * an umpreemptible region to use this.  You must fetch the
343	 * value into a local variable and make sure it is not NULL.
344	 */
345	const struct ipmi_smi_handlers *handlers;
346	void                     *send_info;
347
348#ifdef CONFIG_PROC_FS
349	/* A list of proc entries for this interface. */
350	struct mutex           proc_entry_lock;
351	struct ipmi_proc_entry *proc_entries;
352#endif
353
354	/* Driver-model device for the system interface. */
355	struct device          *si_dev;
356
357	/*
358	 * A table of sequence numbers for this interface.  We use the
359	 * sequence numbers for IPMB messages that go out of the
360	 * interface to match them up with their responses.  A routine
361	 * is called periodically to time the items in this list.
362	 */
363	spinlock_t       seq_lock;
364	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
365	int curr_seq;
366
367	/*
368	 * Messages queued for delivery.  If delivery fails (out of memory
369	 * for instance), They will stay in here to be processed later in a
370	 * periodic timer interrupt.  The tasklet is for handling received
371	 * messages directly from the handler.
372	 */
373	spinlock_t       waiting_rcv_msgs_lock;
374	struct list_head waiting_rcv_msgs;
375	atomic_t	 watchdog_pretimeouts_to_deliver;
376	struct tasklet_struct recv_tasklet;
377
378	spinlock_t             xmit_msgs_lock;
379	struct list_head       xmit_msgs;
380	struct ipmi_smi_msg    *curr_msg;
381	struct list_head       hp_xmit_msgs;
382
383	/*
384	 * The list of command receivers that are registered for commands
385	 * on this interface.
386	 */
387	struct mutex     cmd_rcvrs_mutex;
388	struct list_head cmd_rcvrs;
389
390	/*
391	 * Events that were queues because no one was there to receive
392	 * them.
393	 */
394	spinlock_t       events_lock; /* For dealing with event stuff. */
395	struct list_head waiting_events;
396	unsigned int     waiting_events_count; /* How many events in queue? */
397	char             delivering_events;
398	char             event_msg_printed;
399	atomic_t         event_waiters;
400	unsigned int     ticks_to_req_ev;
401	int              last_needs_timer;
402
403	/*
404	 * The event receiver for my BMC, only really used at panic
405	 * shutdown as a place to store this.
406	 */
407	unsigned char event_receiver;
408	unsigned char event_receiver_lun;
409	unsigned char local_sel_device;
410	unsigned char local_event_generator;
411
412	/* For handling of maintenance mode. */
413	int maintenance_mode;
414	bool maintenance_mode_enable;
415	int auto_maintenance_timeout;
416	spinlock_t maintenance_mode_lock; /* Used in a timer... */
417
418	/*
419	 * A cheap hack, if this is non-null and a message to an
420	 * interface comes in with a NULL user, call this routine with
421	 * it.  Note that the message will still be freed by the
422	 * caller.  This only works on the system interface.
423	 */
424	void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
425
426	/*
427	 * When we are scanning the channels for an SMI, this will
428	 * tell which channel we are scanning.
429	 */
430	int curr_channel;
431
432	/* Channel information */
433	struct ipmi_channel channels[IPMI_MAX_CHANNELS];
434
435	/* Proc FS stuff. */
436	struct proc_dir_entry *proc_dir;
437	char                  proc_dir_name[10];
438
439	atomic_t stats[IPMI_NUM_STATS];
440
441	/*
442	 * run_to_completion duplicate of smb_info, smi_info
443	 * and ipmi_serial_info structures. Used to decrease numbers of
444	 * parameters passed by "low" level IPMI code.
445	 */
446	int run_to_completion;
447};
448#define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
449
450/**
451 * The driver model view of the IPMI messaging driver.
452 */
453static struct platform_driver ipmidriver = {
454	.driver = {
455		.name = "ipmi",
456		.bus = &platform_bus_type
457	}
458};
459static DEFINE_MUTEX(ipmidriver_mutex);
460
461static LIST_HEAD(ipmi_interfaces);
462static DEFINE_MUTEX(ipmi_interfaces_mutex);
463
464/*
465 * List of watchers that want to know when smi's are added and deleted.
466 */
467static LIST_HEAD(smi_watchers);
468static DEFINE_MUTEX(smi_watchers_mutex);
469
470#define ipmi_inc_stat(intf, stat) \
471	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
472#define ipmi_get_stat(intf, stat) \
473	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
474
475static char *addr_src_to_str[] = { "invalid", "hotmod", "hardcoded", "SPMI",
476				   "ACPI", "SMBIOS", "PCI",
477				   "device-tree", "default" };
478
479const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
480{
481	if (src > SI_DEFAULT)
482		src = 0; /* Invalid */
483	return addr_src_to_str[src];
484}
485EXPORT_SYMBOL(ipmi_addr_src_to_str);
486
487static int is_lan_addr(struct ipmi_addr *addr)
488{
489	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
490}
491
492static int is_ipmb_addr(struct ipmi_addr *addr)
493{
494	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
495}
496
497static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
498{
499	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
500}
501
502static void free_recv_msg_list(struct list_head *q)
503{
504	struct ipmi_recv_msg *msg, *msg2;
505
506	list_for_each_entry_safe(msg, msg2, q, link) {
507		list_del(&msg->link);
508		ipmi_free_recv_msg(msg);
509	}
510}
511
512static void free_smi_msg_list(struct list_head *q)
513{
514	struct ipmi_smi_msg *msg, *msg2;
515
516	list_for_each_entry_safe(msg, msg2, q, link) {
517		list_del(&msg->link);
518		ipmi_free_smi_msg(msg);
519	}
520}
521
522static void clean_up_interface_data(ipmi_smi_t intf)
523{
524	int              i;
525	struct cmd_rcvr  *rcvr, *rcvr2;
526	struct list_head list;
527
528	tasklet_kill(&intf->recv_tasklet);
529
530	free_smi_msg_list(&intf->waiting_rcv_msgs);
531	free_recv_msg_list(&intf->waiting_events);
532
533	/*
534	 * Wholesale remove all the entries from the list in the
535	 * interface and wait for RCU to know that none are in use.
536	 */
537	mutex_lock(&intf->cmd_rcvrs_mutex);
538	INIT_LIST_HEAD(&list);
539	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
540	mutex_unlock(&intf->cmd_rcvrs_mutex);
541
542	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
543		kfree(rcvr);
544
545	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
546		if ((intf->seq_table[i].inuse)
547					&& (intf->seq_table[i].recv_msg))
548			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
549	}
550}
551
552static void intf_free(struct kref *ref)
553{
554	ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
555
556	clean_up_interface_data(intf);
557	kfree(intf);
558}
559
560struct watcher_entry {
561	int              intf_num;
562	ipmi_smi_t       intf;
563	struct list_head link;
564};
565
566int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
567{
568	ipmi_smi_t intf;
569	LIST_HEAD(to_deliver);
570	struct watcher_entry *e, *e2;
571
572	mutex_lock(&smi_watchers_mutex);
573
574	mutex_lock(&ipmi_interfaces_mutex);
575
576	/* Build a list of things to deliver. */
577	list_for_each_entry(intf, &ipmi_interfaces, link) {
578		if (intf->intf_num == -1)
579			continue;
580		e = kmalloc(sizeof(*e), GFP_KERNEL);
581		if (!e)
582			goto out_err;
583		kref_get(&intf->refcount);
584		e->intf = intf;
585		e->intf_num = intf->intf_num;
586		list_add_tail(&e->link, &to_deliver);
587	}
588
589	/* We will succeed, so add it to the list. */
590	list_add(&watcher->link, &smi_watchers);
591
592	mutex_unlock(&ipmi_interfaces_mutex);
593
594	list_for_each_entry_safe(e, e2, &to_deliver, link) {
595		list_del(&e->link);
596		watcher->new_smi(e->intf_num, e->intf->si_dev);
597		kref_put(&e->intf->refcount, intf_free);
598		kfree(e);
599	}
600
601	mutex_unlock(&smi_watchers_mutex);
602
603	return 0;
604
605 out_err:
606	mutex_unlock(&ipmi_interfaces_mutex);
607	mutex_unlock(&smi_watchers_mutex);
608	list_for_each_entry_safe(e, e2, &to_deliver, link) {
609		list_del(&e->link);
610		kref_put(&e->intf->refcount, intf_free);
611		kfree(e);
612	}
613	return -ENOMEM;
614}
615EXPORT_SYMBOL(ipmi_smi_watcher_register);
616
617int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
618{
619	mutex_lock(&smi_watchers_mutex);
620	list_del(&(watcher->link));
621	mutex_unlock(&smi_watchers_mutex);
622	return 0;
623}
624EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
625
626/*
627 * Must be called with smi_watchers_mutex held.
628 */
629static void
630call_smi_watchers(int i, struct device *dev)
631{
632	struct ipmi_smi_watcher *w;
633
634	list_for_each_entry(w, &smi_watchers, link) {
635		if (try_module_get(w->owner)) {
636			w->new_smi(i, dev);
637			module_put(w->owner);
638		}
639	}
640}
641
642static int
643ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
644{
645	if (addr1->addr_type != addr2->addr_type)
646		return 0;
647
648	if (addr1->channel != addr2->channel)
649		return 0;
650
651	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
652		struct ipmi_system_interface_addr *smi_addr1
653		    = (struct ipmi_system_interface_addr *) addr1;
654		struct ipmi_system_interface_addr *smi_addr2
655		    = (struct ipmi_system_interface_addr *) addr2;
656		return (smi_addr1->lun == smi_addr2->lun);
657	}
658
659	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
660		struct ipmi_ipmb_addr *ipmb_addr1
661		    = (struct ipmi_ipmb_addr *) addr1;
662		struct ipmi_ipmb_addr *ipmb_addr2
663		    = (struct ipmi_ipmb_addr *) addr2;
664
665		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
666			&& (ipmb_addr1->lun == ipmb_addr2->lun));
667	}
668
669	if (is_lan_addr(addr1)) {
670		struct ipmi_lan_addr *lan_addr1
671			= (struct ipmi_lan_addr *) addr1;
672		struct ipmi_lan_addr *lan_addr2
673		    = (struct ipmi_lan_addr *) addr2;
674
675		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
676			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
677			&& (lan_addr1->session_handle
678			    == lan_addr2->session_handle)
679			&& (lan_addr1->lun == lan_addr2->lun));
680	}
681
682	return 1;
683}
684
685int ipmi_validate_addr(struct ipmi_addr *addr, int len)
686{
687	if (len < sizeof(struct ipmi_system_interface_addr))
688		return -EINVAL;
689
690	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
691		if (addr->channel != IPMI_BMC_CHANNEL)
692			return -EINVAL;
693		return 0;
694	}
695
696	if ((addr->channel == IPMI_BMC_CHANNEL)
697	    || (addr->channel >= IPMI_MAX_CHANNELS)
698	    || (addr->channel < 0))
699		return -EINVAL;
700
701	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
702		if (len < sizeof(struct ipmi_ipmb_addr))
703			return -EINVAL;
704		return 0;
705	}
706
707	if (is_lan_addr(addr)) {
708		if (len < sizeof(struct ipmi_lan_addr))
709			return -EINVAL;
710		return 0;
711	}
712
713	return -EINVAL;
714}
715EXPORT_SYMBOL(ipmi_validate_addr);
716
717unsigned int ipmi_addr_length(int addr_type)
718{
719	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
720		return sizeof(struct ipmi_system_interface_addr);
721
722	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
723			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
724		return sizeof(struct ipmi_ipmb_addr);
725
726	if (addr_type == IPMI_LAN_ADDR_TYPE)
727		return sizeof(struct ipmi_lan_addr);
728
729	return 0;
730}
731EXPORT_SYMBOL(ipmi_addr_length);
732
733static void deliver_response(struct ipmi_recv_msg *msg)
734{
735	if (!msg->user) {
736		ipmi_smi_t    intf = msg->user_msg_data;
737
738		/* Special handling for NULL users. */
739		if (intf->null_user_handler) {
740			intf->null_user_handler(intf, msg);
741			ipmi_inc_stat(intf, handled_local_responses);
742		} else {
743			/* No handler, so give up. */
744			ipmi_inc_stat(intf, unhandled_local_responses);
745		}
746		ipmi_free_recv_msg(msg);
747	} else if (!oops_in_progress) {
748		/*
749		 * If we are running in the panic context, calling the
750		 * receive handler doesn't much meaning and has a deadlock
751		 * risk.  At this moment, simply skip it in that case.
752		 */
753
754		ipmi_user_t user = msg->user;
755		user->handler->ipmi_recv_hndl(msg, user->handler_data);
756	}
757}
758
759static void
760deliver_err_response(struct ipmi_recv_msg *msg, int err)
761{
762	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
763	msg->msg_data[0] = err;
764	msg->msg.netfn |= 1; /* Convert to a response. */
765	msg->msg.data_len = 1;
766	msg->msg.data = msg->msg_data;
767	deliver_response(msg);
768}
769
770/*
771 * Find the next sequence number not being used and add the given
772 * message with the given timeout to the sequence table.  This must be
773 * called with the interface's seq_lock held.
774 */
775static int intf_next_seq(ipmi_smi_t           intf,
776			 struct ipmi_recv_msg *recv_msg,
777			 unsigned long        timeout,
778			 int                  retries,
779			 int                  broadcast,
780			 unsigned char        *seq,
781			 long                 *seqid)
782{
783	int          rv = 0;
784	unsigned int i;
785
786	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
787					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
788		if (!intf->seq_table[i].inuse)
789			break;
790	}
791
792	if (!intf->seq_table[i].inuse) {
793		intf->seq_table[i].recv_msg = recv_msg;
794
795		/*
796		 * Start with the maximum timeout, when the send response
797		 * comes in we will start the real timer.
798		 */
799		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
800		intf->seq_table[i].orig_timeout = timeout;
801		intf->seq_table[i].retries_left = retries;
802		intf->seq_table[i].broadcast = broadcast;
803		intf->seq_table[i].inuse = 1;
804		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
805		*seq = i;
806		*seqid = intf->seq_table[i].seqid;
807		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
808		need_waiter(intf);
809	} else {
810		rv = -EAGAIN;
811	}
812
813	return rv;
814}
815
816/*
817 * Return the receive message for the given sequence number and
818 * release the sequence number so it can be reused.  Some other data
819 * is passed in to be sure the message matches up correctly (to help
820 * guard against message coming in after their timeout and the
821 * sequence number being reused).
822 */
823static int intf_find_seq(ipmi_smi_t           intf,
824			 unsigned char        seq,
825			 short                channel,
826			 unsigned char        cmd,
827			 unsigned char        netfn,
828			 struct ipmi_addr     *addr,
829			 struct ipmi_recv_msg **recv_msg)
830{
831	int           rv = -ENODEV;
832	unsigned long flags;
833
834	if (seq >= IPMI_IPMB_NUM_SEQ)
835		return -EINVAL;
836
837	spin_lock_irqsave(&(intf->seq_lock), flags);
838	if (intf->seq_table[seq].inuse) {
839		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
840
841		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
842				&& (msg->msg.netfn == netfn)
843				&& (ipmi_addr_equal(addr, &(msg->addr)))) {
844			*recv_msg = msg;
845			intf->seq_table[seq].inuse = 0;
846			rv = 0;
847		}
848	}
849	spin_unlock_irqrestore(&(intf->seq_lock), flags);
850
851	return rv;
852}
853
854
855/* Start the timer for a specific sequence table entry. */
856static int intf_start_seq_timer(ipmi_smi_t intf,
857				long       msgid)
858{
859	int           rv = -ENODEV;
860	unsigned long flags;
861	unsigned char seq;
862	unsigned long seqid;
863
864
865	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
866
867	spin_lock_irqsave(&(intf->seq_lock), flags);
868	/*
869	 * We do this verification because the user can be deleted
870	 * while a message is outstanding.
871	 */
872	if ((intf->seq_table[seq].inuse)
873				&& (intf->seq_table[seq].seqid == seqid)) {
874		struct seq_table *ent = &(intf->seq_table[seq]);
875		ent->timeout = ent->orig_timeout;
876		rv = 0;
877	}
878	spin_unlock_irqrestore(&(intf->seq_lock), flags);
879
880	return rv;
881}
882
883/* Got an error for the send message for a specific sequence number. */
884static int intf_err_seq(ipmi_smi_t   intf,
885			long         msgid,
886			unsigned int err)
887{
888	int                  rv = -ENODEV;
889	unsigned long        flags;
890	unsigned char        seq;
891	unsigned long        seqid;
892	struct ipmi_recv_msg *msg = NULL;
893
894
895	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
896
897	spin_lock_irqsave(&(intf->seq_lock), flags);
898	/*
899	 * We do this verification because the user can be deleted
900	 * while a message is outstanding.
901	 */
902	if ((intf->seq_table[seq].inuse)
903				&& (intf->seq_table[seq].seqid == seqid)) {
904		struct seq_table *ent = &(intf->seq_table[seq]);
905
906		ent->inuse = 0;
907		msg = ent->recv_msg;
908		rv = 0;
909	}
910	spin_unlock_irqrestore(&(intf->seq_lock), flags);
911
912	if (msg)
913		deliver_err_response(msg, err);
914
915	return rv;
916}
917
918
919int ipmi_create_user(unsigned int          if_num,
920		     struct ipmi_user_hndl *handler,
921		     void                  *handler_data,
922		     ipmi_user_t           *user)
923{
924	unsigned long flags;
925	ipmi_user_t   new_user;
926	int           rv = 0;
927	ipmi_smi_t    intf;
928
929	/*
930	 * There is no module usecount here, because it's not
931	 * required.  Since this can only be used by and called from
932	 * other modules, they will implicitly use this module, and
933	 * thus this can't be removed unless the other modules are
934	 * removed.
935	 */
936
937	if (handler == NULL)
938		return -EINVAL;
939
940	/*
941	 * Make sure the driver is actually initialized, this handles
942	 * problems with initialization order.
943	 */
944	if (!initialized) {
945		rv = ipmi_init_msghandler();
946		if (rv)
947			return rv;
948
949		/*
950		 * The init code doesn't return an error if it was turned
951		 * off, but it won't initialize.  Check that.
952		 */
953		if (!initialized)
954			return -ENODEV;
955	}
956
957	new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
958	if (!new_user)
959		return -ENOMEM;
960
961	mutex_lock(&ipmi_interfaces_mutex);
962	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
963		if (intf->intf_num == if_num)
964			goto found;
965	}
966	/* Not found, return an error */
967	rv = -EINVAL;
968	goto out_kfree;
969
970 found:
971	/* Note that each existing user holds a refcount to the interface. */
972	kref_get(&intf->refcount);
973
974	kref_init(&new_user->refcount);
975	new_user->handler = handler;
976	new_user->handler_data = handler_data;
977	new_user->intf = intf;
978	new_user->gets_events = false;
979
980	if (!try_module_get(intf->handlers->owner)) {
981		rv = -ENODEV;
982		goto out_kref;
983	}
984
985	if (intf->handlers->inc_usecount) {
986		rv = intf->handlers->inc_usecount(intf->send_info);
987		if (rv) {
988			module_put(intf->handlers->owner);
989			goto out_kref;
990		}
991	}
992
993	/*
994	 * Hold the lock so intf->handlers is guaranteed to be good
995	 * until now
996	 */
997	mutex_unlock(&ipmi_interfaces_mutex);
998
999	new_user->valid = true;
1000	spin_lock_irqsave(&intf->seq_lock, flags);
1001	list_add_rcu(&new_user->link, &intf->users);
1002	spin_unlock_irqrestore(&intf->seq_lock, flags);
1003	if (handler->ipmi_watchdog_pretimeout) {
1004		/* User wants pretimeouts, so make sure to watch for them. */
1005		if (atomic_inc_return(&intf->event_waiters) == 1)
1006			need_waiter(intf);
1007	}
1008	*user = new_user;
1009	return 0;
1010
1011out_kref:
1012	kref_put(&intf->refcount, intf_free);
1013out_kfree:
1014	mutex_unlock(&ipmi_interfaces_mutex);
1015	kfree(new_user);
1016	return rv;
1017}
1018EXPORT_SYMBOL(ipmi_create_user);
1019
1020int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1021{
1022	int           rv = 0;
1023	ipmi_smi_t    intf;
1024	const struct ipmi_smi_handlers *handlers;
1025
1026	mutex_lock(&ipmi_interfaces_mutex);
1027	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1028		if (intf->intf_num == if_num)
1029			goto found;
1030	}
1031	/* Not found, return an error */
1032	rv = -EINVAL;
1033	mutex_unlock(&ipmi_interfaces_mutex);
1034	return rv;
1035
1036found:
1037	handlers = intf->handlers;
1038	rv = -ENOSYS;
1039	if (handlers->get_smi_info)
1040		rv = handlers->get_smi_info(intf->send_info, data);
1041	mutex_unlock(&ipmi_interfaces_mutex);
1042
1043	return rv;
1044}
1045EXPORT_SYMBOL(ipmi_get_smi_info);
1046
1047static void free_user(struct kref *ref)
1048{
1049	ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
1050	kfree(user);
1051}
1052
1053int ipmi_destroy_user(ipmi_user_t user)
1054{
1055	ipmi_smi_t       intf = user->intf;
1056	int              i;
1057	unsigned long    flags;
1058	struct cmd_rcvr  *rcvr;
1059	struct cmd_rcvr  *rcvrs = NULL;
1060
1061	user->valid = false;
1062
1063	if (user->handler->ipmi_watchdog_pretimeout)
1064		atomic_dec(&intf->event_waiters);
1065
1066	if (user->gets_events)
1067		atomic_dec(&intf->event_waiters);
1068
1069	/* Remove the user from the interface's sequence table. */
1070	spin_lock_irqsave(&intf->seq_lock, flags);
1071	list_del_rcu(&user->link);
1072
1073	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1074		if (intf->seq_table[i].inuse
1075		    && (intf->seq_table[i].recv_msg->user == user)) {
1076			intf->seq_table[i].inuse = 0;
1077			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1078		}
1079	}
1080	spin_unlock_irqrestore(&intf->seq_lock, flags);
1081
1082	/*
1083	 * Remove the user from the command receiver's table.  First
1084	 * we build a list of everything (not using the standard link,
1085	 * since other things may be using it till we do
1086	 * synchronize_rcu()) then free everything in that list.
1087	 */
1088	mutex_lock(&intf->cmd_rcvrs_mutex);
1089	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1090		if (rcvr->user == user) {
1091			list_del_rcu(&rcvr->link);
1092			rcvr->next = rcvrs;
1093			rcvrs = rcvr;
1094		}
1095	}
1096	mutex_unlock(&intf->cmd_rcvrs_mutex);
1097	synchronize_rcu();
1098	while (rcvrs) {
1099		rcvr = rcvrs;
1100		rcvrs = rcvr->next;
1101		kfree(rcvr);
1102	}
1103
1104	mutex_lock(&ipmi_interfaces_mutex);
1105	if (intf->handlers) {
1106		module_put(intf->handlers->owner);
1107		if (intf->handlers->dec_usecount)
1108			intf->handlers->dec_usecount(intf->send_info);
1109	}
1110	mutex_unlock(&ipmi_interfaces_mutex);
1111
1112	kref_put(&intf->refcount, intf_free);
1113
1114	kref_put(&user->refcount, free_user);
1115
1116	return 0;
1117}
1118EXPORT_SYMBOL(ipmi_destroy_user);
1119
1120void ipmi_get_version(ipmi_user_t   user,
1121		      unsigned char *major,
1122		      unsigned char *minor)
1123{
1124	*major = user->intf->ipmi_version_major;
1125	*minor = user->intf->ipmi_version_minor;
1126}
1127EXPORT_SYMBOL(ipmi_get_version);
1128
1129int ipmi_set_my_address(ipmi_user_t   user,
1130			unsigned int  channel,
1131			unsigned char address)
1132{
1133	if (channel >= IPMI_MAX_CHANNELS)
1134		return -EINVAL;
1135	user->intf->channels[channel].address = address;
1136	return 0;
1137}
1138EXPORT_SYMBOL(ipmi_set_my_address);
1139
1140int ipmi_get_my_address(ipmi_user_t   user,
1141			unsigned int  channel,
1142			unsigned char *address)
1143{
1144	if (channel >= IPMI_MAX_CHANNELS)
1145		return -EINVAL;
1146	*address = user->intf->channels[channel].address;
1147	return 0;
1148}
1149EXPORT_SYMBOL(ipmi_get_my_address);
1150
1151int ipmi_set_my_LUN(ipmi_user_t   user,
1152		    unsigned int  channel,
1153		    unsigned char LUN)
1154{
1155	if (channel >= IPMI_MAX_CHANNELS)
1156		return -EINVAL;
1157	user->intf->channels[channel].lun = LUN & 0x3;
1158	return 0;
1159}
1160EXPORT_SYMBOL(ipmi_set_my_LUN);
1161
1162int ipmi_get_my_LUN(ipmi_user_t   user,
1163		    unsigned int  channel,
1164		    unsigned char *address)
1165{
1166	if (channel >= IPMI_MAX_CHANNELS)
1167		return -EINVAL;
1168	*address = user->intf->channels[channel].lun;
1169	return 0;
1170}
1171EXPORT_SYMBOL(ipmi_get_my_LUN);
1172
1173int ipmi_get_maintenance_mode(ipmi_user_t user)
1174{
1175	int           mode;
1176	unsigned long flags;
1177
1178	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1179	mode = user->intf->maintenance_mode;
1180	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1181
1182	return mode;
1183}
1184EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1185
1186static void maintenance_mode_update(ipmi_smi_t intf)
1187{
1188	if (intf->handlers->set_maintenance_mode)
1189		intf->handlers->set_maintenance_mode(
1190			intf->send_info, intf->maintenance_mode_enable);
1191}
1192
1193int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1194{
1195	int           rv = 0;
1196	unsigned long flags;
1197	ipmi_smi_t    intf = user->intf;
1198
1199	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1200	if (intf->maintenance_mode != mode) {
1201		switch (mode) {
1202		case IPMI_MAINTENANCE_MODE_AUTO:
1203			intf->maintenance_mode_enable
1204				= (intf->auto_maintenance_timeout > 0);
1205			break;
1206
1207		case IPMI_MAINTENANCE_MODE_OFF:
1208			intf->maintenance_mode_enable = false;
1209			break;
1210
1211		case IPMI_MAINTENANCE_MODE_ON:
1212			intf->maintenance_mode_enable = true;
1213			break;
1214
1215		default:
1216			rv = -EINVAL;
1217			goto out_unlock;
1218		}
1219		intf->maintenance_mode = mode;
1220
1221		maintenance_mode_update(intf);
1222	}
1223 out_unlock:
1224	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1225
1226	return rv;
1227}
1228EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1229
1230int ipmi_set_gets_events(ipmi_user_t user, bool val)
1231{
1232	unsigned long        flags;
1233	ipmi_smi_t           intf = user->intf;
1234	struct ipmi_recv_msg *msg, *msg2;
1235	struct list_head     msgs;
1236
1237	INIT_LIST_HEAD(&msgs);
1238
1239	spin_lock_irqsave(&intf->events_lock, flags);
1240	if (user->gets_events == val)
1241		goto out;
1242
1243	user->gets_events = val;
1244
1245	if (val) {
1246		if (atomic_inc_return(&intf->event_waiters) == 1)
1247			need_waiter(intf);
1248	} else {
1249		atomic_dec(&intf->event_waiters);
1250	}
1251
1252	if (intf->delivering_events)
1253		/*
1254		 * Another thread is delivering events for this, so
1255		 * let it handle any new events.
1256		 */
1257		goto out;
1258
1259	/* Deliver any queued events. */
1260	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1261		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1262			list_move_tail(&msg->link, &msgs);
1263		intf->waiting_events_count = 0;
1264		if (intf->event_msg_printed) {
1265			printk(KERN_WARNING PFX "Event queue no longer"
1266			       " full\n");
1267			intf->event_msg_printed = 0;
1268		}
1269
1270		intf->delivering_events = 1;
1271		spin_unlock_irqrestore(&intf->events_lock, flags);
1272
1273		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1274			msg->user = user;
1275			kref_get(&user->refcount);
1276			deliver_response(msg);
1277		}
1278
1279		spin_lock_irqsave(&intf->events_lock, flags);
1280		intf->delivering_events = 0;
1281	}
1282
1283 out:
1284	spin_unlock_irqrestore(&intf->events_lock, flags);
1285
1286	return 0;
1287}
1288EXPORT_SYMBOL(ipmi_set_gets_events);
1289
1290static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1291				      unsigned char netfn,
1292				      unsigned char cmd,
1293				      unsigned char chan)
1294{
1295	struct cmd_rcvr *rcvr;
1296
1297	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1298		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1299					&& (rcvr->chans & (1 << chan)))
1300			return rcvr;
1301	}
1302	return NULL;
1303}
1304
1305static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1306				 unsigned char netfn,
1307				 unsigned char cmd,
1308				 unsigned int  chans)
1309{
1310	struct cmd_rcvr *rcvr;
1311
1312	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1313		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1314					&& (rcvr->chans & chans))
1315			return 0;
1316	}
1317	return 1;
1318}
1319
1320int ipmi_register_for_cmd(ipmi_user_t   user,
1321			  unsigned char netfn,
1322			  unsigned char cmd,
1323			  unsigned int  chans)
1324{
1325	ipmi_smi_t      intf = user->intf;
1326	struct cmd_rcvr *rcvr;
1327	int             rv = 0;
1328
1329
1330	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1331	if (!rcvr)
1332		return -ENOMEM;
1333	rcvr->cmd = cmd;
1334	rcvr->netfn = netfn;
1335	rcvr->chans = chans;
1336	rcvr->user = user;
1337
1338	mutex_lock(&intf->cmd_rcvrs_mutex);
1339	/* Make sure the command/netfn is not already registered. */
1340	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1341		rv = -EBUSY;
1342		goto out_unlock;
1343	}
1344
1345	if (atomic_inc_return(&intf->event_waiters) == 1)
1346		need_waiter(intf);
1347
1348	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1349
1350 out_unlock:
1351	mutex_unlock(&intf->cmd_rcvrs_mutex);
1352	if (rv)
1353		kfree(rcvr);
1354
1355	return rv;
1356}
1357EXPORT_SYMBOL(ipmi_register_for_cmd);
1358
1359int ipmi_unregister_for_cmd(ipmi_user_t   user,
1360			    unsigned char netfn,
1361			    unsigned char cmd,
1362			    unsigned int  chans)
1363{
1364	ipmi_smi_t      intf = user->intf;
1365	struct cmd_rcvr *rcvr;
1366	struct cmd_rcvr *rcvrs = NULL;
1367	int i, rv = -ENOENT;
1368
1369	mutex_lock(&intf->cmd_rcvrs_mutex);
1370	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1371		if (((1 << i) & chans) == 0)
1372			continue;
1373		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1374		if (rcvr == NULL)
1375			continue;
1376		if (rcvr->user == user) {
1377			rv = 0;
1378			rcvr->chans &= ~chans;
1379			if (rcvr->chans == 0) {
1380				list_del_rcu(&rcvr->link);
1381				rcvr->next = rcvrs;
1382				rcvrs = rcvr;
1383			}
1384		}
1385	}
1386	mutex_unlock(&intf->cmd_rcvrs_mutex);
1387	synchronize_rcu();
1388	while (rcvrs) {
1389		atomic_dec(&intf->event_waiters);
1390		rcvr = rcvrs;
1391		rcvrs = rcvr->next;
1392		kfree(rcvr);
1393	}
1394	return rv;
1395}
1396EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1397
1398static unsigned char
1399ipmb_checksum(unsigned char *data, int size)
1400{
1401	unsigned char csum = 0;
1402
1403	for (; size > 0; size--, data++)
1404		csum += *data;
1405
1406	return -csum;
1407}
1408
1409static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1410				   struct kernel_ipmi_msg *msg,
1411				   struct ipmi_ipmb_addr *ipmb_addr,
1412				   long                  msgid,
1413				   unsigned char         ipmb_seq,
1414				   int                   broadcast,
1415				   unsigned char         source_address,
1416				   unsigned char         source_lun)
1417{
1418	int i = broadcast;
1419
1420	/* Format the IPMB header data. */
1421	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1422	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1423	smi_msg->data[2] = ipmb_addr->channel;
1424	if (broadcast)
1425		smi_msg->data[3] = 0;
1426	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1427	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1428	smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1429	smi_msg->data[i+6] = source_address;
1430	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1431	smi_msg->data[i+8] = msg->cmd;
1432
1433	/* Now tack on the data to the message. */
1434	if (msg->data_len > 0)
1435		memcpy(&(smi_msg->data[i+9]), msg->data,
1436		       msg->data_len);
1437	smi_msg->data_size = msg->data_len + 9;
1438
1439	/* Now calculate the checksum and tack it on. */
1440	smi_msg->data[i+smi_msg->data_size]
1441		= ipmb_checksum(&(smi_msg->data[i+6]),
1442				smi_msg->data_size-6);
1443
1444	/*
1445	 * Add on the checksum size and the offset from the
1446	 * broadcast.
1447	 */
1448	smi_msg->data_size += 1 + i;
1449
1450	smi_msg->msgid = msgid;
1451}
1452
1453static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1454				  struct kernel_ipmi_msg *msg,
1455				  struct ipmi_lan_addr  *lan_addr,
1456				  long                  msgid,
1457				  unsigned char         ipmb_seq,
1458				  unsigned char         source_lun)
1459{
1460	/* Format the IPMB header data. */
1461	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1462	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1463	smi_msg->data[2] = lan_addr->channel;
1464	smi_msg->data[3] = lan_addr->session_handle;
1465	smi_msg->data[4] = lan_addr->remote_SWID;
1466	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1467	smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1468	smi_msg->data[7] = lan_addr->local_SWID;
1469	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1470	smi_msg->data[9] = msg->cmd;
1471
1472	/* Now tack on the data to the message. */
1473	if (msg->data_len > 0)
1474		memcpy(&(smi_msg->data[10]), msg->data,
1475		       msg->data_len);
1476	smi_msg->data_size = msg->data_len + 10;
1477
1478	/* Now calculate the checksum and tack it on. */
1479	smi_msg->data[smi_msg->data_size]
1480		= ipmb_checksum(&(smi_msg->data[7]),
1481				smi_msg->data_size-7);
1482
1483	/*
1484	 * Add on the checksum size and the offset from the
1485	 * broadcast.
1486	 */
1487	smi_msg->data_size += 1;
1488
1489	smi_msg->msgid = msgid;
1490}
1491
1492static struct ipmi_smi_msg *smi_add_send_msg(ipmi_smi_t intf,
1493					     struct ipmi_smi_msg *smi_msg,
1494					     int priority)
1495{
1496	if (intf->curr_msg) {
1497		if (priority > 0)
1498			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1499		else
1500			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1501		smi_msg = NULL;
1502	} else {
1503		intf->curr_msg = smi_msg;
1504	}
1505
1506	return smi_msg;
1507}
1508
1509
1510static void smi_send(ipmi_smi_t intf, const struct ipmi_smi_handlers *handlers,
1511		     struct ipmi_smi_msg *smi_msg, int priority)
1512{
1513	int run_to_completion = intf->run_to_completion;
1514
1515	if (run_to_completion) {
1516		smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1517	} else {
1518		unsigned long flags;
1519
1520		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1521		smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1522		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1523	}
1524
1525	if (smi_msg)
1526		handlers->sender(intf->send_info, smi_msg);
1527}
1528
1529/*
1530 * Separate from ipmi_request so that the user does not have to be
1531 * supplied in certain circumstances (mainly at panic time).  If
1532 * messages are supplied, they will be freed, even if an error
1533 * occurs.
1534 */
1535static int i_ipmi_request(ipmi_user_t          user,
1536			  ipmi_smi_t           intf,
1537			  struct ipmi_addr     *addr,
1538			  long                 msgid,
1539			  struct kernel_ipmi_msg *msg,
1540			  void                 *user_msg_data,
1541			  void                 *supplied_smi,
1542			  struct ipmi_recv_msg *supplied_recv,
1543			  int                  priority,
1544			  unsigned char        source_address,
1545			  unsigned char        source_lun,
1546			  int                  retries,
1547			  unsigned int         retry_time_ms)
1548{
1549	int                      rv = 0;
1550	struct ipmi_smi_msg      *smi_msg;
1551	struct ipmi_recv_msg     *recv_msg;
1552	unsigned long            flags;
1553
1554
1555	if (supplied_recv)
1556		recv_msg = supplied_recv;
1557	else {
1558		recv_msg = ipmi_alloc_recv_msg();
1559		if (recv_msg == NULL)
1560			return -ENOMEM;
1561	}
1562	recv_msg->user_msg_data = user_msg_data;
1563
1564	if (supplied_smi)
1565		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1566	else {
1567		smi_msg = ipmi_alloc_smi_msg();
1568		if (smi_msg == NULL) {
1569			ipmi_free_recv_msg(recv_msg);
1570			return -ENOMEM;
1571		}
1572	}
1573
1574	rcu_read_lock();
1575	if (intf->in_shutdown) {
1576		rv = -ENODEV;
1577		goto out_err;
1578	}
1579
1580	recv_msg->user = user;
1581	if (user)
1582		kref_get(&user->refcount);
1583	recv_msg->msgid = msgid;
1584	/*
1585	 * Store the message to send in the receive message so timeout
1586	 * responses can get the proper response data.
1587	 */
1588	recv_msg->msg = *msg;
1589
1590	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1591		struct ipmi_system_interface_addr *smi_addr;
1592
1593		if (msg->netfn & 1) {
1594			/* Responses are not allowed to the SMI. */
1595			rv = -EINVAL;
1596			goto out_err;
1597		}
1598
1599		smi_addr = (struct ipmi_system_interface_addr *) addr;
1600		if (smi_addr->lun > 3) {
1601			ipmi_inc_stat(intf, sent_invalid_commands);
1602			rv = -EINVAL;
1603			goto out_err;
1604		}
1605
1606		memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1607
1608		if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1609		    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1610			|| (msg->cmd == IPMI_GET_MSG_CMD)
1611			|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1612			/*
1613			 * We don't let the user do these, since we manage
1614			 * the sequence numbers.
1615			 */
1616			ipmi_inc_stat(intf, sent_invalid_commands);
1617			rv = -EINVAL;
1618			goto out_err;
1619		}
1620
1621		if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1622		      && ((msg->cmd == IPMI_COLD_RESET_CMD)
1623			  || (msg->cmd == IPMI_WARM_RESET_CMD)))
1624		     || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1625			spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1626			intf->auto_maintenance_timeout
1627				= IPMI_MAINTENANCE_MODE_TIMEOUT;
1628			if (!intf->maintenance_mode
1629			    && !intf->maintenance_mode_enable) {
1630				intf->maintenance_mode_enable = true;
1631				maintenance_mode_update(intf);
1632			}
1633			spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1634					       flags);
1635		}
1636
1637		if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1638			ipmi_inc_stat(intf, sent_invalid_commands);
1639			rv = -EMSGSIZE;
1640			goto out_err;
1641		}
1642
1643		smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1644		smi_msg->data[1] = msg->cmd;
1645		smi_msg->msgid = msgid;
1646		smi_msg->user_data = recv_msg;
1647		if (msg->data_len > 0)
1648			memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1649		smi_msg->data_size = msg->data_len + 2;
1650		ipmi_inc_stat(intf, sent_local_commands);
1651	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1652		struct ipmi_ipmb_addr *ipmb_addr;
1653		unsigned char         ipmb_seq;
1654		long                  seqid;
1655		int                   broadcast = 0;
1656
1657		if (addr->channel >= IPMI_MAX_CHANNELS) {
1658			ipmi_inc_stat(intf, sent_invalid_commands);
1659			rv = -EINVAL;
1660			goto out_err;
1661		}
1662
1663		if (intf->channels[addr->channel].medium
1664					!= IPMI_CHANNEL_MEDIUM_IPMB) {
1665			ipmi_inc_stat(intf, sent_invalid_commands);
1666			rv = -EINVAL;
1667			goto out_err;
1668		}
1669
1670		if (retries < 0) {
1671		    if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1672			retries = 0; /* Don't retry broadcasts. */
1673		    else
1674			retries = 4;
1675		}
1676		if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1677		    /*
1678		     * Broadcasts add a zero at the beginning of the
1679		     * message, but otherwise is the same as an IPMB
1680		     * address.
1681		     */
1682		    addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1683		    broadcast = 1;
1684		}
1685
1686
1687		/* Default to 1 second retries. */
1688		if (retry_time_ms == 0)
1689		    retry_time_ms = 1000;
1690
1691		/*
1692		 * 9 for the header and 1 for the checksum, plus
1693		 * possibly one for the broadcast.
1694		 */
1695		if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1696			ipmi_inc_stat(intf, sent_invalid_commands);
1697			rv = -EMSGSIZE;
1698			goto out_err;
1699		}
1700
1701		ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1702		if (ipmb_addr->lun > 3) {
1703			ipmi_inc_stat(intf, sent_invalid_commands);
1704			rv = -EINVAL;
1705			goto out_err;
1706		}
1707
1708		memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1709
1710		if (recv_msg->msg.netfn & 0x1) {
1711			/*
1712			 * It's a response, so use the user's sequence
1713			 * from msgid.
1714			 */
1715			ipmi_inc_stat(intf, sent_ipmb_responses);
1716			format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1717					msgid, broadcast,
1718					source_address, source_lun);
1719
1720			/*
1721			 * Save the receive message so we can use it
1722			 * to deliver the response.
1723			 */
1724			smi_msg->user_data = recv_msg;
1725		} else {
1726			/* It's a command, so get a sequence for it. */
1727
1728			spin_lock_irqsave(&(intf->seq_lock), flags);
1729
1730			/*
1731			 * Create a sequence number with a 1 second
1732			 * timeout and 4 retries.
1733			 */
1734			rv = intf_next_seq(intf,
1735					   recv_msg,
1736					   retry_time_ms,
1737					   retries,
1738					   broadcast,
1739					   &ipmb_seq,
1740					   &seqid);
1741			if (rv) {
1742				/*
1743				 * We have used up all the sequence numbers,
1744				 * probably, so abort.
1745				 */
1746				spin_unlock_irqrestore(&(intf->seq_lock),
1747						       flags);
1748				goto out_err;
1749			}
1750
1751			ipmi_inc_stat(intf, sent_ipmb_commands);
1752
1753			/*
1754			 * Store the sequence number in the message,
1755			 * so that when the send message response
1756			 * comes back we can start the timer.
1757			 */
1758			format_ipmb_msg(smi_msg, msg, ipmb_addr,
1759					STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1760					ipmb_seq, broadcast,
1761					source_address, source_lun);
1762
1763			/*
1764			 * Copy the message into the recv message data, so we
1765			 * can retransmit it later if necessary.
1766			 */
1767			memcpy(recv_msg->msg_data, smi_msg->data,
1768			       smi_msg->data_size);
1769			recv_msg->msg.data = recv_msg->msg_data;
1770			recv_msg->msg.data_len = smi_msg->data_size;
1771
1772			/*
1773			 * We don't unlock until here, because we need
1774			 * to copy the completed message into the
1775			 * recv_msg before we release the lock.
1776			 * Otherwise, race conditions may bite us.  I
1777			 * know that's pretty paranoid, but I prefer
1778			 * to be correct.
1779			 */
1780			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1781		}
1782	} else if (is_lan_addr(addr)) {
1783		struct ipmi_lan_addr  *lan_addr;
1784		unsigned char         ipmb_seq;
1785		long                  seqid;
1786
1787		if (addr->channel >= IPMI_MAX_CHANNELS) {
1788			ipmi_inc_stat(intf, sent_invalid_commands);
1789			rv = -EINVAL;
1790			goto out_err;
1791		}
1792
1793		if ((intf->channels[addr->channel].medium
1794				!= IPMI_CHANNEL_MEDIUM_8023LAN)
1795		    && (intf->channels[addr->channel].medium
1796				!= IPMI_CHANNEL_MEDIUM_ASYNC)) {
1797			ipmi_inc_stat(intf, sent_invalid_commands);
1798			rv = -EINVAL;
1799			goto out_err;
1800		}
1801
1802		retries = 4;
1803
1804		/* Default to 1 second retries. */
1805		if (retry_time_ms == 0)
1806		    retry_time_ms = 1000;
1807
1808		/* 11 for the header and 1 for the checksum. */
1809		if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1810			ipmi_inc_stat(intf, sent_invalid_commands);
1811			rv = -EMSGSIZE;
1812			goto out_err;
1813		}
1814
1815		lan_addr = (struct ipmi_lan_addr *) addr;
1816		if (lan_addr->lun > 3) {
1817			ipmi_inc_stat(intf, sent_invalid_commands);
1818			rv = -EINVAL;
1819			goto out_err;
1820		}
1821
1822		memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1823
1824		if (recv_msg->msg.netfn & 0x1) {
1825			/*
1826			 * It's a response, so use the user's sequence
1827			 * from msgid.
1828			 */
1829			ipmi_inc_stat(intf, sent_lan_responses);
1830			format_lan_msg(smi_msg, msg, lan_addr, msgid,
1831				       msgid, source_lun);
1832
1833			/*
1834			 * Save the receive message so we can use it
1835			 * to deliver the response.
1836			 */
1837			smi_msg->user_data = recv_msg;
1838		} else {
1839			/* It's a command, so get a sequence for it. */
1840
1841			spin_lock_irqsave(&(intf->seq_lock), flags);
1842
1843			/*
1844			 * Create a sequence number with a 1 second
1845			 * timeout and 4 retries.
1846			 */
1847			rv = intf_next_seq(intf,
1848					   recv_msg,
1849					   retry_time_ms,
1850					   retries,
1851					   0,
1852					   &ipmb_seq,
1853					   &seqid);
1854			if (rv) {
1855				/*
1856				 * We have used up all the sequence numbers,
1857				 * probably, so abort.
1858				 */
1859				spin_unlock_irqrestore(&(intf->seq_lock),
1860						       flags);
1861				goto out_err;
1862			}
1863
1864			ipmi_inc_stat(intf, sent_lan_commands);
1865
1866			/*
1867			 * Store the sequence number in the message,
1868			 * so that when the send message response
1869			 * comes back we can start the timer.
1870			 */
1871			format_lan_msg(smi_msg, msg, lan_addr,
1872				       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1873				       ipmb_seq, source_lun);
1874
1875			/*
1876			 * Copy the message into the recv message data, so we
1877			 * can retransmit it later if necessary.
1878			 */
1879			memcpy(recv_msg->msg_data, smi_msg->data,
1880			       smi_msg->data_size);
1881			recv_msg->msg.data = recv_msg->msg_data;
1882			recv_msg->msg.data_len = smi_msg->data_size;
1883
1884			/*
1885			 * We don't unlock until here, because we need
1886			 * to copy the completed message into the
1887			 * recv_msg before we release the lock.
1888			 * Otherwise, race conditions may bite us.  I
1889			 * know that's pretty paranoid, but I prefer
1890			 * to be correct.
1891			 */
1892			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1893		}
1894	} else {
1895	    /* Unknown address type. */
1896		ipmi_inc_stat(intf, sent_invalid_commands);
1897		rv = -EINVAL;
1898		goto out_err;
1899	}
1900
1901#ifdef DEBUG_MSGING
1902	{
1903		int m;
1904		for (m = 0; m < smi_msg->data_size; m++)
1905			printk(" %2.2x", smi_msg->data[m]);
1906		printk("\n");
1907	}
1908#endif
1909
1910	smi_send(intf, intf->handlers, smi_msg, priority);
1911	rcu_read_unlock();
1912
1913	return 0;
1914
1915 out_err:
1916	rcu_read_unlock();
1917	ipmi_free_smi_msg(smi_msg);
1918	ipmi_free_recv_msg(recv_msg);
1919	return rv;
1920}
1921
1922static int check_addr(ipmi_smi_t       intf,
1923		      struct ipmi_addr *addr,
1924		      unsigned char    *saddr,
1925		      unsigned char    *lun)
1926{
1927	if (addr->channel >= IPMI_MAX_CHANNELS)
1928		return -EINVAL;
1929	*lun = intf->channels[addr->channel].lun;
1930	*saddr = intf->channels[addr->channel].address;
1931	return 0;
1932}
1933
1934int ipmi_request_settime(ipmi_user_t      user,
1935			 struct ipmi_addr *addr,
1936			 long             msgid,
1937			 struct kernel_ipmi_msg  *msg,
1938			 void             *user_msg_data,
1939			 int              priority,
1940			 int              retries,
1941			 unsigned int     retry_time_ms)
1942{
1943	unsigned char saddr = 0, lun = 0;
1944	int           rv;
1945
1946	if (!user)
1947		return -EINVAL;
1948	rv = check_addr(user->intf, addr, &saddr, &lun);
1949	if (rv)
1950		return rv;
1951	return i_ipmi_request(user,
1952			      user->intf,
1953			      addr,
1954			      msgid,
1955			      msg,
1956			      user_msg_data,
1957			      NULL, NULL,
1958			      priority,
1959			      saddr,
1960			      lun,
1961			      retries,
1962			      retry_time_ms);
1963}
1964EXPORT_SYMBOL(ipmi_request_settime);
1965
1966int ipmi_request_supply_msgs(ipmi_user_t          user,
1967			     struct ipmi_addr     *addr,
1968			     long                 msgid,
1969			     struct kernel_ipmi_msg *msg,
1970			     void                 *user_msg_data,
1971			     void                 *supplied_smi,
1972			     struct ipmi_recv_msg *supplied_recv,
1973			     int                  priority)
1974{
1975	unsigned char saddr = 0, lun = 0;
1976	int           rv;
1977
1978	if (!user)
1979		return -EINVAL;
1980	rv = check_addr(user->intf, addr, &saddr, &lun);
1981	if (rv)
1982		return rv;
1983	return i_ipmi_request(user,
1984			      user->intf,
1985			      addr,
1986			      msgid,
1987			      msg,
1988			      user_msg_data,
1989			      supplied_smi,
1990			      supplied_recv,
1991			      priority,
1992			      saddr,
1993			      lun,
1994			      -1, 0);
1995}
1996EXPORT_SYMBOL(ipmi_request_supply_msgs);
1997
1998#ifdef CONFIG_PROC_FS
1999static int smi_ipmb_proc_show(struct seq_file *m, void *v)
2000{
2001	ipmi_smi_t intf = m->private;
2002	int        i;
2003
2004	seq_printf(m, "%x", intf->channels[0].address);
2005	for (i = 1; i < IPMI_MAX_CHANNELS; i++)
2006		seq_printf(m, " %x", intf->channels[i].address);
2007	seq_putc(m, '\n');
2008
2009	return 0;
2010}
2011
2012static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
2013{
2014	return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode));
2015}
2016
2017static const struct file_operations smi_ipmb_proc_ops = {
2018	.open		= smi_ipmb_proc_open,
2019	.read		= seq_read,
2020	.llseek		= seq_lseek,
2021	.release	= single_release,
2022};
2023
2024static int smi_version_proc_show(struct seq_file *m, void *v)
2025{
2026	ipmi_smi_t intf = m->private;
2027
2028	seq_printf(m, "%u.%u\n",
2029		   ipmi_version_major(&intf->bmc->id),
2030		   ipmi_version_minor(&intf->bmc->id));
2031
2032	return 0;
2033}
2034
2035static int smi_version_proc_open(struct inode *inode, struct file *file)
2036{
2037	return single_open(file, smi_version_proc_show, PDE_DATA(inode));
2038}
2039
2040static const struct file_operations smi_version_proc_ops = {
2041	.open		= smi_version_proc_open,
2042	.read		= seq_read,
2043	.llseek		= seq_lseek,
2044	.release	= single_release,
2045};
2046
2047static int smi_stats_proc_show(struct seq_file *m, void *v)
2048{
2049	ipmi_smi_t intf = m->private;
2050
2051	seq_printf(m, "sent_invalid_commands:       %u\n",
2052		       ipmi_get_stat(intf, sent_invalid_commands));
2053	seq_printf(m, "sent_local_commands:         %u\n",
2054		       ipmi_get_stat(intf, sent_local_commands));
2055	seq_printf(m, "handled_local_responses:     %u\n",
2056		       ipmi_get_stat(intf, handled_local_responses));
2057	seq_printf(m, "unhandled_local_responses:   %u\n",
2058		       ipmi_get_stat(intf, unhandled_local_responses));
2059	seq_printf(m, "sent_ipmb_commands:          %u\n",
2060		       ipmi_get_stat(intf, sent_ipmb_commands));
2061	seq_printf(m, "sent_ipmb_command_errs:      %u\n",
2062		       ipmi_get_stat(intf, sent_ipmb_command_errs));
2063	seq_printf(m, "retransmitted_ipmb_commands: %u\n",
2064		       ipmi_get_stat(intf, retransmitted_ipmb_commands));
2065	seq_printf(m, "timed_out_ipmb_commands:     %u\n",
2066		       ipmi_get_stat(intf, timed_out_ipmb_commands));
2067	seq_printf(m, "timed_out_ipmb_broadcasts:   %u\n",
2068		       ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
2069	seq_printf(m, "sent_ipmb_responses:         %u\n",
2070		       ipmi_get_stat(intf, sent_ipmb_responses));
2071	seq_printf(m, "handled_ipmb_responses:      %u\n",
2072		       ipmi_get_stat(intf, handled_ipmb_responses));
2073	seq_printf(m, "invalid_ipmb_responses:      %u\n",
2074		       ipmi_get_stat(intf, invalid_ipmb_responses));
2075	seq_printf(m, "unhandled_ipmb_responses:    %u\n",
2076		       ipmi_get_stat(intf, unhandled_ipmb_responses));
2077	seq_printf(m, "sent_lan_commands:           %u\n",
2078		       ipmi_get_stat(intf, sent_lan_commands));
2079	seq_printf(m, "sent_lan_command_errs:       %u\n",
2080		       ipmi_get_stat(intf, sent_lan_command_errs));
2081	seq_printf(m, "retransmitted_lan_commands:  %u\n",
2082		       ipmi_get_stat(intf, retransmitted_lan_commands));
2083	seq_printf(m, "timed_out_lan_commands:      %u\n",
2084		       ipmi_get_stat(intf, timed_out_lan_commands));
2085	seq_printf(m, "sent_lan_responses:          %u\n",
2086		       ipmi_get_stat(intf, sent_lan_responses));
2087	seq_printf(m, "handled_lan_responses:       %u\n",
2088		       ipmi_get_stat(intf, handled_lan_responses));
2089	seq_printf(m, "invalid_lan_responses:       %u\n",
2090		       ipmi_get_stat(intf, invalid_lan_responses));
2091	seq_printf(m, "unhandled_lan_responses:     %u\n",
2092		       ipmi_get_stat(intf, unhandled_lan_responses));
2093	seq_printf(m, "handled_commands:            %u\n",
2094		       ipmi_get_stat(intf, handled_commands));
2095	seq_printf(m, "invalid_commands:            %u\n",
2096		       ipmi_get_stat(intf, invalid_commands));
2097	seq_printf(m, "unhandled_commands:          %u\n",
2098		       ipmi_get_stat(intf, unhandled_commands));
2099	seq_printf(m, "invalid_events:              %u\n",
2100		       ipmi_get_stat(intf, invalid_events));
2101	seq_printf(m, "events:                      %u\n",
2102		       ipmi_get_stat(intf, events));
2103	seq_printf(m, "failed rexmit LAN msgs:      %u\n",
2104		       ipmi_get_stat(intf, dropped_rexmit_lan_commands));
2105	seq_printf(m, "failed rexmit IPMB msgs:     %u\n",
2106		       ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
2107	return 0;
2108}
2109
2110static int smi_stats_proc_open(struct inode *inode, struct file *file)
2111{
2112	return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
2113}
2114
2115static const struct file_operations smi_stats_proc_ops = {
2116	.open		= smi_stats_proc_open,
2117	.read		= seq_read,
2118	.llseek		= seq_lseek,
2119	.release	= single_release,
2120};
2121#endif /* CONFIG_PROC_FS */
2122
2123int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
2124			    const struct file_operations *proc_ops,
2125			    void *data)
2126{
2127	int                    rv = 0;
2128#ifdef CONFIG_PROC_FS
2129	struct proc_dir_entry  *file;
2130	struct ipmi_proc_entry *entry;
2131
2132	/* Create a list element. */
2133	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2134	if (!entry)
2135		return -ENOMEM;
2136	entry->name = kstrdup(name, GFP_KERNEL);
2137	if (!entry->name) {
2138		kfree(entry);
2139		return -ENOMEM;
2140	}
2141
2142	file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
2143	if (!file) {
2144		kfree(entry->name);
2145		kfree(entry);
2146		rv = -ENOMEM;
2147	} else {
2148		mutex_lock(&smi->proc_entry_lock);
2149		/* Stick it on the list. */
2150		entry->next = smi->proc_entries;
2151		smi->proc_entries = entry;
2152		mutex_unlock(&smi->proc_entry_lock);
2153	}
2154#endif /* CONFIG_PROC_FS */
2155
2156	return rv;
2157}
2158EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2159
2160static int add_proc_entries(ipmi_smi_t smi, int num)
2161{
2162	int rv = 0;
2163
2164#ifdef CONFIG_PROC_FS
2165	sprintf(smi->proc_dir_name, "%d", num);
2166	smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2167	if (!smi->proc_dir)
2168		rv = -ENOMEM;
2169
2170	if (rv == 0)
2171		rv = ipmi_smi_add_proc_entry(smi, "stats",
2172					     &smi_stats_proc_ops,
2173					     smi);
2174
2175	if (rv == 0)
2176		rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2177					     &smi_ipmb_proc_ops,
2178					     smi);
2179
2180	if (rv == 0)
2181		rv = ipmi_smi_add_proc_entry(smi, "version",
2182					     &smi_version_proc_ops,
2183					     smi);
2184#endif /* CONFIG_PROC_FS */
2185
2186	return rv;
2187}
2188
2189static void remove_proc_entries(ipmi_smi_t smi)
2190{
2191#ifdef CONFIG_PROC_FS
2192	struct ipmi_proc_entry *entry;
2193
2194	mutex_lock(&smi->proc_entry_lock);
2195	while (smi->proc_entries) {
2196		entry = smi->proc_entries;
2197		smi->proc_entries = entry->next;
2198
2199		remove_proc_entry(entry->name, smi->proc_dir);
2200		kfree(entry->name);
2201		kfree(entry);
2202	}
2203	mutex_unlock(&smi->proc_entry_lock);
2204	remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2205#endif /* CONFIG_PROC_FS */
2206}
2207
2208static int __find_bmc_guid(struct device *dev, void *data)
2209{
2210	unsigned char *id = data;
2211	struct bmc_device *bmc = to_bmc_device(dev);
2212	return memcmp(bmc->guid, id, 16) == 0;
2213}
2214
2215static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2216					     unsigned char *guid)
2217{
2218	struct device *dev;
2219
2220	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2221	if (dev)
2222		return to_bmc_device(dev);
2223	else
2224		return NULL;
2225}
2226
2227struct prod_dev_id {
2228	unsigned int  product_id;
2229	unsigned char device_id;
2230};
2231
2232static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2233{
2234	struct prod_dev_id *id = data;
2235	struct bmc_device *bmc = to_bmc_device(dev);
2236
2237	return (bmc->id.product_id == id->product_id
2238		&& bmc->id.device_id == id->device_id);
2239}
2240
2241static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2242	struct device_driver *drv,
2243	unsigned int product_id, unsigned char device_id)
2244{
2245	struct prod_dev_id id = {
2246		.product_id = product_id,
2247		.device_id = device_id,
2248	};
2249	struct device *dev;
2250
2251	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2252	if (dev)
2253		return to_bmc_device(dev);
2254	else
2255		return NULL;
2256}
2257
2258static ssize_t device_id_show(struct device *dev,
2259			      struct device_attribute *attr,
2260			      char *buf)
2261{
2262	struct bmc_device *bmc = to_bmc_device(dev);
2263
2264	return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2265}
2266static DEVICE_ATTR(device_id, S_IRUGO, device_id_show, NULL);
2267
2268static ssize_t provides_device_sdrs_show(struct device *dev,
2269					 struct device_attribute *attr,
2270					 char *buf)
2271{
2272	struct bmc_device *bmc = to_bmc_device(dev);
2273
2274	return snprintf(buf, 10, "%u\n",
2275			(bmc->id.device_revision & 0x80) >> 7);
2276}
2277static DEVICE_ATTR(provides_device_sdrs, S_IRUGO, provides_device_sdrs_show,
2278		   NULL);
2279
2280static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2281			     char *buf)
2282{
2283	struct bmc_device *bmc = to_bmc_device(dev);
2284
2285	return snprintf(buf, 20, "%u\n",
2286			bmc->id.device_revision & 0x0F);
2287}
2288static DEVICE_ATTR(revision, S_IRUGO, revision_show, NULL);
2289
2290static ssize_t firmware_revision_show(struct device *dev,
2291				      struct device_attribute *attr,
2292				      char *buf)
2293{
2294	struct bmc_device *bmc = to_bmc_device(dev);
2295
2296	return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2297			bmc->id.firmware_revision_2);
2298}
2299static DEVICE_ATTR(firmware_revision, S_IRUGO, firmware_revision_show, NULL);
2300
2301static ssize_t ipmi_version_show(struct device *dev,
2302				 struct device_attribute *attr,
2303				 char *buf)
2304{
2305	struct bmc_device *bmc = to_bmc_device(dev);
2306
2307	return snprintf(buf, 20, "%u.%u\n",
2308			ipmi_version_major(&bmc->id),
2309			ipmi_version_minor(&bmc->id));
2310}
2311static DEVICE_ATTR(ipmi_version, S_IRUGO, ipmi_version_show, NULL);
2312
2313static ssize_t add_dev_support_show(struct device *dev,
2314				    struct device_attribute *attr,
2315				    char *buf)
2316{
2317	struct bmc_device *bmc = to_bmc_device(dev);
2318
2319	return snprintf(buf, 10, "0x%02x\n",
2320			bmc->id.additional_device_support);
2321}
2322static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2323		   NULL);
2324
2325static ssize_t manufacturer_id_show(struct device *dev,
2326				    struct device_attribute *attr,
2327				    char *buf)
2328{
2329	struct bmc_device *bmc = to_bmc_device(dev);
2330
2331	return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2332}
2333static DEVICE_ATTR(manufacturer_id, S_IRUGO, manufacturer_id_show, NULL);
2334
2335static ssize_t product_id_show(struct device *dev,
2336			       struct device_attribute *attr,
2337			       char *buf)
2338{
2339	struct bmc_device *bmc = to_bmc_device(dev);
2340
2341	return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2342}
2343static DEVICE_ATTR(product_id, S_IRUGO, product_id_show, NULL);
2344
2345static ssize_t aux_firmware_rev_show(struct device *dev,
2346				     struct device_attribute *attr,
2347				     char *buf)
2348{
2349	struct bmc_device *bmc = to_bmc_device(dev);
2350
2351	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2352			bmc->id.aux_firmware_revision[3],
2353			bmc->id.aux_firmware_revision[2],
2354			bmc->id.aux_firmware_revision[1],
2355			bmc->id.aux_firmware_revision[0]);
2356}
2357static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2358
2359static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2360			 char *buf)
2361{
2362	struct bmc_device *bmc = to_bmc_device(dev);
2363
2364	return snprintf(buf, 100, "%Lx%Lx\n",
2365			(long long) bmc->guid[0],
2366			(long long) bmc->guid[8]);
2367}
2368static DEVICE_ATTR(guid, S_IRUGO, guid_show, NULL);
2369
2370static struct attribute *bmc_dev_attrs[] = {
2371	&dev_attr_device_id.attr,
2372	&dev_attr_provides_device_sdrs.attr,
2373	&dev_attr_revision.attr,
2374	&dev_attr_firmware_revision.attr,
2375	&dev_attr_ipmi_version.attr,
2376	&dev_attr_additional_device_support.attr,
2377	&dev_attr_manufacturer_id.attr,
2378	&dev_attr_product_id.attr,
2379	&dev_attr_aux_firmware_revision.attr,
2380	&dev_attr_guid.attr,
2381	NULL
2382};
2383
2384static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2385				       struct attribute *attr, int idx)
2386{
2387	struct device *dev = kobj_to_dev(kobj);
2388	struct bmc_device *bmc = to_bmc_device(dev);
2389	umode_t mode = attr->mode;
2390
2391	if (attr == &dev_attr_aux_firmware_revision.attr)
2392		return bmc->id.aux_firmware_revision_set ? mode : 0;
2393	if (attr == &dev_attr_guid.attr)
2394		return bmc->guid_set ? mode : 0;
2395	return mode;
2396}
2397
2398static struct attribute_group bmc_dev_attr_group = {
2399	.attrs		= bmc_dev_attrs,
2400	.is_visible	= bmc_dev_attr_is_visible,
2401};
2402
2403static const struct attribute_group *bmc_dev_attr_groups[] = {
2404	&bmc_dev_attr_group,
2405	NULL
2406};
2407
2408static struct device_type bmc_device_type = {
2409	.groups		= bmc_dev_attr_groups,
2410};
2411
2412static void
2413release_bmc_device(struct device *dev)
2414{
2415	kfree(to_bmc_device(dev));
2416}
2417
2418static void
2419cleanup_bmc_device(struct kref *ref)
2420{
2421	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2422
2423	platform_device_unregister(&bmc->pdev);
2424}
2425
2426static void ipmi_bmc_unregister(ipmi_smi_t intf)
2427{
2428	struct bmc_device *bmc = intf->bmc;
2429
2430	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2431	if (intf->my_dev_name) {
2432		sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2433		kfree(intf->my_dev_name);
2434		intf->my_dev_name = NULL;
2435	}
2436
2437	mutex_lock(&ipmidriver_mutex);
2438	kref_put(&bmc->usecount, cleanup_bmc_device);
2439	intf->bmc = NULL;
2440	mutex_unlock(&ipmidriver_mutex);
2441}
2442
2443static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum)
2444{
2445	int               rv;
2446	struct bmc_device *bmc = intf->bmc;
2447	struct bmc_device *old_bmc;
2448
2449	mutex_lock(&ipmidriver_mutex);
2450
2451	/*
2452	 * Try to find if there is an bmc_device struct
2453	 * representing the interfaced BMC already
2454	 */
2455	if (bmc->guid_set)
2456		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2457	else
2458		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2459						    bmc->id.product_id,
2460						    bmc->id.device_id);
2461
2462	/*
2463	 * If there is already an bmc_device, free the new one,
2464	 * otherwise register the new BMC device
2465	 */
2466	if (old_bmc) {
2467		kfree(bmc);
2468		intf->bmc = old_bmc;
2469		bmc = old_bmc;
2470
2471		kref_get(&bmc->usecount);
2472		mutex_unlock(&ipmidriver_mutex);
2473
2474		printk(KERN_INFO
2475		       "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2476		       " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2477		       bmc->id.manufacturer_id,
2478		       bmc->id.product_id,
2479		       bmc->id.device_id);
2480	} else {
2481		unsigned char orig_dev_id = bmc->id.device_id;
2482		int warn_printed = 0;
2483
2484		snprintf(bmc->name, sizeof(bmc->name),
2485			 "ipmi_bmc.%4.4x", bmc->id.product_id);
2486		bmc->pdev.name = bmc->name;
2487
2488		while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2489						 bmc->id.product_id,
2490						 bmc->id.device_id)) {
2491			if (!warn_printed) {
2492				printk(KERN_WARNING PFX
2493				       "This machine has two different BMCs"
2494				       " with the same product id and device"
2495				       " id.  This is an error in the"
2496				       " firmware, but incrementing the"
2497				       " device id to work around the problem."
2498				       " Prod ID = 0x%x, Dev ID = 0x%x\n",
2499				       bmc->id.product_id, bmc->id.device_id);
2500				warn_printed = 1;
2501			}
2502			bmc->id.device_id++; /* Wraps at 255 */
2503			if (bmc->id.device_id == orig_dev_id) {
2504				printk(KERN_ERR PFX
2505				       "Out of device ids!\n");
2506				break;
2507			}
2508		}
2509
2510		bmc->pdev.dev.driver = &ipmidriver.driver;
2511		bmc->pdev.id = bmc->id.device_id;
2512		bmc->pdev.dev.release = release_bmc_device;
2513		bmc->pdev.dev.type = &bmc_device_type;
2514		kref_init(&bmc->usecount);
2515
2516		rv = platform_device_register(&bmc->pdev);
2517		mutex_unlock(&ipmidriver_mutex);
2518		if (rv) {
2519			put_device(&bmc->pdev.dev);
2520			printk(KERN_ERR
2521			       "ipmi_msghandler:"
2522			       " Unable to register bmc device: %d\n",
2523			       rv);
2524			/*
2525			 * Don't go to out_err, you can only do that if
2526			 * the device is registered already.
2527			 */
2528			return rv;
2529		}
2530
2531		dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2532			 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2533			 bmc->id.manufacturer_id,
2534			 bmc->id.product_id,
2535			 bmc->id.device_id);
2536	}
2537
2538	/*
2539	 * create symlink from system interface device to bmc device
2540	 * and back.
2541	 */
2542	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
2543	if (rv) {
2544		printk(KERN_ERR
2545		       "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2546		       rv);
2547		goto out_err;
2548	}
2549
2550	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", ifnum);
2551	if (!intf->my_dev_name) {
2552		rv = -ENOMEM;
2553		printk(KERN_ERR
2554		       "ipmi_msghandler: allocate link from BMC: %d\n",
2555		       rv);
2556		goto out_err;
2557	}
2558
2559	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
2560			       intf->my_dev_name);
2561	if (rv) {
2562		kfree(intf->my_dev_name);
2563		intf->my_dev_name = NULL;
2564		printk(KERN_ERR
2565		       "ipmi_msghandler:"
2566		       " Unable to create symlink to bmc: %d\n",
2567		       rv);
2568		goto out_err;
2569	}
2570
2571	return 0;
2572
2573out_err:
2574	ipmi_bmc_unregister(intf);
2575	return rv;
2576}
2577
2578static int
2579send_guid_cmd(ipmi_smi_t intf, int chan)
2580{
2581	struct kernel_ipmi_msg            msg;
2582	struct ipmi_system_interface_addr si;
2583
2584	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2585	si.channel = IPMI_BMC_CHANNEL;
2586	si.lun = 0;
2587
2588	msg.netfn = IPMI_NETFN_APP_REQUEST;
2589	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2590	msg.data = NULL;
2591	msg.data_len = 0;
2592	return i_ipmi_request(NULL,
2593			      intf,
2594			      (struct ipmi_addr *) &si,
2595			      0,
2596			      &msg,
2597			      intf,
2598			      NULL,
2599			      NULL,
2600			      0,
2601			      intf->channels[0].address,
2602			      intf->channels[0].lun,
2603			      -1, 0);
2604}
2605
2606static void
2607guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2608{
2609	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2610	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2611	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2612		/* Not for me */
2613		return;
2614
2615	if (msg->msg.data[0] != 0) {
2616		/* Error from getting the GUID, the BMC doesn't have one. */
2617		intf->bmc->guid_set = 0;
2618		goto out;
2619	}
2620
2621	if (msg->msg.data_len < 17) {
2622		intf->bmc->guid_set = 0;
2623		printk(KERN_WARNING PFX
2624		       "guid_handler: The GUID response from the BMC was too"
2625		       " short, it was %d but should have been 17.  Assuming"
2626		       " GUID is not available.\n",
2627		       msg->msg.data_len);
2628		goto out;
2629	}
2630
2631	memcpy(intf->bmc->guid, msg->msg.data, 16);
2632	intf->bmc->guid_set = 1;
2633 out:
2634	wake_up(&intf->waitq);
2635}
2636
2637static void
2638get_guid(ipmi_smi_t intf)
2639{
2640	int rv;
2641
2642	intf->bmc->guid_set = 0x2;
2643	intf->null_user_handler = guid_handler;
2644	rv = send_guid_cmd(intf, 0);
2645	if (rv)
2646		/* Send failed, no GUID available. */
2647		intf->bmc->guid_set = 0;
2648	wait_event(intf->waitq, intf->bmc->guid_set != 2);
2649	intf->null_user_handler = NULL;
2650}
2651
2652static int
2653send_channel_info_cmd(ipmi_smi_t intf, int chan)
2654{
2655	struct kernel_ipmi_msg            msg;
2656	unsigned char                     data[1];
2657	struct ipmi_system_interface_addr si;
2658
2659	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2660	si.channel = IPMI_BMC_CHANNEL;
2661	si.lun = 0;
2662
2663	msg.netfn = IPMI_NETFN_APP_REQUEST;
2664	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2665	msg.data = data;
2666	msg.data_len = 1;
2667	data[0] = chan;
2668	return i_ipmi_request(NULL,
2669			      intf,
2670			      (struct ipmi_addr *) &si,
2671			      0,
2672			      &msg,
2673			      intf,
2674			      NULL,
2675			      NULL,
2676			      0,
2677			      intf->channels[0].address,
2678			      intf->channels[0].lun,
2679			      -1, 0);
2680}
2681
2682static void
2683channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2684{
2685	int rv = 0;
2686	int chan;
2687
2688	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2689	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2690	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2691		/* It's the one we want */
2692		if (msg->msg.data[0] != 0) {
2693			/* Got an error from the channel, just go on. */
2694
2695			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2696				/*
2697				 * If the MC does not support this
2698				 * command, that is legal.  We just
2699				 * assume it has one IPMB at channel
2700				 * zero.
2701				 */
2702				intf->channels[0].medium
2703					= IPMI_CHANNEL_MEDIUM_IPMB;
2704				intf->channels[0].protocol
2705					= IPMI_CHANNEL_PROTOCOL_IPMB;
2706
2707				intf->curr_channel = IPMI_MAX_CHANNELS;
2708				wake_up(&intf->waitq);
2709				goto out;
2710			}
2711			goto next_channel;
2712		}
2713		if (msg->msg.data_len < 4) {
2714			/* Message not big enough, just go on. */
2715			goto next_channel;
2716		}
2717		chan = intf->curr_channel;
2718		intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2719		intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2720
2721 next_channel:
2722		intf->curr_channel++;
2723		if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2724			wake_up(&intf->waitq);
2725		else
2726			rv = send_channel_info_cmd(intf, intf->curr_channel);
2727
2728		if (rv) {
2729			/* Got an error somehow, just give up. */
2730			printk(KERN_WARNING PFX
2731			       "Error sending channel information for channel"
2732			       " %d: %d\n", intf->curr_channel, rv);
2733
2734			intf->curr_channel = IPMI_MAX_CHANNELS;
2735			wake_up(&intf->waitq);
2736		}
2737	}
2738 out:
2739	return;
2740}
2741
2742static void ipmi_poll(ipmi_smi_t intf)
2743{
2744	if (intf->handlers->poll)
2745		intf->handlers->poll(intf->send_info);
2746	/* In case something came in */
2747	handle_new_recv_msgs(intf);
2748}
2749
2750void ipmi_poll_interface(ipmi_user_t user)
2751{
2752	ipmi_poll(user->intf);
2753}
2754EXPORT_SYMBOL(ipmi_poll_interface);
2755
2756int ipmi_register_smi(const struct ipmi_smi_handlers *handlers,
2757		      void		       *send_info,
2758		      struct ipmi_device_id    *device_id,
2759		      struct device            *si_dev,
2760		      unsigned char            slave_addr)
2761{
2762	int              i, j;
2763	int              rv;
2764	ipmi_smi_t       intf;
2765	ipmi_smi_t       tintf;
2766	struct list_head *link;
2767
2768	/*
2769	 * Make sure the driver is actually initialized, this handles
2770	 * problems with initialization order.
2771	 */
2772	if (!initialized) {
2773		rv = ipmi_init_msghandler();
2774		if (rv)
2775			return rv;
2776		/*
2777		 * The init code doesn't return an error if it was turned
2778		 * off, but it won't initialize.  Check that.
2779		 */
2780		if (!initialized)
2781			return -ENODEV;
2782	}
2783
2784	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2785	if (!intf)
2786		return -ENOMEM;
2787
2788	intf->ipmi_version_major = ipmi_version_major(device_id);
2789	intf->ipmi_version_minor = ipmi_version_minor(device_id);
2790
2791	intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2792	if (!intf->bmc) {
2793		kfree(intf);
2794		return -ENOMEM;
2795	}
2796	intf->intf_num = -1; /* Mark it invalid for now. */
2797	kref_init(&intf->refcount);
2798	intf->bmc->id = *device_id;
2799	intf->si_dev = si_dev;
2800	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2801		intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2802		intf->channels[j].lun = 2;
2803	}
2804	if (slave_addr != 0)
2805		intf->channels[0].address = slave_addr;
2806	INIT_LIST_HEAD(&intf->users);
2807	intf->handlers = handlers;
2808	intf->send_info = send_info;
2809	spin_lock_init(&intf->seq_lock);
2810	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2811		intf->seq_table[j].inuse = 0;
2812		intf->seq_table[j].seqid = 0;
2813	}
2814	intf->curr_seq = 0;
2815#ifdef CONFIG_PROC_FS
2816	mutex_init(&intf->proc_entry_lock);
2817#endif
2818	spin_lock_init(&intf->waiting_rcv_msgs_lock);
2819	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
2820	tasklet_init(&intf->recv_tasklet,
2821		     smi_recv_tasklet,
2822		     (unsigned long) intf);
2823	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
2824	spin_lock_init(&intf->xmit_msgs_lock);
2825	INIT_LIST_HEAD(&intf->xmit_msgs);
2826	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
2827	spin_lock_init(&intf->events_lock);
2828	atomic_set(&intf->event_waiters, 0);
2829	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
2830	INIT_LIST_HEAD(&intf->waiting_events);
2831	intf->waiting_events_count = 0;
2832	mutex_init(&intf->cmd_rcvrs_mutex);
2833	spin_lock_init(&intf->maintenance_mode_lock);
2834	INIT_LIST_HEAD(&intf->cmd_rcvrs);
2835	init_waitqueue_head(&intf->waitq);
2836	for (i = 0; i < IPMI_NUM_STATS; i++)
2837		atomic_set(&intf->stats[i], 0);
2838
2839	intf->proc_dir = NULL;
2840
2841	mutex_lock(&smi_watchers_mutex);
2842	mutex_lock(&ipmi_interfaces_mutex);
2843	/* Look for a hole in the numbers. */
2844	i = 0;
2845	link = &ipmi_interfaces;
2846	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2847		if (tintf->intf_num != i) {
2848			link = &tintf->link;
2849			break;
2850		}
2851		i++;
2852	}
2853	/* Add the new interface in numeric order. */
2854	if (i == 0)
2855		list_add_rcu(&intf->link, &ipmi_interfaces);
2856	else
2857		list_add_tail_rcu(&intf->link, link);
2858
2859	rv = handlers->start_processing(send_info, intf);
2860	if (rv)
2861		goto out;
2862
2863	get_guid(intf);
2864
2865	if ((intf->ipmi_version_major > 1)
2866			|| ((intf->ipmi_version_major == 1)
2867			    && (intf->ipmi_version_minor >= 5))) {
2868		/*
2869		 * Start scanning the channels to see what is
2870		 * available.
2871		 */
2872		intf->null_user_handler = channel_handler;
2873		intf->curr_channel = 0;
2874		rv = send_channel_info_cmd(intf, 0);
2875		if (rv) {
2876			printk(KERN_WARNING PFX
2877			       "Error sending channel information for channel"
2878			       " 0, %d\n", rv);
2879			goto out;
2880		}
2881
2882		/* Wait for the channel info to be read. */
2883		wait_event(intf->waitq,
2884			   intf->curr_channel >= IPMI_MAX_CHANNELS);
2885		intf->null_user_handler = NULL;
2886	} else {
2887		/* Assume a single IPMB channel at zero. */
2888		intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2889		intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2890		intf->curr_channel = IPMI_MAX_CHANNELS;
2891	}
2892
2893	if (rv == 0)
2894		rv = add_proc_entries(intf, i);
2895
2896	rv = ipmi_bmc_register(intf, i);
2897
2898 out:
2899	if (rv) {
2900		if (intf->proc_dir)
2901			remove_proc_entries(intf);
2902		intf->handlers = NULL;
2903		list_del_rcu(&intf->link);
2904		mutex_unlock(&ipmi_interfaces_mutex);
2905		mutex_unlock(&smi_watchers_mutex);
2906		synchronize_rcu();
2907		kref_put(&intf->refcount, intf_free);
2908	} else {
2909		/*
2910		 * Keep memory order straight for RCU readers.  Make
2911		 * sure everything else is committed to memory before
2912		 * setting intf_num to mark the interface valid.
2913		 */
2914		smp_wmb();
2915		intf->intf_num = i;
2916		mutex_unlock(&ipmi_interfaces_mutex);
2917		/* After this point the interface is legal to use. */
2918		call_smi_watchers(i, intf->si_dev);
2919		mutex_unlock(&smi_watchers_mutex);
2920	}
2921
2922	return rv;
2923}
2924EXPORT_SYMBOL(ipmi_register_smi);
2925
2926static void deliver_smi_err_response(ipmi_smi_t intf,
2927				     struct ipmi_smi_msg *msg,
2928				     unsigned char err)
2929{
2930	msg->rsp[0] = msg->data[0] | 4;
2931	msg->rsp[1] = msg->data[1];
2932	msg->rsp[2] = err;
2933	msg->rsp_size = 3;
2934	/* It's an error, so it will never requeue, no need to check return. */
2935	handle_one_recv_msg(intf, msg);
2936}
2937
2938static void cleanup_smi_msgs(ipmi_smi_t intf)
2939{
2940	int              i;
2941	struct seq_table *ent;
2942	struct ipmi_smi_msg *msg;
2943	struct list_head *entry;
2944	struct list_head tmplist;
2945
2946	/* Clear out our transmit queues and hold the messages. */
2947	INIT_LIST_HEAD(&tmplist);
2948	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
2949	list_splice_tail(&intf->xmit_msgs, &tmplist);
2950
2951	/* Current message first, to preserve order */
2952	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
2953		/* Wait for the message to clear out. */
2954		schedule_timeout(1);
2955	}
2956
2957	/* No need for locks, the interface is down. */
2958
2959	/*
2960	 * Return errors for all pending messages in queue and in the
2961	 * tables waiting for remote responses.
2962	 */
2963	while (!list_empty(&tmplist)) {
2964		entry = tmplist.next;
2965		list_del(entry);
2966		msg = list_entry(entry, struct ipmi_smi_msg, link);
2967		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
2968	}
2969
2970	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2971		ent = &(intf->seq_table[i]);
2972		if (!ent->inuse)
2973			continue;
2974		deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2975	}
2976}
2977
2978int ipmi_unregister_smi(ipmi_smi_t intf)
2979{
2980	struct ipmi_smi_watcher *w;
2981	int intf_num = intf->intf_num;
2982	ipmi_user_t user;
2983
2984	ipmi_bmc_unregister(intf);
2985
2986	mutex_lock(&smi_watchers_mutex);
2987	mutex_lock(&ipmi_interfaces_mutex);
2988	intf->intf_num = -1;
2989	intf->in_shutdown = true;
2990	list_del_rcu(&intf->link);
2991	mutex_unlock(&ipmi_interfaces_mutex);
2992	synchronize_rcu();
2993
2994	cleanup_smi_msgs(intf);
2995
2996	/* Clean up the effects of users on the lower-level software. */
2997	mutex_lock(&ipmi_interfaces_mutex);
2998	rcu_read_lock();
2999	list_for_each_entry_rcu(user, &intf->users, link) {
3000		module_put(intf->handlers->owner);
3001		if (intf->handlers->dec_usecount)
3002			intf->handlers->dec_usecount(intf->send_info);
3003	}
3004	rcu_read_unlock();
3005	intf->handlers = NULL;
3006	mutex_unlock(&ipmi_interfaces_mutex);
3007
3008	remove_proc_entries(intf);
3009
3010	/*
3011	 * Call all the watcher interfaces to tell them that
3012	 * an interface is gone.
3013	 */
3014	list_for_each_entry(w, &smi_watchers, link)
3015		w->smi_gone(intf_num);
3016	mutex_unlock(&smi_watchers_mutex);
3017
3018	kref_put(&intf->refcount, intf_free);
3019	return 0;
3020}
3021EXPORT_SYMBOL(ipmi_unregister_smi);
3022
3023static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
3024				   struct ipmi_smi_msg *msg)
3025{
3026	struct ipmi_ipmb_addr ipmb_addr;
3027	struct ipmi_recv_msg  *recv_msg;
3028
3029	/*
3030	 * This is 11, not 10, because the response must contain a
3031	 * completion code.
3032	 */
3033	if (msg->rsp_size < 11) {
3034		/* Message not big enough, just ignore it. */
3035		ipmi_inc_stat(intf, invalid_ipmb_responses);
3036		return 0;
3037	}
3038
3039	if (msg->rsp[2] != 0) {
3040		/* An error getting the response, just ignore it. */
3041		return 0;
3042	}
3043
3044	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3045	ipmb_addr.slave_addr = msg->rsp[6];
3046	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3047	ipmb_addr.lun = msg->rsp[7] & 3;
3048
3049	/*
3050	 * It's a response from a remote entity.  Look up the sequence
3051	 * number and handle the response.
3052	 */
3053	if (intf_find_seq(intf,
3054			  msg->rsp[7] >> 2,
3055			  msg->rsp[3] & 0x0f,
3056			  msg->rsp[8],
3057			  (msg->rsp[4] >> 2) & (~1),
3058			  (struct ipmi_addr *) &(ipmb_addr),
3059			  &recv_msg)) {
3060		/*
3061		 * We were unable to find the sequence number,
3062		 * so just nuke the message.
3063		 */
3064		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3065		return 0;
3066	}
3067
3068	memcpy(recv_msg->msg_data,
3069	       &(msg->rsp[9]),
3070	       msg->rsp_size - 9);
3071	/*
3072	 * The other fields matched, so no need to set them, except
3073	 * for netfn, which needs to be the response that was
3074	 * returned, not the request value.
3075	 */
3076	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3077	recv_msg->msg.data = recv_msg->msg_data;
3078	recv_msg->msg.data_len = msg->rsp_size - 10;
3079	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3080	ipmi_inc_stat(intf, handled_ipmb_responses);
3081	deliver_response(recv_msg);
3082
3083	return 0;
3084}
3085
3086static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
3087				   struct ipmi_smi_msg *msg)
3088{
3089	struct cmd_rcvr          *rcvr;
3090	int                      rv = 0;
3091	unsigned char            netfn;
3092	unsigned char            cmd;
3093	unsigned char            chan;
3094	ipmi_user_t              user = NULL;
3095	struct ipmi_ipmb_addr    *ipmb_addr;
3096	struct ipmi_recv_msg     *recv_msg;
3097
3098	if (msg->rsp_size < 10) {
3099		/* Message not big enough, just ignore it. */
3100		ipmi_inc_stat(intf, invalid_commands);
3101		return 0;
3102	}
3103
3104	if (msg->rsp[2] != 0) {
3105		/* An error getting the response, just ignore it. */
3106		return 0;
3107	}
3108
3109	netfn = msg->rsp[4] >> 2;
3110	cmd = msg->rsp[8];
3111	chan = msg->rsp[3] & 0xf;
3112
3113	rcu_read_lock();
3114	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3115	if (rcvr) {
3116		user = rcvr->user;
3117		kref_get(&user->refcount);
3118	} else
3119		user = NULL;
3120	rcu_read_unlock();
3121
3122	if (user == NULL) {
3123		/* We didn't find a user, deliver an error response. */
3124		ipmi_inc_stat(intf, unhandled_commands);
3125
3126		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3127		msg->data[1] = IPMI_SEND_MSG_CMD;
3128		msg->data[2] = msg->rsp[3];
3129		msg->data[3] = msg->rsp[6];
3130		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3131		msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3132		msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3133		/* rqseq/lun */
3134		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3135		msg->data[8] = msg->rsp[8]; /* cmd */
3136		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3137		msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3138		msg->data_size = 11;
3139
3140#ifdef DEBUG_MSGING
3141	{
3142		int m;
3143		printk("Invalid command:");
3144		for (m = 0; m < msg->data_size; m++)
3145			printk(" %2.2x", msg->data[m]);
3146		printk("\n");
3147	}
3148#endif
3149		rcu_read_lock();
3150		if (!intf->in_shutdown) {
3151			smi_send(intf, intf->handlers, msg, 0);
3152			/*
3153			 * We used the message, so return the value
3154			 * that causes it to not be freed or
3155			 * queued.
3156			 */
3157			rv = -1;
3158		}
3159		rcu_read_unlock();
3160	} else {
3161		/* Deliver the message to the user. */
3162		ipmi_inc_stat(intf, handled_commands);
3163
3164		recv_msg = ipmi_alloc_recv_msg();
3165		if (!recv_msg) {
3166			/*
3167			 * We couldn't allocate memory for the
3168			 * message, so requeue it for handling
3169			 * later.
3170			 */
3171			rv = 1;
3172			kref_put(&user->refcount, free_user);
3173		} else {
3174			/* Extract the source address from the data. */
3175			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3176			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3177			ipmb_addr->slave_addr = msg->rsp[6];
3178			ipmb_addr->lun = msg->rsp[7] & 3;
3179			ipmb_addr->channel = msg->rsp[3] & 0xf;
3180
3181			/*
3182			 * Extract the rest of the message information
3183			 * from the IPMB header.
3184			 */
3185			recv_msg->user = user;
3186			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3187			recv_msg->msgid = msg->rsp[7] >> 2;
3188			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3189			recv_msg->msg.cmd = msg->rsp[8];
3190			recv_msg->msg.data = recv_msg->msg_data;
3191
3192			/*
3193			 * We chop off 10, not 9 bytes because the checksum
3194			 * at the end also needs to be removed.
3195			 */
3196			recv_msg->msg.data_len = msg->rsp_size - 10;
3197			memcpy(recv_msg->msg_data,
3198			       &(msg->rsp[9]),
3199			       msg->rsp_size - 10);
3200			deliver_response(recv_msg);
3201		}
3202	}
3203
3204	return rv;
3205}
3206
3207static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3208				  struct ipmi_smi_msg *msg)
3209{
3210	struct ipmi_lan_addr  lan_addr;
3211	struct ipmi_recv_msg  *recv_msg;
3212
3213
3214	/*
3215	 * This is 13, not 12, because the response must contain a
3216	 * completion code.
3217	 */
3218	if (msg->rsp_size < 13) {
3219		/* Message not big enough, just ignore it. */
3220		ipmi_inc_stat(intf, invalid_lan_responses);
3221		return 0;
3222	}
3223
3224	if (msg->rsp[2] != 0) {
3225		/* An error getting the response, just ignore it. */
3226		return 0;
3227	}
3228
3229	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3230	lan_addr.session_handle = msg->rsp[4];
3231	lan_addr.remote_SWID = msg->rsp[8];
3232	lan_addr.local_SWID = msg->rsp[5];
3233	lan_addr.channel = msg->rsp[3] & 0x0f;
3234	lan_addr.privilege = msg->rsp[3] >> 4;
3235	lan_addr.lun = msg->rsp[9] & 3;
3236
3237	/*
3238	 * It's a response from a remote entity.  Look up the sequence
3239	 * number and handle the response.
3240	 */
3241	if (intf_find_seq(intf,
3242			  msg->rsp[9] >> 2,
3243			  msg->rsp[3] & 0x0f,
3244			  msg->rsp[10],
3245			  (msg->rsp[6] >> 2) & (~1),
3246			  (struct ipmi_addr *) &(lan_addr),
3247			  &recv_msg)) {
3248		/*
3249		 * We were unable to find the sequence number,
3250		 * so just nuke the message.
3251		 */
3252		ipmi_inc_stat(intf, unhandled_lan_responses);
3253		return 0;
3254	}
3255
3256	memcpy(recv_msg->msg_data,
3257	       &(msg->rsp[11]),
3258	       msg->rsp_size - 11);
3259	/*
3260	 * The other fields matched, so no need to set them, except
3261	 * for netfn, which needs to be the response that was
3262	 * returned, not the request value.
3263	 */
3264	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3265	recv_msg->msg.data = recv_msg->msg_data;
3266	recv_msg->msg.data_len = msg->rsp_size - 12;
3267	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3268	ipmi_inc_stat(intf, handled_lan_responses);
3269	deliver_response(recv_msg);
3270
3271	return 0;
3272}
3273
3274static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3275				  struct ipmi_smi_msg *msg)
3276{
3277	struct cmd_rcvr          *rcvr;
3278	int                      rv = 0;
3279	unsigned char            netfn;
3280	unsigned char            cmd;
3281	unsigned char            chan;
3282	ipmi_user_t              user = NULL;
3283	struct ipmi_lan_addr     *lan_addr;
3284	struct ipmi_recv_msg     *recv_msg;
3285
3286	if (msg->rsp_size < 12) {
3287		/* Message not big enough, just ignore it. */
3288		ipmi_inc_stat(intf, invalid_commands);
3289		return 0;
3290	}
3291
3292	if (msg->rsp[2] != 0) {
3293		/* An error getting the response, just ignore it. */
3294		return 0;
3295	}
3296
3297	netfn = msg->rsp[6] >> 2;
3298	cmd = msg->rsp[10];
3299	chan = msg->rsp[3] & 0xf;
3300
3301	rcu_read_lock();
3302	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3303	if (rcvr) {
3304		user = rcvr->user;
3305		kref_get(&user->refcount);
3306	} else
3307		user = NULL;
3308	rcu_read_unlock();
3309
3310	if (user == NULL) {
3311		/* We didn't find a user, just give up. */
3312		ipmi_inc_stat(intf, unhandled_commands);
3313
3314		/*
3315		 * Don't do anything with these messages, just allow
3316		 * them to be freed.
3317		 */
3318		rv = 0;
3319	} else {
3320		/* Deliver the message to the user. */
3321		ipmi_inc_stat(intf, handled_commands);
3322
3323		recv_msg = ipmi_alloc_recv_msg();
3324		if (!recv_msg) {
3325			/*
3326			 * We couldn't allocate memory for the
3327			 * message, so requeue it for handling later.
3328			 */
3329			rv = 1;
3330			kref_put(&user->refcount, free_user);
3331		} else {
3332			/* Extract the source address from the data. */
3333			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3334			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3335			lan_addr->session_handle = msg->rsp[4];
3336			lan_addr->remote_SWID = msg->rsp[8];
3337			lan_addr->local_SWID = msg->rsp[5];
3338			lan_addr->lun = msg->rsp[9] & 3;
3339			lan_addr->channel = msg->rsp[3] & 0xf;
3340			lan_addr->privilege = msg->rsp[3] >> 4;
3341
3342			/*
3343			 * Extract the rest of the message information
3344			 * from the IPMB header.
3345			 */
3346			recv_msg->user = user;
3347			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3348			recv_msg->msgid = msg->rsp[9] >> 2;
3349			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3350			recv_msg->msg.cmd = msg->rsp[10];
3351			recv_msg->msg.data = recv_msg->msg_data;
3352
3353			/*
3354			 * We chop off 12, not 11 bytes because the checksum
3355			 * at the end also needs to be removed.
3356			 */
3357			recv_msg->msg.data_len = msg->rsp_size - 12;
3358			memcpy(recv_msg->msg_data,
3359			       &(msg->rsp[11]),
3360			       msg->rsp_size - 12);
3361			deliver_response(recv_msg);
3362		}
3363	}
3364
3365	return rv;
3366}
3367
3368/*
3369 * This routine will handle "Get Message" command responses with
3370 * channels that use an OEM Medium. The message format belongs to
3371 * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3372 * Chapter 22, sections 22.6 and 22.24 for more details.
3373 */
3374static int handle_oem_get_msg_cmd(ipmi_smi_t          intf,
3375				  struct ipmi_smi_msg *msg)
3376{
3377	struct cmd_rcvr       *rcvr;
3378	int                   rv = 0;
3379	unsigned char         netfn;
3380	unsigned char         cmd;
3381	unsigned char         chan;
3382	ipmi_user_t           user = NULL;
3383	struct ipmi_system_interface_addr *smi_addr;
3384	struct ipmi_recv_msg  *recv_msg;
3385
3386	/*
3387	 * We expect the OEM SW to perform error checking
3388	 * so we just do some basic sanity checks
3389	 */
3390	if (msg->rsp_size < 4) {
3391		/* Message not big enough, just ignore it. */
3392		ipmi_inc_stat(intf, invalid_commands);
3393		return 0;
3394	}
3395
3396	if (msg->rsp[2] != 0) {
3397		/* An error getting the response, just ignore it. */
3398		return 0;
3399	}
3400
3401	/*
3402	 * This is an OEM Message so the OEM needs to know how
3403	 * handle the message. We do no interpretation.
3404	 */
3405	netfn = msg->rsp[0] >> 2;
3406	cmd = msg->rsp[1];
3407	chan = msg->rsp[3] & 0xf;
3408
3409	rcu_read_lock();
3410	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3411	if (rcvr) {
3412		user = rcvr->user;
3413		kref_get(&user->refcount);
3414	} else
3415		user = NULL;
3416	rcu_read_unlock();
3417
3418	if (user == NULL) {
3419		/* We didn't find a user, just give up. */
3420		ipmi_inc_stat(intf, unhandled_commands);
3421
3422		/*
3423		 * Don't do anything with these messages, just allow
3424		 * them to be freed.
3425		 */
3426
3427		rv = 0;
3428	} else {
3429		/* Deliver the message to the user. */
3430		ipmi_inc_stat(intf, handled_commands);
3431
3432		recv_msg = ipmi_alloc_recv_msg();
3433		if (!recv_msg) {
3434			/*
3435			 * We couldn't allocate memory for the
3436			 * message, so requeue it for handling
3437			 * later.
3438			 */
3439			rv = 1;
3440			kref_put(&user->refcount, free_user);
3441		} else {
3442			/*
3443			 * OEM Messages are expected to be delivered via
3444			 * the system interface to SMS software.  We might
3445			 * need to visit this again depending on OEM
3446			 * requirements
3447			 */
3448			smi_addr = ((struct ipmi_system_interface_addr *)
3449				    &(recv_msg->addr));
3450			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3451			smi_addr->channel = IPMI_BMC_CHANNEL;
3452			smi_addr->lun = msg->rsp[0] & 3;
3453
3454			recv_msg->user = user;
3455			recv_msg->user_msg_data = NULL;
3456			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3457			recv_msg->msg.netfn = msg->rsp[0] >> 2;
3458			recv_msg->msg.cmd = msg->rsp[1];
3459			recv_msg->msg.data = recv_msg->msg_data;
3460
3461			/*
3462			 * The message starts at byte 4 which follows the
3463			 * the Channel Byte in the "GET MESSAGE" command
3464			 */
3465			recv_msg->msg.data_len = msg->rsp_size - 4;
3466			memcpy(recv_msg->msg_data,
3467			       &(msg->rsp[4]),
3468			       msg->rsp_size - 4);
3469			deliver_response(recv_msg);
3470		}
3471	}
3472
3473	return rv;
3474}
3475
3476static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3477				     struct ipmi_smi_msg  *msg)
3478{
3479	struct ipmi_system_interface_addr *smi_addr;
3480
3481	recv_msg->msgid = 0;
3482	smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3483	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3484	smi_addr->channel = IPMI_BMC_CHANNEL;
3485	smi_addr->lun = msg->rsp[0] & 3;
3486	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3487	recv_msg->msg.netfn = msg->rsp[0] >> 2;
3488	recv_msg->msg.cmd = msg->rsp[1];
3489	memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3490	recv_msg->msg.data = recv_msg->msg_data;
3491	recv_msg->msg.data_len = msg->rsp_size - 3;
3492}
3493
3494static int handle_read_event_rsp(ipmi_smi_t          intf,
3495				 struct ipmi_smi_msg *msg)
3496{
3497	struct ipmi_recv_msg *recv_msg, *recv_msg2;
3498	struct list_head     msgs;
3499	ipmi_user_t          user;
3500	int                  rv = 0;
3501	int                  deliver_count = 0;
3502	unsigned long        flags;
3503
3504	if (msg->rsp_size < 19) {
3505		/* Message is too small to be an IPMB event. */
3506		ipmi_inc_stat(intf, invalid_events);
3507		return 0;
3508	}
3509
3510	if (msg->rsp[2] != 0) {
3511		/* An error getting the event, just ignore it. */
3512		return 0;
3513	}
3514
3515	INIT_LIST_HEAD(&msgs);
3516
3517	spin_lock_irqsave(&intf->events_lock, flags);
3518
3519	ipmi_inc_stat(intf, events);
3520
3521	/*
3522	 * Allocate and fill in one message for every user that is
3523	 * getting events.
3524	 */
3525	rcu_read_lock();
3526	list_for_each_entry_rcu(user, &intf->users, link) {
3527		if (!user->gets_events)
3528			continue;
3529
3530		recv_msg = ipmi_alloc_recv_msg();
3531		if (!recv_msg) {
3532			rcu_read_unlock();
3533			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3534						 link) {
3535				list_del(&recv_msg->link);
3536				ipmi_free_recv_msg(recv_msg);
3537			}
3538			/*
3539			 * We couldn't allocate memory for the
3540			 * message, so requeue it for handling
3541			 * later.
3542			 */
3543			rv = 1;
3544			goto out;
3545		}
3546
3547		deliver_count++;
3548
3549		copy_event_into_recv_msg(recv_msg, msg);
3550		recv_msg->user = user;
3551		kref_get(&user->refcount);
3552		list_add_tail(&(recv_msg->link), &msgs);
3553	}
3554	rcu_read_unlock();
3555
3556	if (deliver_count) {
3557		/* Now deliver all the messages. */
3558		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3559			list_del(&recv_msg->link);
3560			deliver_response(recv_msg);
3561		}
3562	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3563		/*
3564		 * No one to receive the message, put it in queue if there's
3565		 * not already too many things in the queue.
3566		 */
3567		recv_msg = ipmi_alloc_recv_msg();
3568		if (!recv_msg) {
3569			/*
3570			 * We couldn't allocate memory for the
3571			 * message, so requeue it for handling
3572			 * later.
3573			 */
3574			rv = 1;
3575			goto out;
3576		}
3577
3578		copy_event_into_recv_msg(recv_msg, msg);
3579		list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3580		intf->waiting_events_count++;
3581	} else if (!intf->event_msg_printed) {
3582		/*
3583		 * There's too many things in the queue, discard this
3584		 * message.
3585		 */
3586		printk(KERN_WARNING PFX "Event queue full, discarding"
3587		       " incoming events\n");
3588		intf->event_msg_printed = 1;
3589	}
3590
3591 out:
3592	spin_unlock_irqrestore(&(intf->events_lock), flags);
3593
3594	return rv;
3595}
3596
3597static int handle_bmc_rsp(ipmi_smi_t          intf,
3598			  struct ipmi_smi_msg *msg)
3599{
3600	struct ipmi_recv_msg *recv_msg;
3601	struct ipmi_user     *user;
3602
3603	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3604	if (recv_msg == NULL) {
3605		printk(KERN_WARNING
3606		       "IPMI message received with no owner. This\n"
3607		       "could be because of a malformed message, or\n"
3608		       "because of a hardware error.  Contact your\n"
3609		       "hardware vender for assistance\n");
3610		return 0;
3611	}
3612
3613	user = recv_msg->user;
3614	/* Make sure the user still exists. */
3615	if (user && !user->valid) {
3616		/* The user for the message went away, so give up. */
3617		ipmi_inc_stat(intf, unhandled_local_responses);
3618		ipmi_free_recv_msg(recv_msg);
3619	} else {
3620		struct ipmi_system_interface_addr *smi_addr;
3621
3622		ipmi_inc_stat(intf, handled_local_responses);
3623		recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3624		recv_msg->msgid = msg->msgid;
3625		smi_addr = ((struct ipmi_system_interface_addr *)
3626			    &(recv_msg->addr));
3627		smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3628		smi_addr->channel = IPMI_BMC_CHANNEL;
3629		smi_addr->lun = msg->rsp[0] & 3;
3630		recv_msg->msg.netfn = msg->rsp[0] >> 2;
3631		recv_msg->msg.cmd = msg->rsp[1];
3632		memcpy(recv_msg->msg_data,
3633		       &(msg->rsp[2]),
3634		       msg->rsp_size - 2);
3635		recv_msg->msg.data = recv_msg->msg_data;
3636		recv_msg->msg.data_len = msg->rsp_size - 2;
3637		deliver_response(recv_msg);
3638	}
3639
3640	return 0;
3641}
3642
3643/*
3644 * Handle a received message.  Return 1 if the message should be requeued,
3645 * 0 if the message should be freed, or -1 if the message should not
3646 * be freed or requeued.
3647 */
3648static int handle_one_recv_msg(ipmi_smi_t          intf,
3649			       struct ipmi_smi_msg *msg)
3650{
3651	int requeue;
3652	int chan;
3653
3654#ifdef DEBUG_MSGING
3655	int m;
3656	printk("Recv:");
3657	for (m = 0; m < msg->rsp_size; m++)
3658		printk(" %2.2x", msg->rsp[m]);
3659	printk("\n");
3660#endif
3661	if (msg->rsp_size < 2) {
3662		/* Message is too small to be correct. */
3663		printk(KERN_WARNING PFX "BMC returned to small a message"
3664		       " for netfn %x cmd %x, got %d bytes\n",
3665		       (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3666
3667		/* Generate an error response for the message. */
3668		msg->rsp[0] = msg->data[0] | (1 << 2);
3669		msg->rsp[1] = msg->data[1];
3670		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3671		msg->rsp_size = 3;
3672	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3673		   || (msg->rsp[1] != msg->data[1])) {
3674		/*
3675		 * The NetFN and Command in the response is not even
3676		 * marginally correct.
3677		 */
3678		printk(KERN_WARNING PFX "BMC returned incorrect response,"
3679		       " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3680		       (msg->data[0] >> 2) | 1, msg->data[1],
3681		       msg->rsp[0] >> 2, msg->rsp[1]);
3682
3683		/* Generate an error response for the message. */
3684		msg->rsp[0] = msg->data[0] | (1 << 2);
3685		msg->rsp[1] = msg->data[1];
3686		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3687		msg->rsp_size = 3;
3688	}
3689
3690	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3691	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3692	    && (msg->user_data != NULL)) {
3693		/*
3694		 * It's a response to a response we sent.  For this we
3695		 * deliver a send message response to the user.
3696		 */
3697		struct ipmi_recv_msg     *recv_msg = msg->user_data;
3698
3699		requeue = 0;
3700		if (msg->rsp_size < 2)
3701			/* Message is too small to be correct. */
3702			goto out;
3703
3704		chan = msg->data[2] & 0x0f;
3705		if (chan >= IPMI_MAX_CHANNELS)
3706			/* Invalid channel number */
3707			goto out;
3708
3709		if (!recv_msg)
3710			goto out;
3711
3712		/* Make sure the user still exists. */
3713		if (!recv_msg->user || !recv_msg->user->valid)
3714			goto out;
3715
3716		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3717		recv_msg->msg.data = recv_msg->msg_data;
3718		recv_msg->msg.data_len = 1;
3719		recv_msg->msg_data[0] = msg->rsp[2];
3720		deliver_response(recv_msg);
3721	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3722		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3723		/* It's from the receive queue. */
3724		chan = msg->rsp[3] & 0xf;
3725		if (chan >= IPMI_MAX_CHANNELS) {
3726			/* Invalid channel number */
3727			requeue = 0;
3728			goto out;
3729		}
3730
3731		/*
3732		 * We need to make sure the channels have been initialized.
3733		 * The channel_handler routine will set the "curr_channel"
3734		 * equal to or greater than IPMI_MAX_CHANNELS when all the
3735		 * channels for this interface have been initialized.
3736		 */
3737		if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3738			requeue = 0; /* Throw the message away */
3739			goto out;
3740		}
3741
3742		switch (intf->channels[chan].medium) {
3743		case IPMI_CHANNEL_MEDIUM_IPMB:
3744			if (msg->rsp[4] & 0x04) {
3745				/*
3746				 * It's a response, so find the
3747				 * requesting message and send it up.
3748				 */
3749				requeue = handle_ipmb_get_msg_rsp(intf, msg);
3750			} else {
3751				/*
3752				 * It's a command to the SMS from some other
3753				 * entity.  Handle that.
3754				 */
3755				requeue = handle_ipmb_get_msg_cmd(intf, msg);
3756			}
3757			break;
3758
3759		case IPMI_CHANNEL_MEDIUM_8023LAN:
3760		case IPMI_CHANNEL_MEDIUM_ASYNC:
3761			if (msg->rsp[6] & 0x04) {
3762				/*
3763				 * It's a response, so find the
3764				 * requesting message and send it up.
3765				 */
3766				requeue = handle_lan_get_msg_rsp(intf, msg);
3767			} else {
3768				/*
3769				 * It's a command to the SMS from some other
3770				 * entity.  Handle that.
3771				 */
3772				requeue = handle_lan_get_msg_cmd(intf, msg);
3773			}
3774			break;
3775
3776		default:
3777			/* Check for OEM Channels.  Clients had better
3778			   register for these commands. */
3779			if ((intf->channels[chan].medium
3780			     >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3781			    && (intf->channels[chan].medium
3782				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3783				requeue = handle_oem_get_msg_cmd(intf, msg);
3784			} else {
3785				/*
3786				 * We don't handle the channel type, so just
3787				 * free the message.
3788				 */
3789				requeue = 0;
3790			}
3791		}
3792
3793	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3794		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3795		/* It's an asynchronous event. */
3796		requeue = handle_read_event_rsp(intf, msg);
3797	} else {
3798		/* It's a response from the local BMC. */
3799		requeue = handle_bmc_rsp(intf, msg);
3800	}
3801
3802 out:
3803	return requeue;
3804}
3805
3806/*
3807 * If there are messages in the queue or pretimeouts, handle them.
3808 */
3809static void handle_new_recv_msgs(ipmi_smi_t intf)
3810{
3811	struct ipmi_smi_msg  *smi_msg;
3812	unsigned long        flags = 0;
3813	int                  rv;
3814	int                  run_to_completion = intf->run_to_completion;
3815
3816	/* See if any waiting messages need to be processed. */
3817	if (!run_to_completion)
3818		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3819	while (!list_empty(&intf->waiting_rcv_msgs)) {
3820		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
3821				     struct ipmi_smi_msg, link);
3822		if (!run_to_completion)
3823			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3824					       flags);
3825		rv = handle_one_recv_msg(intf, smi_msg);
3826		if (!run_to_completion)
3827			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3828		if (rv > 0) {
3829			/*
3830			 * To preserve message order, quit if we
3831			 * can't handle a message.
3832			 */
3833			break;
3834		} else {
3835			list_del(&smi_msg->link);
3836			if (rv == 0)
3837				/* Message handled */
3838				ipmi_free_smi_msg(smi_msg);
3839			/* If rv < 0, fatal error, del but don't free. */
3840		}
3841	}
3842	if (!run_to_completion)
3843		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
3844
3845	/*
3846	 * If the pretimout count is non-zero, decrement one from it and
3847	 * deliver pretimeouts to all the users.
3848	 */
3849	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
3850		ipmi_user_t user;
3851
3852		rcu_read_lock();
3853		list_for_each_entry_rcu(user, &intf->users, link) {
3854			if (user->handler->ipmi_watchdog_pretimeout)
3855				user->handler->ipmi_watchdog_pretimeout(
3856					user->handler_data);
3857		}
3858		rcu_read_unlock();
3859	}
3860}
3861
3862static void smi_recv_tasklet(unsigned long val)
3863{
3864	unsigned long flags = 0; /* keep us warning-free. */
3865	ipmi_smi_t intf = (ipmi_smi_t) val;
3866	int run_to_completion = intf->run_to_completion;
3867	struct ipmi_smi_msg *newmsg = NULL;
3868
3869	/*
3870	 * Start the next message if available.
3871	 *
3872	 * Do this here, not in the actual receiver, because we may deadlock
3873	 * because the lower layer is allowed to hold locks while calling
3874	 * message delivery.
3875	 */
3876	if (!run_to_completion)
3877		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3878	if (intf->curr_msg == NULL && !intf->in_shutdown) {
3879		struct list_head *entry = NULL;
3880
3881		/* Pick the high priority queue first. */
3882		if (!list_empty(&intf->hp_xmit_msgs))
3883			entry = intf->hp_xmit_msgs.next;
3884		else if (!list_empty(&intf->xmit_msgs))
3885			entry = intf->xmit_msgs.next;
3886
3887		if (entry) {
3888			list_del(entry);
3889			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
3890			intf->curr_msg = newmsg;
3891		}
3892	}
3893	if (!run_to_completion)
3894		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3895	if (newmsg)
3896		intf->handlers->sender(intf->send_info, newmsg);
3897
3898	handle_new_recv_msgs(intf);
3899}
3900
3901/* Handle a new message from the lower layer. */
3902void ipmi_smi_msg_received(ipmi_smi_t          intf,
3903			   struct ipmi_smi_msg *msg)
3904{
3905	unsigned long flags = 0; /* keep us warning-free. */
3906	int run_to_completion = intf->run_to_completion;
3907
3908	if ((msg->data_size >= 2)
3909	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3910	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
3911	    && (msg->user_data == NULL)) {
3912
3913		if (intf->in_shutdown)
3914			goto free_msg;
3915
3916		/*
3917		 * This is the local response to a command send, start
3918		 * the timer for these.  The user_data will not be
3919		 * NULL if this is a response send, and we will let
3920		 * response sends just go through.
3921		 */
3922
3923		/*
3924		 * Check for errors, if we get certain errors (ones
3925		 * that mean basically we can try again later), we
3926		 * ignore them and start the timer.  Otherwise we
3927		 * report the error immediately.
3928		 */
3929		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3930		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3931		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3932		    && (msg->rsp[2] != IPMI_BUS_ERR)
3933		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3934			int chan = msg->rsp[3] & 0xf;
3935
3936			/* Got an error sending the message, handle it. */
3937			if (chan >= IPMI_MAX_CHANNELS)
3938				; /* This shouldn't happen */
3939			else if ((intf->channels[chan].medium
3940				  == IPMI_CHANNEL_MEDIUM_8023LAN)
3941				 || (intf->channels[chan].medium
3942				     == IPMI_CHANNEL_MEDIUM_ASYNC))
3943				ipmi_inc_stat(intf, sent_lan_command_errs);
3944			else
3945				ipmi_inc_stat(intf, sent_ipmb_command_errs);
3946			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3947		} else
3948			/* The message was sent, start the timer. */
3949			intf_start_seq_timer(intf, msg->msgid);
3950
3951free_msg:
3952		ipmi_free_smi_msg(msg);
3953	} else {
3954		/*
3955		 * To preserve message order, we keep a queue and deliver from
3956		 * a tasklet.
3957		 */
3958		if (!run_to_completion)
3959			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3960		list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
3961		if (!run_to_completion)
3962			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3963					       flags);
3964	}
3965
3966	if (!run_to_completion)
3967		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3968	/*
3969	 * We can get an asynchronous event or receive message in addition
3970	 * to commands we send.
3971	 */
3972	if (msg == intf->curr_msg)
3973		intf->curr_msg = NULL;
3974	if (!run_to_completion)
3975		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3976
3977	if (run_to_completion)
3978		smi_recv_tasklet((unsigned long) intf);
3979	else
3980		tasklet_schedule(&intf->recv_tasklet);
3981}
3982EXPORT_SYMBOL(ipmi_smi_msg_received);
3983
3984void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3985{
3986	if (intf->in_shutdown)
3987		return;
3988
3989	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
3990	tasklet_schedule(&intf->recv_tasklet);
3991}
3992EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3993
3994static struct ipmi_smi_msg *
3995smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3996		  unsigned char seq, long seqid)
3997{
3998	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3999	if (!smi_msg)
4000		/*
4001		 * If we can't allocate the message, then just return, we
4002		 * get 4 retries, so this should be ok.
4003		 */
4004		return NULL;
4005
4006	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4007	smi_msg->data_size = recv_msg->msg.data_len;
4008	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4009
4010#ifdef DEBUG_MSGING
4011	{
4012		int m;
4013		printk("Resend: ");
4014		for (m = 0; m < smi_msg->data_size; m++)
4015			printk(" %2.2x", smi_msg->data[m]);
4016		printk("\n");
4017	}
4018#endif
4019	return smi_msg;
4020}
4021
4022static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
4023			      struct list_head *timeouts, long timeout_period,
4024			      int slot, unsigned long *flags,
4025			      unsigned int *waiting_msgs)
4026{
4027	struct ipmi_recv_msg     *msg;
4028	const struct ipmi_smi_handlers *handlers;
4029
4030	if (intf->in_shutdown)
4031		return;
4032
4033	if (!ent->inuse)
4034		return;
4035
4036	ent->timeout -= timeout_period;
4037	if (ent->timeout > 0) {
4038		(*waiting_msgs)++;
4039		return;
4040	}
4041
4042	if (ent->retries_left == 0) {
4043		/* The message has used all its retries. */
4044		ent->inuse = 0;
4045		msg = ent->recv_msg;
4046		list_add_tail(&msg->link, timeouts);
4047		if (ent->broadcast)
4048			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4049		else if (is_lan_addr(&ent->recv_msg->addr))
4050			ipmi_inc_stat(intf, timed_out_lan_commands);
4051		else
4052			ipmi_inc_stat(intf, timed_out_ipmb_commands);
4053	} else {
4054		struct ipmi_smi_msg *smi_msg;
4055		/* More retries, send again. */
4056
4057		(*waiting_msgs)++;
4058
4059		/*
4060		 * Start with the max timer, set to normal timer after
4061		 * the message is sent.
4062		 */
4063		ent->timeout = MAX_MSG_TIMEOUT;
4064		ent->retries_left--;
4065		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4066					    ent->seqid);
4067		if (!smi_msg) {
4068			if (is_lan_addr(&ent->recv_msg->addr))
4069				ipmi_inc_stat(intf,
4070					      dropped_rexmit_lan_commands);
4071			else
4072				ipmi_inc_stat(intf,
4073					      dropped_rexmit_ipmb_commands);
4074			return;
4075		}
4076
4077		spin_unlock_irqrestore(&intf->seq_lock, *flags);
4078
4079		/*
4080		 * Send the new message.  We send with a zero
4081		 * priority.  It timed out, I doubt time is that
4082		 * critical now, and high priority messages are really
4083		 * only for messages to the local MC, which don't get
4084		 * resent.
4085		 */
4086		handlers = intf->handlers;
4087		if (handlers) {
4088			if (is_lan_addr(&ent->recv_msg->addr))
4089				ipmi_inc_stat(intf,
4090					      retransmitted_lan_commands);
4091			else
4092				ipmi_inc_stat(intf,
4093					      retransmitted_ipmb_commands);
4094
4095			smi_send(intf, handlers, smi_msg, 0);
4096		} else
4097			ipmi_free_smi_msg(smi_msg);
4098
4099		spin_lock_irqsave(&intf->seq_lock, *flags);
4100	}
4101}
4102
4103static unsigned int ipmi_timeout_handler(ipmi_smi_t intf, long timeout_period)
4104{
4105	struct list_head     timeouts;
4106	struct ipmi_recv_msg *msg, *msg2;
4107	unsigned long        flags;
4108	int                  i;
4109	unsigned int         waiting_msgs = 0;
4110
4111	/*
4112	 * Go through the seq table and find any messages that
4113	 * have timed out, putting them in the timeouts
4114	 * list.
4115	 */
4116	INIT_LIST_HEAD(&timeouts);
4117	spin_lock_irqsave(&intf->seq_lock, flags);
4118	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4119		check_msg_timeout(intf, &(intf->seq_table[i]),
4120				  &timeouts, timeout_period, i,
4121				  &flags, &waiting_msgs);
4122	spin_unlock_irqrestore(&intf->seq_lock, flags);
4123
4124	list_for_each_entry_safe(msg, msg2, &timeouts, link)
4125		deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
4126
4127	/*
4128	 * Maintenance mode handling.  Check the timeout
4129	 * optimistically before we claim the lock.  It may
4130	 * mean a timeout gets missed occasionally, but that
4131	 * only means the timeout gets extended by one period
4132	 * in that case.  No big deal, and it avoids the lock
4133	 * most of the time.
4134	 */
4135	if (intf->auto_maintenance_timeout > 0) {
4136		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4137		if (intf->auto_maintenance_timeout > 0) {
4138			intf->auto_maintenance_timeout
4139				-= timeout_period;
4140			if (!intf->maintenance_mode
4141			    && (intf->auto_maintenance_timeout <= 0)) {
4142				intf->maintenance_mode_enable = false;
4143				maintenance_mode_update(intf);
4144			}
4145		}
4146		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4147				       flags);
4148	}
4149
4150	tasklet_schedule(&intf->recv_tasklet);
4151
4152	return waiting_msgs;
4153}
4154
4155static void ipmi_request_event(ipmi_smi_t intf)
4156{
4157	/* No event requests when in maintenance mode. */
4158	if (intf->maintenance_mode_enable)
4159		return;
4160
4161	if (!intf->in_shutdown)
4162		intf->handlers->request_events(intf->send_info);
4163}
4164
4165static struct timer_list ipmi_timer;
4166
4167static atomic_t stop_operation;
4168
4169static void ipmi_timeout(unsigned long data)
4170{
4171	ipmi_smi_t intf;
4172	int nt = 0;
4173
4174	if (atomic_read(&stop_operation))
4175		return;
4176
4177	rcu_read_lock();
4178	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4179		int lnt = 0;
4180
4181		if (atomic_read(&intf->event_waiters)) {
4182			intf->ticks_to_req_ev--;
4183			if (intf->ticks_to_req_ev == 0) {
4184				ipmi_request_event(intf);
4185				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4186			}
4187			lnt++;
4188		}
4189
4190		lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4191
4192		lnt = !!lnt;
4193		if (lnt != intf->last_needs_timer &&
4194					intf->handlers->set_need_watch)
4195			intf->handlers->set_need_watch(intf->send_info, lnt);
4196		intf->last_needs_timer = lnt;
4197
4198		nt += lnt;
4199	}
4200	rcu_read_unlock();
4201
4202	if (nt)
4203		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4204}
4205
4206static void need_waiter(ipmi_smi_t intf)
4207{
4208	/* Racy, but worst case we start the timer twice. */
4209	if (!timer_pending(&ipmi_timer))
4210		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4211}
4212
4213static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4214static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4215
4216static void free_smi_msg(struct ipmi_smi_msg *msg)
4217{
4218	atomic_dec(&smi_msg_inuse_count);
4219	kfree(msg);
4220}
4221
4222struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4223{
4224	struct ipmi_smi_msg *rv;
4225	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4226	if (rv) {
4227		rv->done = free_smi_msg;
4228		rv->user_data = NULL;
4229		atomic_inc(&smi_msg_inuse_count);
4230	}
4231	return rv;
4232}
4233EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4234
4235static void free_recv_msg(struct ipmi_recv_msg *msg)
4236{
4237	atomic_dec(&recv_msg_inuse_count);
4238	kfree(msg);
4239}
4240
4241static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4242{
4243	struct ipmi_recv_msg *rv;
4244
4245	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4246	if (rv) {
4247		rv->user = NULL;
4248		rv->done = free_recv_msg;
4249		atomic_inc(&recv_msg_inuse_count);
4250	}
4251	return rv;
4252}
4253
4254void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4255{
4256	if (msg->user)
4257		kref_put(&msg->user->refcount, free_user);
4258	msg->done(msg);
4259}
4260EXPORT_SYMBOL(ipmi_free_recv_msg);
4261
4262#ifdef CONFIG_IPMI_PANIC_EVENT
4263
4264static atomic_t panic_done_count = ATOMIC_INIT(0);
4265
4266static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4267{
4268	atomic_dec(&panic_done_count);
4269}
4270
4271static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4272{
4273	atomic_dec(&panic_done_count);
4274}
4275
4276/*
4277 * Inside a panic, send a message and wait for a response.
4278 */
4279static void ipmi_panic_request_and_wait(ipmi_smi_t           intf,
4280					struct ipmi_addr     *addr,
4281					struct kernel_ipmi_msg *msg)
4282{
4283	struct ipmi_smi_msg  smi_msg;
4284	struct ipmi_recv_msg recv_msg;
4285	int rv;
4286
4287	smi_msg.done = dummy_smi_done_handler;
4288	recv_msg.done = dummy_recv_done_handler;
4289	atomic_add(2, &panic_done_count);
4290	rv = i_ipmi_request(NULL,
4291			    intf,
4292			    addr,
4293			    0,
4294			    msg,
4295			    intf,
4296			    &smi_msg,
4297			    &recv_msg,
4298			    0,
4299			    intf->channels[0].address,
4300			    intf->channels[0].lun,
4301			    0, 1); /* Don't retry, and don't wait. */
4302	if (rv)
4303		atomic_sub(2, &panic_done_count);
4304	else if (intf->handlers->flush_messages)
4305		intf->handlers->flush_messages(intf->send_info);
4306
4307	while (atomic_read(&panic_done_count) != 0)
4308		ipmi_poll(intf);
4309}
4310
4311#ifdef CONFIG_IPMI_PANIC_STRING
4312static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4313{
4314	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4315	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4316	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4317	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4318		/* A get event receiver command, save it. */
4319		intf->event_receiver = msg->msg.data[1];
4320		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4321	}
4322}
4323
4324static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4325{
4326	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4327	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4328	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4329	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4330		/*
4331		 * A get device id command, save if we are an event
4332		 * receiver or generator.
4333		 */
4334		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4335		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4336	}
4337}
4338#endif
4339
4340static void send_panic_events(char *str)
4341{
4342	struct kernel_ipmi_msg            msg;
4343	ipmi_smi_t                        intf;
4344	unsigned char                     data[16];
4345	struct ipmi_system_interface_addr *si;
4346	struct ipmi_addr                  addr;
4347
4348	si = (struct ipmi_system_interface_addr *) &addr;
4349	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4350	si->channel = IPMI_BMC_CHANNEL;
4351	si->lun = 0;
4352
4353	/* Fill in an event telling that we have failed. */
4354	msg.netfn = 0x04; /* Sensor or Event. */
4355	msg.cmd = 2; /* Platform event command. */
4356	msg.data = data;
4357	msg.data_len = 8;
4358	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4359	data[1] = 0x03; /* This is for IPMI 1.0. */
4360	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4361	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4362	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4363
4364	/*
4365	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4366	 * to make the panic events more useful.
4367	 */
4368	if (str) {
4369		data[3] = str[0];
4370		data[6] = str[1];
4371		data[7] = str[2];
4372	}
4373
4374	/* For every registered interface, send the event. */
4375	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4376		if (!intf->handlers)
4377			/* Interface is not ready. */
4378			continue;
4379
4380		/* Send the event announcing the panic. */
4381		ipmi_panic_request_and_wait(intf, &addr, &msg);
4382	}
4383
4384#ifdef CONFIG_IPMI_PANIC_STRING
4385	/*
4386	 * On every interface, dump a bunch of OEM event holding the
4387	 * string.
4388	 */
4389	if (!str)
4390		return;
4391
4392	/* For every registered interface, send the event. */
4393	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4394		char                  *p = str;
4395		struct ipmi_ipmb_addr *ipmb;
4396		int                   j;
4397
4398		if (intf->intf_num == -1)
4399			/* Interface was not ready yet. */
4400			continue;
4401
4402		/*
4403		 * intf_num is used as an marker to tell if the
4404		 * interface is valid.  Thus we need a read barrier to
4405		 * make sure data fetched before checking intf_num
4406		 * won't be used.
4407		 */
4408		smp_rmb();
4409
4410		/*
4411		 * First job here is to figure out where to send the
4412		 * OEM events.  There's no way in IPMI to send OEM
4413		 * events using an event send command, so we have to
4414		 * find the SEL to put them in and stick them in
4415		 * there.
4416		 */
4417
4418		/* Get capabilities from the get device id. */
4419		intf->local_sel_device = 0;
4420		intf->local_event_generator = 0;
4421		intf->event_receiver = 0;
4422
4423		/* Request the device info from the local MC. */
4424		msg.netfn = IPMI_NETFN_APP_REQUEST;
4425		msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4426		msg.data = NULL;
4427		msg.data_len = 0;
4428		intf->null_user_handler = device_id_fetcher;
4429		ipmi_panic_request_and_wait(intf, &addr, &msg);
4430
4431		if (intf->local_event_generator) {
4432			/* Request the event receiver from the local MC. */
4433			msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4434			msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4435			msg.data = NULL;
4436			msg.data_len = 0;
4437			intf->null_user_handler = event_receiver_fetcher;
4438			ipmi_panic_request_and_wait(intf, &addr, &msg);
4439		}
4440		intf->null_user_handler = NULL;
4441
4442		/*
4443		 * Validate the event receiver.  The low bit must not
4444		 * be 1 (it must be a valid IPMB address), it cannot
4445		 * be zero, and it must not be my address.
4446		 */
4447		if (((intf->event_receiver & 1) == 0)
4448		    && (intf->event_receiver != 0)
4449		    && (intf->event_receiver != intf->channels[0].address)) {
4450			/*
4451			 * The event receiver is valid, send an IPMB
4452			 * message.
4453			 */
4454			ipmb = (struct ipmi_ipmb_addr *) &addr;
4455			ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4456			ipmb->channel = 0; /* FIXME - is this right? */
4457			ipmb->lun = intf->event_receiver_lun;
4458			ipmb->slave_addr = intf->event_receiver;
4459		} else if (intf->local_sel_device) {
4460			/*
4461			 * The event receiver was not valid (or was
4462			 * me), but I am an SEL device, just dump it
4463			 * in my SEL.
4464			 */
4465			si = (struct ipmi_system_interface_addr *) &addr;
4466			si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4467			si->channel = IPMI_BMC_CHANNEL;
4468			si->lun = 0;
4469		} else
4470			continue; /* No where to send the event. */
4471
4472		msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4473		msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4474		msg.data = data;
4475		msg.data_len = 16;
4476
4477		j = 0;
4478		while (*p) {
4479			int size = strlen(p);
4480
4481			if (size > 11)
4482				size = 11;
4483			data[0] = 0;
4484			data[1] = 0;
4485			data[2] = 0xf0; /* OEM event without timestamp. */
4486			data[3] = intf->channels[0].address;
4487			data[4] = j++; /* sequence # */
4488			/*
4489			 * Always give 11 bytes, so strncpy will fill
4490			 * it with zeroes for me.
4491			 */
4492			strncpy(data+5, p, 11);
4493			p += size;
4494
4495			ipmi_panic_request_and_wait(intf, &addr, &msg);
4496		}
4497	}
4498#endif /* CONFIG_IPMI_PANIC_STRING */
4499}
4500#endif /* CONFIG_IPMI_PANIC_EVENT */
4501
4502static int has_panicked;
4503
4504static int panic_event(struct notifier_block *this,
4505		       unsigned long         event,
4506		       void                  *ptr)
4507{
4508	ipmi_smi_t intf;
4509
4510	if (has_panicked)
4511		return NOTIFY_DONE;
4512	has_panicked = 1;
4513
4514	/* For every registered interface, set it to run to completion. */
4515	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4516		if (!intf->handlers)
4517			/* Interface is not ready. */
4518			continue;
4519
4520		/*
4521		 * If we were interrupted while locking xmit_msgs_lock or
4522		 * waiting_rcv_msgs_lock, the corresponding list may be
4523		 * corrupted.  In this case, drop items on the list for
4524		 * the safety.
4525		 */
4526		if (!spin_trylock(&intf->xmit_msgs_lock)) {
4527			INIT_LIST_HEAD(&intf->xmit_msgs);
4528			INIT_LIST_HEAD(&intf->hp_xmit_msgs);
4529		} else
4530			spin_unlock(&intf->xmit_msgs_lock);
4531
4532		if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
4533			INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
4534		else
4535			spin_unlock(&intf->waiting_rcv_msgs_lock);
4536
4537		intf->run_to_completion = 1;
4538		intf->handlers->set_run_to_completion(intf->send_info, 1);
4539	}
4540
4541#ifdef CONFIG_IPMI_PANIC_EVENT
4542	send_panic_events(ptr);
4543#endif
4544
4545	return NOTIFY_DONE;
4546}
4547
4548static struct notifier_block panic_block = {
4549	.notifier_call	= panic_event,
4550	.next		= NULL,
4551	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
4552};
4553
4554static int ipmi_init_msghandler(void)
4555{
4556	int rv;
4557
4558	if (initialized)
4559		return 0;
4560
4561	rv = driver_register(&ipmidriver.driver);
4562	if (rv) {
4563		printk(KERN_ERR PFX "Could not register IPMI driver\n");
4564		return rv;
4565	}
4566
4567	printk(KERN_INFO "ipmi message handler version "
4568	       IPMI_DRIVER_VERSION "\n");
4569
4570#ifdef CONFIG_PROC_FS
4571	proc_ipmi_root = proc_mkdir("ipmi", NULL);
4572	if (!proc_ipmi_root) {
4573	    printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4574	    driver_unregister(&ipmidriver.driver);
4575	    return -ENOMEM;
4576	}
4577
4578#endif /* CONFIG_PROC_FS */
4579
4580	setup_timer(&ipmi_timer, ipmi_timeout, 0);
4581	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4582
4583	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4584
4585	initialized = 1;
4586
4587	return 0;
4588}
4589
4590static int __init ipmi_init_msghandler_mod(void)
4591{
4592	ipmi_init_msghandler();
4593	return 0;
4594}
4595
4596static void __exit cleanup_ipmi(void)
4597{
4598	int count;
4599
4600	if (!initialized)
4601		return;
4602
4603	atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4604
4605	/*
4606	 * This can't be called if any interfaces exist, so no worry
4607	 * about shutting down the interfaces.
4608	 */
4609
4610	/*
4611	 * Tell the timer to stop, then wait for it to stop.  This
4612	 * avoids problems with race conditions removing the timer
4613	 * here.
4614	 */
4615	atomic_inc(&stop_operation);
4616	del_timer_sync(&ipmi_timer);
4617
4618#ifdef CONFIG_PROC_FS
4619	proc_remove(proc_ipmi_root);
4620#endif /* CONFIG_PROC_FS */
4621
4622	driver_unregister(&ipmidriver.driver);
4623
4624	initialized = 0;
4625
4626	/* Check for buffer leaks. */
4627	count = atomic_read(&smi_msg_inuse_count);
4628	if (count != 0)
4629		printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4630		       count);
4631	count = atomic_read(&recv_msg_inuse_count);
4632	if (count != 0)
4633		printk(KERN_WARNING PFX "recv message count %d at exit\n",
4634		       count);
4635}
4636module_exit(cleanup_ipmi);
4637
4638module_init(ipmi_init_msghandler_mod);
4639MODULE_LICENSE("GPL");
4640MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4641MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4642		   " interface.");
4643MODULE_VERSION(IPMI_DRIVER_VERSION);
4644