1/*
2 * CCI cache coherent interconnect driver
3 *
4 * Copyright (C) 2013 ARM Ltd.
5 * Author: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
12 * kind, whether express or implied; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU General Public License for more details.
15 */
16
17#include <linux/arm-cci.h>
18#include <linux/io.h>
19#include <linux/interrupt.h>
20#include <linux/module.h>
21#include <linux/of_address.h>
22#include <linux/of_irq.h>
23#include <linux/of_platform.h>
24#include <linux/perf_event.h>
25#include <linux/platform_device.h>
26#include <linux/slab.h>
27#include <linux/spinlock.h>
28
29#include <asm/cacheflush.h>
30#include <asm/smp_plat.h>
31
32static void __iomem *cci_ctrl_base;
33static unsigned long cci_ctrl_phys;
34
35#ifdef CONFIG_ARM_CCI400_PORT_CTRL
36struct cci_nb_ports {
37	unsigned int nb_ace;
38	unsigned int nb_ace_lite;
39};
40
41static const struct cci_nb_ports cci400_ports = {
42	.nb_ace = 2,
43	.nb_ace_lite = 3
44};
45
46#define CCI400_PORTS_DATA	(&cci400_ports)
47#else
48#define CCI400_PORTS_DATA	(NULL)
49#endif
50
51static const struct of_device_id arm_cci_matches[] = {
52#ifdef CONFIG_ARM_CCI400_COMMON
53	{.compatible = "arm,cci-400", .data = CCI400_PORTS_DATA },
54#endif
55#ifdef CONFIG_ARM_CCI500_PMU
56	{ .compatible = "arm,cci-500", },
57#endif
58	{},
59};
60
61#ifdef CONFIG_ARM_CCI_PMU
62
63#define DRIVER_NAME		"ARM-CCI"
64#define DRIVER_NAME_PMU		DRIVER_NAME " PMU"
65
66#define CCI_PMCR		0x0100
67#define CCI_PID2		0x0fe8
68
69#define CCI_PMCR_CEN		0x00000001
70#define CCI_PMCR_NCNT_MASK	0x0000f800
71#define CCI_PMCR_NCNT_SHIFT	11
72
73#define CCI_PID2_REV_MASK	0xf0
74#define CCI_PID2_REV_SHIFT	4
75
76#define CCI_PMU_EVT_SEL		0x000
77#define CCI_PMU_CNTR		0x004
78#define CCI_PMU_CNTR_CTRL	0x008
79#define CCI_PMU_OVRFLW		0x00c
80
81#define CCI_PMU_OVRFLW_FLAG	1
82
83#define CCI_PMU_CNTR_SIZE(model)	((model)->cntr_size)
84#define CCI_PMU_CNTR_BASE(model, idx)	((idx) * CCI_PMU_CNTR_SIZE(model))
85#define CCI_PMU_CNTR_MASK		((1ULL << 32) -1)
86#define CCI_PMU_CNTR_LAST(cci_pmu)	(cci_pmu->num_cntrs - 1)
87
88#define CCI_PMU_MAX_HW_CNTRS(model) \
89	((model)->num_hw_cntrs + (model)->fixed_hw_cntrs)
90
91/* Types of interfaces that can generate events */
92enum {
93	CCI_IF_SLAVE,
94	CCI_IF_MASTER,
95#ifdef CONFIG_ARM_CCI500_PMU
96	CCI_IF_GLOBAL,
97#endif
98	CCI_IF_MAX,
99};
100
101struct event_range {
102	u32 min;
103	u32 max;
104};
105
106struct cci_pmu_hw_events {
107	struct perf_event **events;
108	unsigned long *used_mask;
109	raw_spinlock_t pmu_lock;
110};
111
112struct cci_pmu;
113/*
114 * struct cci_pmu_model:
115 * @fixed_hw_cntrs - Number of fixed event counters
116 * @num_hw_cntrs - Maximum number of programmable event counters
117 * @cntr_size - Size of an event counter mapping
118 */
119struct cci_pmu_model {
120	char *name;
121	u32 fixed_hw_cntrs;
122	u32 num_hw_cntrs;
123	u32 cntr_size;
124	u64 nformat_attrs;
125	u64 nevent_attrs;
126	struct dev_ext_attribute *format_attrs;
127	struct dev_ext_attribute *event_attrs;
128	struct event_range event_ranges[CCI_IF_MAX];
129	int (*validate_hw_event)(struct cci_pmu *, unsigned long);
130	int (*get_event_idx)(struct cci_pmu *, struct cci_pmu_hw_events *, unsigned long);
131};
132
133static struct cci_pmu_model cci_pmu_models[];
134
135struct cci_pmu {
136	void __iomem *base;
137	struct pmu pmu;
138	int nr_irqs;
139	int *irqs;
140	unsigned long active_irqs;
141	const struct cci_pmu_model *model;
142	struct cci_pmu_hw_events hw_events;
143	struct platform_device *plat_device;
144	int num_cntrs;
145	atomic_t active_events;
146	struct mutex reserve_mutex;
147	struct notifier_block cpu_nb;
148	cpumask_t cpus;
149};
150
151#define to_cci_pmu(c)	(container_of(c, struct cci_pmu, pmu))
152
153enum cci_models {
154#ifdef CONFIG_ARM_CCI400_PMU
155	CCI400_R0,
156	CCI400_R1,
157#endif
158#ifdef CONFIG_ARM_CCI500_PMU
159	CCI500_R0,
160#endif
161	CCI_MODEL_MAX
162};
163
164static ssize_t cci_pmu_format_show(struct device *dev,
165			struct device_attribute *attr, char *buf);
166static ssize_t cci_pmu_event_show(struct device *dev,
167			struct device_attribute *attr, char *buf);
168
169#define CCI_EXT_ATTR_ENTRY(_name, _func, _config) \
170	{ __ATTR(_name, S_IRUGO, _func, NULL), (void *)_config }
171
172#define CCI_FORMAT_EXT_ATTR_ENTRY(_name, _config) \
173	CCI_EXT_ATTR_ENTRY(_name, cci_pmu_format_show, (char *)_config)
174#define CCI_EVENT_EXT_ATTR_ENTRY(_name, _config) \
175	CCI_EXT_ATTR_ENTRY(_name, cci_pmu_event_show, (unsigned long)_config)
176
177/* CCI400 PMU Specific definitions */
178
179#ifdef CONFIG_ARM_CCI400_PMU
180
181/* Port ids */
182#define CCI400_PORT_S0		0
183#define CCI400_PORT_S1		1
184#define CCI400_PORT_S2		2
185#define CCI400_PORT_S3		3
186#define CCI400_PORT_S4		4
187#define CCI400_PORT_M0		5
188#define CCI400_PORT_M1		6
189#define CCI400_PORT_M2		7
190
191#define CCI400_R1_PX		5
192
193/*
194 * Instead of an event id to monitor CCI cycles, a dedicated counter is
195 * provided. Use 0xff to represent CCI cycles and hope that no future revisions
196 * make use of this event in hardware.
197 */
198enum cci400_perf_events {
199	CCI400_PMU_CYCLES = 0xff
200};
201
202#define CCI400_PMU_CYCLE_CNTR_IDX	0
203#define CCI400_PMU_CNTR0_IDX		1
204
205/*
206 * CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
207 * ports and bits 4:0 are event codes. There are different event codes
208 * associated with each port type.
209 *
210 * Additionally, the range of events associated with the port types changed
211 * between Rev0 and Rev1.
212 *
213 * The constants below define the range of valid codes for each port type for
214 * the different revisions and are used to validate the event to be monitored.
215 */
216
217#define CCI400_PMU_EVENT_MASK		0xffUL
218#define CCI400_PMU_EVENT_SOURCE_SHIFT	5
219#define CCI400_PMU_EVENT_SOURCE_MASK	0x7
220#define CCI400_PMU_EVENT_CODE_SHIFT	0
221#define CCI400_PMU_EVENT_CODE_MASK	0x1f
222#define CCI400_PMU_EVENT_SOURCE(event) \
223	((event >> CCI400_PMU_EVENT_SOURCE_SHIFT) & \
224			CCI400_PMU_EVENT_SOURCE_MASK)
225#define CCI400_PMU_EVENT_CODE(event) \
226	((event >> CCI400_PMU_EVENT_CODE_SHIFT) & CCI400_PMU_EVENT_CODE_MASK)
227
228#define CCI400_R0_SLAVE_PORT_MIN_EV	0x00
229#define CCI400_R0_SLAVE_PORT_MAX_EV	0x13
230#define CCI400_R0_MASTER_PORT_MIN_EV	0x14
231#define CCI400_R0_MASTER_PORT_MAX_EV	0x1a
232
233#define CCI400_R1_SLAVE_PORT_MIN_EV	0x00
234#define CCI400_R1_SLAVE_PORT_MAX_EV	0x14
235#define CCI400_R1_MASTER_PORT_MIN_EV	0x00
236#define CCI400_R1_MASTER_PORT_MAX_EV	0x11
237
238#define CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(_name, _config) \
239	CCI_EXT_ATTR_ENTRY(_name, cci400_pmu_cycle_event_show, \
240					(unsigned long)_config)
241
242static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
243			struct device_attribute *attr, char *buf);
244
245static struct dev_ext_attribute cci400_pmu_format_attrs[] = {
246	CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
247	CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-7"),
248};
249
250static struct dev_ext_attribute cci400_r0_pmu_event_attrs[] = {
251	/* Slave events */
252	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
253	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
254	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
255	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
256	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
257	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
258	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
259	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
260	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
261	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
262	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
263	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
264	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
265	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
266	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
267	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
268	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
269	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
270	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
271	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
272	/* Master events */
273	CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x14),
274	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_addr_hazard, 0x15),
275	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_id_hazard, 0x16),
276	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_tt_full, 0x17),
277	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x18),
278	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x19),
279	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_tt_full, 0x1A),
280	/* Special event for cycles counter */
281	CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
282};
283
284static struct dev_ext_attribute cci400_r1_pmu_event_attrs[] = {
285	/* Slave events */
286	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
287	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
288	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
289	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
290	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
291	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
292	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
293	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
294	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
295	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
296	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
297	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
298	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
299	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
300	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
301	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
302	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
303	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
304	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
305	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
306	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_slave_id_hazard, 0x14),
307	/* Master events */
308	CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x0),
309	CCI_EVENT_EXT_ATTR_ENTRY(mi_stall_cycle_addr_hazard, 0x1),
310	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_master_id_hazard, 0x2),
311	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_hi_prio_rtq_full, 0x3),
312	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x4),
313	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x5),
314	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_wtq_full, 0x6),
315	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_low_prio_rtq_full, 0x7),
316	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_mid_prio_rtq_full, 0x8),
317	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn0, 0x9),
318	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn1, 0xA),
319	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn2, 0xB),
320	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn3, 0xC),
321	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn0, 0xD),
322	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn1, 0xE),
323	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn2, 0xF),
324	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn3, 0x10),
325	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_unique_or_line_unique_addr_hazard, 0x11),
326	/* Special event for cycles counter */
327	CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
328};
329
330static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
331			struct device_attribute *attr, char *buf)
332{
333	struct dev_ext_attribute *eattr = container_of(attr,
334				struct dev_ext_attribute, attr);
335	return snprintf(buf, PAGE_SIZE, "config=0x%lx\n", (unsigned long)eattr->var);
336}
337
338static int cci400_get_event_idx(struct cci_pmu *cci_pmu,
339				struct cci_pmu_hw_events *hw,
340				unsigned long cci_event)
341{
342	int idx;
343
344	/* cycles event idx is fixed */
345	if (cci_event == CCI400_PMU_CYCLES) {
346		if (test_and_set_bit(CCI400_PMU_CYCLE_CNTR_IDX, hw->used_mask))
347			return -EAGAIN;
348
349		return CCI400_PMU_CYCLE_CNTR_IDX;
350	}
351
352	for (idx = CCI400_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx)
353		if (!test_and_set_bit(idx, hw->used_mask))
354			return idx;
355
356	/* No counters available */
357	return -EAGAIN;
358}
359
360static int cci400_validate_hw_event(struct cci_pmu *cci_pmu, unsigned long hw_event)
361{
362	u8 ev_source = CCI400_PMU_EVENT_SOURCE(hw_event);
363	u8 ev_code = CCI400_PMU_EVENT_CODE(hw_event);
364	int if_type;
365
366	if (hw_event & ~CCI400_PMU_EVENT_MASK)
367		return -ENOENT;
368
369	if (hw_event == CCI400_PMU_CYCLES)
370		return hw_event;
371
372	switch (ev_source) {
373	case CCI400_PORT_S0:
374	case CCI400_PORT_S1:
375	case CCI400_PORT_S2:
376	case CCI400_PORT_S3:
377	case CCI400_PORT_S4:
378		/* Slave Interface */
379		if_type = CCI_IF_SLAVE;
380		break;
381	case CCI400_PORT_M0:
382	case CCI400_PORT_M1:
383	case CCI400_PORT_M2:
384		/* Master Interface */
385		if_type = CCI_IF_MASTER;
386		break;
387	default:
388		return -ENOENT;
389	}
390
391	if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
392		ev_code <= cci_pmu->model->event_ranges[if_type].max)
393		return hw_event;
394
395	return -ENOENT;
396}
397
398static int probe_cci400_revision(void)
399{
400	int rev;
401	rev = readl_relaxed(cci_ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK;
402	rev >>= CCI_PID2_REV_SHIFT;
403
404	if (rev < CCI400_R1_PX)
405		return CCI400_R0;
406	else
407		return CCI400_R1;
408}
409
410static const struct cci_pmu_model *probe_cci_model(struct platform_device *pdev)
411{
412	if (platform_has_secure_cci_access())
413		return &cci_pmu_models[probe_cci400_revision()];
414	return NULL;
415}
416#else	/* !CONFIG_ARM_CCI400_PMU */
417static inline struct cci_pmu_model *probe_cci_model(struct platform_device *pdev)
418{
419	return NULL;
420}
421#endif	/* CONFIG_ARM_CCI400_PMU */
422
423#ifdef CONFIG_ARM_CCI500_PMU
424
425/*
426 * CCI500 provides 8 independent event counters that can count
427 * any of the events available.
428 *
429 * CCI500 PMU event id is an 9-bit value made of two parts.
430 *	 bits [8:5] - Source for the event
431 *		      0x0-0x6 - Slave interfaces
432 *		      0x8-0xD - Master interfaces
433 *		      0xf     - Global Events
434 *		      0x7,0xe - Reserved
435 *
436 *	 bits [4:0] - Event code (specific to type of interface)
437 */
438
439/* Port ids */
440#define CCI500_PORT_S0			0x0
441#define CCI500_PORT_S1			0x1
442#define CCI500_PORT_S2			0x2
443#define CCI500_PORT_S3			0x3
444#define CCI500_PORT_S4			0x4
445#define CCI500_PORT_S5			0x5
446#define CCI500_PORT_S6			0x6
447
448#define CCI500_PORT_M0			0x8
449#define CCI500_PORT_M1			0x9
450#define CCI500_PORT_M2			0xa
451#define CCI500_PORT_M3			0xb
452#define CCI500_PORT_M4			0xc
453#define CCI500_PORT_M5			0xd
454
455#define CCI500_PORT_GLOBAL 		0xf
456
457#define CCI500_PMU_EVENT_MASK		0x1ffUL
458#define CCI500_PMU_EVENT_SOURCE_SHIFT	0x5
459#define CCI500_PMU_EVENT_SOURCE_MASK	0xf
460#define CCI500_PMU_EVENT_CODE_SHIFT	0x0
461#define CCI500_PMU_EVENT_CODE_MASK	0x1f
462
463#define CCI500_PMU_EVENT_SOURCE(event)	\
464	((event >> CCI500_PMU_EVENT_SOURCE_SHIFT) & CCI500_PMU_EVENT_SOURCE_MASK)
465#define CCI500_PMU_EVENT_CODE(event)	\
466	((event >> CCI500_PMU_EVENT_CODE_SHIFT) & CCI500_PMU_EVENT_CODE_MASK)
467
468#define CCI500_SLAVE_PORT_MIN_EV	0x00
469#define CCI500_SLAVE_PORT_MAX_EV	0x1f
470#define CCI500_MASTER_PORT_MIN_EV	0x00
471#define CCI500_MASTER_PORT_MAX_EV	0x06
472#define CCI500_GLOBAL_PORT_MIN_EV	0x00
473#define CCI500_GLOBAL_PORT_MAX_EV	0x0f
474
475
476#define CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(_name, _config) \
477	CCI_EXT_ATTR_ENTRY(_name, cci500_pmu_global_event_show, \
478					(unsigned long) _config)
479
480static ssize_t cci500_pmu_global_event_show(struct device *dev,
481				struct device_attribute *attr, char *buf);
482
483static struct dev_ext_attribute cci500_pmu_format_attrs[] = {
484	CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
485	CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-8"),
486};
487
488static struct dev_ext_attribute cci500_pmu_event_attrs[] = {
489	/* Slave events */
490	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_arvalid, 0x0),
491	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_dev, 0x1),
492	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_nonshareable, 0x2),
493	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_non_alloc, 0x3),
494	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_alloc, 0x4),
495	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_invalidate, 0x5),
496	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maint, 0x6),
497	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
498	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rval, 0x8),
499	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rlast_snoop, 0x9),
500	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_awalid, 0xA),
501	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_dev, 0xB),
502	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_non_shareable, 0xC),
503	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wb, 0xD),
504	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wlu, 0xE),
505	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wunique, 0xF),
506	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_evict, 0x10),
507	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_wrevict, 0x11),
508	CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_beat, 0x12),
509	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_acvalid, 0x13),
510	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_read, 0x14),
511	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_clean, 0x15),
512	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_data_transfer_low, 0x16),
513	CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_arvalid, 0x17),
514	CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall, 0x18),
515	CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall, 0x19),
516	CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_stall, 0x1A),
517	CCI_EVENT_EXT_ATTR_ENTRY(si_w_resp_stall, 0x1B),
518	CCI_EVENT_EXT_ATTR_ENTRY(si_srq_stall, 0x1C),
519	CCI_EVENT_EXT_ATTR_ENTRY(si_s_data_stall, 0x1D),
520	CCI_EVENT_EXT_ATTR_ENTRY(si_rq_stall_ot_limit, 0x1E),
521	CCI_EVENT_EXT_ATTR_ENTRY(si_r_stall_arbit, 0x1F),
522
523	/* Master events */
524	CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_beat_any, 0x0),
525	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_beat_any, 0x1),
526	CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall, 0x2),
527	CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_stall, 0x3),
528	CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall, 0x4),
529	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_stall, 0x5),
530	CCI_EVENT_EXT_ATTR_ENTRY(mi_w_resp_stall, 0x6),
531
532	/* Global events */
533	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_0_1, 0x0),
534	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_2_3, 0x1),
535	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_4_5, 0x2),
536	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_6_7, 0x3),
537	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_0_1, 0x4),
538	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_2_3, 0x5),
539	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_4_5, 0x6),
540	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_6_7, 0x7),
541	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_back_invalidation, 0x8),
542	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_alloc_busy, 0x9),
543	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_tt_full, 0xA),
544	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_wrq, 0xB),
545	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_cd_hs, 0xC),
546	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_rq_stall_addr_hazard, 0xD),
547	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snopp_rq_stall_tt_full, 0xE),
548	CCI500_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_tzmp1_prot, 0xF),
549};
550
551static ssize_t cci500_pmu_global_event_show(struct device *dev,
552				struct device_attribute *attr, char *buf)
553{
554	struct dev_ext_attribute *eattr = container_of(attr,
555					struct dev_ext_attribute, attr);
556	/* Global events have single fixed source code */
557	return snprintf(buf, PAGE_SIZE, "event=0x%lx,source=0x%x\n",
558				(unsigned long)eattr->var, CCI500_PORT_GLOBAL);
559}
560
561static int cci500_validate_hw_event(struct cci_pmu *cci_pmu,
562					unsigned long hw_event)
563{
564	u32 ev_source = CCI500_PMU_EVENT_SOURCE(hw_event);
565	u32 ev_code = CCI500_PMU_EVENT_CODE(hw_event);
566	int if_type;
567
568	if (hw_event & ~CCI500_PMU_EVENT_MASK)
569		return -ENOENT;
570
571	switch (ev_source) {
572	case CCI500_PORT_S0:
573	case CCI500_PORT_S1:
574	case CCI500_PORT_S2:
575	case CCI500_PORT_S3:
576	case CCI500_PORT_S4:
577	case CCI500_PORT_S5:
578	case CCI500_PORT_S6:
579		if_type = CCI_IF_SLAVE;
580		break;
581	case CCI500_PORT_M0:
582	case CCI500_PORT_M1:
583	case CCI500_PORT_M2:
584	case CCI500_PORT_M3:
585	case CCI500_PORT_M4:
586	case CCI500_PORT_M5:
587		if_type = CCI_IF_MASTER;
588		break;
589	case CCI500_PORT_GLOBAL:
590		if_type = CCI_IF_GLOBAL;
591		break;
592	default:
593		return -ENOENT;
594	}
595
596	if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
597		ev_code <= cci_pmu->model->event_ranges[if_type].max)
598		return hw_event;
599
600	return -ENOENT;
601}
602#endif	/* CONFIG_ARM_CCI500_PMU */
603
604static ssize_t cci_pmu_format_show(struct device *dev,
605			struct device_attribute *attr, char *buf)
606{
607	struct dev_ext_attribute *eattr = container_of(attr,
608				struct dev_ext_attribute, attr);
609	return snprintf(buf, PAGE_SIZE, "%s\n", (char *)eattr->var);
610}
611
612static ssize_t cci_pmu_event_show(struct device *dev,
613			struct device_attribute *attr, char *buf)
614{
615	struct dev_ext_attribute *eattr = container_of(attr,
616				struct dev_ext_attribute, attr);
617	/* source parameter is mandatory for normal PMU events */
618	return snprintf(buf, PAGE_SIZE, "source=?,event=0x%lx\n",
619					 (unsigned long)eattr->var);
620}
621
622static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx)
623{
624	return 0 <= idx && idx <= CCI_PMU_CNTR_LAST(cci_pmu);
625}
626
627static u32 pmu_read_register(struct cci_pmu *cci_pmu, int idx, unsigned int offset)
628{
629	return readl_relaxed(cci_pmu->base +
630			     CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
631}
632
633static void pmu_write_register(struct cci_pmu *cci_pmu, u32 value,
634			       int idx, unsigned int offset)
635{
636	return writel_relaxed(value, cci_pmu->base +
637			      CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
638}
639
640static void pmu_disable_counter(struct cci_pmu *cci_pmu, int idx)
641{
642	pmu_write_register(cci_pmu, 0, idx, CCI_PMU_CNTR_CTRL);
643}
644
645static void pmu_enable_counter(struct cci_pmu *cci_pmu, int idx)
646{
647	pmu_write_register(cci_pmu, 1, idx, CCI_PMU_CNTR_CTRL);
648}
649
650static void pmu_set_event(struct cci_pmu *cci_pmu, int idx, unsigned long event)
651{
652	pmu_write_register(cci_pmu, event, idx, CCI_PMU_EVT_SEL);
653}
654
655/*
656 * Returns the number of programmable counters actually implemented
657 * by the cci
658 */
659static u32 pmu_get_max_counters(void)
660{
661	return (readl_relaxed(cci_ctrl_base + CCI_PMCR) &
662		CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT;
663}
664
665static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event)
666{
667	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
668	unsigned long cci_event = event->hw.config_base;
669	int idx;
670
671	if (cci_pmu->model->get_event_idx)
672		return cci_pmu->model->get_event_idx(cci_pmu, hw, cci_event);
673
674	/* Generic code to find an unused idx from the mask */
675	for(idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++)
676		if (!test_and_set_bit(idx, hw->used_mask))
677			return idx;
678
679	/* No counters available */
680	return -EAGAIN;
681}
682
683static int pmu_map_event(struct perf_event *event)
684{
685	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
686
687	if (event->attr.type < PERF_TYPE_MAX ||
688			!cci_pmu->model->validate_hw_event)
689		return -ENOENT;
690
691	return	cci_pmu->model->validate_hw_event(cci_pmu, event->attr.config);
692}
693
694static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler)
695{
696	int i;
697	struct platform_device *pmu_device = cci_pmu->plat_device;
698
699	if (unlikely(!pmu_device))
700		return -ENODEV;
701
702	if (cci_pmu->nr_irqs < 1) {
703		dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n");
704		return -ENODEV;
705	}
706
707	/*
708	 * Register all available CCI PMU interrupts. In the interrupt handler
709	 * we iterate over the counters checking for interrupt source (the
710	 * overflowing counter) and clear it.
711	 *
712	 * This should allow handling of non-unique interrupt for the counters.
713	 */
714	for (i = 0; i < cci_pmu->nr_irqs; i++) {
715		int err = request_irq(cci_pmu->irqs[i], handler, IRQF_SHARED,
716				"arm-cci-pmu", cci_pmu);
717		if (err) {
718			dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n",
719				cci_pmu->irqs[i]);
720			return err;
721		}
722
723		set_bit(i, &cci_pmu->active_irqs);
724	}
725
726	return 0;
727}
728
729static void pmu_free_irq(struct cci_pmu *cci_pmu)
730{
731	int i;
732
733	for (i = 0; i < cci_pmu->nr_irqs; i++) {
734		if (!test_and_clear_bit(i, &cci_pmu->active_irqs))
735			continue;
736
737		free_irq(cci_pmu->irqs[i], cci_pmu);
738	}
739}
740
741static u32 pmu_read_counter(struct perf_event *event)
742{
743	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
744	struct hw_perf_event *hw_counter = &event->hw;
745	int idx = hw_counter->idx;
746	u32 value;
747
748	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
749		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
750		return 0;
751	}
752	value = pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR);
753
754	return value;
755}
756
757static void pmu_write_counter(struct perf_event *event, u32 value)
758{
759	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
760	struct hw_perf_event *hw_counter = &event->hw;
761	int idx = hw_counter->idx;
762
763	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx)))
764		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
765	else
766		pmu_write_register(cci_pmu, value, idx, CCI_PMU_CNTR);
767}
768
769static u64 pmu_event_update(struct perf_event *event)
770{
771	struct hw_perf_event *hwc = &event->hw;
772	u64 delta, prev_raw_count, new_raw_count;
773
774	do {
775		prev_raw_count = local64_read(&hwc->prev_count);
776		new_raw_count = pmu_read_counter(event);
777	} while (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
778		 new_raw_count) != prev_raw_count);
779
780	delta = (new_raw_count - prev_raw_count) & CCI_PMU_CNTR_MASK;
781
782	local64_add(delta, &event->count);
783
784	return new_raw_count;
785}
786
787static void pmu_read(struct perf_event *event)
788{
789	pmu_event_update(event);
790}
791
792void pmu_event_set_period(struct perf_event *event)
793{
794	struct hw_perf_event *hwc = &event->hw;
795	/*
796	 * The CCI PMU counters have a period of 2^32. To account for the
797	 * possiblity of extreme interrupt latency we program for a period of
798	 * half that. Hopefully we can handle the interrupt before another 2^31
799	 * events occur and the counter overtakes its previous value.
800	 */
801	u64 val = 1ULL << 31;
802	local64_set(&hwc->prev_count, val);
803	pmu_write_counter(event, val);
804}
805
806static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
807{
808	unsigned long flags;
809	struct cci_pmu *cci_pmu = dev;
810	struct cci_pmu_hw_events *events = &cci_pmu->hw_events;
811	int idx, handled = IRQ_NONE;
812
813	raw_spin_lock_irqsave(&events->pmu_lock, flags);
814	/*
815	 * Iterate over counters and update the corresponding perf events.
816	 * This should work regardless of whether we have per-counter overflow
817	 * interrupt or a combined overflow interrupt.
818	 */
819	for (idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) {
820		struct perf_event *event = events->events[idx];
821		struct hw_perf_event *hw_counter;
822
823		if (!event)
824			continue;
825
826		hw_counter = &event->hw;
827
828		/* Did this counter overflow? */
829		if (!(pmu_read_register(cci_pmu, idx, CCI_PMU_OVRFLW) &
830		      CCI_PMU_OVRFLW_FLAG))
831			continue;
832
833		pmu_write_register(cci_pmu, CCI_PMU_OVRFLW_FLAG, idx,
834							CCI_PMU_OVRFLW);
835
836		pmu_event_update(event);
837		pmu_event_set_period(event);
838		handled = IRQ_HANDLED;
839	}
840	raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
841
842	return IRQ_RETVAL(handled);
843}
844
845static int cci_pmu_get_hw(struct cci_pmu *cci_pmu)
846{
847	int ret = pmu_request_irq(cci_pmu, pmu_handle_irq);
848	if (ret) {
849		pmu_free_irq(cci_pmu);
850		return ret;
851	}
852	return 0;
853}
854
855static void cci_pmu_put_hw(struct cci_pmu *cci_pmu)
856{
857	pmu_free_irq(cci_pmu);
858}
859
860static void hw_perf_event_destroy(struct perf_event *event)
861{
862	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
863	atomic_t *active_events = &cci_pmu->active_events;
864	struct mutex *reserve_mutex = &cci_pmu->reserve_mutex;
865
866	if (atomic_dec_and_mutex_lock(active_events, reserve_mutex)) {
867		cci_pmu_put_hw(cci_pmu);
868		mutex_unlock(reserve_mutex);
869	}
870}
871
872static void cci_pmu_enable(struct pmu *pmu)
873{
874	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
875	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
876	int enabled = bitmap_weight(hw_events->used_mask, cci_pmu->num_cntrs);
877	unsigned long flags;
878	u32 val;
879
880	if (!enabled)
881		return;
882
883	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
884
885	/* Enable all the PMU counters. */
886	val = readl_relaxed(cci_ctrl_base + CCI_PMCR) | CCI_PMCR_CEN;
887	writel(val, cci_ctrl_base + CCI_PMCR);
888	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
889
890}
891
892static void cci_pmu_disable(struct pmu *pmu)
893{
894	struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
895	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
896	unsigned long flags;
897	u32 val;
898
899	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
900
901	/* Disable all the PMU counters. */
902	val = readl_relaxed(cci_ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN;
903	writel(val, cci_ctrl_base + CCI_PMCR);
904	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
905}
906
907/*
908 * Check if the idx represents a non-programmable counter.
909 * All the fixed event counters are mapped before the programmable
910 * counters.
911 */
912static bool pmu_fixed_hw_idx(struct cci_pmu *cci_pmu, int idx)
913{
914	return (idx >= 0) && (idx < cci_pmu->model->fixed_hw_cntrs);
915}
916
917static void cci_pmu_start(struct perf_event *event, int pmu_flags)
918{
919	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
920	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
921	struct hw_perf_event *hwc = &event->hw;
922	int idx = hwc->idx;
923	unsigned long flags;
924
925	/*
926	 * To handle interrupt latency, we always reprogram the period
927	 * regardlesss of PERF_EF_RELOAD.
928	 */
929	if (pmu_flags & PERF_EF_RELOAD)
930		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
931
932	hwc->state = 0;
933
934	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
935		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
936		return;
937	}
938
939	raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
940
941	/* Configure the counter unless you are counting a fixed event */
942	if (!pmu_fixed_hw_idx(cci_pmu, idx))
943		pmu_set_event(cci_pmu, idx, hwc->config_base);
944
945	pmu_event_set_period(event);
946	pmu_enable_counter(cci_pmu, idx);
947
948	raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
949}
950
951static void cci_pmu_stop(struct perf_event *event, int pmu_flags)
952{
953	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
954	struct hw_perf_event *hwc = &event->hw;
955	int idx = hwc->idx;
956
957	if (hwc->state & PERF_HES_STOPPED)
958		return;
959
960	if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
961		dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
962		return;
963	}
964
965	/*
966	 * We always reprogram the counter, so ignore PERF_EF_UPDATE. See
967	 * cci_pmu_start()
968	 */
969	pmu_disable_counter(cci_pmu, idx);
970	pmu_event_update(event);
971	hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
972}
973
974static int cci_pmu_add(struct perf_event *event, int flags)
975{
976	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
977	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
978	struct hw_perf_event *hwc = &event->hw;
979	int idx;
980	int err = 0;
981
982	perf_pmu_disable(event->pmu);
983
984	/* If we don't have a space for the counter then finish early. */
985	idx = pmu_get_event_idx(hw_events, event);
986	if (idx < 0) {
987		err = idx;
988		goto out;
989	}
990
991	event->hw.idx = idx;
992	hw_events->events[idx] = event;
993
994	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
995	if (flags & PERF_EF_START)
996		cci_pmu_start(event, PERF_EF_RELOAD);
997
998	/* Propagate our changes to the userspace mapping. */
999	perf_event_update_userpage(event);
1000
1001out:
1002	perf_pmu_enable(event->pmu);
1003	return err;
1004}
1005
1006static void cci_pmu_del(struct perf_event *event, int flags)
1007{
1008	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1009	struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
1010	struct hw_perf_event *hwc = &event->hw;
1011	int idx = hwc->idx;
1012
1013	cci_pmu_stop(event, PERF_EF_UPDATE);
1014	hw_events->events[idx] = NULL;
1015	clear_bit(idx, hw_events->used_mask);
1016
1017	perf_event_update_userpage(event);
1018}
1019
1020static int
1021validate_event(struct pmu *cci_pmu,
1022               struct cci_pmu_hw_events *hw_events,
1023               struct perf_event *event)
1024{
1025	if (is_software_event(event))
1026		return 1;
1027
1028	/*
1029	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
1030	 * core perf code won't check that the pmu->ctx == leader->ctx
1031	 * until after pmu->event_init(event).
1032	 */
1033	if (event->pmu != cci_pmu)
1034		return 0;
1035
1036	if (event->state < PERF_EVENT_STATE_OFF)
1037		return 1;
1038
1039	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
1040		return 1;
1041
1042	return pmu_get_event_idx(hw_events, event) >= 0;
1043}
1044
1045static int
1046validate_group(struct perf_event *event)
1047{
1048	struct perf_event *sibling, *leader = event->group_leader;
1049	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1050	unsigned long mask[BITS_TO_LONGS(cci_pmu->num_cntrs)];
1051	struct cci_pmu_hw_events fake_pmu = {
1052		/*
1053		 * Initialise the fake PMU. We only need to populate the
1054		 * used_mask for the purposes of validation.
1055		 */
1056		.used_mask = mask,
1057	};
1058	memset(mask, 0, BITS_TO_LONGS(cci_pmu->num_cntrs) * sizeof(unsigned long));
1059
1060	if (!validate_event(event->pmu, &fake_pmu, leader))
1061		return -EINVAL;
1062
1063	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
1064		if (!validate_event(event->pmu, &fake_pmu, sibling))
1065			return -EINVAL;
1066	}
1067
1068	if (!validate_event(event->pmu, &fake_pmu, event))
1069		return -EINVAL;
1070
1071	return 0;
1072}
1073
1074static int
1075__hw_perf_event_init(struct perf_event *event)
1076{
1077	struct hw_perf_event *hwc = &event->hw;
1078	int mapping;
1079
1080	mapping = pmu_map_event(event);
1081
1082	if (mapping < 0) {
1083		pr_debug("event %x:%llx not supported\n", event->attr.type,
1084			 event->attr.config);
1085		return mapping;
1086	}
1087
1088	/*
1089	 * We don't assign an index until we actually place the event onto
1090	 * hardware. Use -1 to signify that we haven't decided where to put it
1091	 * yet.
1092	 */
1093	hwc->idx		= -1;
1094	hwc->config_base	= 0;
1095	hwc->config		= 0;
1096	hwc->event_base		= 0;
1097
1098	/*
1099	 * Store the event encoding into the config_base field.
1100	 */
1101	hwc->config_base	    |= (unsigned long)mapping;
1102
1103	/*
1104	 * Limit the sample_period to half of the counter width. That way, the
1105	 * new counter value is far less likely to overtake the previous one
1106	 * unless you have some serious IRQ latency issues.
1107	 */
1108	hwc->sample_period  = CCI_PMU_CNTR_MASK >> 1;
1109	hwc->last_period    = hwc->sample_period;
1110	local64_set(&hwc->period_left, hwc->sample_period);
1111
1112	if (event->group_leader != event) {
1113		if (validate_group(event) != 0)
1114			return -EINVAL;
1115	}
1116
1117	return 0;
1118}
1119
1120static int cci_pmu_event_init(struct perf_event *event)
1121{
1122	struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
1123	atomic_t *active_events = &cci_pmu->active_events;
1124	int err = 0;
1125	int cpu;
1126
1127	if (event->attr.type != event->pmu->type)
1128		return -ENOENT;
1129
1130	/* Shared by all CPUs, no meaningful state to sample */
1131	if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
1132		return -EOPNOTSUPP;
1133
1134	/* We have no filtering of any kind */
1135	if (event->attr.exclude_user	||
1136	    event->attr.exclude_kernel	||
1137	    event->attr.exclude_hv	||
1138	    event->attr.exclude_idle	||
1139	    event->attr.exclude_host	||
1140	    event->attr.exclude_guest)
1141		return -EINVAL;
1142
1143	/*
1144	 * Following the example set by other "uncore" PMUs, we accept any CPU
1145	 * and rewrite its affinity dynamically rather than having perf core
1146	 * handle cpu == -1 and pid == -1 for this case.
1147	 *
1148	 * The perf core will pin online CPUs for the duration of this call and
1149	 * the event being installed into its context, so the PMU's CPU can't
1150	 * change under our feet.
1151	 */
1152	cpu = cpumask_first(&cci_pmu->cpus);
1153	if (event->cpu < 0 || cpu < 0)
1154		return -EINVAL;
1155	event->cpu = cpu;
1156
1157	event->destroy = hw_perf_event_destroy;
1158	if (!atomic_inc_not_zero(active_events)) {
1159		mutex_lock(&cci_pmu->reserve_mutex);
1160		if (atomic_read(active_events) == 0)
1161			err = cci_pmu_get_hw(cci_pmu);
1162		if (!err)
1163			atomic_inc(active_events);
1164		mutex_unlock(&cci_pmu->reserve_mutex);
1165	}
1166	if (err)
1167		return err;
1168
1169	err = __hw_perf_event_init(event);
1170	if (err)
1171		hw_perf_event_destroy(event);
1172
1173	return err;
1174}
1175
1176static ssize_t pmu_cpumask_attr_show(struct device *dev,
1177				     struct device_attribute *attr, char *buf)
1178{
1179	struct dev_ext_attribute *eattr = container_of(attr,
1180					struct dev_ext_attribute, attr);
1181	struct cci_pmu *cci_pmu = eattr->var;
1182
1183	int n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl",
1184			  cpumask_pr_args(&cci_pmu->cpus));
1185	buf[n++] = '\n';
1186	buf[n] = '\0';
1187	return n;
1188}
1189
1190static struct dev_ext_attribute pmu_cpumask_attr = {
1191	__ATTR(cpumask, S_IRUGO, pmu_cpumask_attr_show, NULL),
1192	NULL,		/* Populated in cci_pmu_init */
1193};
1194
1195static struct attribute *pmu_attrs[] = {
1196	&pmu_cpumask_attr.attr.attr,
1197	NULL,
1198};
1199
1200static struct attribute_group pmu_attr_group = {
1201	.attrs = pmu_attrs,
1202};
1203
1204static struct attribute_group pmu_format_attr_group = {
1205	.name = "format",
1206	.attrs = NULL,		/* Filled in cci_pmu_init_attrs */
1207};
1208
1209static struct attribute_group pmu_event_attr_group = {
1210	.name = "events",
1211	.attrs = NULL,		/* Filled in cci_pmu_init_attrs */
1212};
1213
1214static const struct attribute_group *pmu_attr_groups[] = {
1215	&pmu_attr_group,
1216	&pmu_format_attr_group,
1217	&pmu_event_attr_group,
1218	NULL
1219};
1220
1221static struct attribute **alloc_attrs(struct platform_device *pdev,
1222				int n, struct dev_ext_attribute *source)
1223{
1224	int i;
1225	struct attribute **attrs;
1226
1227	/* Alloc n + 1 (for terminating NULL) */
1228	attrs  = devm_kcalloc(&pdev->dev, n + 1, sizeof(struct attribute *),
1229								GFP_KERNEL);
1230	if (!attrs)
1231		return attrs;
1232	for(i = 0; i < n; i++)
1233		attrs[i] = &source[i].attr.attr;
1234	return attrs;
1235}
1236
1237static int cci_pmu_init_attrs(struct cci_pmu *cci_pmu, struct platform_device *pdev)
1238{
1239	const struct cci_pmu_model *model = cci_pmu->model;
1240	struct attribute **attrs;
1241
1242	/*
1243	 * All allocations below are managed, hence doesn't need to be
1244	 * free'd explicitly in case of an error.
1245	 */
1246
1247	if (model->nevent_attrs) {
1248		attrs = alloc_attrs(pdev, model->nevent_attrs,
1249						model->event_attrs);
1250		if (!attrs)
1251			return -ENOMEM;
1252		pmu_event_attr_group.attrs = attrs;
1253	}
1254	if (model->nformat_attrs) {
1255		attrs = alloc_attrs(pdev, model->nformat_attrs,
1256						 model->format_attrs);
1257		if (!attrs)
1258			return -ENOMEM;
1259		pmu_format_attr_group.attrs = attrs;
1260	}
1261	pmu_cpumask_attr.var = cci_pmu;
1262
1263	return 0;
1264}
1265
1266static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev)
1267{
1268	char *name = cci_pmu->model->name;
1269	u32 num_cntrs;
1270	int rc;
1271
1272	rc = cci_pmu_init_attrs(cci_pmu, pdev);
1273	if (rc)
1274		return rc;
1275
1276	cci_pmu->pmu = (struct pmu) {
1277		.name		= cci_pmu->model->name,
1278		.task_ctx_nr	= perf_invalid_context,
1279		.pmu_enable	= cci_pmu_enable,
1280		.pmu_disable	= cci_pmu_disable,
1281		.event_init	= cci_pmu_event_init,
1282		.add		= cci_pmu_add,
1283		.del		= cci_pmu_del,
1284		.start		= cci_pmu_start,
1285		.stop		= cci_pmu_stop,
1286		.read		= pmu_read,
1287		.attr_groups	= pmu_attr_groups,
1288	};
1289
1290	cci_pmu->plat_device = pdev;
1291	num_cntrs = pmu_get_max_counters();
1292	if (num_cntrs > cci_pmu->model->num_hw_cntrs) {
1293		dev_warn(&pdev->dev,
1294			"PMU implements more counters(%d) than supported by"
1295			" the model(%d), truncated.",
1296			num_cntrs, cci_pmu->model->num_hw_cntrs);
1297		num_cntrs = cci_pmu->model->num_hw_cntrs;
1298	}
1299	cci_pmu->num_cntrs = num_cntrs + cci_pmu->model->fixed_hw_cntrs;
1300
1301	return perf_pmu_register(&cci_pmu->pmu, name, -1);
1302}
1303
1304static int cci_pmu_cpu_notifier(struct notifier_block *self,
1305				unsigned long action, void *hcpu)
1306{
1307	struct cci_pmu *cci_pmu = container_of(self,
1308					struct cci_pmu, cpu_nb);
1309	unsigned int cpu = (long)hcpu;
1310	unsigned int target;
1311
1312	switch (action & ~CPU_TASKS_FROZEN) {
1313	case CPU_DOWN_PREPARE:
1314		if (!cpumask_test_and_clear_cpu(cpu, &cci_pmu->cpus))
1315			break;
1316		target = cpumask_any_but(cpu_online_mask, cpu);
1317		if (target < 0) // UP, last CPU
1318			break;
1319		/*
1320		 * TODO: migrate context once core races on event->ctx have
1321		 * been fixed.
1322		 */
1323		cpumask_set_cpu(target, &cci_pmu->cpus);
1324	default:
1325		break;
1326	}
1327
1328	return NOTIFY_OK;
1329}
1330
1331static struct cci_pmu_model cci_pmu_models[] = {
1332#ifdef CONFIG_ARM_CCI400_PMU
1333	[CCI400_R0] = {
1334		.name = "CCI_400",
1335		.fixed_hw_cntrs = 1,	/* Cycle counter */
1336		.num_hw_cntrs = 4,
1337		.cntr_size = SZ_4K,
1338		.format_attrs = cci400_pmu_format_attrs,
1339		.nformat_attrs = ARRAY_SIZE(cci400_pmu_format_attrs),
1340		.event_attrs = cci400_r0_pmu_event_attrs,
1341		.nevent_attrs = ARRAY_SIZE(cci400_r0_pmu_event_attrs),
1342		.event_ranges = {
1343			[CCI_IF_SLAVE] = {
1344				CCI400_R0_SLAVE_PORT_MIN_EV,
1345				CCI400_R0_SLAVE_PORT_MAX_EV,
1346			},
1347			[CCI_IF_MASTER] = {
1348				CCI400_R0_MASTER_PORT_MIN_EV,
1349				CCI400_R0_MASTER_PORT_MAX_EV,
1350			},
1351		},
1352		.validate_hw_event = cci400_validate_hw_event,
1353		.get_event_idx = cci400_get_event_idx,
1354	},
1355	[CCI400_R1] = {
1356		.name = "CCI_400_r1",
1357		.fixed_hw_cntrs = 1,	/* Cycle counter */
1358		.num_hw_cntrs = 4,
1359		.cntr_size = SZ_4K,
1360		.format_attrs = cci400_pmu_format_attrs,
1361		.nformat_attrs = ARRAY_SIZE(cci400_pmu_format_attrs),
1362		.event_attrs = cci400_r1_pmu_event_attrs,
1363		.nevent_attrs = ARRAY_SIZE(cci400_r1_pmu_event_attrs),
1364		.event_ranges = {
1365			[CCI_IF_SLAVE] = {
1366				CCI400_R1_SLAVE_PORT_MIN_EV,
1367				CCI400_R1_SLAVE_PORT_MAX_EV,
1368			},
1369			[CCI_IF_MASTER] = {
1370				CCI400_R1_MASTER_PORT_MIN_EV,
1371				CCI400_R1_MASTER_PORT_MAX_EV,
1372			},
1373		},
1374		.validate_hw_event = cci400_validate_hw_event,
1375		.get_event_idx = cci400_get_event_idx,
1376	},
1377#endif
1378#ifdef CONFIG_ARM_CCI500_PMU
1379	[CCI500_R0] = {
1380		.name = "CCI_500",
1381		.fixed_hw_cntrs = 0,
1382		.num_hw_cntrs = 8,
1383		.cntr_size = SZ_64K,
1384		.format_attrs = cci500_pmu_format_attrs,
1385		.nformat_attrs = ARRAY_SIZE(cci500_pmu_format_attrs),
1386		.event_attrs = cci500_pmu_event_attrs,
1387		.nevent_attrs = ARRAY_SIZE(cci500_pmu_event_attrs),
1388		.event_ranges = {
1389			[CCI_IF_SLAVE] = {
1390				CCI500_SLAVE_PORT_MIN_EV,
1391				CCI500_SLAVE_PORT_MAX_EV,
1392			},
1393			[CCI_IF_MASTER] = {
1394				CCI500_MASTER_PORT_MIN_EV,
1395				CCI500_MASTER_PORT_MAX_EV,
1396			},
1397			[CCI_IF_GLOBAL] = {
1398				CCI500_GLOBAL_PORT_MIN_EV,
1399				CCI500_GLOBAL_PORT_MAX_EV,
1400			},
1401		},
1402		.validate_hw_event = cci500_validate_hw_event,
1403	},
1404#endif
1405};
1406
1407static const struct of_device_id arm_cci_pmu_matches[] = {
1408#ifdef CONFIG_ARM_CCI400_PMU
1409	{
1410		.compatible = "arm,cci-400-pmu",
1411		.data	= NULL,
1412	},
1413	{
1414		.compatible = "arm,cci-400-pmu,r0",
1415		.data	= &cci_pmu_models[CCI400_R0],
1416	},
1417	{
1418		.compatible = "arm,cci-400-pmu,r1",
1419		.data	= &cci_pmu_models[CCI400_R1],
1420	},
1421#endif
1422#ifdef CONFIG_ARM_CCI500_PMU
1423	{
1424		.compatible = "arm,cci-500-pmu,r0",
1425		.data = &cci_pmu_models[CCI500_R0],
1426	},
1427#endif
1428	{},
1429};
1430
1431static inline const struct cci_pmu_model *get_cci_model(struct platform_device *pdev)
1432{
1433	const struct of_device_id *match = of_match_node(arm_cci_pmu_matches,
1434							pdev->dev.of_node);
1435	if (!match)
1436		return NULL;
1437	if (match->data)
1438		return match->data;
1439
1440	dev_warn(&pdev->dev, "DEPRECATED compatible property,"
1441			 "requires secure access to CCI registers");
1442	return probe_cci_model(pdev);
1443}
1444
1445static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs)
1446{
1447	int i;
1448
1449	for (i = 0; i < nr_irqs; i++)
1450		if (irq == irqs[i])
1451			return true;
1452
1453	return false;
1454}
1455
1456static struct cci_pmu *cci_pmu_alloc(struct platform_device *pdev)
1457{
1458	struct cci_pmu *cci_pmu;
1459	const struct cci_pmu_model *model;
1460
1461	/*
1462	 * All allocations are devm_* hence we don't have to free
1463	 * them explicitly on an error, as it would end up in driver
1464	 * detach.
1465	 */
1466	model = get_cci_model(pdev);
1467	if (!model) {
1468		dev_warn(&pdev->dev, "CCI PMU version not supported\n");
1469		return ERR_PTR(-ENODEV);
1470	}
1471
1472	cci_pmu = devm_kzalloc(&pdev->dev, sizeof(*cci_pmu), GFP_KERNEL);
1473	if (!cci_pmu)
1474		return ERR_PTR(-ENOMEM);
1475
1476	cci_pmu->model = model;
1477	cci_pmu->irqs = devm_kcalloc(&pdev->dev, CCI_PMU_MAX_HW_CNTRS(model),
1478					sizeof(*cci_pmu->irqs), GFP_KERNEL);
1479	if (!cci_pmu->irqs)
1480		return ERR_PTR(-ENOMEM);
1481	cci_pmu->hw_events.events = devm_kcalloc(&pdev->dev,
1482					     CCI_PMU_MAX_HW_CNTRS(model),
1483					     sizeof(*cci_pmu->hw_events.events),
1484					     GFP_KERNEL);
1485	if (!cci_pmu->hw_events.events)
1486		return ERR_PTR(-ENOMEM);
1487	cci_pmu->hw_events.used_mask = devm_kcalloc(&pdev->dev,
1488						BITS_TO_LONGS(CCI_PMU_MAX_HW_CNTRS(model)),
1489						sizeof(*cci_pmu->hw_events.used_mask),
1490						GFP_KERNEL);
1491	if (!cci_pmu->hw_events.used_mask)
1492		return ERR_PTR(-ENOMEM);
1493
1494	return cci_pmu;
1495}
1496
1497
1498static int cci_pmu_probe(struct platform_device *pdev)
1499{
1500	struct resource *res;
1501	struct cci_pmu *cci_pmu;
1502	int i, ret, irq;
1503
1504	cci_pmu = cci_pmu_alloc(pdev);
1505	if (IS_ERR(cci_pmu))
1506		return PTR_ERR(cci_pmu);
1507
1508	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1509	cci_pmu->base = devm_ioremap_resource(&pdev->dev, res);
1510	if (IS_ERR(cci_pmu->base))
1511		return -ENOMEM;
1512
1513	/*
1514	 * CCI PMU has one overflow interrupt per counter; but some may be tied
1515	 * together to a common interrupt.
1516	 */
1517	cci_pmu->nr_irqs = 0;
1518	for (i = 0; i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model); i++) {
1519		irq = platform_get_irq(pdev, i);
1520		if (irq < 0)
1521			break;
1522
1523		if (is_duplicate_irq(irq, cci_pmu->irqs, cci_pmu->nr_irqs))
1524			continue;
1525
1526		cci_pmu->irqs[cci_pmu->nr_irqs++] = irq;
1527	}
1528
1529	/*
1530	 * Ensure that the device tree has as many interrupts as the number
1531	 * of counters.
1532	 */
1533	if (i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model)) {
1534		dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n",
1535			i, CCI_PMU_MAX_HW_CNTRS(cci_pmu->model));
1536		return -EINVAL;
1537	}
1538
1539	raw_spin_lock_init(&cci_pmu->hw_events.pmu_lock);
1540	mutex_init(&cci_pmu->reserve_mutex);
1541	atomic_set(&cci_pmu->active_events, 0);
1542	cpumask_set_cpu(smp_processor_id(), &cci_pmu->cpus);
1543
1544	cci_pmu->cpu_nb = (struct notifier_block) {
1545		.notifier_call	= cci_pmu_cpu_notifier,
1546		/*
1547		 * to migrate uncore events, our notifier should be executed
1548		 * before perf core's notifier.
1549		 */
1550		.priority	= CPU_PRI_PERF + 1,
1551	};
1552
1553	ret = register_cpu_notifier(&cci_pmu->cpu_nb);
1554	if (ret)
1555		return ret;
1556
1557	ret = cci_pmu_init(cci_pmu, pdev);
1558	if (ret) {
1559		unregister_cpu_notifier(&cci_pmu->cpu_nb);
1560		return ret;
1561	}
1562
1563	pr_info("ARM %s PMU driver probed", cci_pmu->model->name);
1564	return 0;
1565}
1566
1567static int cci_platform_probe(struct platform_device *pdev)
1568{
1569	if (!cci_probed())
1570		return -ENODEV;
1571
1572	return of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev);
1573}
1574
1575static struct platform_driver cci_pmu_driver = {
1576	.driver = {
1577		   .name = DRIVER_NAME_PMU,
1578		   .of_match_table = arm_cci_pmu_matches,
1579		  },
1580	.probe = cci_pmu_probe,
1581};
1582
1583static struct platform_driver cci_platform_driver = {
1584	.driver = {
1585		   .name = DRIVER_NAME,
1586		   .of_match_table = arm_cci_matches,
1587		  },
1588	.probe = cci_platform_probe,
1589};
1590
1591static int __init cci_platform_init(void)
1592{
1593	int ret;
1594
1595	ret = platform_driver_register(&cci_pmu_driver);
1596	if (ret)
1597		return ret;
1598
1599	return platform_driver_register(&cci_platform_driver);
1600}
1601
1602#else /* !CONFIG_ARM_CCI_PMU */
1603
1604static int __init cci_platform_init(void)
1605{
1606	return 0;
1607}
1608
1609#endif /* CONFIG_ARM_CCI_PMU */
1610
1611#ifdef CONFIG_ARM_CCI400_PORT_CTRL
1612
1613#define CCI_PORT_CTRL		0x0
1614#define CCI_CTRL_STATUS		0xc
1615
1616#define CCI_ENABLE_SNOOP_REQ	0x1
1617#define CCI_ENABLE_DVM_REQ	0x2
1618#define CCI_ENABLE_REQ		(CCI_ENABLE_SNOOP_REQ | CCI_ENABLE_DVM_REQ)
1619
1620enum cci_ace_port_type {
1621	ACE_INVALID_PORT = 0x0,
1622	ACE_PORT,
1623	ACE_LITE_PORT,
1624};
1625
1626struct cci_ace_port {
1627	void __iomem *base;
1628	unsigned long phys;
1629	enum cci_ace_port_type type;
1630	struct device_node *dn;
1631};
1632
1633static struct cci_ace_port *ports;
1634static unsigned int nb_cci_ports;
1635
1636struct cpu_port {
1637	u64 mpidr;
1638	u32 port;
1639};
1640
1641/*
1642 * Use the port MSB as valid flag, shift can be made dynamic
1643 * by computing number of bits required for port indexes.
1644 * Code disabling CCI cpu ports runs with D-cache invalidated
1645 * and SCTLR bit clear so data accesses must be kept to a minimum
1646 * to improve performance; for now shift is left static to
1647 * avoid one more data access while disabling the CCI port.
1648 */
1649#define PORT_VALID_SHIFT	31
1650#define PORT_VALID		(0x1 << PORT_VALID_SHIFT)
1651
1652static inline void init_cpu_port(struct cpu_port *port, u32 index, u64 mpidr)
1653{
1654	port->port = PORT_VALID | index;
1655	port->mpidr = mpidr;
1656}
1657
1658static inline bool cpu_port_is_valid(struct cpu_port *port)
1659{
1660	return !!(port->port & PORT_VALID);
1661}
1662
1663static inline bool cpu_port_match(struct cpu_port *port, u64 mpidr)
1664{
1665	return port->mpidr == (mpidr & MPIDR_HWID_BITMASK);
1666}
1667
1668static struct cpu_port cpu_port[NR_CPUS];
1669
1670/**
1671 * __cci_ace_get_port - Function to retrieve the port index connected to
1672 *			a cpu or device.
1673 *
1674 * @dn: device node of the device to look-up
1675 * @type: port type
1676 *
1677 * Return value:
1678 *	- CCI port index if success
1679 *	- -ENODEV if failure
1680 */
1681static int __cci_ace_get_port(struct device_node *dn, int type)
1682{
1683	int i;
1684	bool ace_match;
1685	struct device_node *cci_portn;
1686
1687	cci_portn = of_parse_phandle(dn, "cci-control-port", 0);
1688	for (i = 0; i < nb_cci_ports; i++) {
1689		ace_match = ports[i].type == type;
1690		if (ace_match && cci_portn == ports[i].dn)
1691			return i;
1692	}
1693	return -ENODEV;
1694}
1695
1696int cci_ace_get_port(struct device_node *dn)
1697{
1698	return __cci_ace_get_port(dn, ACE_LITE_PORT);
1699}
1700EXPORT_SYMBOL_GPL(cci_ace_get_port);
1701
1702static void cci_ace_init_ports(void)
1703{
1704	int port, cpu;
1705	struct device_node *cpun;
1706
1707	/*
1708	 * Port index look-up speeds up the function disabling ports by CPU,
1709	 * since the logical to port index mapping is done once and does
1710	 * not change after system boot.
1711	 * The stashed index array is initialized for all possible CPUs
1712	 * at probe time.
1713	 */
1714	for_each_possible_cpu(cpu) {
1715		/* too early to use cpu->of_node */
1716		cpun = of_get_cpu_node(cpu, NULL);
1717
1718		if (WARN(!cpun, "Missing cpu device node\n"))
1719			continue;
1720
1721		port = __cci_ace_get_port(cpun, ACE_PORT);
1722		if (port < 0)
1723			continue;
1724
1725		init_cpu_port(&cpu_port[cpu], port, cpu_logical_map(cpu));
1726	}
1727
1728	for_each_possible_cpu(cpu) {
1729		WARN(!cpu_port_is_valid(&cpu_port[cpu]),
1730			"CPU %u does not have an associated CCI port\n",
1731			cpu);
1732	}
1733}
1734/*
1735 * Functions to enable/disable a CCI interconnect slave port
1736 *
1737 * They are called by low-level power management code to disable slave
1738 * interfaces snoops and DVM broadcast.
1739 * Since they may execute with cache data allocation disabled and
1740 * after the caches have been cleaned and invalidated the functions provide
1741 * no explicit locking since they may run with D-cache disabled, so normal
1742 * cacheable kernel locks based on ldrex/strex may not work.
1743 * Locking has to be provided by BSP implementations to ensure proper
1744 * operations.
1745 */
1746
1747/**
1748 * cci_port_control() - function to control a CCI port
1749 *
1750 * @port: index of the port to setup
1751 * @enable: if true enables the port, if false disables it
1752 */
1753static void notrace cci_port_control(unsigned int port, bool enable)
1754{
1755	void __iomem *base = ports[port].base;
1756
1757	writel_relaxed(enable ? CCI_ENABLE_REQ : 0, base + CCI_PORT_CTRL);
1758	/*
1759	 * This function is called from power down procedures
1760	 * and must not execute any instruction that might
1761	 * cause the processor to be put in a quiescent state
1762	 * (eg wfi). Hence, cpu_relax() can not be added to this
1763	 * read loop to optimize power, since it might hide possibly
1764	 * disruptive operations.
1765	 */
1766	while (readl_relaxed(cci_ctrl_base + CCI_CTRL_STATUS) & 0x1)
1767			;
1768}
1769
1770/**
1771 * cci_disable_port_by_cpu() - function to disable a CCI port by CPU
1772 *			       reference
1773 *
1774 * @mpidr: mpidr of the CPU whose CCI port should be disabled
1775 *
1776 * Disabling a CCI port for a CPU implies disabling the CCI port
1777 * controlling that CPU cluster. Code disabling CPU CCI ports
1778 * must make sure that the CPU running the code is the last active CPU
1779 * in the cluster ie all other CPUs are quiescent in a low power state.
1780 *
1781 * Return:
1782 *	0 on success
1783 *	-ENODEV on port look-up failure
1784 */
1785int notrace cci_disable_port_by_cpu(u64 mpidr)
1786{
1787	int cpu;
1788	bool is_valid;
1789	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1790		is_valid = cpu_port_is_valid(&cpu_port[cpu]);
1791		if (is_valid && cpu_port_match(&cpu_port[cpu], mpidr)) {
1792			cci_port_control(cpu_port[cpu].port, false);
1793			return 0;
1794		}
1795	}
1796	return -ENODEV;
1797}
1798EXPORT_SYMBOL_GPL(cci_disable_port_by_cpu);
1799
1800/**
1801 * cci_enable_port_for_self() - enable a CCI port for calling CPU
1802 *
1803 * Enabling a CCI port for the calling CPU implies enabling the CCI
1804 * port controlling that CPU's cluster. Caller must make sure that the
1805 * CPU running the code is the first active CPU in the cluster and all
1806 * other CPUs are quiescent in a low power state  or waiting for this CPU
1807 * to complete the CCI initialization.
1808 *
1809 * Because this is called when the MMU is still off and with no stack,
1810 * the code must be position independent and ideally rely on callee
1811 * clobbered registers only.  To achieve this we must code this function
1812 * entirely in assembler.
1813 *
1814 * On success this returns with the proper CCI port enabled.  In case of
1815 * any failure this never returns as the inability to enable the CCI is
1816 * fatal and there is no possible recovery at this stage.
1817 */
1818asmlinkage void __naked cci_enable_port_for_self(void)
1819{
1820	asm volatile ("\n"
1821"	.arch armv7-a\n"
1822"	mrc	p15, 0, r0, c0, c0, 5	@ get MPIDR value \n"
1823"	and	r0, r0, #"__stringify(MPIDR_HWID_BITMASK)" \n"
1824"	adr	r1, 5f \n"
1825"	ldr	r2, [r1] \n"
1826"	add	r1, r1, r2		@ &cpu_port \n"
1827"	add	ip, r1, %[sizeof_cpu_port] \n"
1828
1829	/* Loop over the cpu_port array looking for a matching MPIDR */
1830"1:	ldr	r2, [r1, %[offsetof_cpu_port_mpidr_lsb]] \n"
1831"	cmp	r2, r0 			@ compare MPIDR \n"
1832"	bne	2f \n"
1833
1834	/* Found a match, now test port validity */
1835"	ldr	r3, [r1, %[offsetof_cpu_port_port]] \n"
1836"	tst	r3, #"__stringify(PORT_VALID)" \n"
1837"	bne	3f \n"
1838
1839	/* no match, loop with the next cpu_port entry */
1840"2:	add	r1, r1, %[sizeof_struct_cpu_port] \n"
1841"	cmp	r1, ip			@ done? \n"
1842"	blo	1b \n"
1843
1844	/* CCI port not found -- cheaply try to stall this CPU */
1845"cci_port_not_found: \n"
1846"	wfi \n"
1847"	wfe \n"
1848"	b	cci_port_not_found \n"
1849
1850	/* Use matched port index to look up the corresponding ports entry */
1851"3:	bic	r3, r3, #"__stringify(PORT_VALID)" \n"
1852"	adr	r0, 6f \n"
1853"	ldmia	r0, {r1, r2} \n"
1854"	sub	r1, r1, r0 		@ virt - phys \n"
1855"	ldr	r0, [r0, r2] 		@ *(&ports) \n"
1856"	mov	r2, %[sizeof_struct_ace_port] \n"
1857"	mla	r0, r2, r3, r0		@ &ports[index] \n"
1858"	sub	r0, r0, r1		@ virt_to_phys() \n"
1859
1860	/* Enable the CCI port */
1861"	ldr	r0, [r0, %[offsetof_port_phys]] \n"
1862"	mov	r3, %[cci_enable_req]\n"
1863"	str	r3, [r0, #"__stringify(CCI_PORT_CTRL)"] \n"
1864
1865	/* poll the status reg for completion */
1866"	adr	r1, 7f \n"
1867"	ldr	r0, [r1] \n"
1868"	ldr	r0, [r0, r1]		@ cci_ctrl_base \n"
1869"4:	ldr	r1, [r0, #"__stringify(CCI_CTRL_STATUS)"] \n"
1870"	tst	r1, %[cci_control_status_bits] \n"
1871"	bne	4b \n"
1872
1873"	mov	r0, #0 \n"
1874"	bx	lr \n"
1875
1876"	.align	2 \n"
1877"5:	.word	cpu_port - . \n"
1878"6:	.word	. \n"
1879"	.word	ports - 6b \n"
1880"7:	.word	cci_ctrl_phys - . \n"
1881	: :
1882	[sizeof_cpu_port] "i" (sizeof(cpu_port)),
1883	[cci_enable_req] "i" cpu_to_le32(CCI_ENABLE_REQ),
1884	[cci_control_status_bits] "i" cpu_to_le32(1),
1885#ifndef __ARMEB__
1886	[offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)),
1887#else
1888	[offsetof_cpu_port_mpidr_lsb] "i" (offsetof(struct cpu_port, mpidr)+4),
1889#endif
1890	[offsetof_cpu_port_port] "i" (offsetof(struct cpu_port, port)),
1891	[sizeof_struct_cpu_port] "i" (sizeof(struct cpu_port)),
1892	[sizeof_struct_ace_port] "i" (sizeof(struct cci_ace_port)),
1893	[offsetof_port_phys] "i" (offsetof(struct cci_ace_port, phys)) );
1894
1895	unreachable();
1896}
1897
1898/**
1899 * __cci_control_port_by_device() - function to control a CCI port by device
1900 *				    reference
1901 *
1902 * @dn: device node pointer of the device whose CCI port should be
1903 *      controlled
1904 * @enable: if true enables the port, if false disables it
1905 *
1906 * Return:
1907 *	0 on success
1908 *	-ENODEV on port look-up failure
1909 */
1910int notrace __cci_control_port_by_device(struct device_node *dn, bool enable)
1911{
1912	int port;
1913
1914	if (!dn)
1915		return -ENODEV;
1916
1917	port = __cci_ace_get_port(dn, ACE_LITE_PORT);
1918	if (WARN_ONCE(port < 0, "node %s ACE lite port look-up failure\n",
1919				dn->full_name))
1920		return -ENODEV;
1921	cci_port_control(port, enable);
1922	return 0;
1923}
1924EXPORT_SYMBOL_GPL(__cci_control_port_by_device);
1925
1926/**
1927 * __cci_control_port_by_index() - function to control a CCI port by port index
1928 *
1929 * @port: port index previously retrieved with cci_ace_get_port()
1930 * @enable: if true enables the port, if false disables it
1931 *
1932 * Return:
1933 *	0 on success
1934 *	-ENODEV on port index out of range
1935 *	-EPERM if operation carried out on an ACE PORT
1936 */
1937int notrace __cci_control_port_by_index(u32 port, bool enable)
1938{
1939	if (port >= nb_cci_ports || ports[port].type == ACE_INVALID_PORT)
1940		return -ENODEV;
1941	/*
1942	 * CCI control for ports connected to CPUS is extremely fragile
1943	 * and must be made to go through a specific and controlled
1944	 * interface (ie cci_disable_port_by_cpu(); control by general purpose
1945	 * indexing is therefore disabled for ACE ports.
1946	 */
1947	if (ports[port].type == ACE_PORT)
1948		return -EPERM;
1949
1950	cci_port_control(port, enable);
1951	return 0;
1952}
1953EXPORT_SYMBOL_GPL(__cci_control_port_by_index);
1954
1955static const struct of_device_id arm_cci_ctrl_if_matches[] = {
1956	{.compatible = "arm,cci-400-ctrl-if", },
1957	{},
1958};
1959
1960static int cci_probe_ports(struct device_node *np)
1961{
1962	struct cci_nb_ports const *cci_config;
1963	int ret, i, nb_ace = 0, nb_ace_lite = 0;
1964	struct device_node *cp;
1965	struct resource res;
1966	const char *match_str;
1967	bool is_ace;
1968
1969
1970	cci_config = of_match_node(arm_cci_matches, np)->data;
1971	if (!cci_config)
1972		return -ENODEV;
1973
1974	nb_cci_ports = cci_config->nb_ace + cci_config->nb_ace_lite;
1975
1976	ports = kcalloc(nb_cci_ports, sizeof(*ports), GFP_KERNEL);
1977	if (!ports)
1978		return -ENOMEM;
1979
1980	for_each_child_of_node(np, cp) {
1981		if (!of_match_node(arm_cci_ctrl_if_matches, cp))
1982			continue;
1983
1984		i = nb_ace + nb_ace_lite;
1985
1986		if (i >= nb_cci_ports)
1987			break;
1988
1989		if (of_property_read_string(cp, "interface-type",
1990					&match_str)) {
1991			WARN(1, "node %s missing interface-type property\n",
1992				  cp->full_name);
1993			continue;
1994		}
1995		is_ace = strcmp(match_str, "ace") == 0;
1996		if (!is_ace && strcmp(match_str, "ace-lite")) {
1997			WARN(1, "node %s containing invalid interface-type property, skipping it\n",
1998					cp->full_name);
1999			continue;
2000		}
2001
2002		ret = of_address_to_resource(cp, 0, &res);
2003		if (!ret) {
2004			ports[i].base = ioremap(res.start, resource_size(&res));
2005			ports[i].phys = res.start;
2006		}
2007		if (ret || !ports[i].base) {
2008			WARN(1, "unable to ioremap CCI port %d\n", i);
2009			continue;
2010		}
2011
2012		if (is_ace) {
2013			if (WARN_ON(nb_ace >= cci_config->nb_ace))
2014				continue;
2015			ports[i].type = ACE_PORT;
2016			++nb_ace;
2017		} else {
2018			if (WARN_ON(nb_ace_lite >= cci_config->nb_ace_lite))
2019				continue;
2020			ports[i].type = ACE_LITE_PORT;
2021			++nb_ace_lite;
2022		}
2023		ports[i].dn = cp;
2024	}
2025
2026	 /* initialize a stashed array of ACE ports to speed-up look-up */
2027	cci_ace_init_ports();
2028
2029	/*
2030	 * Multi-cluster systems may need this data when non-coherent, during
2031	 * cluster power-up/power-down. Make sure it reaches main memory.
2032	 */
2033	sync_cache_w(&cci_ctrl_base);
2034	sync_cache_w(&cci_ctrl_phys);
2035	sync_cache_w(&ports);
2036	sync_cache_w(&cpu_port);
2037	__sync_cache_range_w(ports, sizeof(*ports) * nb_cci_ports);
2038	pr_info("ARM CCI driver probed\n");
2039
2040	return 0;
2041}
2042#else /* !CONFIG_ARM_CCI400_PORT_CTRL */
2043static inline int cci_probe_ports(struct device_node *np)
2044{
2045	return 0;
2046}
2047#endif /* CONFIG_ARM_CCI400_PORT_CTRL */
2048
2049static int cci_probe(void)
2050{
2051	int ret;
2052	struct device_node *np;
2053	struct resource res;
2054
2055	np = of_find_matching_node(NULL, arm_cci_matches);
2056	if(!np || !of_device_is_available(np))
2057		return -ENODEV;
2058
2059	ret = of_address_to_resource(np, 0, &res);
2060	if (!ret) {
2061		cci_ctrl_base = ioremap(res.start, resource_size(&res));
2062		cci_ctrl_phys =	res.start;
2063	}
2064	if (ret || !cci_ctrl_base) {
2065		WARN(1, "unable to ioremap CCI ctrl\n");
2066		return -ENXIO;
2067	}
2068
2069	return cci_probe_ports(np);
2070}
2071
2072static int cci_init_status = -EAGAIN;
2073static DEFINE_MUTEX(cci_probing);
2074
2075static int cci_init(void)
2076{
2077	if (cci_init_status != -EAGAIN)
2078		return cci_init_status;
2079
2080	mutex_lock(&cci_probing);
2081	if (cci_init_status == -EAGAIN)
2082		cci_init_status = cci_probe();
2083	mutex_unlock(&cci_probing);
2084	return cci_init_status;
2085}
2086
2087/*
2088 * To sort out early init calls ordering a helper function is provided to
2089 * check if the CCI driver has beed initialized. Function check if the driver
2090 * has been initialized, if not it calls the init function that probes
2091 * the driver and updates the return value.
2092 */
2093bool cci_probed(void)
2094{
2095	return cci_init() == 0;
2096}
2097EXPORT_SYMBOL_GPL(cci_probed);
2098
2099early_initcall(cci_init);
2100core_initcall(cci_platform_init);
2101MODULE_LICENSE("GPL");
2102MODULE_DESCRIPTION("ARM CCI support");
2103