1/*
2 *    Disk Array driver for HP Smart Array controllers.
3 *    (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
4 *
5 *    This program is free software; you can redistribute it and/or modify
6 *    it under the terms of the GNU General Public License as published by
7 *    the Free Software Foundation; version 2 of the License.
8 *
9 *    This program is distributed in the hope that it will be useful,
10 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11 *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 *    General Public License for more details.
13 *
14 *    You should have received a copy of the GNU General Public License
15 *    along with this program; if not, write to the Free Software
16 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 *    02111-1307, USA.
18 *
19 *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
20 *
21 */
22
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/types.h>
26#include <linux/pci.h>
27#include <linux/pci-aspm.h>
28#include <linux/kernel.h>
29#include <linux/slab.h>
30#include <linux/delay.h>
31#include <linux/major.h>
32#include <linux/fs.h>
33#include <linux/bio.h>
34#include <linux/blkpg.h>
35#include <linux/timer.h>
36#include <linux/proc_fs.h>
37#include <linux/seq_file.h>
38#include <linux/init.h>
39#include <linux/jiffies.h>
40#include <linux/hdreg.h>
41#include <linux/spinlock.h>
42#include <linux/compat.h>
43#include <linux/mutex.h>
44#include <linux/bitmap.h>
45#include <linux/io.h>
46#include <asm/uaccess.h>
47
48#include <linux/dma-mapping.h>
49#include <linux/blkdev.h>
50#include <linux/genhd.h>
51#include <linux/completion.h>
52#include <scsi/scsi.h>
53#include <scsi/sg.h>
54#include <scsi/scsi_ioctl.h>
55#include <linux/cdrom.h>
56#include <linux/scatterlist.h>
57#include <linux/kthread.h>
58
59#define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
60#define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
61#define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
62
63/* Embedded module documentation macros - see modules.h */
64MODULE_AUTHOR("Hewlett-Packard Company");
65MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
66MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
67MODULE_VERSION("3.6.26");
68MODULE_LICENSE("GPL");
69static int cciss_tape_cmds = 6;
70module_param(cciss_tape_cmds, int, 0644);
71MODULE_PARM_DESC(cciss_tape_cmds,
72	"number of commands to allocate for tape devices (default: 6)");
73static int cciss_simple_mode;
74module_param(cciss_simple_mode, int, S_IRUGO|S_IWUSR);
75MODULE_PARM_DESC(cciss_simple_mode,
76	"Use 'simple mode' rather than 'performant mode'");
77
78static int cciss_allow_hpsa;
79module_param(cciss_allow_hpsa, int, S_IRUGO|S_IWUSR);
80MODULE_PARM_DESC(cciss_allow_hpsa,
81	"Prevent cciss driver from accessing hardware known to be "
82	" supported by the hpsa driver");
83
84static DEFINE_MUTEX(cciss_mutex);
85static struct proc_dir_entry *proc_cciss;
86
87#include "cciss_cmd.h"
88#include "cciss.h"
89#include <linux/cciss_ioctl.h>
90
91/* define the PCI info for the cards we can control */
92static const struct pci_device_id cciss_pci_device_id[] = {
93	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS,  0x0E11, 0x4070},
94	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
95	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
96	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
97	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
98	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
99	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
100	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
101	{PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
102	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSA,     0x103C, 0x3225},
103	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3223},
104	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3234},
105	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3235},
106	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3211},
107	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3212},
108	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3213},
109	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3214},
110	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSD,     0x103C, 0x3215},
111	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x3237},
112	{PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSC,     0x103C, 0x323D},
113	{0,}
114};
115
116MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
117
118/*  board_id = Subsystem Device ID & Vendor ID
119 *  product = Marketing Name for the board
120 *  access = Address of the struct of function pointers
121 */
122static struct board_type products[] = {
123	{0x40700E11, "Smart Array 5300", &SA5_access},
124	{0x40800E11, "Smart Array 5i", &SA5B_access},
125	{0x40820E11, "Smart Array 532", &SA5B_access},
126	{0x40830E11, "Smart Array 5312", &SA5B_access},
127	{0x409A0E11, "Smart Array 641", &SA5_access},
128	{0x409B0E11, "Smart Array 642", &SA5_access},
129	{0x409C0E11, "Smart Array 6400", &SA5_access},
130	{0x409D0E11, "Smart Array 6400 EM", &SA5_access},
131	{0x40910E11, "Smart Array 6i", &SA5_access},
132	{0x3225103C, "Smart Array P600", &SA5_access},
133	{0x3223103C, "Smart Array P800", &SA5_access},
134	{0x3234103C, "Smart Array P400", &SA5_access},
135	{0x3235103C, "Smart Array P400i", &SA5_access},
136	{0x3211103C, "Smart Array E200i", &SA5_access},
137	{0x3212103C, "Smart Array E200", &SA5_access},
138	{0x3213103C, "Smart Array E200i", &SA5_access},
139	{0x3214103C, "Smart Array E200i", &SA5_access},
140	{0x3215103C, "Smart Array E200i", &SA5_access},
141	{0x3237103C, "Smart Array E500", &SA5_access},
142	{0x323D103C, "Smart Array P700m", &SA5_access},
143};
144
145/* How long to wait (in milliseconds) for board to go into simple mode */
146#define MAX_CONFIG_WAIT 30000
147#define MAX_IOCTL_CONFIG_WAIT 1000
148
149/*define how many times we will try a command because of bus resets */
150#define MAX_CMD_RETRIES 3
151
152#define MAX_CTLR	32
153
154/* Originally cciss driver only supports 8 major numbers */
155#define MAX_CTLR_ORIG 	8
156
157static ctlr_info_t *hba[MAX_CTLR];
158
159static struct task_struct *cciss_scan_thread;
160static DEFINE_MUTEX(scan_mutex);
161static LIST_HEAD(scan_q);
162
163static void do_cciss_request(struct request_queue *q);
164static irqreturn_t do_cciss_intx(int irq, void *dev_id);
165static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id);
166static int cciss_open(struct block_device *bdev, fmode_t mode);
167static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode);
168static void cciss_release(struct gendisk *disk, fmode_t mode);
169static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
170		       unsigned int cmd, unsigned long arg);
171static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
172
173static int cciss_revalidate(struct gendisk *disk);
174static int rebuild_lun_table(ctlr_info_t *h, int first_time, int via_ioctl);
175static int deregister_disk(ctlr_info_t *h, int drv_index,
176			   int clear_all, int via_ioctl);
177
178static void cciss_read_capacity(ctlr_info_t *h, int logvol,
179			sector_t *total_size, unsigned int *block_size);
180static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
181			sector_t *total_size, unsigned int *block_size);
182static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
183			sector_t total_size,
184			unsigned int block_size, InquiryData_struct *inq_buff,
185				   drive_info_struct *drv);
186static void cciss_interrupt_mode(ctlr_info_t *);
187static int cciss_enter_simple_mode(struct ctlr_info *h);
188static void start_io(ctlr_info_t *h);
189static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
190			__u8 page_code, unsigned char scsi3addr[],
191			int cmd_type);
192static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
193	int attempt_retry);
194static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
195
196static int add_to_scan_list(struct ctlr_info *h);
197static int scan_thread(void *data);
198static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
199static void cciss_hba_release(struct device *dev);
200static void cciss_device_release(struct device *dev);
201static void cciss_free_gendisk(ctlr_info_t *h, int drv_index);
202static void cciss_free_drive_info(ctlr_info_t *h, int drv_index);
203static inline u32 next_command(ctlr_info_t *h);
204static int cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
205				u32 *cfg_base_addr, u64 *cfg_base_addr_index,
206				u64 *cfg_offset);
207static int cciss_pci_find_memory_BAR(struct pci_dev *pdev,
208				     unsigned long *memory_bar);
209static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag);
210static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem *cfgtable);
211
212/* performant mode helper functions */
213static void  calc_bucket_map(int *bucket, int num_buckets, int nsgs,
214				int *bucket_map);
215static void cciss_put_controller_into_performant_mode(ctlr_info_t *h);
216
217#ifdef CONFIG_PROC_FS
218static void cciss_procinit(ctlr_info_t *h);
219#else
220static void cciss_procinit(ctlr_info_t *h)
221{
222}
223#endif				/* CONFIG_PROC_FS */
224
225#ifdef CONFIG_COMPAT
226static int cciss_compat_ioctl(struct block_device *, fmode_t,
227			      unsigned, unsigned long);
228#endif
229
230static const struct block_device_operations cciss_fops = {
231	.owner = THIS_MODULE,
232	.open = cciss_unlocked_open,
233	.release = cciss_release,
234	.ioctl = cciss_ioctl,
235	.getgeo = cciss_getgeo,
236#ifdef CONFIG_COMPAT
237	.compat_ioctl = cciss_compat_ioctl,
238#endif
239	.revalidate_disk = cciss_revalidate,
240};
241
242/* set_performant_mode: Modify the tag for cciss performant
243 * set bit 0 for pull model, bits 3-1 for block fetch
244 * register number
245 */
246static void set_performant_mode(ctlr_info_t *h, CommandList_struct *c)
247{
248	if (likely(h->transMethod & CFGTBL_Trans_Performant))
249		c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
250}
251
252/*
253 * Enqueuing and dequeuing functions for cmdlists.
254 */
255static inline void addQ(struct list_head *list, CommandList_struct *c)
256{
257	list_add_tail(&c->list, list);
258}
259
260static inline void removeQ(CommandList_struct *c)
261{
262	/*
263	 * After kexec/dump some commands might still
264	 * be in flight, which the firmware will try
265	 * to complete. Resetting the firmware doesn't work
266	 * with old fw revisions, so we have to mark
267	 * them off as 'stale' to prevent the driver from
268	 * falling over.
269	 */
270	if (WARN_ON(list_empty(&c->list))) {
271		c->cmd_type = CMD_MSG_STALE;
272		return;
273	}
274
275	list_del_init(&c->list);
276}
277
278static void enqueue_cmd_and_start_io(ctlr_info_t *h,
279	CommandList_struct *c)
280{
281	unsigned long flags;
282	set_performant_mode(h, c);
283	spin_lock_irqsave(&h->lock, flags);
284	addQ(&h->reqQ, c);
285	h->Qdepth++;
286	if (h->Qdepth > h->maxQsinceinit)
287		h->maxQsinceinit = h->Qdepth;
288	start_io(h);
289	spin_unlock_irqrestore(&h->lock, flags);
290}
291
292static void cciss_free_sg_chain_blocks(SGDescriptor_struct **cmd_sg_list,
293	int nr_cmds)
294{
295	int i;
296
297	if (!cmd_sg_list)
298		return;
299	for (i = 0; i < nr_cmds; i++) {
300		kfree(cmd_sg_list[i]);
301		cmd_sg_list[i] = NULL;
302	}
303	kfree(cmd_sg_list);
304}
305
306static SGDescriptor_struct **cciss_allocate_sg_chain_blocks(
307	ctlr_info_t *h, int chainsize, int nr_cmds)
308{
309	int j;
310	SGDescriptor_struct **cmd_sg_list;
311
312	if (chainsize <= 0)
313		return NULL;
314
315	cmd_sg_list = kmalloc(sizeof(*cmd_sg_list) * nr_cmds, GFP_KERNEL);
316	if (!cmd_sg_list)
317		return NULL;
318
319	/* Build up chain blocks for each command */
320	for (j = 0; j < nr_cmds; j++) {
321		/* Need a block of chainsized s/g elements. */
322		cmd_sg_list[j] = kmalloc((chainsize *
323			sizeof(*cmd_sg_list[j])), GFP_KERNEL);
324		if (!cmd_sg_list[j]) {
325			dev_err(&h->pdev->dev, "Cannot get memory "
326				"for s/g chains.\n");
327			goto clean;
328		}
329	}
330	return cmd_sg_list;
331clean:
332	cciss_free_sg_chain_blocks(cmd_sg_list, nr_cmds);
333	return NULL;
334}
335
336static void cciss_unmap_sg_chain_block(ctlr_info_t *h, CommandList_struct *c)
337{
338	SGDescriptor_struct *chain_sg;
339	u64bit temp64;
340
341	if (c->Header.SGTotal <= h->max_cmd_sgentries)
342		return;
343
344	chain_sg = &c->SG[h->max_cmd_sgentries - 1];
345	temp64.val32.lower = chain_sg->Addr.lower;
346	temp64.val32.upper = chain_sg->Addr.upper;
347	pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
348}
349
350static void cciss_map_sg_chain_block(ctlr_info_t *h, CommandList_struct *c,
351	SGDescriptor_struct *chain_block, int len)
352{
353	SGDescriptor_struct *chain_sg;
354	u64bit temp64;
355
356	chain_sg = &c->SG[h->max_cmd_sgentries - 1];
357	chain_sg->Ext = CCISS_SG_CHAIN;
358	chain_sg->Len = len;
359	temp64.val = pci_map_single(h->pdev, chain_block, len,
360				PCI_DMA_TODEVICE);
361	chain_sg->Addr.lower = temp64.val32.lower;
362	chain_sg->Addr.upper = temp64.val32.upper;
363}
364
365#include "cciss_scsi.c"		/* For SCSI tape support */
366
367static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
368	"UNKNOWN"
369};
370#define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
371
372#ifdef CONFIG_PROC_FS
373
374/*
375 * Report information about this controller.
376 */
377#define ENG_GIG 1000000000
378#define ENG_GIG_FACTOR (ENG_GIG/512)
379#define ENGAGE_SCSI	"engage scsi"
380
381static void cciss_seq_show_header(struct seq_file *seq)
382{
383	ctlr_info_t *h = seq->private;
384
385	seq_printf(seq, "%s: HP %s Controller\n"
386		"Board ID: 0x%08lx\n"
387		"Firmware Version: %c%c%c%c\n"
388		"IRQ: %d\n"
389		"Logical drives: %d\n"
390		"Current Q depth: %d\n"
391		"Current # commands on controller: %d\n"
392		"Max Q depth since init: %d\n"
393		"Max # commands on controller since init: %d\n"
394		"Max SG entries since init: %d\n",
395		h->devname,
396		h->product_name,
397		(unsigned long)h->board_id,
398		h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
399		h->firm_ver[3], (unsigned int)h->intr[h->intr_mode],
400		h->num_luns,
401		h->Qdepth, h->commands_outstanding,
402		h->maxQsinceinit, h->max_outstanding, h->maxSG);
403
404#ifdef CONFIG_CISS_SCSI_TAPE
405	cciss_seq_tape_report(seq, h);
406#endif /* CONFIG_CISS_SCSI_TAPE */
407}
408
409static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
410{
411	ctlr_info_t *h = seq->private;
412	unsigned long flags;
413
414	/* prevent displaying bogus info during configuration
415	 * or deconfiguration of a logical volume
416	 */
417	spin_lock_irqsave(&h->lock, flags);
418	if (h->busy_configuring) {
419		spin_unlock_irqrestore(&h->lock, flags);
420		return ERR_PTR(-EBUSY);
421	}
422	h->busy_configuring = 1;
423	spin_unlock_irqrestore(&h->lock, flags);
424
425	if (*pos == 0)
426		cciss_seq_show_header(seq);
427
428	return pos;
429}
430
431static int cciss_seq_show(struct seq_file *seq, void *v)
432{
433	sector_t vol_sz, vol_sz_frac;
434	ctlr_info_t *h = seq->private;
435	unsigned ctlr = h->ctlr;
436	loff_t *pos = v;
437	drive_info_struct *drv = h->drv[*pos];
438
439	if (*pos > h->highest_lun)
440		return 0;
441
442	if (drv == NULL) /* it's possible for h->drv[] to have holes. */
443		return 0;
444
445	if (drv->heads == 0)
446		return 0;
447
448	vol_sz = drv->nr_blocks;
449	vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
450	vol_sz_frac *= 100;
451	sector_div(vol_sz_frac, ENG_GIG_FACTOR);
452
453	if (drv->raid_level < 0 || drv->raid_level > RAID_UNKNOWN)
454		drv->raid_level = RAID_UNKNOWN;
455	seq_printf(seq, "cciss/c%dd%d:"
456			"\t%4u.%02uGB\tRAID %s\n",
457			ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
458			raid_label[drv->raid_level]);
459	return 0;
460}
461
462static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
463{
464	ctlr_info_t *h = seq->private;
465
466	if (*pos > h->highest_lun)
467		return NULL;
468	*pos += 1;
469
470	return pos;
471}
472
473static void cciss_seq_stop(struct seq_file *seq, void *v)
474{
475	ctlr_info_t *h = seq->private;
476
477	/* Only reset h->busy_configuring if we succeeded in setting
478	 * it during cciss_seq_start. */
479	if (v == ERR_PTR(-EBUSY))
480		return;
481
482	h->busy_configuring = 0;
483}
484
485static const struct seq_operations cciss_seq_ops = {
486	.start = cciss_seq_start,
487	.show  = cciss_seq_show,
488	.next  = cciss_seq_next,
489	.stop  = cciss_seq_stop,
490};
491
492static int cciss_seq_open(struct inode *inode, struct file *file)
493{
494	int ret = seq_open(file, &cciss_seq_ops);
495	struct seq_file *seq = file->private_data;
496
497	if (!ret)
498		seq->private = PDE_DATA(inode);
499
500	return ret;
501}
502
503static ssize_t
504cciss_proc_write(struct file *file, const char __user *buf,
505		 size_t length, loff_t *ppos)
506{
507	int err;
508	char *buffer;
509
510#ifndef CONFIG_CISS_SCSI_TAPE
511	return -EINVAL;
512#endif
513
514	if (!buf || length > PAGE_SIZE - 1)
515		return -EINVAL;
516
517	buffer = (char *)__get_free_page(GFP_KERNEL);
518	if (!buffer)
519		return -ENOMEM;
520
521	err = -EFAULT;
522	if (copy_from_user(buffer, buf, length))
523		goto out;
524	buffer[length] = '\0';
525
526#ifdef CONFIG_CISS_SCSI_TAPE
527	if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
528		struct seq_file *seq = file->private_data;
529		ctlr_info_t *h = seq->private;
530
531		err = cciss_engage_scsi(h);
532		if (err == 0)
533			err = length;
534	} else
535#endif /* CONFIG_CISS_SCSI_TAPE */
536		err = -EINVAL;
537	/* might be nice to have "disengage" too, but it's not
538	   safely possible. (only 1 module use count, lock issues.) */
539
540out:
541	free_page((unsigned long)buffer);
542	return err;
543}
544
545static const struct file_operations cciss_proc_fops = {
546	.owner	 = THIS_MODULE,
547	.open    = cciss_seq_open,
548	.read    = seq_read,
549	.llseek  = seq_lseek,
550	.release = seq_release,
551	.write	 = cciss_proc_write,
552};
553
554static void cciss_procinit(ctlr_info_t *h)
555{
556	struct proc_dir_entry *pde;
557
558	if (proc_cciss == NULL)
559		proc_cciss = proc_mkdir("driver/cciss", NULL);
560	if (!proc_cciss)
561		return;
562	pde = proc_create_data(h->devname, S_IWUSR | S_IRUSR | S_IRGRP |
563					S_IROTH, proc_cciss,
564					&cciss_proc_fops, h);
565}
566#endif				/* CONFIG_PROC_FS */
567
568#define MAX_PRODUCT_NAME_LEN 19
569
570#define to_hba(n) container_of(n, struct ctlr_info, dev)
571#define to_drv(n) container_of(n, drive_info_struct, dev)
572
573/* List of controllers which cannot be hard reset on kexec with reset_devices */
574static u32 unresettable_controller[] = {
575	0x3223103C, /* Smart Array P800 */
576	0x3234103C, /* Smart Array P400 */
577	0x3235103C, /* Smart Array P400i */
578	0x3211103C, /* Smart Array E200i */
579	0x3212103C, /* Smart Array E200 */
580	0x3213103C, /* Smart Array E200i */
581	0x3214103C, /* Smart Array E200i */
582	0x3215103C, /* Smart Array E200i */
583	0x3237103C, /* Smart Array E500 */
584	0x323D103C, /* Smart Array P700m */
585	0x40800E11, /* Smart Array 5i */
586	0x409C0E11, /* Smart Array 6400 */
587	0x409D0E11, /* Smart Array 6400 EM */
588	0x40700E11, /* Smart Array 5300 */
589	0x40820E11, /* Smart Array 532 */
590	0x40830E11, /* Smart Array 5312 */
591	0x409A0E11, /* Smart Array 641 */
592	0x409B0E11, /* Smart Array 642 */
593	0x40910E11, /* Smart Array 6i */
594};
595
596/* List of controllers which cannot even be soft reset */
597static u32 soft_unresettable_controller[] = {
598	0x40800E11, /* Smart Array 5i */
599	0x40700E11, /* Smart Array 5300 */
600	0x40820E11, /* Smart Array 532 */
601	0x40830E11, /* Smart Array 5312 */
602	0x409A0E11, /* Smart Array 641 */
603	0x409B0E11, /* Smart Array 642 */
604	0x40910E11, /* Smart Array 6i */
605	/* Exclude 640x boards.  These are two pci devices in one slot
606	 * which share a battery backed cache module.  One controls the
607	 * cache, the other accesses the cache through the one that controls
608	 * it.  If we reset the one controlling the cache, the other will
609	 * likely not be happy.  Just forbid resetting this conjoined mess.
610	 */
611	0x409C0E11, /* Smart Array 6400 */
612	0x409D0E11, /* Smart Array 6400 EM */
613};
614
615static int ctlr_is_hard_resettable(u32 board_id)
616{
617	int i;
618
619	for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
620		if (unresettable_controller[i] == board_id)
621			return 0;
622	return 1;
623}
624
625static int ctlr_is_soft_resettable(u32 board_id)
626{
627	int i;
628
629	for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
630		if (soft_unresettable_controller[i] == board_id)
631			return 0;
632	return 1;
633}
634
635static int ctlr_is_resettable(u32 board_id)
636{
637	return ctlr_is_hard_resettable(board_id) ||
638		ctlr_is_soft_resettable(board_id);
639}
640
641static ssize_t host_show_resettable(struct device *dev,
642				    struct device_attribute *attr,
643				    char *buf)
644{
645	struct ctlr_info *h = to_hba(dev);
646
647	return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
648}
649static DEVICE_ATTR(resettable, S_IRUGO, host_show_resettable, NULL);
650
651static ssize_t host_store_rescan(struct device *dev,
652				 struct device_attribute *attr,
653				 const char *buf, size_t count)
654{
655	struct ctlr_info *h = to_hba(dev);
656
657	add_to_scan_list(h);
658	wake_up_process(cciss_scan_thread);
659	wait_for_completion_interruptible(&h->scan_wait);
660
661	return count;
662}
663static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
664
665static ssize_t host_show_transport_mode(struct device *dev,
666				 struct device_attribute *attr,
667				 char *buf)
668{
669	struct ctlr_info *h = to_hba(dev);
670
671	return snprintf(buf, 20, "%s\n",
672		h->transMethod & CFGTBL_Trans_Performant ?
673			"performant" : "simple");
674}
675static DEVICE_ATTR(transport_mode, S_IRUGO, host_show_transport_mode, NULL);
676
677static ssize_t dev_show_unique_id(struct device *dev,
678				 struct device_attribute *attr,
679				 char *buf)
680{
681	drive_info_struct *drv = to_drv(dev);
682	struct ctlr_info *h = to_hba(drv->dev.parent);
683	__u8 sn[16];
684	unsigned long flags;
685	int ret = 0;
686
687	spin_lock_irqsave(&h->lock, flags);
688	if (h->busy_configuring)
689		ret = -EBUSY;
690	else
691		memcpy(sn, drv->serial_no, sizeof(sn));
692	spin_unlock_irqrestore(&h->lock, flags);
693
694	if (ret)
695		return ret;
696	else
697		return snprintf(buf, 16 * 2 + 2,
698				"%02X%02X%02X%02X%02X%02X%02X%02X"
699				"%02X%02X%02X%02X%02X%02X%02X%02X\n",
700				sn[0], sn[1], sn[2], sn[3],
701				sn[4], sn[5], sn[6], sn[7],
702				sn[8], sn[9], sn[10], sn[11],
703				sn[12], sn[13], sn[14], sn[15]);
704}
705static DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
706
707static ssize_t dev_show_vendor(struct device *dev,
708			       struct device_attribute *attr,
709			       char *buf)
710{
711	drive_info_struct *drv = to_drv(dev);
712	struct ctlr_info *h = to_hba(drv->dev.parent);
713	char vendor[VENDOR_LEN + 1];
714	unsigned long flags;
715	int ret = 0;
716
717	spin_lock_irqsave(&h->lock, flags);
718	if (h->busy_configuring)
719		ret = -EBUSY;
720	else
721		memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
722	spin_unlock_irqrestore(&h->lock, flags);
723
724	if (ret)
725		return ret;
726	else
727		return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
728}
729static DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
730
731static ssize_t dev_show_model(struct device *dev,
732			      struct device_attribute *attr,
733			      char *buf)
734{
735	drive_info_struct *drv = to_drv(dev);
736	struct ctlr_info *h = to_hba(drv->dev.parent);
737	char model[MODEL_LEN + 1];
738	unsigned long flags;
739	int ret = 0;
740
741	spin_lock_irqsave(&h->lock, flags);
742	if (h->busy_configuring)
743		ret = -EBUSY;
744	else
745		memcpy(model, drv->model, MODEL_LEN + 1);
746	spin_unlock_irqrestore(&h->lock, flags);
747
748	if (ret)
749		return ret;
750	else
751		return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
752}
753static DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
754
755static ssize_t dev_show_rev(struct device *dev,
756			    struct device_attribute *attr,
757			    char *buf)
758{
759	drive_info_struct *drv = to_drv(dev);
760	struct ctlr_info *h = to_hba(drv->dev.parent);
761	char rev[REV_LEN + 1];
762	unsigned long flags;
763	int ret = 0;
764
765	spin_lock_irqsave(&h->lock, flags);
766	if (h->busy_configuring)
767		ret = -EBUSY;
768	else
769		memcpy(rev, drv->rev, REV_LEN + 1);
770	spin_unlock_irqrestore(&h->lock, flags);
771
772	if (ret)
773		return ret;
774	else
775		return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
776}
777static DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
778
779static ssize_t cciss_show_lunid(struct device *dev,
780				struct device_attribute *attr, char *buf)
781{
782	drive_info_struct *drv = to_drv(dev);
783	struct ctlr_info *h = to_hba(drv->dev.parent);
784	unsigned long flags;
785	unsigned char lunid[8];
786
787	spin_lock_irqsave(&h->lock, flags);
788	if (h->busy_configuring) {
789		spin_unlock_irqrestore(&h->lock, flags);
790		return -EBUSY;
791	}
792	if (!drv->heads) {
793		spin_unlock_irqrestore(&h->lock, flags);
794		return -ENOTTY;
795	}
796	memcpy(lunid, drv->LunID, sizeof(lunid));
797	spin_unlock_irqrestore(&h->lock, flags);
798	return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
799		lunid[0], lunid[1], lunid[2], lunid[3],
800		lunid[4], lunid[5], lunid[6], lunid[7]);
801}
802static DEVICE_ATTR(lunid, S_IRUGO, cciss_show_lunid, NULL);
803
804static ssize_t cciss_show_raid_level(struct device *dev,
805				     struct device_attribute *attr, char *buf)
806{
807	drive_info_struct *drv = to_drv(dev);
808	struct ctlr_info *h = to_hba(drv->dev.parent);
809	int raid;
810	unsigned long flags;
811
812	spin_lock_irqsave(&h->lock, flags);
813	if (h->busy_configuring) {
814		spin_unlock_irqrestore(&h->lock, flags);
815		return -EBUSY;
816	}
817	raid = drv->raid_level;
818	spin_unlock_irqrestore(&h->lock, flags);
819	if (raid < 0 || raid > RAID_UNKNOWN)
820		raid = RAID_UNKNOWN;
821
822	return snprintf(buf, strlen(raid_label[raid]) + 7, "RAID %s\n",
823			raid_label[raid]);
824}
825static DEVICE_ATTR(raid_level, S_IRUGO, cciss_show_raid_level, NULL);
826
827static ssize_t cciss_show_usage_count(struct device *dev,
828				      struct device_attribute *attr, char *buf)
829{
830	drive_info_struct *drv = to_drv(dev);
831	struct ctlr_info *h = to_hba(drv->dev.parent);
832	unsigned long flags;
833	int count;
834
835	spin_lock_irqsave(&h->lock, flags);
836	if (h->busy_configuring) {
837		spin_unlock_irqrestore(&h->lock, flags);
838		return -EBUSY;
839	}
840	count = drv->usage_count;
841	spin_unlock_irqrestore(&h->lock, flags);
842	return snprintf(buf, 20, "%d\n", count);
843}
844static DEVICE_ATTR(usage_count, S_IRUGO, cciss_show_usage_count, NULL);
845
846static struct attribute *cciss_host_attrs[] = {
847	&dev_attr_rescan.attr,
848	&dev_attr_resettable.attr,
849	&dev_attr_transport_mode.attr,
850	NULL
851};
852
853static struct attribute_group cciss_host_attr_group = {
854	.attrs = cciss_host_attrs,
855};
856
857static const struct attribute_group *cciss_host_attr_groups[] = {
858	&cciss_host_attr_group,
859	NULL
860};
861
862static struct device_type cciss_host_type = {
863	.name		= "cciss_host",
864	.groups		= cciss_host_attr_groups,
865	.release	= cciss_hba_release,
866};
867
868static struct attribute *cciss_dev_attrs[] = {
869	&dev_attr_unique_id.attr,
870	&dev_attr_model.attr,
871	&dev_attr_vendor.attr,
872	&dev_attr_rev.attr,
873	&dev_attr_lunid.attr,
874	&dev_attr_raid_level.attr,
875	&dev_attr_usage_count.attr,
876	NULL
877};
878
879static struct attribute_group cciss_dev_attr_group = {
880	.attrs = cciss_dev_attrs,
881};
882
883static const struct attribute_group *cciss_dev_attr_groups[] = {
884	&cciss_dev_attr_group,
885	NULL
886};
887
888static struct device_type cciss_dev_type = {
889	.name		= "cciss_device",
890	.groups		= cciss_dev_attr_groups,
891	.release	= cciss_device_release,
892};
893
894static struct bus_type cciss_bus_type = {
895	.name		= "cciss",
896};
897
898/*
899 * cciss_hba_release is called when the reference count
900 * of h->dev goes to zero.
901 */
902static void cciss_hba_release(struct device *dev)
903{
904	/*
905	 * nothing to do, but need this to avoid a warning
906	 * about not having a release handler from lib/kref.c.
907	 */
908}
909
910/*
911 * Initialize sysfs entry for each controller.  This sets up and registers
912 * the 'cciss#' directory for each individual controller under
913 * /sys/bus/pci/devices/<dev>/.
914 */
915static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
916{
917	device_initialize(&h->dev);
918	h->dev.type = &cciss_host_type;
919	h->dev.bus = &cciss_bus_type;
920	dev_set_name(&h->dev, "%s", h->devname);
921	h->dev.parent = &h->pdev->dev;
922
923	return device_add(&h->dev);
924}
925
926/*
927 * Remove sysfs entries for an hba.
928 */
929static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
930{
931	device_del(&h->dev);
932	put_device(&h->dev); /* final put. */
933}
934
935/* cciss_device_release is called when the reference count
936 * of h->drv[x]dev goes to zero.
937 */
938static void cciss_device_release(struct device *dev)
939{
940	drive_info_struct *drv = to_drv(dev);
941	kfree(drv);
942}
943
944/*
945 * Initialize sysfs for each logical drive.  This sets up and registers
946 * the 'c#d#' directory for each individual logical drive under
947 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
948 * /sys/block/cciss!c#d# to this entry.
949 */
950static long cciss_create_ld_sysfs_entry(struct ctlr_info *h,
951				       int drv_index)
952{
953	struct device *dev;
954
955	if (h->drv[drv_index]->device_initialized)
956		return 0;
957
958	dev = &h->drv[drv_index]->dev;
959	device_initialize(dev);
960	dev->type = &cciss_dev_type;
961	dev->bus = &cciss_bus_type;
962	dev_set_name(dev, "c%dd%d", h->ctlr, drv_index);
963	dev->parent = &h->dev;
964	h->drv[drv_index]->device_initialized = 1;
965	return device_add(dev);
966}
967
968/*
969 * Remove sysfs entries for a logical drive.
970 */
971static void cciss_destroy_ld_sysfs_entry(struct ctlr_info *h, int drv_index,
972	int ctlr_exiting)
973{
974	struct device *dev = &h->drv[drv_index]->dev;
975
976	/* special case for c*d0, we only destroy it on controller exit */
977	if (drv_index == 0 && !ctlr_exiting)
978		return;
979
980	device_del(dev);
981	put_device(dev); /* the "final" put. */
982	h->drv[drv_index] = NULL;
983}
984
985/*
986 * For operations that cannot sleep, a command block is allocated at init,
987 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
988 * which ones are free or in use.
989 */
990static CommandList_struct *cmd_alloc(ctlr_info_t *h)
991{
992	CommandList_struct *c;
993	int i;
994	u64bit temp64;
995	dma_addr_t cmd_dma_handle, err_dma_handle;
996
997	do {
998		i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
999		if (i == h->nr_cmds)
1000			return NULL;
1001	} while (test_and_set_bit(i, h->cmd_pool_bits) != 0);
1002	c = h->cmd_pool + i;
1003	memset(c, 0, sizeof(CommandList_struct));
1004	cmd_dma_handle = h->cmd_pool_dhandle + i * sizeof(CommandList_struct);
1005	c->err_info = h->errinfo_pool + i;
1006	memset(c->err_info, 0, sizeof(ErrorInfo_struct));
1007	err_dma_handle = h->errinfo_pool_dhandle
1008	    + i * sizeof(ErrorInfo_struct);
1009	h->nr_allocs++;
1010
1011	c->cmdindex = i;
1012
1013	INIT_LIST_HEAD(&c->list);
1014	c->busaddr = (__u32) cmd_dma_handle;
1015	temp64.val = (__u64) err_dma_handle;
1016	c->ErrDesc.Addr.lower = temp64.val32.lower;
1017	c->ErrDesc.Addr.upper = temp64.val32.upper;
1018	c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1019
1020	c->ctlr = h->ctlr;
1021	return c;
1022}
1023
1024/* allocate a command using pci_alloc_consistent, used for ioctls,
1025 * etc., not for the main i/o path.
1026 */
1027static CommandList_struct *cmd_special_alloc(ctlr_info_t *h)
1028{
1029	CommandList_struct *c;
1030	u64bit temp64;
1031	dma_addr_t cmd_dma_handle, err_dma_handle;
1032
1033	c = pci_zalloc_consistent(h->pdev, sizeof(CommandList_struct),
1034				  &cmd_dma_handle);
1035	if (c == NULL)
1036		return NULL;
1037
1038	c->cmdindex = -1;
1039
1040	c->err_info = pci_zalloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
1041					    &err_dma_handle);
1042
1043	if (c->err_info == NULL) {
1044		pci_free_consistent(h->pdev,
1045			sizeof(CommandList_struct), c, cmd_dma_handle);
1046		return NULL;
1047	}
1048
1049	INIT_LIST_HEAD(&c->list);
1050	c->busaddr = (__u32) cmd_dma_handle;
1051	temp64.val = (__u64) err_dma_handle;
1052	c->ErrDesc.Addr.lower = temp64.val32.lower;
1053	c->ErrDesc.Addr.upper = temp64.val32.upper;
1054	c->ErrDesc.Len = sizeof(ErrorInfo_struct);
1055
1056	c->ctlr = h->ctlr;
1057	return c;
1058}
1059
1060static void cmd_free(ctlr_info_t *h, CommandList_struct *c)
1061{
1062	int i;
1063
1064	i = c - h->cmd_pool;
1065	clear_bit(i, h->cmd_pool_bits);
1066	h->nr_frees++;
1067}
1068
1069static void cmd_special_free(ctlr_info_t *h, CommandList_struct *c)
1070{
1071	u64bit temp64;
1072
1073	temp64.val32.lower = c->ErrDesc.Addr.lower;
1074	temp64.val32.upper = c->ErrDesc.Addr.upper;
1075	pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
1076			    c->err_info, (dma_addr_t) temp64.val);
1077	pci_free_consistent(h->pdev, sizeof(CommandList_struct), c,
1078		(dma_addr_t) cciss_tag_discard_error_bits(h, (u32) c->busaddr));
1079}
1080
1081static inline ctlr_info_t *get_host(struct gendisk *disk)
1082{
1083	return disk->queue->queuedata;
1084}
1085
1086static inline drive_info_struct *get_drv(struct gendisk *disk)
1087{
1088	return disk->private_data;
1089}
1090
1091/*
1092 * Open.  Make sure the device is really there.
1093 */
1094static int cciss_open(struct block_device *bdev, fmode_t mode)
1095{
1096	ctlr_info_t *h = get_host(bdev->bd_disk);
1097	drive_info_struct *drv = get_drv(bdev->bd_disk);
1098
1099	dev_dbg(&h->pdev->dev, "cciss_open %s\n", bdev->bd_disk->disk_name);
1100	if (drv->busy_configuring)
1101		return -EBUSY;
1102	/*
1103	 * Root is allowed to open raw volume zero even if it's not configured
1104	 * so array config can still work. Root is also allowed to open any
1105	 * volume that has a LUN ID, so it can issue IOCTL to reread the
1106	 * disk information.  I don't think I really like this
1107	 * but I'm already using way to many device nodes to claim another one
1108	 * for "raw controller".
1109	 */
1110	if (drv->heads == 0) {
1111		if (MINOR(bdev->bd_dev) != 0) {	/* not node 0? */
1112			/* if not node 0 make sure it is a partition = 0 */
1113			if (MINOR(bdev->bd_dev) & 0x0f) {
1114				return -ENXIO;
1115				/* if it is, make sure we have a LUN ID */
1116			} else if (memcmp(drv->LunID, CTLR_LUNID,
1117				sizeof(drv->LunID))) {
1118				return -ENXIO;
1119			}
1120		}
1121		if (!capable(CAP_SYS_ADMIN))
1122			return -EPERM;
1123	}
1124	drv->usage_count++;
1125	h->usage_count++;
1126	return 0;
1127}
1128
1129static int cciss_unlocked_open(struct block_device *bdev, fmode_t mode)
1130{
1131	int ret;
1132
1133	mutex_lock(&cciss_mutex);
1134	ret = cciss_open(bdev, mode);
1135	mutex_unlock(&cciss_mutex);
1136
1137	return ret;
1138}
1139
1140/*
1141 * Close.  Sync first.
1142 */
1143static void cciss_release(struct gendisk *disk, fmode_t mode)
1144{
1145	ctlr_info_t *h;
1146	drive_info_struct *drv;
1147
1148	mutex_lock(&cciss_mutex);
1149	h = get_host(disk);
1150	drv = get_drv(disk);
1151	dev_dbg(&h->pdev->dev, "cciss_release %s\n", disk->disk_name);
1152	drv->usage_count--;
1153	h->usage_count--;
1154	mutex_unlock(&cciss_mutex);
1155}
1156
1157#ifdef CONFIG_COMPAT
1158
1159static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1160				  unsigned cmd, unsigned long arg);
1161static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1162				      unsigned cmd, unsigned long arg);
1163
1164static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
1165			      unsigned cmd, unsigned long arg)
1166{
1167	switch (cmd) {
1168	case CCISS_GETPCIINFO:
1169	case CCISS_GETINTINFO:
1170	case CCISS_SETINTINFO:
1171	case CCISS_GETNODENAME:
1172	case CCISS_SETNODENAME:
1173	case CCISS_GETHEARTBEAT:
1174	case CCISS_GETBUSTYPES:
1175	case CCISS_GETFIRMVER:
1176	case CCISS_GETDRIVVER:
1177	case CCISS_REVALIDVOLS:
1178	case CCISS_DEREGDISK:
1179	case CCISS_REGNEWDISK:
1180	case CCISS_REGNEWD:
1181	case CCISS_RESCANDISK:
1182	case CCISS_GETLUNINFO:
1183		return cciss_ioctl(bdev, mode, cmd, arg);
1184
1185	case CCISS_PASSTHRU32:
1186		return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
1187	case CCISS_BIG_PASSTHRU32:
1188		return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
1189
1190	default:
1191		return -ENOIOCTLCMD;
1192	}
1193}
1194
1195static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
1196				  unsigned cmd, unsigned long arg)
1197{
1198	IOCTL32_Command_struct __user *arg32 =
1199	    (IOCTL32_Command_struct __user *) arg;
1200	IOCTL_Command_struct arg64;
1201	IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
1202	int err;
1203	u32 cp;
1204
1205	memset(&arg64, 0, sizeof(arg64));
1206	err = 0;
1207	err |=
1208	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1209			   sizeof(arg64.LUN_info));
1210	err |=
1211	    copy_from_user(&arg64.Request, &arg32->Request,
1212			   sizeof(arg64.Request));
1213	err |=
1214	    copy_from_user(&arg64.error_info, &arg32->error_info,
1215			   sizeof(arg64.error_info));
1216	err |= get_user(arg64.buf_size, &arg32->buf_size);
1217	err |= get_user(cp, &arg32->buf);
1218	arg64.buf = compat_ptr(cp);
1219	err |= copy_to_user(p, &arg64, sizeof(arg64));
1220
1221	if (err)
1222		return -EFAULT;
1223
1224	err = cciss_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
1225	if (err)
1226		return err;
1227	err |=
1228	    copy_in_user(&arg32->error_info, &p->error_info,
1229			 sizeof(arg32->error_info));
1230	if (err)
1231		return -EFAULT;
1232	return err;
1233}
1234
1235static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
1236				      unsigned cmd, unsigned long arg)
1237{
1238	BIG_IOCTL32_Command_struct __user *arg32 =
1239	    (BIG_IOCTL32_Command_struct __user *) arg;
1240	BIG_IOCTL_Command_struct arg64;
1241	BIG_IOCTL_Command_struct __user *p =
1242	    compat_alloc_user_space(sizeof(arg64));
1243	int err;
1244	u32 cp;
1245
1246	memset(&arg64, 0, sizeof(arg64));
1247	err = 0;
1248	err |=
1249	    copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
1250			   sizeof(arg64.LUN_info));
1251	err |=
1252	    copy_from_user(&arg64.Request, &arg32->Request,
1253			   sizeof(arg64.Request));
1254	err |=
1255	    copy_from_user(&arg64.error_info, &arg32->error_info,
1256			   sizeof(arg64.error_info));
1257	err |= get_user(arg64.buf_size, &arg32->buf_size);
1258	err |= get_user(arg64.malloc_size, &arg32->malloc_size);
1259	err |= get_user(cp, &arg32->buf);
1260	arg64.buf = compat_ptr(cp);
1261	err |= copy_to_user(p, &arg64, sizeof(arg64));
1262
1263	if (err)
1264		return -EFAULT;
1265
1266	err = cciss_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
1267	if (err)
1268		return err;
1269	err |=
1270	    copy_in_user(&arg32->error_info, &p->error_info,
1271			 sizeof(arg32->error_info));
1272	if (err)
1273		return -EFAULT;
1274	return err;
1275}
1276#endif
1277
1278static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1279{
1280	drive_info_struct *drv = get_drv(bdev->bd_disk);
1281
1282	if (!drv->cylinders)
1283		return -ENXIO;
1284
1285	geo->heads = drv->heads;
1286	geo->sectors = drv->sectors;
1287	geo->cylinders = drv->cylinders;
1288	return 0;
1289}
1290
1291static void check_ioctl_unit_attention(ctlr_info_t *h, CommandList_struct *c)
1292{
1293	if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
1294			c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
1295		(void)check_for_unit_attention(h, c);
1296}
1297
1298static int cciss_getpciinfo(ctlr_info_t *h, void __user *argp)
1299{
1300	cciss_pci_info_struct pciinfo;
1301
1302	if (!argp)
1303		return -EINVAL;
1304	pciinfo.domain = pci_domain_nr(h->pdev->bus);
1305	pciinfo.bus = h->pdev->bus->number;
1306	pciinfo.dev_fn = h->pdev->devfn;
1307	pciinfo.board_id = h->board_id;
1308	if (copy_to_user(argp, &pciinfo, sizeof(cciss_pci_info_struct)))
1309		return -EFAULT;
1310	return 0;
1311}
1312
1313static int cciss_getintinfo(ctlr_info_t *h, void __user *argp)
1314{
1315	cciss_coalint_struct intinfo;
1316	unsigned long flags;
1317
1318	if (!argp)
1319		return -EINVAL;
1320	spin_lock_irqsave(&h->lock, flags);
1321	intinfo.delay = readl(&h->cfgtable->HostWrite.CoalIntDelay);
1322	intinfo.count = readl(&h->cfgtable->HostWrite.CoalIntCount);
1323	spin_unlock_irqrestore(&h->lock, flags);
1324	if (copy_to_user
1325	    (argp, &intinfo, sizeof(cciss_coalint_struct)))
1326		return -EFAULT;
1327	return 0;
1328}
1329
1330static int cciss_setintinfo(ctlr_info_t *h, void __user *argp)
1331{
1332	cciss_coalint_struct intinfo;
1333	unsigned long flags;
1334	int i;
1335
1336	if (!argp)
1337		return -EINVAL;
1338	if (!capable(CAP_SYS_ADMIN))
1339		return -EPERM;
1340	if (copy_from_user(&intinfo, argp, sizeof(intinfo)))
1341		return -EFAULT;
1342	if ((intinfo.delay == 0) && (intinfo.count == 0))
1343		return -EINVAL;
1344	spin_lock_irqsave(&h->lock, flags);
1345	/* Update the field, and then ring the doorbell */
1346	writel(intinfo.delay, &(h->cfgtable->HostWrite.CoalIntDelay));
1347	writel(intinfo.count, &(h->cfgtable->HostWrite.CoalIntCount));
1348	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1349
1350	for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1351		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1352			break;
1353		udelay(1000); /* delay and try again */
1354	}
1355	spin_unlock_irqrestore(&h->lock, flags);
1356	if (i >= MAX_IOCTL_CONFIG_WAIT)
1357		return -EAGAIN;
1358	return 0;
1359}
1360
1361static int cciss_getnodename(ctlr_info_t *h, void __user *argp)
1362{
1363	NodeName_type NodeName;
1364	unsigned long flags;
1365	int i;
1366
1367	if (!argp)
1368		return -EINVAL;
1369	spin_lock_irqsave(&h->lock, flags);
1370	for (i = 0; i < 16; i++)
1371		NodeName[i] = readb(&h->cfgtable->ServerName[i]);
1372	spin_unlock_irqrestore(&h->lock, flags);
1373	if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1374		return -EFAULT;
1375	return 0;
1376}
1377
1378static int cciss_setnodename(ctlr_info_t *h, void __user *argp)
1379{
1380	NodeName_type NodeName;
1381	unsigned long flags;
1382	int i;
1383
1384	if (!argp)
1385		return -EINVAL;
1386	if (!capable(CAP_SYS_ADMIN))
1387		return -EPERM;
1388	if (copy_from_user(NodeName, argp, sizeof(NodeName_type)))
1389		return -EFAULT;
1390	spin_lock_irqsave(&h->lock, flags);
1391	/* Update the field, and then ring the doorbell */
1392	for (i = 0; i < 16; i++)
1393		writeb(NodeName[i], &h->cfgtable->ServerName[i]);
1394	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
1395	for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1396		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
1397			break;
1398		udelay(1000); /* delay and try again */
1399	}
1400	spin_unlock_irqrestore(&h->lock, flags);
1401	if (i >= MAX_IOCTL_CONFIG_WAIT)
1402		return -EAGAIN;
1403	return 0;
1404}
1405
1406static int cciss_getheartbeat(ctlr_info_t *h, void __user *argp)
1407{
1408	Heartbeat_type heartbeat;
1409	unsigned long flags;
1410
1411	if (!argp)
1412		return -EINVAL;
1413	spin_lock_irqsave(&h->lock, flags);
1414	heartbeat = readl(&h->cfgtable->HeartBeat);
1415	spin_unlock_irqrestore(&h->lock, flags);
1416	if (copy_to_user(argp, &heartbeat, sizeof(Heartbeat_type)))
1417		return -EFAULT;
1418	return 0;
1419}
1420
1421static int cciss_getbustypes(ctlr_info_t *h, void __user *argp)
1422{
1423	BusTypes_type BusTypes;
1424	unsigned long flags;
1425
1426	if (!argp)
1427		return -EINVAL;
1428	spin_lock_irqsave(&h->lock, flags);
1429	BusTypes = readl(&h->cfgtable->BusTypes);
1430	spin_unlock_irqrestore(&h->lock, flags);
1431	if (copy_to_user(argp, &BusTypes, sizeof(BusTypes_type)))
1432		return -EFAULT;
1433	return 0;
1434}
1435
1436static int cciss_getfirmver(ctlr_info_t *h, void __user *argp)
1437{
1438	FirmwareVer_type firmware;
1439
1440	if (!argp)
1441		return -EINVAL;
1442	memcpy(firmware, h->firm_ver, 4);
1443
1444	if (copy_to_user
1445	    (argp, firmware, sizeof(FirmwareVer_type)))
1446		return -EFAULT;
1447	return 0;
1448}
1449
1450static int cciss_getdrivver(ctlr_info_t *h, void __user *argp)
1451{
1452	DriverVer_type DriverVer = DRIVER_VERSION;
1453
1454	if (!argp)
1455		return -EINVAL;
1456	if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
1457		return -EFAULT;
1458	return 0;
1459}
1460
1461static int cciss_getluninfo(ctlr_info_t *h,
1462	struct gendisk *disk, void __user *argp)
1463{
1464	LogvolInfo_struct luninfo;
1465	drive_info_struct *drv = get_drv(disk);
1466
1467	if (!argp)
1468		return -EINVAL;
1469	memcpy(&luninfo.LunID, drv->LunID, sizeof(luninfo.LunID));
1470	luninfo.num_opens = drv->usage_count;
1471	luninfo.num_parts = 0;
1472	if (copy_to_user(argp, &luninfo, sizeof(LogvolInfo_struct)))
1473		return -EFAULT;
1474	return 0;
1475}
1476
1477static int cciss_passthru(ctlr_info_t *h, void __user *argp)
1478{
1479	IOCTL_Command_struct iocommand;
1480	CommandList_struct *c;
1481	char *buff = NULL;
1482	u64bit temp64;
1483	DECLARE_COMPLETION_ONSTACK(wait);
1484
1485	if (!argp)
1486		return -EINVAL;
1487
1488	if (!capable(CAP_SYS_RAWIO))
1489		return -EPERM;
1490
1491	if (copy_from_user
1492	    (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1493		return -EFAULT;
1494	if ((iocommand.buf_size < 1) &&
1495	    (iocommand.Request.Type.Direction != XFER_NONE)) {
1496		return -EINVAL;
1497	}
1498	if (iocommand.buf_size > 0) {
1499		buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1500		if (buff == NULL)
1501			return -EFAULT;
1502	}
1503	if (iocommand.Request.Type.Direction == XFER_WRITE) {
1504		/* Copy the data into the buffer we created */
1505		if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
1506			kfree(buff);
1507			return -EFAULT;
1508		}
1509	} else {
1510		memset(buff, 0, iocommand.buf_size);
1511	}
1512	c = cmd_special_alloc(h);
1513	if (!c) {
1514		kfree(buff);
1515		return -ENOMEM;
1516	}
1517	/* Fill in the command type */
1518	c->cmd_type = CMD_IOCTL_PEND;
1519	/* Fill in Command Header */
1520	c->Header.ReplyQueue = 0;   /* unused in simple mode */
1521	if (iocommand.buf_size > 0) { /* buffer to fill */
1522		c->Header.SGList = 1;
1523		c->Header.SGTotal = 1;
1524	} else { /* no buffers to fill */
1525		c->Header.SGList = 0;
1526		c->Header.SGTotal = 0;
1527	}
1528	c->Header.LUN = iocommand.LUN_info;
1529	/* use the kernel address the cmd block for tag */
1530	c->Header.Tag.lower = c->busaddr;
1531
1532	/* Fill in Request block */
1533	c->Request = iocommand.Request;
1534
1535	/* Fill in the scatter gather information */
1536	if (iocommand.buf_size > 0) {
1537		temp64.val = pci_map_single(h->pdev, buff,
1538			iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
1539		c->SG[0].Addr.lower = temp64.val32.lower;
1540		c->SG[0].Addr.upper = temp64.val32.upper;
1541		c->SG[0].Len = iocommand.buf_size;
1542		c->SG[0].Ext = 0;  /* we are not chaining */
1543	}
1544	c->waiting = &wait;
1545
1546	enqueue_cmd_and_start_io(h, c);
1547	wait_for_completion(&wait);
1548
1549	/* unlock the buffers from DMA */
1550	temp64.val32.lower = c->SG[0].Addr.lower;
1551	temp64.val32.upper = c->SG[0].Addr.upper;
1552	pci_unmap_single(h->pdev, (dma_addr_t) temp64.val, iocommand.buf_size,
1553			 PCI_DMA_BIDIRECTIONAL);
1554	check_ioctl_unit_attention(h, c);
1555
1556	/* Copy the error information out */
1557	iocommand.error_info = *(c->err_info);
1558	if (copy_to_user(argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1559		kfree(buff);
1560		cmd_special_free(h, c);
1561		return -EFAULT;
1562	}
1563
1564	if (iocommand.Request.Type.Direction == XFER_READ) {
1565		/* Copy the data out of the buffer we created */
1566		if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
1567			kfree(buff);
1568			cmd_special_free(h, c);
1569			return -EFAULT;
1570		}
1571	}
1572	kfree(buff);
1573	cmd_special_free(h, c);
1574	return 0;
1575}
1576
1577static int cciss_bigpassthru(ctlr_info_t *h, void __user *argp)
1578{
1579	BIG_IOCTL_Command_struct *ioc;
1580	CommandList_struct *c;
1581	unsigned char **buff = NULL;
1582	int *buff_size = NULL;
1583	u64bit temp64;
1584	BYTE sg_used = 0;
1585	int status = 0;
1586	int i;
1587	DECLARE_COMPLETION_ONSTACK(wait);
1588	__u32 left;
1589	__u32 sz;
1590	BYTE __user *data_ptr;
1591
1592	if (!argp)
1593		return -EINVAL;
1594	if (!capable(CAP_SYS_RAWIO))
1595		return -EPERM;
1596	ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
1597	if (!ioc) {
1598		status = -ENOMEM;
1599		goto cleanup1;
1600	}
1601	if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1602		status = -EFAULT;
1603		goto cleanup1;
1604	}
1605	if ((ioc->buf_size < 1) &&
1606	    (ioc->Request.Type.Direction != XFER_NONE)) {
1607		status = -EINVAL;
1608		goto cleanup1;
1609	}
1610	/* Check kmalloc limits  using all SGs */
1611	if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1612		status = -EINVAL;
1613		goto cleanup1;
1614	}
1615	if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1616		status = -EINVAL;
1617		goto cleanup1;
1618	}
1619	buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1620	if (!buff) {
1621		status = -ENOMEM;
1622		goto cleanup1;
1623	}
1624	buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
1625	if (!buff_size) {
1626		status = -ENOMEM;
1627		goto cleanup1;
1628	}
1629	left = ioc->buf_size;
1630	data_ptr = ioc->buf;
1631	while (left) {
1632		sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
1633		buff_size[sg_used] = sz;
1634		buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1635		if (buff[sg_used] == NULL) {
1636			status = -ENOMEM;
1637			goto cleanup1;
1638		}
1639		if (ioc->Request.Type.Direction == XFER_WRITE) {
1640			if (copy_from_user(buff[sg_used], data_ptr, sz)) {
1641				status = -EFAULT;
1642				goto cleanup1;
1643			}
1644		} else {
1645			memset(buff[sg_used], 0, sz);
1646		}
1647		left -= sz;
1648		data_ptr += sz;
1649		sg_used++;
1650	}
1651	c = cmd_special_alloc(h);
1652	if (!c) {
1653		status = -ENOMEM;
1654		goto cleanup1;
1655	}
1656	c->cmd_type = CMD_IOCTL_PEND;
1657	c->Header.ReplyQueue = 0;
1658	c->Header.SGList = sg_used;
1659	c->Header.SGTotal = sg_used;
1660	c->Header.LUN = ioc->LUN_info;
1661	c->Header.Tag.lower = c->busaddr;
1662
1663	c->Request = ioc->Request;
1664	for (i = 0; i < sg_used; i++) {
1665		temp64.val = pci_map_single(h->pdev, buff[i], buff_size[i],
1666				    PCI_DMA_BIDIRECTIONAL);
1667		c->SG[i].Addr.lower = temp64.val32.lower;
1668		c->SG[i].Addr.upper = temp64.val32.upper;
1669		c->SG[i].Len = buff_size[i];
1670		c->SG[i].Ext = 0;	/* we are not chaining */
1671	}
1672	c->waiting = &wait;
1673	enqueue_cmd_and_start_io(h, c);
1674	wait_for_completion(&wait);
1675	/* unlock the buffers from DMA */
1676	for (i = 0; i < sg_used; i++) {
1677		temp64.val32.lower = c->SG[i].Addr.lower;
1678		temp64.val32.upper = c->SG[i].Addr.upper;
1679		pci_unmap_single(h->pdev,
1680			(dma_addr_t) temp64.val, buff_size[i],
1681			PCI_DMA_BIDIRECTIONAL);
1682	}
1683	check_ioctl_unit_attention(h, c);
1684	/* Copy the error information out */
1685	ioc->error_info = *(c->err_info);
1686	if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1687		cmd_special_free(h, c);
1688		status = -EFAULT;
1689		goto cleanup1;
1690	}
1691	if (ioc->Request.Type.Direction == XFER_READ) {
1692		/* Copy the data out of the buffer we created */
1693		BYTE __user *ptr = ioc->buf;
1694		for (i = 0; i < sg_used; i++) {
1695			if (copy_to_user(ptr, buff[i], buff_size[i])) {
1696				cmd_special_free(h, c);
1697				status = -EFAULT;
1698				goto cleanup1;
1699			}
1700			ptr += buff_size[i];
1701		}
1702	}
1703	cmd_special_free(h, c);
1704	status = 0;
1705cleanup1:
1706	if (buff) {
1707		for (i = 0; i < sg_used; i++)
1708			kfree(buff[i]);
1709		kfree(buff);
1710	}
1711	kfree(buff_size);
1712	kfree(ioc);
1713	return status;
1714}
1715
1716static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
1717	unsigned int cmd, unsigned long arg)
1718{
1719	struct gendisk *disk = bdev->bd_disk;
1720	ctlr_info_t *h = get_host(disk);
1721	void __user *argp = (void __user *)arg;
1722
1723	dev_dbg(&h->pdev->dev, "cciss_ioctl: Called with cmd=%x %lx\n",
1724		cmd, arg);
1725	switch (cmd) {
1726	case CCISS_GETPCIINFO:
1727		return cciss_getpciinfo(h, argp);
1728	case CCISS_GETINTINFO:
1729		return cciss_getintinfo(h, argp);
1730	case CCISS_SETINTINFO:
1731		return cciss_setintinfo(h, argp);
1732	case CCISS_GETNODENAME:
1733		return cciss_getnodename(h, argp);
1734	case CCISS_SETNODENAME:
1735		return cciss_setnodename(h, argp);
1736	case CCISS_GETHEARTBEAT:
1737		return cciss_getheartbeat(h, argp);
1738	case CCISS_GETBUSTYPES:
1739		return cciss_getbustypes(h, argp);
1740	case CCISS_GETFIRMVER:
1741		return cciss_getfirmver(h, argp);
1742	case CCISS_GETDRIVVER:
1743		return cciss_getdrivver(h, argp);
1744	case CCISS_DEREGDISK:
1745	case CCISS_REGNEWD:
1746	case CCISS_REVALIDVOLS:
1747		return rebuild_lun_table(h, 0, 1);
1748	case CCISS_GETLUNINFO:
1749		return cciss_getluninfo(h, disk, argp);
1750	case CCISS_PASSTHRU:
1751		return cciss_passthru(h, argp);
1752	case CCISS_BIG_PASSTHRU:
1753		return cciss_bigpassthru(h, argp);
1754
1755	/* scsi_cmd_blk_ioctl handles these, below, though some are not */
1756	/* very meaningful for cciss.  SG_IO is the main one people want. */
1757
1758	case SG_GET_VERSION_NUM:
1759	case SG_SET_TIMEOUT:
1760	case SG_GET_TIMEOUT:
1761	case SG_GET_RESERVED_SIZE:
1762	case SG_SET_RESERVED_SIZE:
1763	case SG_EMULATED_HOST:
1764	case SG_IO:
1765	case SCSI_IOCTL_SEND_COMMAND:
1766		return scsi_cmd_blk_ioctl(bdev, mode, cmd, argp);
1767
1768	/* scsi_cmd_blk_ioctl would normally handle these, below, but */
1769	/* they aren't a good fit for cciss, as CD-ROMs are */
1770	/* not supported, and we don't have any bus/target/lun */
1771	/* which we present to the kernel. */
1772
1773	case CDROM_SEND_PACKET:
1774	case CDROMCLOSETRAY:
1775	case CDROMEJECT:
1776	case SCSI_IOCTL_GET_IDLUN:
1777	case SCSI_IOCTL_GET_BUS_NUMBER:
1778	default:
1779		return -ENOTTY;
1780	}
1781}
1782
1783static void cciss_check_queues(ctlr_info_t *h)
1784{
1785	int start_queue = h->next_to_run;
1786	int i;
1787
1788	/* check to see if we have maxed out the number of commands that can
1789	 * be placed on the queue.  If so then exit.  We do this check here
1790	 * in case the interrupt we serviced was from an ioctl and did not
1791	 * free any new commands.
1792	 */
1793	if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1794		return;
1795
1796	/* We have room on the queue for more commands.  Now we need to queue
1797	 * them up.  We will also keep track of the next queue to run so
1798	 * that every queue gets a chance to be started first.
1799	 */
1800	for (i = 0; i < h->highest_lun + 1; i++) {
1801		int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1802		/* make sure the disk has been added and the drive is real
1803		 * because this can be called from the middle of init_one.
1804		 */
1805		if (!h->drv[curr_queue])
1806			continue;
1807		if (!(h->drv[curr_queue]->queue) ||
1808			!(h->drv[curr_queue]->heads))
1809			continue;
1810		blk_start_queue(h->gendisk[curr_queue]->queue);
1811
1812		/* check to see if we have maxed out the number of commands
1813		 * that can be placed on the queue.
1814		 */
1815		if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1816			if (curr_queue == start_queue) {
1817				h->next_to_run =
1818				    (start_queue + 1) % (h->highest_lun + 1);
1819				break;
1820			} else {
1821				h->next_to_run = curr_queue;
1822				break;
1823			}
1824		}
1825	}
1826}
1827
1828static void cciss_softirq_done(struct request *rq)
1829{
1830	CommandList_struct *c = rq->completion_data;
1831	ctlr_info_t *h = hba[c->ctlr];
1832	SGDescriptor_struct *curr_sg = c->SG;
1833	u64bit temp64;
1834	unsigned long flags;
1835	int i, ddir;
1836	int sg_index = 0;
1837
1838	if (c->Request.Type.Direction == XFER_READ)
1839		ddir = PCI_DMA_FROMDEVICE;
1840	else
1841		ddir = PCI_DMA_TODEVICE;
1842
1843	/* command did not need to be retried */
1844	/* unmap the DMA mapping for all the scatter gather elements */
1845	for (i = 0; i < c->Header.SGList; i++) {
1846		if (curr_sg[sg_index].Ext == CCISS_SG_CHAIN) {
1847			cciss_unmap_sg_chain_block(h, c);
1848			/* Point to the next block */
1849			curr_sg = h->cmd_sg_list[c->cmdindex];
1850			sg_index = 0;
1851		}
1852		temp64.val32.lower = curr_sg[sg_index].Addr.lower;
1853		temp64.val32.upper = curr_sg[sg_index].Addr.upper;
1854		pci_unmap_page(h->pdev, temp64.val, curr_sg[sg_index].Len,
1855				ddir);
1856		++sg_index;
1857	}
1858
1859	dev_dbg(&h->pdev->dev, "Done with %p\n", rq);
1860
1861	/* set the residual count for pc requests */
1862	if (rq->cmd_type == REQ_TYPE_BLOCK_PC)
1863		rq->resid_len = c->err_info->ResidualCnt;
1864
1865	blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1866
1867	spin_lock_irqsave(&h->lock, flags);
1868	cmd_free(h, c);
1869	cciss_check_queues(h);
1870	spin_unlock_irqrestore(&h->lock, flags);
1871}
1872
1873static inline void log_unit_to_scsi3addr(ctlr_info_t *h,
1874	unsigned char scsi3addr[], uint32_t log_unit)
1875{
1876	memcpy(scsi3addr, h->drv[log_unit]->LunID,
1877		sizeof(h->drv[log_unit]->LunID));
1878}
1879
1880/* This function gets the SCSI vendor, model, and revision of a logical drive
1881 * via the inquiry page 0.  Model, vendor, and rev are set to empty strings if
1882 * they cannot be read.
1883 */
1884static void cciss_get_device_descr(ctlr_info_t *h, int logvol,
1885				   char *vendor, char *model, char *rev)
1886{
1887	int rc;
1888	InquiryData_struct *inq_buf;
1889	unsigned char scsi3addr[8];
1890
1891	*vendor = '\0';
1892	*model = '\0';
1893	*rev = '\0';
1894
1895	inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1896	if (!inq_buf)
1897		return;
1898
1899	log_unit_to_scsi3addr(h, scsi3addr, logvol);
1900	rc = sendcmd_withirq(h, CISS_INQUIRY, inq_buf, sizeof(*inq_buf), 0,
1901			scsi3addr, TYPE_CMD);
1902	if (rc == IO_OK) {
1903		memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1904		vendor[VENDOR_LEN] = '\0';
1905		memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1906		model[MODEL_LEN] = '\0';
1907		memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1908		rev[REV_LEN] = '\0';
1909	}
1910
1911	kfree(inq_buf);
1912	return;
1913}
1914
1915/* This function gets the serial number of a logical drive via
1916 * inquiry page 0x83.  Serial no. is 16 bytes.  If the serial
1917 * number cannot be had, for whatever reason, 16 bytes of 0xff
1918 * are returned instead.
1919 */
1920static void cciss_get_serial_no(ctlr_info_t *h, int logvol,
1921				unsigned char *serial_no, int buflen)
1922{
1923#define PAGE_83_INQ_BYTES 64
1924	int rc;
1925	unsigned char *buf;
1926	unsigned char scsi3addr[8];
1927
1928	if (buflen > 16)
1929		buflen = 16;
1930	memset(serial_no, 0xff, buflen);
1931	buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1932	if (!buf)
1933		return;
1934	memset(serial_no, 0, buflen);
1935	log_unit_to_scsi3addr(h, scsi3addr, logvol);
1936	rc = sendcmd_withirq(h, CISS_INQUIRY, buf,
1937		PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1938	if (rc == IO_OK)
1939		memcpy(serial_no, &buf[8], buflen);
1940	kfree(buf);
1941	return;
1942}
1943
1944/*
1945 * cciss_add_disk sets up the block device queue for a logical drive
1946 */
1947static int cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1948				int drv_index)
1949{
1950	disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1951	if (!disk->queue)
1952		goto init_queue_failure;
1953	sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1954	disk->major = h->major;
1955	disk->first_minor = drv_index << NWD_SHIFT;
1956	disk->fops = &cciss_fops;
1957	if (cciss_create_ld_sysfs_entry(h, drv_index))
1958		goto cleanup_queue;
1959	disk->private_data = h->drv[drv_index];
1960	disk->driverfs_dev = &h->drv[drv_index]->dev;
1961
1962	/* Set up queue information */
1963	blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1964
1965	/* This is a hardware imposed limit. */
1966	blk_queue_max_segments(disk->queue, h->maxsgentries);
1967
1968	blk_queue_max_hw_sectors(disk->queue, h->cciss_max_sectors);
1969
1970	blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1971
1972	disk->queue->queuedata = h;
1973
1974	blk_queue_logical_block_size(disk->queue,
1975				     h->drv[drv_index]->block_size);
1976
1977	/* Make sure all queue data is written out before */
1978	/* setting h->drv[drv_index]->queue, as setting this */
1979	/* allows the interrupt handler to start the queue */
1980	wmb();
1981	h->drv[drv_index]->queue = disk->queue;
1982	add_disk(disk);
1983	return 0;
1984
1985cleanup_queue:
1986	blk_cleanup_queue(disk->queue);
1987	disk->queue = NULL;
1988init_queue_failure:
1989	return -1;
1990}
1991
1992/* This function will check the usage_count of the drive to be updated/added.
1993 * If the usage_count is zero and it is a heretofore unknown drive, or,
1994 * the drive's capacity, geometry, or serial number has changed,
1995 * then the drive information will be updated and the disk will be
1996 * re-registered with the kernel.  If these conditions don't hold,
1997 * then it will be left alone for the next reboot.  The exception to this
1998 * is disk 0 which will always be left registered with the kernel since it
1999 * is also the controller node.  Any changes to disk 0 will show up on
2000 * the next reboot.
2001 */
2002static void cciss_update_drive_info(ctlr_info_t *h, int drv_index,
2003	int first_time, int via_ioctl)
2004{
2005	struct gendisk *disk;
2006	InquiryData_struct *inq_buff = NULL;
2007	unsigned int block_size;
2008	sector_t total_size;
2009	unsigned long flags = 0;
2010	int ret = 0;
2011	drive_info_struct *drvinfo;
2012
2013	/* Get information about the disk and modify the driver structure */
2014	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2015	drvinfo = kzalloc(sizeof(*drvinfo), GFP_KERNEL);
2016	if (inq_buff == NULL || drvinfo == NULL)
2017		goto mem_msg;
2018
2019	/* testing to see if 16-byte CDBs are already being used */
2020	if (h->cciss_read == CCISS_READ_16) {
2021		cciss_read_capacity_16(h, drv_index,
2022			&total_size, &block_size);
2023
2024	} else {
2025		cciss_read_capacity(h, drv_index, &total_size, &block_size);
2026		/* if read_capacity returns all F's this volume is >2TB */
2027		/* in size so we switch to 16-byte CDB's for all */
2028		/* read/write ops */
2029		if (total_size == 0xFFFFFFFFULL) {
2030			cciss_read_capacity_16(h, drv_index,
2031			&total_size, &block_size);
2032			h->cciss_read = CCISS_READ_16;
2033			h->cciss_write = CCISS_WRITE_16;
2034		} else {
2035			h->cciss_read = CCISS_READ_10;
2036			h->cciss_write = CCISS_WRITE_10;
2037		}
2038	}
2039
2040	cciss_geometry_inquiry(h, drv_index, total_size, block_size,
2041			       inq_buff, drvinfo);
2042	drvinfo->block_size = block_size;
2043	drvinfo->nr_blocks = total_size + 1;
2044
2045	cciss_get_device_descr(h, drv_index, drvinfo->vendor,
2046				drvinfo->model, drvinfo->rev);
2047	cciss_get_serial_no(h, drv_index, drvinfo->serial_no,
2048			sizeof(drvinfo->serial_no));
2049	/* Save the lunid in case we deregister the disk, below. */
2050	memcpy(drvinfo->LunID, h->drv[drv_index]->LunID,
2051		sizeof(drvinfo->LunID));
2052
2053	/* Is it the same disk we already know, and nothing's changed? */
2054	if (h->drv[drv_index]->raid_level != -1 &&
2055		((memcmp(drvinfo->serial_no,
2056				h->drv[drv_index]->serial_no, 16) == 0) &&
2057		drvinfo->block_size == h->drv[drv_index]->block_size &&
2058		drvinfo->nr_blocks == h->drv[drv_index]->nr_blocks &&
2059		drvinfo->heads == h->drv[drv_index]->heads &&
2060		drvinfo->sectors == h->drv[drv_index]->sectors &&
2061		drvinfo->cylinders == h->drv[drv_index]->cylinders))
2062			/* The disk is unchanged, nothing to update */
2063			goto freeret;
2064
2065	/* If we get here it's not the same disk, or something's changed,
2066	 * so we need to * deregister it, and re-register it, if it's not
2067	 * in use.
2068	 * If the disk already exists then deregister it before proceeding
2069	 * (unless it's the first disk (for the controller node).
2070	 */
2071	if (h->drv[drv_index]->raid_level != -1 && drv_index != 0) {
2072		dev_warn(&h->pdev->dev, "disk %d has changed.\n", drv_index);
2073		spin_lock_irqsave(&h->lock, flags);
2074		h->drv[drv_index]->busy_configuring = 1;
2075		spin_unlock_irqrestore(&h->lock, flags);
2076
2077		/* deregister_disk sets h->drv[drv_index]->queue = NULL
2078		 * which keeps the interrupt handler from starting
2079		 * the queue.
2080		 */
2081		ret = deregister_disk(h, drv_index, 0, via_ioctl);
2082	}
2083
2084	/* If the disk is in use return */
2085	if (ret)
2086		goto freeret;
2087
2088	/* Save the new information from cciss_geometry_inquiry
2089	 * and serial number inquiry.  If the disk was deregistered
2090	 * above, then h->drv[drv_index] will be NULL.
2091	 */
2092	if (h->drv[drv_index] == NULL) {
2093		drvinfo->device_initialized = 0;
2094		h->drv[drv_index] = drvinfo;
2095		drvinfo = NULL; /* so it won't be freed below. */
2096	} else {
2097		/* special case for cxd0 */
2098		h->drv[drv_index]->block_size = drvinfo->block_size;
2099		h->drv[drv_index]->nr_blocks = drvinfo->nr_blocks;
2100		h->drv[drv_index]->heads = drvinfo->heads;
2101		h->drv[drv_index]->sectors = drvinfo->sectors;
2102		h->drv[drv_index]->cylinders = drvinfo->cylinders;
2103		h->drv[drv_index]->raid_level = drvinfo->raid_level;
2104		memcpy(h->drv[drv_index]->serial_no, drvinfo->serial_no, 16);
2105		memcpy(h->drv[drv_index]->vendor, drvinfo->vendor,
2106			VENDOR_LEN + 1);
2107		memcpy(h->drv[drv_index]->model, drvinfo->model, MODEL_LEN + 1);
2108		memcpy(h->drv[drv_index]->rev, drvinfo->rev, REV_LEN + 1);
2109	}
2110
2111	++h->num_luns;
2112	disk = h->gendisk[drv_index];
2113	set_capacity(disk, h->drv[drv_index]->nr_blocks);
2114
2115	/* If it's not disk 0 (drv_index != 0)
2116	 * or if it was disk 0, but there was previously
2117	 * no actual corresponding configured logical drive
2118	 * (raid_leve == -1) then we want to update the
2119	 * logical drive's information.
2120	 */
2121	if (drv_index || first_time) {
2122		if (cciss_add_disk(h, disk, drv_index) != 0) {
2123			cciss_free_gendisk(h, drv_index);
2124			cciss_free_drive_info(h, drv_index);
2125			dev_warn(&h->pdev->dev, "could not update disk %d\n",
2126				drv_index);
2127			--h->num_luns;
2128		}
2129	}
2130
2131freeret:
2132	kfree(inq_buff);
2133	kfree(drvinfo);
2134	return;
2135mem_msg:
2136	dev_err(&h->pdev->dev, "out of memory\n");
2137	goto freeret;
2138}
2139
2140/* This function will find the first index of the controllers drive array
2141 * that has a null drv pointer and allocate the drive info struct and
2142 * will return that index   This is where new drives will be added.
2143 * If the index to be returned is greater than the highest_lun index for
2144 * the controller then highest_lun is set * to this new index.
2145 * If there are no available indexes or if tha allocation fails, then -1
2146 * is returned.  * "controller_node" is used to know if this is a real
2147 * logical drive, or just the controller node, which determines if this
2148 * counts towards highest_lun.
2149 */
2150static int cciss_alloc_drive_info(ctlr_info_t *h, int controller_node)
2151{
2152	int i;
2153	drive_info_struct *drv;
2154
2155	/* Search for an empty slot for our drive info */
2156	for (i = 0; i < CISS_MAX_LUN; i++) {
2157
2158		/* if not cxd0 case, and it's occupied, skip it. */
2159		if (h->drv[i] && i != 0)
2160			continue;
2161		/*
2162		 * If it's cxd0 case, and drv is alloc'ed already, and a
2163		 * disk is configured there, skip it.
2164		 */
2165		if (i == 0 && h->drv[i] && h->drv[i]->raid_level != -1)
2166			continue;
2167
2168		/*
2169		 * We've found an empty slot.  Update highest_lun
2170		 * provided this isn't just the fake cxd0 controller node.
2171		 */
2172		if (i > h->highest_lun && !controller_node)
2173			h->highest_lun = i;
2174
2175		/* If adding a real disk at cxd0, and it's already alloc'ed */
2176		if (i == 0 && h->drv[i] != NULL)
2177			return i;
2178
2179		/*
2180		 * Found an empty slot, not already alloc'ed.  Allocate it.
2181		 * Mark it with raid_level == -1, so we know it's new later on.
2182		 */
2183		drv = kzalloc(sizeof(*drv), GFP_KERNEL);
2184		if (!drv)
2185			return -1;
2186		drv->raid_level = -1; /* so we know it's new */
2187		h->drv[i] = drv;
2188		return i;
2189	}
2190	return -1;
2191}
2192
2193static void cciss_free_drive_info(ctlr_info_t *h, int drv_index)
2194{
2195	kfree(h->drv[drv_index]);
2196	h->drv[drv_index] = NULL;
2197}
2198
2199static void cciss_free_gendisk(ctlr_info_t *h, int drv_index)
2200{
2201	put_disk(h->gendisk[drv_index]);
2202	h->gendisk[drv_index] = NULL;
2203}
2204
2205/* cciss_add_gendisk finds a free hba[]->drv structure
2206 * and allocates a gendisk if needed, and sets the lunid
2207 * in the drvinfo structure.   It returns the index into
2208 * the ->drv[] array, or -1 if none are free.
2209 * is_controller_node indicates whether highest_lun should
2210 * count this disk, or if it's only being added to provide
2211 * a means to talk to the controller in case no logical
2212 * drives have yet been configured.
2213 */
2214static int cciss_add_gendisk(ctlr_info_t *h, unsigned char lunid[],
2215	int controller_node)
2216{
2217	int drv_index;
2218
2219	drv_index = cciss_alloc_drive_info(h, controller_node);
2220	if (drv_index == -1)
2221		return -1;
2222
2223	/*Check if the gendisk needs to be allocated */
2224	if (!h->gendisk[drv_index]) {
2225		h->gendisk[drv_index] =
2226			alloc_disk(1 << NWD_SHIFT);
2227		if (!h->gendisk[drv_index]) {
2228			dev_err(&h->pdev->dev,
2229				"could not allocate a new disk %d\n",
2230				drv_index);
2231			goto err_free_drive_info;
2232		}
2233	}
2234	memcpy(h->drv[drv_index]->LunID, lunid,
2235		sizeof(h->drv[drv_index]->LunID));
2236	if (cciss_create_ld_sysfs_entry(h, drv_index))
2237		goto err_free_disk;
2238	/* Don't need to mark this busy because nobody */
2239	/* else knows about this disk yet to contend */
2240	/* for access to it. */
2241	h->drv[drv_index]->busy_configuring = 0;
2242	wmb();
2243	return drv_index;
2244
2245err_free_disk:
2246	cciss_free_gendisk(h, drv_index);
2247err_free_drive_info:
2248	cciss_free_drive_info(h, drv_index);
2249	return -1;
2250}
2251
2252/* This is for the special case of a controller which
2253 * has no logical drives.  In this case, we still need
2254 * to register a disk so the controller can be accessed
2255 * by the Array Config Utility.
2256 */
2257static void cciss_add_controller_node(ctlr_info_t *h)
2258{
2259	struct gendisk *disk;
2260	int drv_index;
2261
2262	if (h->gendisk[0] != NULL) /* already did this? Then bail. */
2263		return;
2264
2265	drv_index = cciss_add_gendisk(h, CTLR_LUNID, 1);
2266	if (drv_index == -1)
2267		goto error;
2268	h->drv[drv_index]->block_size = 512;
2269	h->drv[drv_index]->nr_blocks = 0;
2270	h->drv[drv_index]->heads = 0;
2271	h->drv[drv_index]->sectors = 0;
2272	h->drv[drv_index]->cylinders = 0;
2273	h->drv[drv_index]->raid_level = -1;
2274	memset(h->drv[drv_index]->serial_no, 0, 16);
2275	disk = h->gendisk[drv_index];
2276	if (cciss_add_disk(h, disk, drv_index) == 0)
2277		return;
2278	cciss_free_gendisk(h, drv_index);
2279	cciss_free_drive_info(h, drv_index);
2280error:
2281	dev_warn(&h->pdev->dev, "could not add disk 0.\n");
2282	return;
2283}
2284
2285/* This function will add and remove logical drives from the Logical
2286 * drive array of the controller and maintain persistency of ordering
2287 * so that mount points are preserved until the next reboot.  This allows
2288 * for the removal of logical drives in the middle of the drive array
2289 * without a re-ordering of those drives.
2290 * INPUT
2291 * h		= The controller to perform the operations on
2292 */
2293static int rebuild_lun_table(ctlr_info_t *h, int first_time,
2294	int via_ioctl)
2295{
2296	int num_luns;
2297	ReportLunData_struct *ld_buff = NULL;
2298	int return_code;
2299	int listlength = 0;
2300	int i;
2301	int drv_found;
2302	int drv_index = 0;
2303	unsigned char lunid[8] = CTLR_LUNID;
2304	unsigned long flags;
2305
2306	if (!capable(CAP_SYS_RAWIO))
2307		return -EPERM;
2308
2309	/* Set busy_configuring flag for this operation */
2310	spin_lock_irqsave(&h->lock, flags);
2311	if (h->busy_configuring) {
2312		spin_unlock_irqrestore(&h->lock, flags);
2313		return -EBUSY;
2314	}
2315	h->busy_configuring = 1;
2316	spin_unlock_irqrestore(&h->lock, flags);
2317
2318	ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
2319	if (ld_buff == NULL)
2320		goto mem_msg;
2321
2322	return_code = sendcmd_withirq(h, CISS_REPORT_LOG, ld_buff,
2323				      sizeof(ReportLunData_struct),
2324				      0, CTLR_LUNID, TYPE_CMD);
2325
2326	if (return_code == IO_OK)
2327		listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
2328	else {	/* reading number of logical volumes failed */
2329		dev_warn(&h->pdev->dev,
2330			"report logical volume command failed\n");
2331		listlength = 0;
2332		goto freeret;
2333	}
2334
2335	num_luns = listlength / 8;	/* 8 bytes per entry */
2336	if (num_luns > CISS_MAX_LUN) {
2337		num_luns = CISS_MAX_LUN;
2338		dev_warn(&h->pdev->dev, "more luns configured"
2339		       " on controller than can be handled by"
2340		       " this driver.\n");
2341	}
2342
2343	if (num_luns == 0)
2344		cciss_add_controller_node(h);
2345
2346	/* Compare controller drive array to driver's drive array
2347	 * to see if any drives are missing on the controller due
2348	 * to action of Array Config Utility (user deletes drive)
2349	 * and deregister logical drives which have disappeared.
2350	 */
2351	for (i = 0; i <= h->highest_lun; i++) {
2352		int j;
2353		drv_found = 0;
2354
2355		/* skip holes in the array from already deleted drives */
2356		if (h->drv[i] == NULL)
2357			continue;
2358
2359		for (j = 0; j < num_luns; j++) {
2360			memcpy(lunid, &ld_buff->LUN[j][0], sizeof(lunid));
2361			if (memcmp(h->drv[i]->LunID, lunid,
2362				sizeof(lunid)) == 0) {
2363				drv_found = 1;
2364				break;
2365			}
2366		}
2367		if (!drv_found) {
2368			/* Deregister it from the OS, it's gone. */
2369			spin_lock_irqsave(&h->lock, flags);
2370			h->drv[i]->busy_configuring = 1;
2371			spin_unlock_irqrestore(&h->lock, flags);
2372			return_code = deregister_disk(h, i, 1, via_ioctl);
2373			if (h->drv[i] != NULL)
2374				h->drv[i]->busy_configuring = 0;
2375		}
2376	}
2377
2378	/* Compare controller drive array to driver's drive array.
2379	 * Check for updates in the drive information and any new drives
2380	 * on the controller due to ACU adding logical drives, or changing
2381	 * a logical drive's size, etc.  Reregister any new/changed drives
2382	 */
2383	for (i = 0; i < num_luns; i++) {
2384		int j;
2385
2386		drv_found = 0;
2387
2388		memcpy(lunid, &ld_buff->LUN[i][0], sizeof(lunid));
2389		/* Find if the LUN is already in the drive array
2390		 * of the driver.  If so then update its info
2391		 * if not in use.  If it does not exist then find
2392		 * the first free index and add it.
2393		 */
2394		for (j = 0; j <= h->highest_lun; j++) {
2395			if (h->drv[j] != NULL &&
2396				memcmp(h->drv[j]->LunID, lunid,
2397					sizeof(h->drv[j]->LunID)) == 0) {
2398				drv_index = j;
2399				drv_found = 1;
2400				break;
2401			}
2402		}
2403
2404		/* check if the drive was found already in the array */
2405		if (!drv_found) {
2406			drv_index = cciss_add_gendisk(h, lunid, 0);
2407			if (drv_index == -1)
2408				goto freeret;
2409		}
2410		cciss_update_drive_info(h, drv_index, first_time, via_ioctl);
2411	}		/* end for */
2412
2413freeret:
2414	kfree(ld_buff);
2415	h->busy_configuring = 0;
2416	/* We return -1 here to tell the ACU that we have registered/updated
2417	 * all of the drives that we can and to keep it from calling us
2418	 * additional times.
2419	 */
2420	return -1;
2421mem_msg:
2422	dev_err(&h->pdev->dev, "out of memory\n");
2423	h->busy_configuring = 0;
2424	goto freeret;
2425}
2426
2427static void cciss_clear_drive_info(drive_info_struct *drive_info)
2428{
2429	/* zero out the disk size info */
2430	drive_info->nr_blocks = 0;
2431	drive_info->block_size = 0;
2432	drive_info->heads = 0;
2433	drive_info->sectors = 0;
2434	drive_info->cylinders = 0;
2435	drive_info->raid_level = -1;
2436	memset(drive_info->serial_no, 0, sizeof(drive_info->serial_no));
2437	memset(drive_info->model, 0, sizeof(drive_info->model));
2438	memset(drive_info->rev, 0, sizeof(drive_info->rev));
2439	memset(drive_info->vendor, 0, sizeof(drive_info->vendor));
2440	/*
2441	 * don't clear the LUNID though, we need to remember which
2442	 * one this one is.
2443	 */
2444}
2445
2446/* This function will deregister the disk and it's queue from the
2447 * kernel.  It must be called with the controller lock held and the
2448 * drv structures busy_configuring flag set.  It's parameters are:
2449 *
2450 * disk = This is the disk to be deregistered
2451 * drv  = This is the drive_info_struct associated with the disk to be
2452 *        deregistered.  It contains information about the disk used
2453 *        by the driver.
2454 * clear_all = This flag determines whether or not the disk information
2455 *             is going to be completely cleared out and the highest_lun
2456 *             reset.  Sometimes we want to clear out information about
2457 *             the disk in preparation for re-adding it.  In this case
2458 *             the highest_lun should be left unchanged and the LunID
2459 *             should not be cleared.
2460 * via_ioctl
2461 *    This indicates whether we've reached this path via ioctl.
2462 *    This affects the maximum usage count allowed for c0d0 to be messed with.
2463 *    If this path is reached via ioctl(), then the max_usage_count will
2464 *    be 1, as the process calling ioctl() has got to have the device open.
2465 *    If we get here via sysfs, then the max usage count will be zero.
2466*/
2467static int deregister_disk(ctlr_info_t *h, int drv_index,
2468			   int clear_all, int via_ioctl)
2469{
2470	int i;
2471	struct gendisk *disk;
2472	drive_info_struct *drv;
2473	int recalculate_highest_lun;
2474
2475	if (!capable(CAP_SYS_RAWIO))
2476		return -EPERM;
2477
2478	drv = h->drv[drv_index];
2479	disk = h->gendisk[drv_index];
2480
2481	/* make sure logical volume is NOT is use */
2482	if (clear_all || (h->gendisk[0] == disk)) {
2483		if (drv->usage_count > via_ioctl)
2484			return -EBUSY;
2485	} else if (drv->usage_count > 0)
2486		return -EBUSY;
2487
2488	recalculate_highest_lun = (drv == h->drv[h->highest_lun]);
2489
2490	/* invalidate the devices and deregister the disk.  If it is disk
2491	 * zero do not deregister it but just zero out it's values.  This
2492	 * allows us to delete disk zero but keep the controller registered.
2493	 */
2494	if (h->gendisk[0] != disk) {
2495		struct request_queue *q = disk->queue;
2496		if (disk->flags & GENHD_FL_UP) {
2497			cciss_destroy_ld_sysfs_entry(h, drv_index, 0);
2498			del_gendisk(disk);
2499		}
2500		if (q)
2501			blk_cleanup_queue(q);
2502		/* If clear_all is set then we are deleting the logical
2503		 * drive, not just refreshing its info.  For drives
2504		 * other than disk 0 we will call put_disk.  We do not
2505		 * do this for disk 0 as we need it to be able to
2506		 * configure the controller.
2507		 */
2508		if (clear_all){
2509			/* This isn't pretty, but we need to find the
2510			 * disk in our array and NULL our the pointer.
2511			 * This is so that we will call alloc_disk if
2512			 * this index is used again later.
2513			 */
2514			for (i=0; i < CISS_MAX_LUN; i++){
2515				if (h->gendisk[i] == disk) {
2516					h->gendisk[i] = NULL;
2517					break;
2518				}
2519			}
2520			put_disk(disk);
2521		}
2522	} else {
2523		set_capacity(disk, 0);
2524		cciss_clear_drive_info(drv);
2525	}
2526
2527	--h->num_luns;
2528
2529	/* if it was the last disk, find the new hightest lun */
2530	if (clear_all && recalculate_highest_lun) {
2531		int newhighest = -1;
2532		for (i = 0; i <= h->highest_lun; i++) {
2533			/* if the disk has size > 0, it is available */
2534			if (h->drv[i] && h->drv[i]->heads)
2535				newhighest = i;
2536		}
2537		h->highest_lun = newhighest;
2538	}
2539	return 0;
2540}
2541
2542static int fill_cmd(ctlr_info_t *h, CommandList_struct *c, __u8 cmd, void *buff,
2543		size_t size, __u8 page_code, unsigned char *scsi3addr,
2544		int cmd_type)
2545{
2546	u64bit buff_dma_handle;
2547	int status = IO_OK;
2548
2549	c->cmd_type = CMD_IOCTL_PEND;
2550	c->Header.ReplyQueue = 0;
2551	if (buff != NULL) {
2552		c->Header.SGList = 1;
2553		c->Header.SGTotal = 1;
2554	} else {
2555		c->Header.SGList = 0;
2556		c->Header.SGTotal = 0;
2557	}
2558	c->Header.Tag.lower = c->busaddr;
2559	memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2560
2561	c->Request.Type.Type = cmd_type;
2562	if (cmd_type == TYPE_CMD) {
2563		switch (cmd) {
2564		case CISS_INQUIRY:
2565			/* are we trying to read a vital product page */
2566			if (page_code != 0) {
2567				c->Request.CDB[1] = 0x01;
2568				c->Request.CDB[2] = page_code;
2569			}
2570			c->Request.CDBLen = 6;
2571			c->Request.Type.Attribute = ATTR_SIMPLE;
2572			c->Request.Type.Direction = XFER_READ;
2573			c->Request.Timeout = 0;
2574			c->Request.CDB[0] = CISS_INQUIRY;
2575			c->Request.CDB[4] = size & 0xFF;
2576			break;
2577		case CISS_REPORT_LOG:
2578		case CISS_REPORT_PHYS:
2579			/* Talking to controller so It's a physical command
2580			   mode = 00 target = 0.  Nothing to write.
2581			 */
2582			c->Request.CDBLen = 12;
2583			c->Request.Type.Attribute = ATTR_SIMPLE;
2584			c->Request.Type.Direction = XFER_READ;
2585			c->Request.Timeout = 0;
2586			c->Request.CDB[0] = cmd;
2587			c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2588			c->Request.CDB[7] = (size >> 16) & 0xFF;
2589			c->Request.CDB[8] = (size >> 8) & 0xFF;
2590			c->Request.CDB[9] = size & 0xFF;
2591			break;
2592
2593		case CCISS_READ_CAPACITY:
2594			c->Request.CDBLen = 10;
2595			c->Request.Type.Attribute = ATTR_SIMPLE;
2596			c->Request.Type.Direction = XFER_READ;
2597			c->Request.Timeout = 0;
2598			c->Request.CDB[0] = cmd;
2599			break;
2600		case CCISS_READ_CAPACITY_16:
2601			c->Request.CDBLen = 16;
2602			c->Request.Type.Attribute = ATTR_SIMPLE;
2603			c->Request.Type.Direction = XFER_READ;
2604			c->Request.Timeout = 0;
2605			c->Request.CDB[0] = cmd;
2606			c->Request.CDB[1] = 0x10;
2607			c->Request.CDB[10] = (size >> 24) & 0xFF;
2608			c->Request.CDB[11] = (size >> 16) & 0xFF;
2609			c->Request.CDB[12] = (size >> 8) & 0xFF;
2610			c->Request.CDB[13] = size & 0xFF;
2611			c->Request.Timeout = 0;
2612			c->Request.CDB[0] = cmd;
2613			break;
2614		case CCISS_CACHE_FLUSH:
2615			c->Request.CDBLen = 12;
2616			c->Request.Type.Attribute = ATTR_SIMPLE;
2617			c->Request.Type.Direction = XFER_WRITE;
2618			c->Request.Timeout = 0;
2619			c->Request.CDB[0] = BMIC_WRITE;
2620			c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2621			c->Request.CDB[7] = (size >> 8) & 0xFF;
2622			c->Request.CDB[8] = size & 0xFF;
2623			break;
2624		case TEST_UNIT_READY:
2625			c->Request.CDBLen = 6;
2626			c->Request.Type.Attribute = ATTR_SIMPLE;
2627			c->Request.Type.Direction = XFER_NONE;
2628			c->Request.Timeout = 0;
2629			break;
2630		default:
2631			dev_warn(&h->pdev->dev, "Unknown Command 0x%c\n", cmd);
2632			return IO_ERROR;
2633		}
2634	} else if (cmd_type == TYPE_MSG) {
2635		switch (cmd) {
2636		case CCISS_ABORT_MSG:
2637			c->Request.CDBLen = 12;
2638			c->Request.Type.Attribute = ATTR_SIMPLE;
2639			c->Request.Type.Direction = XFER_WRITE;
2640			c->Request.Timeout = 0;
2641			c->Request.CDB[0] = cmd;	/* abort */
2642			c->Request.CDB[1] = 0;	/* abort a command */
2643			/* buff contains the tag of the command to abort */
2644			memcpy(&c->Request.CDB[4], buff, 8);
2645			break;
2646		case CCISS_RESET_MSG:
2647			c->Request.CDBLen = 16;
2648			c->Request.Type.Attribute = ATTR_SIMPLE;
2649			c->Request.Type.Direction = XFER_NONE;
2650			c->Request.Timeout = 0;
2651			memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2652			c->Request.CDB[0] = cmd;	/* reset */
2653			c->Request.CDB[1] = CCISS_RESET_TYPE_TARGET;
2654			break;
2655		case CCISS_NOOP_MSG:
2656			c->Request.CDBLen = 1;
2657			c->Request.Type.Attribute = ATTR_SIMPLE;
2658			c->Request.Type.Direction = XFER_WRITE;
2659			c->Request.Timeout = 0;
2660			c->Request.CDB[0] = cmd;
2661			break;
2662		default:
2663			dev_warn(&h->pdev->dev,
2664				"unknown message type %d\n", cmd);
2665			return IO_ERROR;
2666		}
2667	} else {
2668		dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2669		return IO_ERROR;
2670	}
2671	/* Fill in the scatter gather information */
2672	if (size > 0) {
2673		buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2674							     buff, size,
2675							     PCI_DMA_BIDIRECTIONAL);
2676		c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2677		c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2678		c->SG[0].Len = size;
2679		c->SG[0].Ext = 0;	/* we are not chaining */
2680	}
2681	return status;
2682}
2683
2684static int cciss_send_reset(ctlr_info_t *h, unsigned char *scsi3addr,
2685			    u8 reset_type)
2686{
2687	CommandList_struct *c;
2688	int return_status;
2689
2690	c = cmd_alloc(h);
2691	if (!c)
2692		return -ENOMEM;
2693	return_status = fill_cmd(h, c, CCISS_RESET_MSG, NULL, 0, 0,
2694		CTLR_LUNID, TYPE_MSG);
2695	c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2696	if (return_status != IO_OK) {
2697		cmd_special_free(h, c);
2698		return return_status;
2699	}
2700	c->waiting = NULL;
2701	enqueue_cmd_and_start_io(h, c);
2702	/* Don't wait for completion, the reset won't complete.  Don't free
2703	 * the command either.  This is the last command we will send before
2704	 * re-initializing everything, so it doesn't matter and won't leak.
2705	 */
2706	return 0;
2707}
2708
2709static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2710{
2711	switch (c->err_info->ScsiStatus) {
2712	case SAM_STAT_GOOD:
2713		return IO_OK;
2714	case SAM_STAT_CHECK_CONDITION:
2715		switch (0xf & c->err_info->SenseInfo[2]) {
2716		case 0: return IO_OK; /* no sense */
2717		case 1: return IO_OK; /* recovered error */
2718		default:
2719			if (check_for_unit_attention(h, c))
2720				return IO_NEEDS_RETRY;
2721			dev_warn(&h->pdev->dev, "cmd 0x%02x "
2722				"check condition, sense key = 0x%02x\n",
2723				c->Request.CDB[0], c->err_info->SenseInfo[2]);
2724		}
2725		break;
2726	default:
2727		dev_warn(&h->pdev->dev, "cmd 0x%02x"
2728			"scsi status = 0x%02x\n",
2729			c->Request.CDB[0], c->err_info->ScsiStatus);
2730		break;
2731	}
2732	return IO_ERROR;
2733}
2734
2735static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2736{
2737	int return_status = IO_OK;
2738
2739	if (c->err_info->CommandStatus == CMD_SUCCESS)
2740		return IO_OK;
2741
2742	switch (c->err_info->CommandStatus) {
2743	case CMD_TARGET_STATUS:
2744		return_status = check_target_status(h, c);
2745		break;
2746	case CMD_DATA_UNDERRUN:
2747	case CMD_DATA_OVERRUN:
2748		/* expected for inquiry and report lun commands */
2749		break;
2750	case CMD_INVALID:
2751		dev_warn(&h->pdev->dev, "cmd 0x%02x is "
2752		       "reported invalid\n", c->Request.CDB[0]);
2753		return_status = IO_ERROR;
2754		break;
2755	case CMD_PROTOCOL_ERR:
2756		dev_warn(&h->pdev->dev, "cmd 0x%02x has "
2757		       "protocol error\n", c->Request.CDB[0]);
2758		return_status = IO_ERROR;
2759		break;
2760	case CMD_HARDWARE_ERR:
2761		dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2762		       " hardware error\n", c->Request.CDB[0]);
2763		return_status = IO_ERROR;
2764		break;
2765	case CMD_CONNECTION_LOST:
2766		dev_warn(&h->pdev->dev, "cmd 0x%02x had "
2767		       "connection lost\n", c->Request.CDB[0]);
2768		return_status = IO_ERROR;
2769		break;
2770	case CMD_ABORTED:
2771		dev_warn(&h->pdev->dev, "cmd 0x%02x was "
2772		       "aborted\n", c->Request.CDB[0]);
2773		return_status = IO_ERROR;
2774		break;
2775	case CMD_ABORT_FAILED:
2776		dev_warn(&h->pdev->dev, "cmd 0x%02x reports "
2777		       "abort failed\n", c->Request.CDB[0]);
2778		return_status = IO_ERROR;
2779		break;
2780	case CMD_UNSOLICITED_ABORT:
2781		dev_warn(&h->pdev->dev, "unsolicited abort 0x%02x\n",
2782			c->Request.CDB[0]);
2783		return_status = IO_NEEDS_RETRY;
2784		break;
2785	case CMD_UNABORTABLE:
2786		dev_warn(&h->pdev->dev, "cmd unabortable\n");
2787		return_status = IO_ERROR;
2788		break;
2789	default:
2790		dev_warn(&h->pdev->dev, "cmd 0x%02x returned "
2791		       "unknown status %x\n", c->Request.CDB[0],
2792		       c->err_info->CommandStatus);
2793		return_status = IO_ERROR;
2794	}
2795	return return_status;
2796}
2797
2798static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2799	int attempt_retry)
2800{
2801	DECLARE_COMPLETION_ONSTACK(wait);
2802	u64bit buff_dma_handle;
2803	int return_status = IO_OK;
2804
2805resend_cmd2:
2806	c->waiting = &wait;
2807	enqueue_cmd_and_start_io(h, c);
2808
2809	wait_for_completion(&wait);
2810
2811	if (c->err_info->CommandStatus == 0 || !attempt_retry)
2812		goto command_done;
2813
2814	return_status = process_sendcmd_error(h, c);
2815
2816	if (return_status == IO_NEEDS_RETRY &&
2817		c->retry_count < MAX_CMD_RETRIES) {
2818		dev_warn(&h->pdev->dev, "retrying 0x%02x\n",
2819			c->Request.CDB[0]);
2820		c->retry_count++;
2821		/* erase the old error information */
2822		memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2823		return_status = IO_OK;
2824		reinit_completion(&wait);
2825		goto resend_cmd2;
2826	}
2827
2828command_done:
2829	/* unlock the buffers from DMA */
2830	buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2831	buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2832	pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2833			 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2834	return return_status;
2835}
2836
2837static int sendcmd_withirq(ctlr_info_t *h, __u8 cmd, void *buff, size_t size,
2838			   __u8 page_code, unsigned char scsi3addr[],
2839			int cmd_type)
2840{
2841	CommandList_struct *c;
2842	int return_status;
2843
2844	c = cmd_special_alloc(h);
2845	if (!c)
2846		return -ENOMEM;
2847	return_status = fill_cmd(h, c, cmd, buff, size, page_code,
2848		scsi3addr, cmd_type);
2849	if (return_status == IO_OK)
2850		return_status = sendcmd_withirq_core(h, c, 1);
2851
2852	cmd_special_free(h, c);
2853	return return_status;
2854}
2855
2856static void cciss_geometry_inquiry(ctlr_info_t *h, int logvol,
2857				   sector_t total_size,
2858				   unsigned int block_size,
2859				   InquiryData_struct *inq_buff,
2860				   drive_info_struct *drv)
2861{
2862	int return_code;
2863	unsigned long t;
2864	unsigned char scsi3addr[8];
2865
2866	memset(inq_buff, 0, sizeof(InquiryData_struct));
2867	log_unit_to_scsi3addr(h, scsi3addr, logvol);
2868	return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
2869			sizeof(*inq_buff), 0xC1, scsi3addr, TYPE_CMD);
2870	if (return_code == IO_OK) {
2871		if (inq_buff->data_byte[8] == 0xFF) {
2872			dev_warn(&h->pdev->dev,
2873			       "reading geometry failed, volume "
2874			       "does not support reading geometry\n");
2875			drv->heads = 255;
2876			drv->sectors = 32;	/* Sectors per track */
2877			drv->cylinders = total_size + 1;
2878			drv->raid_level = RAID_UNKNOWN;
2879		} else {
2880			drv->heads = inq_buff->data_byte[6];
2881			drv->sectors = inq_buff->data_byte[7];
2882			drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2883			drv->cylinders += inq_buff->data_byte[5];
2884			drv->raid_level = inq_buff->data_byte[8];
2885		}
2886		drv->block_size = block_size;
2887		drv->nr_blocks = total_size + 1;
2888		t = drv->heads * drv->sectors;
2889		if (t > 1) {
2890			sector_t real_size = total_size + 1;
2891			unsigned long rem = sector_div(real_size, t);
2892			if (rem)
2893				real_size++;
2894			drv->cylinders = real_size;
2895		}
2896	} else {		/* Get geometry failed */
2897		dev_warn(&h->pdev->dev, "reading geometry failed\n");
2898	}
2899}
2900
2901static void
2902cciss_read_capacity(ctlr_info_t *h, int logvol, sector_t *total_size,
2903		    unsigned int *block_size)
2904{
2905	ReadCapdata_struct *buf;
2906	int return_code;
2907	unsigned char scsi3addr[8];
2908
2909	buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2910	if (!buf) {
2911		dev_warn(&h->pdev->dev, "out of memory\n");
2912		return;
2913	}
2914
2915	log_unit_to_scsi3addr(h, scsi3addr, logvol);
2916	return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY, buf,
2917		sizeof(ReadCapdata_struct), 0, scsi3addr, TYPE_CMD);
2918	if (return_code == IO_OK) {
2919		*total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2920		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2921	} else {		/* read capacity command failed */
2922		dev_warn(&h->pdev->dev, "read capacity failed\n");
2923		*total_size = 0;
2924		*block_size = BLOCK_SIZE;
2925	}
2926	kfree(buf);
2927}
2928
2929static void cciss_read_capacity_16(ctlr_info_t *h, int logvol,
2930	sector_t *total_size, unsigned int *block_size)
2931{
2932	ReadCapdata_struct_16 *buf;
2933	int return_code;
2934	unsigned char scsi3addr[8];
2935
2936	buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2937	if (!buf) {
2938		dev_warn(&h->pdev->dev, "out of memory\n");
2939		return;
2940	}
2941
2942	log_unit_to_scsi3addr(h, scsi3addr, logvol);
2943	return_code = sendcmd_withirq(h, CCISS_READ_CAPACITY_16,
2944		buf, sizeof(ReadCapdata_struct_16),
2945			0, scsi3addr, TYPE_CMD);
2946	if (return_code == IO_OK) {
2947		*total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2948		*block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2949	} else {		/* read capacity command failed */
2950		dev_warn(&h->pdev->dev, "read capacity failed\n");
2951		*total_size = 0;
2952		*block_size = BLOCK_SIZE;
2953	}
2954	dev_info(&h->pdev->dev, "      blocks= %llu block_size= %d\n",
2955	       (unsigned long long)*total_size+1, *block_size);
2956	kfree(buf);
2957}
2958
2959static int cciss_revalidate(struct gendisk *disk)
2960{
2961	ctlr_info_t *h = get_host(disk);
2962	drive_info_struct *drv = get_drv(disk);
2963	int logvol;
2964	int FOUND = 0;
2965	unsigned int block_size;
2966	sector_t total_size;
2967	InquiryData_struct *inq_buff = NULL;
2968
2969	for (logvol = 0; logvol <= h->highest_lun; logvol++) {
2970		if (!h->drv[logvol])
2971			continue;
2972		if (memcmp(h->drv[logvol]->LunID, drv->LunID,
2973			sizeof(drv->LunID)) == 0) {
2974			FOUND = 1;
2975			break;
2976		}
2977	}
2978
2979	if (!FOUND)
2980		return 1;
2981
2982	inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2983	if (inq_buff == NULL) {
2984		dev_warn(&h->pdev->dev, "out of memory\n");
2985		return 1;
2986	}
2987	if (h->cciss_read == CCISS_READ_10) {
2988		cciss_read_capacity(h, logvol,
2989					&total_size, &block_size);
2990	} else {
2991		cciss_read_capacity_16(h, logvol,
2992					&total_size, &block_size);
2993	}
2994	cciss_geometry_inquiry(h, logvol, total_size, block_size,
2995			       inq_buff, drv);
2996
2997	blk_queue_logical_block_size(drv->queue, drv->block_size);
2998	set_capacity(disk, drv->nr_blocks);
2999
3000	kfree(inq_buff);
3001	return 0;
3002}
3003
3004/*
3005 * Map (physical) PCI mem into (virtual) kernel space
3006 */
3007static void __iomem *remap_pci_mem(ulong base, ulong size)
3008{
3009	ulong page_base = ((ulong) base) & PAGE_MASK;
3010	ulong page_offs = ((ulong) base) - page_base;
3011	void __iomem *page_remapped = ioremap(page_base, page_offs + size);
3012
3013	return page_remapped ? (page_remapped + page_offs) : NULL;
3014}
3015
3016/*
3017 * Takes jobs of the Q and sends them to the hardware, then puts it on
3018 * the Q to wait for completion.
3019 */
3020static void start_io(ctlr_info_t *h)
3021{
3022	CommandList_struct *c;
3023
3024	while (!list_empty(&h->reqQ)) {
3025		c = list_entry(h->reqQ.next, CommandList_struct, list);
3026		/* can't do anything if fifo is full */
3027		if ((h->access.fifo_full(h))) {
3028			dev_warn(&h->pdev->dev, "fifo full\n");
3029			break;
3030		}
3031
3032		/* Get the first entry from the Request Q */
3033		removeQ(c);
3034		h->Qdepth--;
3035
3036		/* Tell the controller execute command */
3037		h->access.submit_command(h, c);
3038
3039		/* Put job onto the completed Q */
3040		addQ(&h->cmpQ, c);
3041	}
3042}
3043
3044/* Assumes that h->lock is held. */
3045/* Zeros out the error record and then resends the command back */
3046/* to the controller */
3047static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
3048{
3049	/* erase the old error information */
3050	memset(c->err_info, 0, sizeof(ErrorInfo_struct));
3051
3052	/* add it to software queue and then send it to the controller */
3053	addQ(&h->reqQ, c);
3054	h->Qdepth++;
3055	if (h->Qdepth > h->maxQsinceinit)
3056		h->maxQsinceinit = h->Qdepth;
3057
3058	start_io(h);
3059}
3060
3061static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
3062	unsigned int msg_byte, unsigned int host_byte,
3063	unsigned int driver_byte)
3064{
3065	/* inverse of macros in scsi.h */
3066	return (scsi_status_byte & 0xff) |
3067		((msg_byte & 0xff) << 8) |
3068		((host_byte & 0xff) << 16) |
3069		((driver_byte & 0xff) << 24);
3070}
3071
3072static inline int evaluate_target_status(ctlr_info_t *h,
3073			CommandList_struct *cmd, int *retry_cmd)
3074{
3075	unsigned char sense_key;
3076	unsigned char status_byte, msg_byte, host_byte, driver_byte;
3077	int error_value;
3078
3079	*retry_cmd = 0;
3080	/* If we get in here, it means we got "target status", that is, scsi status */
3081	status_byte = cmd->err_info->ScsiStatus;
3082	driver_byte = DRIVER_OK;
3083	msg_byte = cmd->err_info->CommandStatus; /* correct?  seems too device specific */
3084
3085	if (cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC)
3086		host_byte = DID_PASSTHROUGH;
3087	else
3088		host_byte = DID_OK;
3089
3090	error_value = make_status_bytes(status_byte, msg_byte,
3091		host_byte, driver_byte);
3092
3093	if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
3094		if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC)
3095			dev_warn(&h->pdev->dev, "cmd %p "
3096			       "has SCSI Status 0x%x\n",
3097			       cmd, cmd->err_info->ScsiStatus);
3098		return error_value;
3099	}
3100
3101	/* check the sense key */
3102	sense_key = 0xf & cmd->err_info->SenseInfo[2];
3103	/* no status or recovered error */
3104	if (((sense_key == 0x0) || (sense_key == 0x1)) &&
3105	    (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC))
3106		error_value = 0;
3107
3108	if (check_for_unit_attention(h, cmd)) {
3109		*retry_cmd = !(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC);
3110		return 0;
3111	}
3112
3113	/* Not SG_IO or similar? */
3114	if (cmd->rq->cmd_type != REQ_TYPE_BLOCK_PC) {
3115		if (error_value != 0)
3116			dev_warn(&h->pdev->dev, "cmd %p has CHECK CONDITION"
3117			       " sense key = 0x%x\n", cmd, sense_key);
3118		return error_value;
3119	}
3120
3121	/* SG_IO or similar, copy sense data back */
3122	if (cmd->rq->sense) {
3123		if (cmd->rq->sense_len > cmd->err_info->SenseLen)
3124			cmd->rq->sense_len = cmd->err_info->SenseLen;
3125		memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
3126			cmd->rq->sense_len);
3127	} else
3128		cmd->rq->sense_len = 0;
3129
3130	return error_value;
3131}
3132
3133/* checks the status of the job and calls complete buffers to mark all
3134 * buffers for the completed job. Note that this function does not need
3135 * to hold the hba/queue lock.
3136 */
3137static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
3138				    int timeout)
3139{
3140	int retry_cmd = 0;
3141	struct request *rq = cmd->rq;
3142
3143	rq->errors = 0;
3144
3145	if (timeout)
3146		rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
3147
3148	if (cmd->err_info->CommandStatus == 0)	/* no error has occurred */
3149		goto after_error_processing;
3150
3151	switch (cmd->err_info->CommandStatus) {
3152	case CMD_TARGET_STATUS:
3153		rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
3154		break;
3155	case CMD_DATA_UNDERRUN:
3156		if (cmd->rq->cmd_type == REQ_TYPE_FS) {
3157			dev_warn(&h->pdev->dev, "cmd %p has"
3158			       " completed with data underrun "
3159			       "reported\n", cmd);
3160			cmd->rq->resid_len = cmd->err_info->ResidualCnt;
3161		}
3162		break;
3163	case CMD_DATA_OVERRUN:
3164		if (cmd->rq->cmd_type == REQ_TYPE_FS)
3165			dev_warn(&h->pdev->dev, "cciss: cmd %p has"
3166			       " completed with data overrun "
3167			       "reported\n", cmd);
3168		break;
3169	case CMD_INVALID:
3170		dev_warn(&h->pdev->dev, "cciss: cmd %p is "
3171		       "reported invalid\n", cmd);
3172		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3173			cmd->err_info->CommandStatus, DRIVER_OK,
3174			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3175				DID_PASSTHROUGH : DID_ERROR);
3176		break;
3177	case CMD_PROTOCOL_ERR:
3178		dev_warn(&h->pdev->dev, "cciss: cmd %p has "
3179		       "protocol error\n", cmd);
3180		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3181			cmd->err_info->CommandStatus, DRIVER_OK,
3182			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3183				DID_PASSTHROUGH : DID_ERROR);
3184		break;
3185	case CMD_HARDWARE_ERR:
3186		dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3187		       " hardware error\n", cmd);
3188		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3189			cmd->err_info->CommandStatus, DRIVER_OK,
3190			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3191				DID_PASSTHROUGH : DID_ERROR);
3192		break;
3193	case CMD_CONNECTION_LOST:
3194		dev_warn(&h->pdev->dev, "cciss: cmd %p had "
3195		       "connection lost\n", cmd);
3196		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3197			cmd->err_info->CommandStatus, DRIVER_OK,
3198			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3199				DID_PASSTHROUGH : DID_ERROR);
3200		break;
3201	case CMD_ABORTED:
3202		dev_warn(&h->pdev->dev, "cciss: cmd %p was "
3203		       "aborted\n", cmd);
3204		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3205			cmd->err_info->CommandStatus, DRIVER_OK,
3206			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3207				DID_PASSTHROUGH : DID_ABORT);
3208		break;
3209	case CMD_ABORT_FAILED:
3210		dev_warn(&h->pdev->dev, "cciss: cmd %p reports "
3211		       "abort failed\n", cmd);
3212		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3213			cmd->err_info->CommandStatus, DRIVER_OK,
3214			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3215				DID_PASSTHROUGH : DID_ERROR);
3216		break;
3217	case CMD_UNSOLICITED_ABORT:
3218		dev_warn(&h->pdev->dev, "cciss%d: unsolicited "
3219		       "abort %p\n", h->ctlr, cmd);
3220		if (cmd->retry_count < MAX_CMD_RETRIES) {
3221			retry_cmd = 1;
3222			dev_warn(&h->pdev->dev, "retrying %p\n", cmd);
3223			cmd->retry_count++;
3224		} else
3225			dev_warn(&h->pdev->dev,
3226				"%p retried too many times\n", cmd);
3227		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3228			cmd->err_info->CommandStatus, DRIVER_OK,
3229			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3230				DID_PASSTHROUGH : DID_ABORT);
3231		break;
3232	case CMD_TIMEOUT:
3233		dev_warn(&h->pdev->dev, "cmd %p timedout\n", cmd);
3234		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3235			cmd->err_info->CommandStatus, DRIVER_OK,
3236			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3237				DID_PASSTHROUGH : DID_ERROR);
3238		break;
3239	case CMD_UNABORTABLE:
3240		dev_warn(&h->pdev->dev, "cmd %p unabortable\n", cmd);
3241		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3242			cmd->err_info->CommandStatus, DRIVER_OK,
3243			cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC ?
3244				DID_PASSTHROUGH : DID_ERROR);
3245		break;
3246	default:
3247		dev_warn(&h->pdev->dev, "cmd %p returned "
3248		       "unknown status %x\n", cmd,
3249		       cmd->err_info->CommandStatus);
3250		rq->errors = make_status_bytes(SAM_STAT_GOOD,
3251			cmd->err_info->CommandStatus, DRIVER_OK,
3252			(cmd->rq->cmd_type == REQ_TYPE_BLOCK_PC) ?
3253				DID_PASSTHROUGH : DID_ERROR);
3254	}
3255
3256after_error_processing:
3257
3258	/* We need to return this command */
3259	if (retry_cmd) {
3260		resend_cciss_cmd(h, cmd);
3261		return;
3262	}
3263	cmd->rq->completion_data = cmd;
3264	blk_complete_request(cmd->rq);
3265}
3266
3267static inline u32 cciss_tag_contains_index(u32 tag)
3268{
3269#define DIRECT_LOOKUP_BIT 0x10
3270	return tag & DIRECT_LOOKUP_BIT;
3271}
3272
3273static inline u32 cciss_tag_to_index(u32 tag)
3274{
3275#define DIRECT_LOOKUP_SHIFT 5
3276	return tag >> DIRECT_LOOKUP_SHIFT;
3277}
3278
3279static inline u32 cciss_tag_discard_error_bits(ctlr_info_t *h, u32 tag)
3280{
3281#define CCISS_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3282#define CCISS_SIMPLE_ERROR_BITS 0x03
3283	if (likely(h->transMethod & CFGTBL_Trans_Performant))
3284		return tag & ~CCISS_PERF_ERROR_BITS;
3285	return tag & ~CCISS_SIMPLE_ERROR_BITS;
3286}
3287
3288static inline void cciss_mark_tag_indexed(u32 *tag)
3289{
3290	*tag |= DIRECT_LOOKUP_BIT;
3291}
3292
3293static inline void cciss_set_tag_index(u32 *tag, u32 index)
3294{
3295	*tag |= (index << DIRECT_LOOKUP_SHIFT);
3296}
3297
3298/*
3299 * Get a request and submit it to the controller.
3300 */
3301static void do_cciss_request(struct request_queue *q)
3302{
3303	ctlr_info_t *h = q->queuedata;
3304	CommandList_struct *c;
3305	sector_t start_blk;
3306	int seg;
3307	struct request *creq;
3308	u64bit temp64;
3309	struct scatterlist *tmp_sg;
3310	SGDescriptor_struct *curr_sg;
3311	drive_info_struct *drv;
3312	int i, dir;
3313	int sg_index = 0;
3314	int chained = 0;
3315
3316      queue:
3317	creq = blk_peek_request(q);
3318	if (!creq)
3319		goto startio;
3320
3321	BUG_ON(creq->nr_phys_segments > h->maxsgentries);
3322
3323	c = cmd_alloc(h);
3324	if (!c)
3325		goto full;
3326
3327	blk_start_request(creq);
3328
3329	tmp_sg = h->scatter_list[c->cmdindex];
3330	spin_unlock_irq(q->queue_lock);
3331
3332	c->cmd_type = CMD_RWREQ;
3333	c->rq = creq;
3334
3335	/* fill in the request */
3336	drv = creq->rq_disk->private_data;
3337	c->Header.ReplyQueue = 0;	/* unused in simple mode */
3338	/* got command from pool, so use the command block index instead */
3339	/* for direct lookups. */
3340	/* The first 2 bits are reserved for controller error reporting. */
3341	cciss_set_tag_index(&c->Header.Tag.lower, c->cmdindex);
3342	cciss_mark_tag_indexed(&c->Header.Tag.lower);
3343	memcpy(&c->Header.LUN, drv->LunID, sizeof(drv->LunID));
3344	c->Request.CDBLen = 10;	/* 12 byte commands not in FW yet; */
3345	c->Request.Type.Type = TYPE_CMD;	/* It is a command. */
3346	c->Request.Type.Attribute = ATTR_SIMPLE;
3347	c->Request.Type.Direction =
3348	    (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3349	c->Request.Timeout = 0;	/* Don't time out */
3350	c->Request.CDB[0] =
3351	    (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3352	start_blk = blk_rq_pos(creq);
3353	dev_dbg(&h->pdev->dev, "sector =%d nr_sectors=%d\n",
3354	       (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3355	sg_init_table(tmp_sg, h->maxsgentries);
3356	seg = blk_rq_map_sg(q, creq, tmp_sg);
3357
3358	/* get the DMA records for the setup */
3359	if (c->Request.Type.Direction == XFER_READ)
3360		dir = PCI_DMA_FROMDEVICE;
3361	else
3362		dir = PCI_DMA_TODEVICE;
3363
3364	curr_sg = c->SG;
3365	sg_index = 0;
3366	chained = 0;
3367
3368	for (i = 0; i < seg; i++) {
3369		if (((sg_index+1) == (h->max_cmd_sgentries)) &&
3370			!chained && ((seg - i) > 1)) {
3371			/* Point to next chain block. */
3372			curr_sg = h->cmd_sg_list[c->cmdindex];
3373			sg_index = 0;
3374			chained = 1;
3375		}
3376		curr_sg[sg_index].Len = tmp_sg[i].length;
3377		temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3378						tmp_sg[i].offset,
3379						tmp_sg[i].length, dir);
3380		curr_sg[sg_index].Addr.lower = temp64.val32.lower;
3381		curr_sg[sg_index].Addr.upper = temp64.val32.upper;
3382		curr_sg[sg_index].Ext = 0;  /* we are not chaining */
3383		++sg_index;
3384	}
3385	if (chained)
3386		cciss_map_sg_chain_block(h, c, h->cmd_sg_list[c->cmdindex],
3387			(seg - (h->max_cmd_sgentries - 1)) *
3388				sizeof(SGDescriptor_struct));
3389
3390	/* track how many SG entries we are using */
3391	if (seg > h->maxSG)
3392		h->maxSG = seg;
3393
3394	dev_dbg(&h->pdev->dev, "Submitting %u sectors in %d segments "
3395			"chained[%d]\n",
3396			blk_rq_sectors(creq), seg, chained);
3397
3398	c->Header.SGTotal = seg + chained;
3399	if (seg <= h->max_cmd_sgentries)
3400		c->Header.SGList = c->Header.SGTotal;
3401	else
3402		c->Header.SGList = h->max_cmd_sgentries;
3403	set_performant_mode(h, c);
3404
3405	if (likely(creq->cmd_type == REQ_TYPE_FS)) {
3406		if(h->cciss_read == CCISS_READ_10) {
3407			c->Request.CDB[1] = 0;
3408			c->Request.CDB[2] = (start_blk >> 24) & 0xff; /* MSB */
3409			c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3410			c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3411			c->Request.CDB[5] = start_blk & 0xff;
3412			c->Request.CDB[6] = 0; /* (sect >> 24) & 0xff; MSB */
3413			c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3414			c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3415			c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3416		} else {
3417			u32 upper32 = upper_32_bits(start_blk);
3418
3419			c->Request.CDBLen = 16;
3420			c->Request.CDB[1]= 0;
3421			c->Request.CDB[2]= (upper32 >> 24) & 0xff; /* MSB */
3422			c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3423			c->Request.CDB[4]= (upper32 >>  8) & 0xff;
3424			c->Request.CDB[5]= upper32 & 0xff;
3425			c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3426			c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3427			c->Request.CDB[8]= (start_blk >>  8) & 0xff;
3428			c->Request.CDB[9]= start_blk & 0xff;
3429			c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3430			c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3431			c->Request.CDB[12]= (blk_rq_sectors(creq) >>  8) & 0xff;
3432			c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3433			c->Request.CDB[14] = c->Request.CDB[15] = 0;
3434		}
3435	} else if (creq->cmd_type == REQ_TYPE_BLOCK_PC) {
3436		c->Request.CDBLen = creq->cmd_len;
3437		memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3438	} else {
3439		dev_warn(&h->pdev->dev, "bad request type %d\n",
3440			creq->cmd_type);
3441		BUG();
3442	}
3443
3444	spin_lock_irq(q->queue_lock);
3445
3446	addQ(&h->reqQ, c);
3447	h->Qdepth++;
3448	if (h->Qdepth > h->maxQsinceinit)
3449		h->maxQsinceinit = h->Qdepth;
3450
3451	goto queue;
3452full:
3453	blk_stop_queue(q);
3454startio:
3455	/* We will already have the driver lock here so not need
3456	 * to lock it.
3457	 */
3458	start_io(h);
3459}
3460
3461static inline unsigned long get_next_completion(ctlr_info_t *h)
3462{
3463	return h->access.command_completed(h);
3464}
3465
3466static inline int interrupt_pending(ctlr_info_t *h)
3467{
3468	return h->access.intr_pending(h);
3469}
3470
3471static inline long interrupt_not_for_us(ctlr_info_t *h)
3472{
3473	return ((h->access.intr_pending(h) == 0) ||
3474		(h->interrupts_enabled == 0));
3475}
3476
3477static inline int bad_tag(ctlr_info_t *h, u32 tag_index,
3478			u32 raw_tag)
3479{
3480	if (unlikely(tag_index >= h->nr_cmds)) {
3481		dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3482		return 1;
3483	}
3484	return 0;
3485}
3486
3487static inline void finish_cmd(ctlr_info_t *h, CommandList_struct *c,
3488				u32 raw_tag)
3489{
3490	removeQ(c);
3491	if (likely(c->cmd_type == CMD_RWREQ))
3492		complete_command(h, c, 0);
3493	else if (c->cmd_type == CMD_IOCTL_PEND)
3494		complete(c->waiting);
3495#ifdef CONFIG_CISS_SCSI_TAPE
3496	else if (c->cmd_type == CMD_SCSI)
3497		complete_scsi_command(c, 0, raw_tag);
3498#endif
3499}
3500
3501static inline u32 next_command(ctlr_info_t *h)
3502{
3503	u32 a;
3504
3505	if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3506		return h->access.command_completed(h);
3507
3508	if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
3509		a = *(h->reply_pool_head); /* Next cmd in ring buffer */
3510		(h->reply_pool_head)++;
3511		h->commands_outstanding--;
3512	} else {
3513		a = FIFO_EMPTY;
3514	}
3515	/* Check for wraparound */
3516	if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
3517		h->reply_pool_head = h->reply_pool;
3518		h->reply_pool_wraparound ^= 1;
3519	}
3520	return a;
3521}
3522
3523/* process completion of an indexed ("direct lookup") command */
3524static inline u32 process_indexed_cmd(ctlr_info_t *h, u32 raw_tag)
3525{
3526	u32 tag_index;
3527	CommandList_struct *c;
3528
3529	tag_index = cciss_tag_to_index(raw_tag);
3530	if (bad_tag(h, tag_index, raw_tag))
3531		return next_command(h);
3532	c = h->cmd_pool + tag_index;
3533	finish_cmd(h, c, raw_tag);
3534	return next_command(h);
3535}
3536
3537/* process completion of a non-indexed command */
3538static inline u32 process_nonindexed_cmd(ctlr_info_t *h, u32 raw_tag)
3539{
3540	CommandList_struct *c = NULL;
3541	__u32 busaddr_masked, tag_masked;
3542
3543	tag_masked = cciss_tag_discard_error_bits(h, raw_tag);
3544	list_for_each_entry(c, &h->cmpQ, list) {
3545		busaddr_masked = cciss_tag_discard_error_bits(h, c->busaddr);
3546		if (busaddr_masked == tag_masked) {
3547			finish_cmd(h, c, raw_tag);
3548			return next_command(h);
3549		}
3550	}
3551	bad_tag(h, h->nr_cmds + 1, raw_tag);
3552	return next_command(h);
3553}
3554
3555/* Some controllers, like p400, will give us one interrupt
3556 * after a soft reset, even if we turned interrupts off.
3557 * Only need to check for this in the cciss_xxx_discard_completions
3558 * functions.
3559 */
3560static int ignore_bogus_interrupt(ctlr_info_t *h)
3561{
3562	if (likely(!reset_devices))
3563		return 0;
3564
3565	if (likely(h->interrupts_enabled))
3566		return 0;
3567
3568	dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3569		"(known firmware bug.)  Ignoring.\n");
3570
3571	return 1;
3572}
3573
3574static irqreturn_t cciss_intx_discard_completions(int irq, void *dev_id)
3575{
3576	ctlr_info_t *h = dev_id;
3577	unsigned long flags;
3578	u32 raw_tag;
3579
3580	if (ignore_bogus_interrupt(h))
3581		return IRQ_NONE;
3582
3583	if (interrupt_not_for_us(h))
3584		return IRQ_NONE;
3585	spin_lock_irqsave(&h->lock, flags);
3586	while (interrupt_pending(h)) {
3587		raw_tag = get_next_completion(h);
3588		while (raw_tag != FIFO_EMPTY)
3589			raw_tag = next_command(h);
3590	}
3591	spin_unlock_irqrestore(&h->lock, flags);
3592	return IRQ_HANDLED;
3593}
3594
3595static irqreturn_t cciss_msix_discard_completions(int irq, void *dev_id)
3596{
3597	ctlr_info_t *h = dev_id;
3598	unsigned long flags;
3599	u32 raw_tag;
3600
3601	if (ignore_bogus_interrupt(h))
3602		return IRQ_NONE;
3603
3604	spin_lock_irqsave(&h->lock, flags);
3605	raw_tag = get_next_completion(h);
3606	while (raw_tag != FIFO_EMPTY)
3607		raw_tag = next_command(h);
3608	spin_unlock_irqrestore(&h->lock, flags);
3609	return IRQ_HANDLED;
3610}
3611
3612static irqreturn_t do_cciss_intx(int irq, void *dev_id)
3613{
3614	ctlr_info_t *h = dev_id;
3615	unsigned long flags;
3616	u32 raw_tag;
3617
3618	if (interrupt_not_for_us(h))
3619		return IRQ_NONE;
3620	spin_lock_irqsave(&h->lock, flags);
3621	while (interrupt_pending(h)) {
3622		raw_tag = get_next_completion(h);
3623		while (raw_tag != FIFO_EMPTY) {
3624			if (cciss_tag_contains_index(raw_tag))
3625				raw_tag = process_indexed_cmd(h, raw_tag);
3626			else
3627				raw_tag = process_nonindexed_cmd(h, raw_tag);
3628		}
3629	}
3630	spin_unlock_irqrestore(&h->lock, flags);
3631	return IRQ_HANDLED;
3632}
3633
3634/* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3635 * check the interrupt pending register because it is not set.
3636 */
3637static irqreturn_t do_cciss_msix_intr(int irq, void *dev_id)
3638{
3639	ctlr_info_t *h = dev_id;
3640	unsigned long flags;
3641	u32 raw_tag;
3642
3643	spin_lock_irqsave(&h->lock, flags);
3644	raw_tag = get_next_completion(h);
3645	while (raw_tag != FIFO_EMPTY) {
3646		if (cciss_tag_contains_index(raw_tag))
3647			raw_tag = process_indexed_cmd(h, raw_tag);
3648		else
3649			raw_tag = process_nonindexed_cmd(h, raw_tag);
3650	}
3651	spin_unlock_irqrestore(&h->lock, flags);
3652	return IRQ_HANDLED;
3653}
3654
3655/**
3656 * add_to_scan_list() - add controller to rescan queue
3657 * @h:		      Pointer to the controller.
3658 *
3659 * Adds the controller to the rescan queue if not already on the queue.
3660 *
3661 * returns 1 if added to the queue, 0 if skipped (could be on the
3662 * queue already, or the controller could be initializing or shutting
3663 * down).
3664 **/
3665static int add_to_scan_list(struct ctlr_info *h)
3666{
3667	struct ctlr_info *test_h;
3668	int found = 0;
3669	int ret = 0;
3670
3671	if (h->busy_initializing)
3672		return 0;
3673
3674	if (!mutex_trylock(&h->busy_shutting_down))
3675		return 0;
3676
3677	mutex_lock(&scan_mutex);
3678	list_for_each_entry(test_h, &scan_q, scan_list) {
3679		if (test_h == h) {
3680			found = 1;
3681			break;
3682		}
3683	}
3684	if (!found && !h->busy_scanning) {
3685		reinit_completion(&h->scan_wait);
3686		list_add_tail(&h->scan_list, &scan_q);
3687		ret = 1;
3688	}
3689	mutex_unlock(&scan_mutex);
3690	mutex_unlock(&h->busy_shutting_down);
3691
3692	return ret;
3693}
3694
3695/**
3696 * remove_from_scan_list() - remove controller from rescan queue
3697 * @h:			   Pointer to the controller.
3698 *
3699 * Removes the controller from the rescan queue if present. Blocks if
3700 * the controller is currently conducting a rescan.  The controller
3701 * can be in one of three states:
3702 * 1. Doesn't need a scan
3703 * 2. On the scan list, but not scanning yet (we remove it)
3704 * 3. Busy scanning (and not on the list). In this case we want to wait for
3705 *    the scan to complete to make sure the scanning thread for this
3706 *    controller is completely idle.
3707 **/
3708static void remove_from_scan_list(struct ctlr_info *h)
3709{
3710	struct ctlr_info *test_h, *tmp_h;
3711
3712	mutex_lock(&scan_mutex);
3713	list_for_each_entry_safe(test_h, tmp_h, &scan_q, scan_list) {
3714		if (test_h == h) { /* state 2. */
3715			list_del(&h->scan_list);
3716			complete_all(&h->scan_wait);
3717			mutex_unlock(&scan_mutex);
3718			return;
3719		}
3720	}
3721	if (h->busy_scanning) { /* state 3. */
3722		mutex_unlock(&scan_mutex);
3723		wait_for_completion(&h->scan_wait);
3724	} else { /* state 1, nothing to do. */
3725		mutex_unlock(&scan_mutex);
3726	}
3727}
3728
3729/**
3730 * scan_thread() - kernel thread used to rescan controllers
3731 * @data:	 Ignored.
3732 *
3733 * A kernel thread used scan for drive topology changes on
3734 * controllers. The thread processes only one controller at a time
3735 * using a queue.  Controllers are added to the queue using
3736 * add_to_scan_list() and removed from the queue either after done
3737 * processing or using remove_from_scan_list().
3738 *
3739 * returns 0.
3740 **/
3741static int scan_thread(void *data)
3742{
3743	struct ctlr_info *h;
3744
3745	while (1) {
3746		set_current_state(TASK_INTERRUPTIBLE);
3747		schedule();
3748		if (kthread_should_stop())
3749			break;
3750
3751		while (1) {
3752			mutex_lock(&scan_mutex);
3753			if (list_empty(&scan_q)) {
3754				mutex_unlock(&scan_mutex);
3755				break;
3756			}
3757
3758			h = list_entry(scan_q.next,
3759				       struct ctlr_info,
3760				       scan_list);
3761			list_del(&h->scan_list);
3762			h->busy_scanning = 1;
3763			mutex_unlock(&scan_mutex);
3764
3765			rebuild_lun_table(h, 0, 0);
3766			complete_all(&h->scan_wait);
3767			mutex_lock(&scan_mutex);
3768			h->busy_scanning = 0;
3769			mutex_unlock(&scan_mutex);
3770		}
3771	}
3772
3773	return 0;
3774}
3775
3776static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3777{
3778	if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3779		return 0;
3780
3781	switch (c->err_info->SenseInfo[12]) {
3782	case STATE_CHANGED:
3783		dev_warn(&h->pdev->dev, "a state change "
3784			"detected, command retried\n");
3785		return 1;
3786	break;
3787	case LUN_FAILED:
3788		dev_warn(&h->pdev->dev, "LUN failure "
3789			"detected, action required\n");
3790		return 1;
3791	break;
3792	case REPORT_LUNS_CHANGED:
3793		dev_warn(&h->pdev->dev, "report LUN data changed\n");
3794	/*
3795	 * Here, we could call add_to_scan_list and wake up the scan thread,
3796	 * except that it's quite likely that we will get more than one
3797	 * REPORT_LUNS_CHANGED condition in quick succession, which means
3798	 * that those which occur after the first one will likely happen
3799	 * *during* the scan_thread's rescan.  And the rescan code is not
3800	 * robust enough to restart in the middle, undoing what it has already
3801	 * done, and it's not clear that it's even possible to do this, since
3802	 * part of what it does is notify the block layer, which starts
3803	 * doing it's own i/o to read partition tables and so on, and the
3804	 * driver doesn't have visibility to know what might need undoing.
3805	 * In any event, if possible, it is horribly complicated to get right
3806	 * so we just don't do it for now.
3807	 *
3808	 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3809	 */
3810		return 1;
3811	break;
3812	case POWER_OR_RESET:
3813		dev_warn(&h->pdev->dev,
3814			"a power on or device reset detected\n");
3815		return 1;
3816	break;
3817	case UNIT_ATTENTION_CLEARED:
3818		dev_warn(&h->pdev->dev,
3819			"unit attention cleared by another initiator\n");
3820		return 1;
3821	break;
3822	default:
3823		dev_warn(&h->pdev->dev, "unknown unit attention detected\n");
3824		return 1;
3825	}
3826}
3827
3828/*
3829 *  We cannot read the structure directly, for portability we must use
3830 *   the io functions.
3831 *   This is for debug only.
3832 */
3833static void print_cfg_table(ctlr_info_t *h)
3834{
3835	int i;
3836	char temp_name[17];
3837	CfgTable_struct *tb = h->cfgtable;
3838
3839	dev_dbg(&h->pdev->dev, "Controller Configuration information\n");
3840	dev_dbg(&h->pdev->dev, "------------------------------------\n");
3841	for (i = 0; i < 4; i++)
3842		temp_name[i] = readb(&(tb->Signature[i]));
3843	temp_name[4] = '\0';
3844	dev_dbg(&h->pdev->dev, "   Signature = %s\n", temp_name);
3845	dev_dbg(&h->pdev->dev, "   Spec Number = %d\n",
3846		readl(&(tb->SpecValence)));
3847	dev_dbg(&h->pdev->dev, "   Transport methods supported = 0x%x\n",
3848	       readl(&(tb->TransportSupport)));
3849	dev_dbg(&h->pdev->dev, "   Transport methods active = 0x%x\n",
3850	       readl(&(tb->TransportActive)));
3851	dev_dbg(&h->pdev->dev, "   Requested transport Method = 0x%x\n",
3852	       readl(&(tb->HostWrite.TransportRequest)));
3853	dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Delay = 0x%x\n",
3854	       readl(&(tb->HostWrite.CoalIntDelay)));
3855	dev_dbg(&h->pdev->dev, "   Coalesce Interrupt Count = 0x%x\n",
3856	       readl(&(tb->HostWrite.CoalIntCount)));
3857	dev_dbg(&h->pdev->dev, "   Max outstanding commands = 0x%d\n",
3858	       readl(&(tb->CmdsOutMax)));
3859	dev_dbg(&h->pdev->dev, "   Bus Types = 0x%x\n",
3860		readl(&(tb->BusTypes)));
3861	for (i = 0; i < 16; i++)
3862		temp_name[i] = readb(&(tb->ServerName[i]));
3863	temp_name[16] = '\0';
3864	dev_dbg(&h->pdev->dev, "   Server Name = %s\n", temp_name);
3865	dev_dbg(&h->pdev->dev, "   Heartbeat Counter = 0x%x\n\n\n",
3866		readl(&(tb->HeartBeat)));
3867}
3868
3869static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3870{
3871	int i, offset, mem_type, bar_type;
3872	if (pci_bar_addr == PCI_BASE_ADDRESS_0)	/* looking for BAR zero? */
3873		return 0;
3874	offset = 0;
3875	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3876		bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3877		if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3878			offset += 4;
3879		else {
3880			mem_type = pci_resource_flags(pdev, i) &
3881			    PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3882			switch (mem_type) {
3883			case PCI_BASE_ADDRESS_MEM_TYPE_32:
3884			case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3885				offset += 4;	/* 32 bit */
3886				break;
3887			case PCI_BASE_ADDRESS_MEM_TYPE_64:
3888				offset += 8;
3889				break;
3890			default:	/* reserved in PCI 2.2 */
3891				dev_warn(&pdev->dev,
3892				       "Base address is invalid\n");
3893				return -1;
3894				break;
3895			}
3896		}
3897		if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3898			return i + 1;
3899	}
3900	return -1;
3901}
3902
3903/* Fill in bucket_map[], given nsgs (the max number of
3904 * scatter gather elements supported) and bucket[],
3905 * which is an array of 8 integers.  The bucket[] array
3906 * contains 8 different DMA transfer sizes (in 16
3907 * byte increments) which the controller uses to fetch
3908 * commands.  This function fills in bucket_map[], which
3909 * maps a given number of scatter gather elements to one of
3910 * the 8 DMA transfer sizes.  The point of it is to allow the
3911 * controller to only do as much DMA as needed to fetch the
3912 * command, with the DMA transfer size encoded in the lower
3913 * bits of the command address.
3914 */
3915static void  calc_bucket_map(int bucket[], int num_buckets,
3916	int nsgs, int *bucket_map)
3917{
3918	int i, j, b, size;
3919
3920	/* even a command with 0 SGs requires 4 blocks */
3921#define MINIMUM_TRANSFER_BLOCKS 4
3922#define NUM_BUCKETS 8
3923	/* Note, bucket_map must have nsgs+1 entries. */
3924	for (i = 0; i <= nsgs; i++) {
3925		/* Compute size of a command with i SG entries */
3926		size = i + MINIMUM_TRANSFER_BLOCKS;
3927		b = num_buckets; /* Assume the biggest bucket */
3928		/* Find the bucket that is just big enough */
3929		for (j = 0; j < 8; j++) {
3930			if (bucket[j] >= size) {
3931				b = j;
3932				break;
3933			}
3934		}
3935		/* for a command with i SG entries, use bucket b. */
3936		bucket_map[i] = b;
3937	}
3938}
3939
3940static void cciss_wait_for_mode_change_ack(ctlr_info_t *h)
3941{
3942	int i;
3943
3944	/* under certain very rare conditions, this can take awhile.
3945	 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3946	 * as we enter this code.) */
3947	for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3948		if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3949			break;
3950		usleep_range(10000, 20000);
3951	}
3952}
3953
3954static void cciss_enter_performant_mode(ctlr_info_t *h, u32 use_short_tags)
3955{
3956	/* This is a bit complicated.  There are 8 registers on
3957	 * the controller which we write to to tell it 8 different
3958	 * sizes of commands which there may be.  It's a way of
3959	 * reducing the DMA done to fetch each command.  Encoded into
3960	 * each command's tag are 3 bits which communicate to the controller
3961	 * which of the eight sizes that command fits within.  The size of
3962	 * each command depends on how many scatter gather entries there are.
3963	 * Each SG entry requires 16 bytes.  The eight registers are programmed
3964	 * with the number of 16-byte blocks a command of that size requires.
3965	 * The smallest command possible requires 5 such 16 byte blocks.
3966	 * the largest command possible requires MAXSGENTRIES + 4 16-byte
3967	 * blocks.  Note, this only extends to the SG entries contained
3968	 * within the command block, and does not extend to chained blocks
3969	 * of SG elements.   bft[] contains the eight values we write to
3970	 * the registers.  They are not evenly distributed, but have more
3971	 * sizes for small commands, and fewer sizes for larger commands.
3972	 */
3973	__u32 trans_offset;
3974	int bft[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3975			/*
3976			 *  5 = 1 s/g entry or 4k
3977			 *  6 = 2 s/g entry or 8k
3978			 *  8 = 4 s/g entry or 16k
3979			 * 10 = 6 s/g entry or 24k
3980			 */
3981	unsigned long register_value;
3982	BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3983
3984	h->reply_pool_wraparound = 1; /* spec: init to 1 */
3985
3986	/* Controller spec: zero out this buffer. */
3987	memset(h->reply_pool, 0, h->max_commands * sizeof(__u64));
3988	h->reply_pool_head = h->reply_pool;
3989
3990	trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3991	calc_bucket_map(bft, ARRAY_SIZE(bft), h->maxsgentries,
3992				h->blockFetchTable);
3993	writel(bft[0], &h->transtable->BlockFetch0);
3994	writel(bft[1], &h->transtable->BlockFetch1);
3995	writel(bft[2], &h->transtable->BlockFetch2);
3996	writel(bft[3], &h->transtable->BlockFetch3);
3997	writel(bft[4], &h->transtable->BlockFetch4);
3998	writel(bft[5], &h->transtable->BlockFetch5);
3999	writel(bft[6], &h->transtable->BlockFetch6);
4000	writel(bft[7], &h->transtable->BlockFetch7);
4001
4002	/* size of controller ring buffer */
4003	writel(h->max_commands, &h->transtable->RepQSize);
4004	writel(1, &h->transtable->RepQCount);
4005	writel(0, &h->transtable->RepQCtrAddrLow32);
4006	writel(0, &h->transtable->RepQCtrAddrHigh32);
4007	writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4008	writel(0, &h->transtable->RepQAddr0High32);
4009	writel(CFGTBL_Trans_Performant | use_short_tags,
4010			&(h->cfgtable->HostWrite.TransportRequest));
4011
4012	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4013	cciss_wait_for_mode_change_ack(h);
4014	register_value = readl(&(h->cfgtable->TransportActive));
4015	if (!(register_value & CFGTBL_Trans_Performant))
4016		dev_warn(&h->pdev->dev, "cciss: unable to get board into"
4017					" performant mode\n");
4018}
4019
4020static void cciss_put_controller_into_performant_mode(ctlr_info_t *h)
4021{
4022	__u32 trans_support;
4023
4024	if (cciss_simple_mode)
4025		return;
4026
4027	dev_dbg(&h->pdev->dev, "Trying to put board into Performant mode\n");
4028	/* Attempt to put controller into performant mode if supported */
4029	/* Does board support performant mode? */
4030	trans_support = readl(&(h->cfgtable->TransportSupport));
4031	if (!(trans_support & PERFORMANT_MODE))
4032		return;
4033
4034	dev_dbg(&h->pdev->dev, "Placing controller into performant mode\n");
4035	/* Performant mode demands commands on a 32 byte boundary
4036	 * pci_alloc_consistent aligns on page boundarys already.
4037	 * Just need to check if divisible by 32
4038	 */
4039	if ((sizeof(CommandList_struct) % 32) != 0) {
4040		dev_warn(&h->pdev->dev, "%s %d %s\n",
4041			"cciss info: command size[",
4042			(int)sizeof(CommandList_struct),
4043			"] not divisible by 32, no performant mode..\n");
4044		return;
4045	}
4046
4047	/* Performant mode ring buffer and supporting data structures */
4048	h->reply_pool = (__u64 *)pci_alloc_consistent(
4049		h->pdev, h->max_commands * sizeof(__u64),
4050		&(h->reply_pool_dhandle));
4051
4052	/* Need a block fetch table for performant mode */
4053	h->blockFetchTable = kmalloc(((h->maxsgentries+1) *
4054		sizeof(__u32)), GFP_KERNEL);
4055
4056	if ((h->reply_pool == NULL) || (h->blockFetchTable == NULL))
4057		goto clean_up;
4058
4059	cciss_enter_performant_mode(h,
4060		trans_support & CFGTBL_Trans_use_short_tags);
4061
4062	/* Change the access methods to the performant access methods */
4063	h->access = SA5_performant_access;
4064	h->transMethod = CFGTBL_Trans_Performant;
4065
4066	return;
4067clean_up:
4068	kfree(h->blockFetchTable);
4069	if (h->reply_pool)
4070		pci_free_consistent(h->pdev,
4071				h->max_commands * sizeof(__u64),
4072				h->reply_pool,
4073				h->reply_pool_dhandle);
4074	return;
4075
4076} /* cciss_put_controller_into_performant_mode */
4077
4078/* If MSI/MSI-X is supported by the kernel we will try to enable it on
4079 * controllers that are capable. If not, we use IO-APIC mode.
4080 */
4081
4082static void cciss_interrupt_mode(ctlr_info_t *h)
4083{
4084#ifdef CONFIG_PCI_MSI
4085	int err;
4086	struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
4087	{0, 2}, {0, 3}
4088	};
4089
4090	/* Some boards advertise MSI but don't really support it */
4091	if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4092	    (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4093		goto default_int_mode;
4094
4095	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4096		err = pci_enable_msix_exact(h->pdev, cciss_msix_entries, 4);
4097		if (!err) {
4098			h->intr[0] = cciss_msix_entries[0].vector;
4099			h->intr[1] = cciss_msix_entries[1].vector;
4100			h->intr[2] = cciss_msix_entries[2].vector;
4101			h->intr[3] = cciss_msix_entries[3].vector;
4102			h->msix_vector = 1;
4103			return;
4104		} else {
4105			dev_warn(&h->pdev->dev,
4106				"MSI-X init failed %d\n", err);
4107		}
4108	}
4109	if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4110		if (!pci_enable_msi(h->pdev))
4111			h->msi_vector = 1;
4112		else
4113			dev_warn(&h->pdev->dev, "MSI init failed\n");
4114	}
4115default_int_mode:
4116#endif				/* CONFIG_PCI_MSI */
4117	/* if we get here we're going to use the default interrupt mode */
4118	h->intr[h->intr_mode] = h->pdev->irq;
4119	return;
4120}
4121
4122static int cciss_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4123{
4124	int i;
4125	u32 subsystem_vendor_id, subsystem_device_id;
4126
4127	subsystem_vendor_id = pdev->subsystem_vendor;
4128	subsystem_device_id = pdev->subsystem_device;
4129	*board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4130			subsystem_vendor_id;
4131
4132	for (i = 0; i < ARRAY_SIZE(products); i++) {
4133		/* Stand aside for hpsa driver on request */
4134		if (cciss_allow_hpsa)
4135			return -ENODEV;
4136		if (*board_id == products[i].board_id)
4137			return i;
4138	}
4139	dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x, ignoring.\n",
4140		*board_id);
4141	return -ENODEV;
4142}
4143
4144static inline bool cciss_board_disabled(ctlr_info_t *h)
4145{
4146	u16 command;
4147
4148	(void) pci_read_config_word(h->pdev, PCI_COMMAND, &command);
4149	return ((command & PCI_COMMAND_MEMORY) == 0);
4150}
4151
4152static int cciss_pci_find_memory_BAR(struct pci_dev *pdev,
4153				     unsigned long *memory_bar)
4154{
4155	int i;
4156
4157	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4158		if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4159			/* addressing mode bits already removed */
4160			*memory_bar = pci_resource_start(pdev, i);
4161			dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4162				*memory_bar);
4163			return 0;
4164		}
4165	dev_warn(&pdev->dev, "no memory BAR found\n");
4166	return -ENODEV;
4167}
4168
4169static int cciss_wait_for_board_state(struct pci_dev *pdev,
4170				      void __iomem *vaddr, int wait_for_ready)
4171#define BOARD_READY 1
4172#define BOARD_NOT_READY 0
4173{
4174	int i, iterations;
4175	u32 scratchpad;
4176
4177	if (wait_for_ready)
4178		iterations = CCISS_BOARD_READY_ITERATIONS;
4179	else
4180		iterations = CCISS_BOARD_NOT_READY_ITERATIONS;
4181
4182	for (i = 0; i < iterations; i++) {
4183		scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4184		if (wait_for_ready) {
4185			if (scratchpad == CCISS_FIRMWARE_READY)
4186				return 0;
4187		} else {
4188			if (scratchpad != CCISS_FIRMWARE_READY)
4189				return 0;
4190		}
4191		msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS);
4192	}
4193	dev_warn(&pdev->dev, "board not ready, timed out.\n");
4194	return -ENODEV;
4195}
4196
4197static int cciss_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4198				u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4199				u64 *cfg_offset)
4200{
4201	*cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4202	*cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4203	*cfg_base_addr &= (u32) 0x0000ffff;
4204	*cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4205	if (*cfg_base_addr_index == -1) {
4206		dev_warn(&pdev->dev, "cannot find cfg_base_addr_index, "
4207			"*cfg_base_addr = 0x%08x\n", *cfg_base_addr);
4208		return -ENODEV;
4209	}
4210	return 0;
4211}
4212
4213static int cciss_find_cfgtables(ctlr_info_t *h)
4214{
4215	u64 cfg_offset;
4216	u32 cfg_base_addr;
4217	u64 cfg_base_addr_index;
4218	u32 trans_offset;
4219	int rc;
4220
4221	rc = cciss_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4222		&cfg_base_addr_index, &cfg_offset);
4223	if (rc)
4224		return rc;
4225	h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4226		cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4227	if (!h->cfgtable)
4228		return -ENOMEM;
4229	rc = write_driver_ver_to_cfgtable(h->cfgtable);
4230	if (rc)
4231		return rc;
4232	/* Find performant mode table. */
4233	trans_offset = readl(&h->cfgtable->TransMethodOffset);
4234	h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4235				cfg_base_addr_index)+cfg_offset+trans_offset,
4236				sizeof(*h->transtable));
4237	if (!h->transtable)
4238		return -ENOMEM;
4239	return 0;
4240}
4241
4242static void cciss_get_max_perf_mode_cmds(struct ctlr_info *h)
4243{
4244	h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4245
4246	/* Limit commands in memory limited kdump scenario. */
4247	if (reset_devices && h->max_commands > 32)
4248		h->max_commands = 32;
4249
4250	if (h->max_commands < 16) {
4251		dev_warn(&h->pdev->dev, "Controller reports "
4252			"max supported commands of %d, an obvious lie. "
4253			"Using 16.  Ensure that firmware is up to date.\n",
4254			h->max_commands);
4255		h->max_commands = 16;
4256	}
4257}
4258
4259/* Interrogate the hardware for some limits:
4260 * max commands, max SG elements without chaining, and with chaining,
4261 * SG chain block size, etc.
4262 */
4263static void cciss_find_board_params(ctlr_info_t *h)
4264{
4265	cciss_get_max_perf_mode_cmds(h);
4266	h->nr_cmds = h->max_commands - 4 - cciss_tape_cmds;
4267	h->maxsgentries = readl(&(h->cfgtable->MaxSGElements));
4268	/*
4269	 * The P600 may exhibit poor performnace under some workloads
4270	 * if we use the value in the configuration table. Limit this
4271	 * controller to MAXSGENTRIES (32) instead.
4272	 */
4273	if (h->board_id == 0x3225103C)
4274		h->maxsgentries = MAXSGENTRIES;
4275	/*
4276	 * Limit in-command s/g elements to 32 save dma'able memory.
4277	 * Howvever spec says if 0, use 31
4278	 */
4279	h->max_cmd_sgentries = 31;
4280	if (h->maxsgentries > 512) {
4281		h->max_cmd_sgentries = 32;
4282		h->chainsize = h->maxsgentries - h->max_cmd_sgentries + 1;
4283		h->maxsgentries--; /* save one for chain pointer */
4284	} else {
4285		h->maxsgentries = 31; /* default to traditional values */
4286		h->chainsize = 0;
4287	}
4288}
4289
4290static inline bool CISS_signature_present(ctlr_info_t *h)
4291{
4292	if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4293		dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4294		return false;
4295	}
4296	return true;
4297}
4298
4299/* Need to enable prefetch in the SCSI core for 6400 in x86 */
4300static inline void cciss_enable_scsi_prefetch(ctlr_info_t *h)
4301{
4302#ifdef CONFIG_X86
4303	u32 prefetch;
4304
4305	prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4306	prefetch |= 0x100;
4307	writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4308#endif
4309}
4310
4311/* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
4312 * in a prefetch beyond physical memory.
4313 */
4314static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t *h)
4315{
4316	u32 dma_prefetch;
4317	__u32 dma_refetch;
4318
4319	if (h->board_id != 0x3225103C)
4320		return;
4321	dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4322	dma_prefetch |= 0x8000;
4323	writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4324	pci_read_config_dword(h->pdev, PCI_COMMAND_PARITY, &dma_refetch);
4325	dma_refetch |= 0x1;
4326	pci_write_config_dword(h->pdev, PCI_COMMAND_PARITY, dma_refetch);
4327}
4328
4329static int cciss_pci_init(ctlr_info_t *h)
4330{
4331	int prod_index, err;
4332
4333	prod_index = cciss_lookup_board_id(h->pdev, &h->board_id);
4334	if (prod_index < 0)
4335		return -ENODEV;
4336	h->product_name = products[prod_index].product_name;
4337	h->access = *(products[prod_index].access);
4338
4339	if (cciss_board_disabled(h)) {
4340		dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
4341		return -ENODEV;
4342	}
4343
4344	pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4345				PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4346
4347	err = pci_enable_device(h->pdev);
4348	if (err) {
4349		dev_warn(&h->pdev->dev, "Unable to Enable PCI device\n");
4350		return err;
4351	}
4352
4353	err = pci_request_regions(h->pdev, "cciss");
4354	if (err) {
4355		dev_warn(&h->pdev->dev,
4356			"Cannot obtain PCI resources, aborting\n");
4357		return err;
4358	}
4359
4360	dev_dbg(&h->pdev->dev, "irq = %x\n", h->pdev->irq);
4361	dev_dbg(&h->pdev->dev, "board_id = %x\n", h->board_id);
4362
4363/* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4364 * else we use the IO-APIC interrupt assigned to us by system ROM.
4365 */
4366	cciss_interrupt_mode(h);
4367	err = cciss_pci_find_memory_BAR(h->pdev, &h->paddr);
4368	if (err)
4369		goto err_out_free_res;
4370	h->vaddr = remap_pci_mem(h->paddr, 0x250);
4371	if (!h->vaddr) {
4372		err = -ENOMEM;
4373		goto err_out_free_res;
4374	}
4375	err = cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4376	if (err)
4377		goto err_out_free_res;
4378	err = cciss_find_cfgtables(h);
4379	if (err)
4380		goto err_out_free_res;
4381	print_cfg_table(h);
4382	cciss_find_board_params(h);
4383
4384	if (!CISS_signature_present(h)) {
4385		err = -ENODEV;
4386		goto err_out_free_res;
4387	}
4388	cciss_enable_scsi_prefetch(h);
4389	cciss_p600_dma_prefetch_quirk(h);
4390	err = cciss_enter_simple_mode(h);
4391	if (err)
4392		goto err_out_free_res;
4393	cciss_put_controller_into_performant_mode(h);
4394	return 0;
4395
4396err_out_free_res:
4397	/*
4398	 * Deliberately omit pci_disable_device(): it does something nasty to
4399	 * Smart Array controllers that pci_enable_device does not undo
4400	 */
4401	if (h->transtable)
4402		iounmap(h->transtable);
4403	if (h->cfgtable)
4404		iounmap(h->cfgtable);
4405	if (h->vaddr)
4406		iounmap(h->vaddr);
4407	pci_release_regions(h->pdev);
4408	return err;
4409}
4410
4411/* Function to find the first free pointer into our hba[] array
4412 * Returns -1 if no free entries are left.
4413 */
4414static int alloc_cciss_hba(struct pci_dev *pdev)
4415{
4416	int i;
4417
4418	for (i = 0; i < MAX_CTLR; i++) {
4419		if (!hba[i]) {
4420			ctlr_info_t *h;
4421
4422			h = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
4423			if (!h)
4424				goto Enomem;
4425			hba[i] = h;
4426			return i;
4427		}
4428	}
4429	dev_warn(&pdev->dev, "This driver supports a maximum"
4430	       " of %d controllers.\n", MAX_CTLR);
4431	return -1;
4432Enomem:
4433	dev_warn(&pdev->dev, "out of memory.\n");
4434	return -1;
4435}
4436
4437static void free_hba(ctlr_info_t *h)
4438{
4439	int i;
4440
4441	hba[h->ctlr] = NULL;
4442	for (i = 0; i < h->highest_lun + 1; i++)
4443		if (h->gendisk[i] != NULL)
4444			put_disk(h->gendisk[i]);
4445	kfree(h);
4446}
4447
4448/* Send a message CDB to the firmware. */
4449static int cciss_message(struct pci_dev *pdev, unsigned char opcode,
4450			 unsigned char type)
4451{
4452	typedef struct {
4453		CommandListHeader_struct CommandHeader;
4454		RequestBlock_struct Request;
4455		ErrDescriptor_struct ErrorDescriptor;
4456	} Command;
4457	static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
4458	Command *cmd;
4459	dma_addr_t paddr64;
4460	uint32_t paddr32, tag;
4461	void __iomem *vaddr;
4462	int i, err;
4463
4464	vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
4465	if (vaddr == NULL)
4466		return -ENOMEM;
4467
4468	/* The Inbound Post Queue only accepts 32-bit physical addresses for the
4469	   CCISS commands, so they must be allocated from the lower 4GiB of
4470	   memory. */
4471	err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4472	if (err) {
4473		iounmap(vaddr);
4474		return -ENOMEM;
4475	}
4476
4477	cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
4478	if (cmd == NULL) {
4479		iounmap(vaddr);
4480		return -ENOMEM;
4481	}
4482
4483	/* This must fit, because of the 32-bit consistent DMA mask.  Also,
4484	   although there's no guarantee, we assume that the address is at
4485	   least 4-byte aligned (most likely, it's page-aligned). */
4486	paddr32 = paddr64;
4487
4488	cmd->CommandHeader.ReplyQueue = 0;
4489	cmd->CommandHeader.SGList = 0;
4490	cmd->CommandHeader.SGTotal = 0;
4491	cmd->CommandHeader.Tag.lower = paddr32;
4492	cmd->CommandHeader.Tag.upper = 0;
4493	memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
4494
4495	cmd->Request.CDBLen = 16;
4496	cmd->Request.Type.Type = TYPE_MSG;
4497	cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
4498	cmd->Request.Type.Direction = XFER_NONE;
4499	cmd->Request.Timeout = 0; /* Don't time out */
4500	cmd->Request.CDB[0] = opcode;
4501	cmd->Request.CDB[1] = type;
4502	memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
4503
4504	cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
4505	cmd->ErrorDescriptor.Addr.upper = 0;
4506	cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
4507
4508	writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
4509
4510	for (i = 0; i < 10; i++) {
4511		tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
4512		if ((tag & ~3) == paddr32)
4513			break;
4514		msleep(CCISS_POST_RESET_NOOP_TIMEOUT_MSECS);
4515	}
4516
4517	iounmap(vaddr);
4518
4519	/* we leak the DMA buffer here ... no choice since the controller could
4520	   still complete the command. */
4521	if (i == 10) {
4522		dev_err(&pdev->dev,
4523			"controller message %02x:%02x timed out\n",
4524			opcode, type);
4525		return -ETIMEDOUT;
4526	}
4527
4528	pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
4529
4530	if (tag & 2) {
4531		dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
4532			opcode, type);
4533		return -EIO;
4534	}
4535
4536	dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
4537		opcode, type);
4538	return 0;
4539}
4540
4541#define cciss_noop(p) cciss_message(p, 3, 0)
4542
4543static int cciss_controller_hard_reset(struct pci_dev *pdev,
4544	void * __iomem vaddr, u32 use_doorbell)
4545{
4546	u16 pmcsr;
4547	int pos;
4548
4549	if (use_doorbell) {
4550		/* For everything after the P600, the PCI power state method
4551		 * of resetting the controller doesn't work, so we have this
4552		 * other way using the doorbell register.
4553		 */
4554		dev_info(&pdev->dev, "using doorbell to reset controller\n");
4555		writel(use_doorbell, vaddr + SA5_DOORBELL);
4556	} else { /* Try to do it the PCI power state way */
4557
4558		/* Quoting from the Open CISS Specification: "The Power
4559		 * Management Control/Status Register (CSR) controls the power
4560		 * state of the device.  The normal operating state is D0,
4561		 * CSR=00h.  The software off state is D3, CSR=03h.  To reset
4562		 * the controller, place the interface device in D3 then to D0,
4563		 * this causes a secondary PCI reset which will reset the
4564		 * controller." */
4565
4566		pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
4567		if (pos == 0) {
4568			dev_err(&pdev->dev,
4569				"cciss_controller_hard_reset: "
4570				"PCI PM not supported\n");
4571			return -ENODEV;
4572		}
4573		dev_info(&pdev->dev, "using PCI PM to reset controller\n");
4574		/* enter the D3hot power management state */
4575		pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
4576		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4577		pmcsr |= PCI_D3hot;
4578		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4579
4580		msleep(500);
4581
4582		/* enter the D0 power management state */
4583		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
4584		pmcsr |= PCI_D0;
4585		pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
4586
4587		/*
4588		 * The P600 requires a small delay when changing states.
4589		 * Otherwise we may think the board did not reset and we bail.
4590		 * This for kdump only and is particular to the P600.
4591		 */
4592		msleep(500);
4593	}
4594	return 0;
4595}
4596
4597static void init_driver_version(char *driver_version, int len)
4598{
4599	memset(driver_version, 0, len);
4600	strncpy(driver_version, "cciss " DRIVER_NAME, len - 1);
4601}
4602
4603static int write_driver_ver_to_cfgtable(CfgTable_struct __iomem *cfgtable)
4604{
4605	char *driver_version;
4606	int i, size = sizeof(cfgtable->driver_version);
4607
4608	driver_version = kmalloc(size, GFP_KERNEL);
4609	if (!driver_version)
4610		return -ENOMEM;
4611
4612	init_driver_version(driver_version, size);
4613	for (i = 0; i < size; i++)
4614		writeb(driver_version[i], &cfgtable->driver_version[i]);
4615	kfree(driver_version);
4616	return 0;
4617}
4618
4619static void read_driver_ver_from_cfgtable(CfgTable_struct __iomem *cfgtable,
4620					  unsigned char *driver_ver)
4621{
4622	int i;
4623
4624	for (i = 0; i < sizeof(cfgtable->driver_version); i++)
4625		driver_ver[i] = readb(&cfgtable->driver_version[i]);
4626}
4627
4628static int controller_reset_failed(CfgTable_struct __iomem *cfgtable)
4629{
4630
4631	char *driver_ver, *old_driver_ver;
4632	int rc, size = sizeof(cfgtable->driver_version);
4633
4634	old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
4635	if (!old_driver_ver)
4636		return -ENOMEM;
4637	driver_ver = old_driver_ver + size;
4638
4639	/* After a reset, the 32 bytes of "driver version" in the cfgtable
4640	 * should have been changed, otherwise we know the reset failed.
4641	 */
4642	init_driver_version(old_driver_ver, size);
4643	read_driver_ver_from_cfgtable(cfgtable, driver_ver);
4644	rc = !memcmp(driver_ver, old_driver_ver, size);
4645	kfree(old_driver_ver);
4646	return rc;
4647}
4648
4649/* This does a hard reset of the controller using PCI power management
4650 * states or using the doorbell register. */
4651static int cciss_kdump_hard_reset_controller(struct pci_dev *pdev)
4652{
4653	u64 cfg_offset;
4654	u32 cfg_base_addr;
4655	u64 cfg_base_addr_index;
4656	void __iomem *vaddr;
4657	unsigned long paddr;
4658	u32 misc_fw_support;
4659	int rc;
4660	CfgTable_struct __iomem *cfgtable;
4661	u32 use_doorbell;
4662	u32 board_id;
4663	u16 command_register;
4664
4665	/* For controllers as old a the p600, this is very nearly
4666	 * the same thing as
4667	 *
4668	 * pci_save_state(pci_dev);
4669	 * pci_set_power_state(pci_dev, PCI_D3hot);
4670	 * pci_set_power_state(pci_dev, PCI_D0);
4671	 * pci_restore_state(pci_dev);
4672	 *
4673	 * For controllers newer than the P600, the pci power state
4674	 * method of resetting doesn't work so we have another way
4675	 * using the doorbell register.
4676	 */
4677
4678	/* Exclude 640x boards.  These are two pci devices in one slot
4679	 * which share a battery backed cache module.  One controls the
4680	 * cache, the other accesses the cache through the one that controls
4681	 * it.  If we reset the one controlling the cache, the other will
4682	 * likely not be happy.  Just forbid resetting this conjoined mess.
4683	 */
4684	cciss_lookup_board_id(pdev, &board_id);
4685	if (!ctlr_is_resettable(board_id)) {
4686		dev_warn(&pdev->dev, "Controller not resettable\n");
4687		return -ENODEV;
4688	}
4689
4690	/* if controller is soft- but not hard resettable... */
4691	if (!ctlr_is_hard_resettable(board_id))
4692		return -ENOTSUPP; /* try soft reset later. */
4693
4694	/* Save the PCI command register */
4695	pci_read_config_word(pdev, 4, &command_register);
4696	/* Turn the board off.  This is so that later pci_restore_state()
4697	 * won't turn the board on before the rest of config space is ready.
4698	 */
4699	pci_disable_device(pdev);
4700	pci_save_state(pdev);
4701
4702	/* find the first memory BAR, so we can find the cfg table */
4703	rc = cciss_pci_find_memory_BAR(pdev, &paddr);
4704	if (rc)
4705		return rc;
4706	vaddr = remap_pci_mem(paddr, 0x250);
4707	if (!vaddr)
4708		return -ENOMEM;
4709
4710	/* find cfgtable in order to check if reset via doorbell is supported */
4711	rc = cciss_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
4712					&cfg_base_addr_index, &cfg_offset);
4713	if (rc)
4714		goto unmap_vaddr;
4715	cfgtable = remap_pci_mem(pci_resource_start(pdev,
4716		       cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
4717	if (!cfgtable) {
4718		rc = -ENOMEM;
4719		goto unmap_vaddr;
4720	}
4721	rc = write_driver_ver_to_cfgtable(cfgtable);
4722	if (rc)
4723		goto unmap_vaddr;
4724
4725	/* If reset via doorbell register is supported, use that.
4726	 * There are two such methods.  Favor the newest method.
4727	 */
4728	misc_fw_support = readl(&cfgtable->misc_fw_support);
4729	use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
4730	if (use_doorbell) {
4731		use_doorbell = DOORBELL_CTLR_RESET2;
4732	} else {
4733		use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
4734		if (use_doorbell) {
4735			dev_warn(&pdev->dev, "Controller claims that "
4736				"'Bit 2 doorbell reset' is "
4737				"supported, but not 'bit 5 doorbell reset'.  "
4738				"Firmware update is recommended.\n");
4739			rc = -ENOTSUPP; /* use the soft reset */
4740			goto unmap_cfgtable;
4741		}
4742	}
4743
4744	rc = cciss_controller_hard_reset(pdev, vaddr, use_doorbell);
4745	if (rc)
4746		goto unmap_cfgtable;
4747	pci_restore_state(pdev);
4748	rc = pci_enable_device(pdev);
4749	if (rc) {
4750		dev_warn(&pdev->dev, "failed to enable device.\n");
4751		goto unmap_cfgtable;
4752	}
4753	pci_write_config_word(pdev, 4, command_register);
4754
4755	/* Some devices (notably the HP Smart Array 5i Controller)
4756	   need a little pause here */
4757	msleep(CCISS_POST_RESET_PAUSE_MSECS);
4758
4759	/* Wait for board to become not ready, then ready. */
4760	dev_info(&pdev->dev, "Waiting for board to reset.\n");
4761	rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
4762	if (rc) {
4763		dev_warn(&pdev->dev, "Failed waiting for board to hard reset."
4764				"  Will try soft reset.\n");
4765		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4766		goto unmap_cfgtable;
4767	}
4768	rc = cciss_wait_for_board_state(pdev, vaddr, BOARD_READY);
4769	if (rc) {
4770		dev_warn(&pdev->dev,
4771			"failed waiting for board to become ready "
4772			"after hard reset\n");
4773		goto unmap_cfgtable;
4774	}
4775
4776	rc = controller_reset_failed(vaddr);
4777	if (rc < 0)
4778		goto unmap_cfgtable;
4779	if (rc) {
4780		dev_warn(&pdev->dev, "Unable to successfully hard reset "
4781			"controller. Will try soft reset.\n");
4782		rc = -ENOTSUPP; /* Not expected, but try soft reset later */
4783	} else {
4784		dev_info(&pdev->dev, "Board ready after hard reset.\n");
4785	}
4786
4787unmap_cfgtable:
4788	iounmap(cfgtable);
4789
4790unmap_vaddr:
4791	iounmap(vaddr);
4792	return rc;
4793}
4794
4795static int cciss_init_reset_devices(struct pci_dev *pdev)
4796{
4797	int rc, i;
4798
4799	if (!reset_devices)
4800		return 0;
4801
4802	/* Reset the controller with a PCI power-cycle or via doorbell */
4803	rc = cciss_kdump_hard_reset_controller(pdev);
4804
4805	/* -ENOTSUPP here means we cannot reset the controller
4806	 * but it's already (and still) up and running in
4807	 * "performant mode".  Or, it might be 640x, which can't reset
4808	 * due to concerns about shared bbwc between 6402/6404 pair.
4809	 */
4810	if (rc == -ENOTSUPP)
4811		return rc; /* just try to do the kdump anyhow. */
4812	if (rc)
4813		return -ENODEV;
4814
4815	/* Now try to get the controller to respond to a no-op */
4816	dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4817	for (i = 0; i < CCISS_POST_RESET_NOOP_RETRIES; i++) {
4818		if (cciss_noop(pdev) == 0)
4819			break;
4820		else
4821			dev_warn(&pdev->dev, "no-op failed%s\n",
4822				(i < CCISS_POST_RESET_NOOP_RETRIES - 1 ?
4823					"; re-trying" : ""));
4824		msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS);
4825	}
4826	return 0;
4827}
4828
4829static int cciss_allocate_cmd_pool(ctlr_info_t *h)
4830{
4831	h->cmd_pool_bits = kmalloc(BITS_TO_LONGS(h->nr_cmds) *
4832		sizeof(unsigned long), GFP_KERNEL);
4833	h->cmd_pool = pci_alloc_consistent(h->pdev,
4834		h->nr_cmds * sizeof(CommandList_struct),
4835		&(h->cmd_pool_dhandle));
4836	h->errinfo_pool = pci_alloc_consistent(h->pdev,
4837		h->nr_cmds * sizeof(ErrorInfo_struct),
4838		&(h->errinfo_pool_dhandle));
4839	if ((h->cmd_pool_bits == NULL)
4840		|| (h->cmd_pool == NULL)
4841		|| (h->errinfo_pool == NULL)) {
4842		dev_err(&h->pdev->dev, "out of memory");
4843		return -ENOMEM;
4844	}
4845	return 0;
4846}
4847
4848static int cciss_allocate_scatterlists(ctlr_info_t *h)
4849{
4850	int i;
4851
4852	/* zero it, so that on free we need not know how many were alloc'ed */
4853	h->scatter_list = kzalloc(h->max_commands *
4854				sizeof(struct scatterlist *), GFP_KERNEL);
4855	if (!h->scatter_list)
4856		return -ENOMEM;
4857
4858	for (i = 0; i < h->nr_cmds; i++) {
4859		h->scatter_list[i] = kmalloc(sizeof(struct scatterlist) *
4860						h->maxsgentries, GFP_KERNEL);
4861		if (h->scatter_list[i] == NULL) {
4862			dev_err(&h->pdev->dev, "could not allocate "
4863				"s/g lists\n");
4864			return -ENOMEM;
4865		}
4866	}
4867	return 0;
4868}
4869
4870static void cciss_free_scatterlists(ctlr_info_t *h)
4871{
4872	int i;
4873
4874	if (h->scatter_list) {
4875		for (i = 0; i < h->nr_cmds; i++)
4876			kfree(h->scatter_list[i]);
4877		kfree(h->scatter_list);
4878	}
4879}
4880
4881static void cciss_free_cmd_pool(ctlr_info_t *h)
4882{
4883	kfree(h->cmd_pool_bits);
4884	if (h->cmd_pool)
4885		pci_free_consistent(h->pdev,
4886			h->nr_cmds * sizeof(CommandList_struct),
4887			h->cmd_pool, h->cmd_pool_dhandle);
4888	if (h->errinfo_pool)
4889		pci_free_consistent(h->pdev,
4890			h->nr_cmds * sizeof(ErrorInfo_struct),
4891			h->errinfo_pool, h->errinfo_pool_dhandle);
4892}
4893
4894static int cciss_request_irq(ctlr_info_t *h,
4895	irqreturn_t (*msixhandler)(int, void *),
4896	irqreturn_t (*intxhandler)(int, void *))
4897{
4898	if (h->msix_vector || h->msi_vector) {
4899		if (!request_irq(h->intr[h->intr_mode], msixhandler,
4900				0, h->devname, h))
4901			return 0;
4902		dev_err(&h->pdev->dev, "Unable to get msi irq %d"
4903			" for %s\n", h->intr[h->intr_mode],
4904			h->devname);
4905		return -1;
4906	}
4907
4908	if (!request_irq(h->intr[h->intr_mode], intxhandler,
4909			IRQF_SHARED, h->devname, h))
4910		return 0;
4911	dev_err(&h->pdev->dev, "Unable to get irq %d for %s\n",
4912		h->intr[h->intr_mode], h->devname);
4913	return -1;
4914}
4915
4916static int cciss_kdump_soft_reset(ctlr_info_t *h)
4917{
4918	if (cciss_send_reset(h, CTLR_LUNID, CCISS_RESET_TYPE_CONTROLLER)) {
4919		dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4920		return -EIO;
4921	}
4922
4923	dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4924	if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4925		dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4926		return -1;
4927	}
4928
4929	dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4930	if (cciss_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4931		dev_warn(&h->pdev->dev, "Board failed to become ready "
4932			"after soft reset.\n");
4933		return -1;
4934	}
4935
4936	return 0;
4937}
4938
4939static void cciss_undo_allocations_after_kdump_soft_reset(ctlr_info_t *h)
4940{
4941	int ctlr = h->ctlr;
4942
4943	free_irq(h->intr[h->intr_mode], h);
4944#ifdef CONFIG_PCI_MSI
4945	if (h->msix_vector)
4946		pci_disable_msix(h->pdev);
4947	else if (h->msi_vector)
4948		pci_disable_msi(h->pdev);
4949#endif /* CONFIG_PCI_MSI */
4950	cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
4951	cciss_free_scatterlists(h);
4952	cciss_free_cmd_pool(h);
4953	kfree(h->blockFetchTable);
4954	if (h->reply_pool)
4955		pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
4956				h->reply_pool, h->reply_pool_dhandle);
4957	if (h->transtable)
4958		iounmap(h->transtable);
4959	if (h->cfgtable)
4960		iounmap(h->cfgtable);
4961	if (h->vaddr)
4962		iounmap(h->vaddr);
4963	unregister_blkdev(h->major, h->devname);
4964	cciss_destroy_hba_sysfs_entry(h);
4965	pci_release_regions(h->pdev);
4966	kfree(h);
4967	hba[ctlr] = NULL;
4968}
4969
4970/*
4971 *  This is it.  Find all the controllers and register them.  I really hate
4972 *  stealing all these major device numbers.
4973 *  returns the number of block devices registered.
4974 */
4975static int cciss_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4976{
4977	int i;
4978	int j = 0;
4979	int rc;
4980	int try_soft_reset = 0;
4981	int dac, return_code;
4982	InquiryData_struct *inq_buff;
4983	ctlr_info_t *h;
4984	unsigned long flags;
4985
4986	/*
4987	 * By default the cciss driver is used for all older HP Smart Array
4988	 * controllers. There are module paramaters that allow a user to
4989	 * override this behavior and instead use the hpsa SCSI driver. If
4990	 * this is the case cciss may be loaded first from the kdump initrd
4991	 * image and cause a kernel panic. So if reset_devices is true and
4992	 * cciss_allow_hpsa is set just bail.
4993	 */
4994	if ((reset_devices) && (cciss_allow_hpsa == 1))
4995		return -ENODEV;
4996	rc = cciss_init_reset_devices(pdev);
4997	if (rc) {
4998		if (rc != -ENOTSUPP)
4999			return rc;
5000		/* If the reset fails in a particular way (it has no way to do
5001		 * a proper hard reset, so returns -ENOTSUPP) we can try to do
5002		 * a soft reset once we get the controller configured up to the
5003		 * point that it can accept a command.
5004		 */
5005		try_soft_reset = 1;
5006		rc = 0;
5007	}
5008
5009reinit_after_soft_reset:
5010
5011	i = alloc_cciss_hba(pdev);
5012	if (i < 0)
5013		return -ENOMEM;
5014
5015	h = hba[i];
5016	h->pdev = pdev;
5017	h->busy_initializing = 1;
5018	h->intr_mode = cciss_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
5019	INIT_LIST_HEAD(&h->cmpQ);
5020	INIT_LIST_HEAD(&h->reqQ);
5021	mutex_init(&h->busy_shutting_down);
5022
5023	if (cciss_pci_init(h) != 0)
5024		goto clean_no_release_regions;
5025
5026	sprintf(h->devname, "cciss%d", i);
5027	h->ctlr = i;
5028
5029	if (cciss_tape_cmds < 2)
5030		cciss_tape_cmds = 2;
5031	if (cciss_tape_cmds > 16)
5032		cciss_tape_cmds = 16;
5033
5034	init_completion(&h->scan_wait);
5035
5036	if (cciss_create_hba_sysfs_entry(h))
5037		goto clean0;
5038
5039	/* configure PCI DMA stuff */
5040	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
5041		dac = 1;
5042	else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
5043		dac = 0;
5044	else {
5045		dev_err(&h->pdev->dev, "no suitable DMA available\n");
5046		goto clean1;
5047	}
5048
5049	/*
5050	 * register with the major number, or get a dynamic major number
5051	 * by passing 0 as argument.  This is done for greater than
5052	 * 8 controller support.
5053	 */
5054	if (i < MAX_CTLR_ORIG)
5055		h->major = COMPAQ_CISS_MAJOR + i;
5056	rc = register_blkdev(h->major, h->devname);
5057	if (rc == -EBUSY || rc == -EINVAL) {
5058		dev_err(&h->pdev->dev,
5059		       "Unable to get major number %d for %s "
5060		       "on hba %d\n", h->major, h->devname, i);
5061		goto clean1;
5062	} else {
5063		if (i >= MAX_CTLR_ORIG)
5064			h->major = rc;
5065	}
5066
5067	/* make sure the board interrupts are off */
5068	h->access.set_intr_mask(h, CCISS_INTR_OFF);
5069	rc = cciss_request_irq(h, do_cciss_msix_intr, do_cciss_intx);
5070	if (rc)
5071		goto clean2;
5072
5073	dev_info(&h->pdev->dev, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
5074	       h->devname, pdev->device, pci_name(pdev),
5075	       h->intr[h->intr_mode], dac ? "" : " not");
5076
5077	if (cciss_allocate_cmd_pool(h))
5078		goto clean4;
5079
5080	if (cciss_allocate_scatterlists(h))
5081		goto clean4;
5082
5083	h->cmd_sg_list = cciss_allocate_sg_chain_blocks(h,
5084		h->chainsize, h->nr_cmds);
5085	if (!h->cmd_sg_list && h->chainsize > 0)
5086		goto clean4;
5087
5088	spin_lock_init(&h->lock);
5089
5090	/* Initialize the pdev driver private data.
5091	   have it point to h.  */
5092	pci_set_drvdata(pdev, h);
5093	/* command and error info recs zeroed out before
5094	   they are used */
5095	bitmap_zero(h->cmd_pool_bits, h->nr_cmds);
5096
5097	h->num_luns = 0;
5098	h->highest_lun = -1;
5099	for (j = 0; j < CISS_MAX_LUN; j++) {
5100		h->drv[j] = NULL;
5101		h->gendisk[j] = NULL;
5102	}
5103
5104	/* At this point, the controller is ready to take commands.
5105	 * Now, if reset_devices and the hard reset didn't work, try
5106	 * the soft reset and see if that works.
5107	 */
5108	if (try_soft_reset) {
5109
5110		/* This is kind of gross.  We may or may not get a completion
5111		 * from the soft reset command, and if we do, then the value
5112		 * from the fifo may or may not be valid.  So, we wait 10 secs
5113		 * after the reset throwing away any completions we get during
5114		 * that time.  Unregister the interrupt handler and register
5115		 * fake ones to scoop up any residual completions.
5116		 */
5117		spin_lock_irqsave(&h->lock, flags);
5118		h->access.set_intr_mask(h, CCISS_INTR_OFF);
5119		spin_unlock_irqrestore(&h->lock, flags);
5120		free_irq(h->intr[h->intr_mode], h);
5121		rc = cciss_request_irq(h, cciss_msix_discard_completions,
5122					cciss_intx_discard_completions);
5123		if (rc) {
5124			dev_warn(&h->pdev->dev, "Failed to request_irq after "
5125				"soft reset.\n");
5126			goto clean4;
5127		}
5128
5129		rc = cciss_kdump_soft_reset(h);
5130		if (rc) {
5131			dev_warn(&h->pdev->dev, "Soft reset failed.\n");
5132			goto clean4;
5133		}
5134
5135		dev_info(&h->pdev->dev, "Board READY.\n");
5136		dev_info(&h->pdev->dev,
5137			"Waiting for stale completions to drain.\n");
5138		h->access.set_intr_mask(h, CCISS_INTR_ON);
5139		msleep(10000);
5140		h->access.set_intr_mask(h, CCISS_INTR_OFF);
5141
5142		rc = controller_reset_failed(h->cfgtable);
5143		if (rc)
5144			dev_info(&h->pdev->dev,
5145				"Soft reset appears to have failed.\n");
5146
5147		/* since the controller's reset, we have to go back and re-init
5148		 * everything.  Easiest to just forget what we've done and do it
5149		 * all over again.
5150		 */
5151		cciss_undo_allocations_after_kdump_soft_reset(h);
5152		try_soft_reset = 0;
5153		if (rc)
5154			/* don't go to clean4, we already unallocated */
5155			return -ENODEV;
5156
5157		goto reinit_after_soft_reset;
5158	}
5159
5160	cciss_scsi_setup(h);
5161
5162	/* Turn the interrupts on so we can service requests */
5163	h->access.set_intr_mask(h, CCISS_INTR_ON);
5164
5165	/* Get the firmware version */
5166	inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
5167	if (inq_buff == NULL) {
5168		dev_err(&h->pdev->dev, "out of memory\n");
5169		goto clean4;
5170	}
5171
5172	return_code = sendcmd_withirq(h, CISS_INQUIRY, inq_buff,
5173		sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
5174	if (return_code == IO_OK) {
5175		h->firm_ver[0] = inq_buff->data_byte[32];
5176		h->firm_ver[1] = inq_buff->data_byte[33];
5177		h->firm_ver[2] = inq_buff->data_byte[34];
5178		h->firm_ver[3] = inq_buff->data_byte[35];
5179	} else {	 /* send command failed */
5180		dev_warn(&h->pdev->dev, "unable to determine firmware"
5181			" version of controller\n");
5182	}
5183	kfree(inq_buff);
5184
5185	cciss_procinit(h);
5186
5187	h->cciss_max_sectors = 8192;
5188
5189	rebuild_lun_table(h, 1, 0);
5190	cciss_engage_scsi(h);
5191	h->busy_initializing = 0;
5192	return 0;
5193
5194clean4:
5195	cciss_free_cmd_pool(h);
5196	cciss_free_scatterlists(h);
5197	cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5198	free_irq(h->intr[h->intr_mode], h);
5199clean2:
5200	unregister_blkdev(h->major, h->devname);
5201clean1:
5202	cciss_destroy_hba_sysfs_entry(h);
5203clean0:
5204	pci_release_regions(pdev);
5205clean_no_release_regions:
5206	h->busy_initializing = 0;
5207
5208	/*
5209	 * Deliberately omit pci_disable_device(): it does something nasty to
5210	 * Smart Array controllers that pci_enable_device does not undo
5211	 */
5212	pci_set_drvdata(pdev, NULL);
5213	free_hba(h);
5214	return -ENODEV;
5215}
5216
5217static void cciss_shutdown(struct pci_dev *pdev)
5218{
5219	ctlr_info_t *h;
5220	char *flush_buf;
5221	int return_code;
5222
5223	h = pci_get_drvdata(pdev);
5224	flush_buf = kzalloc(4, GFP_KERNEL);
5225	if (!flush_buf) {
5226		dev_warn(&h->pdev->dev, "cache not flushed, out of memory.\n");
5227		return;
5228	}
5229	/* write all data in the battery backed cache to disk */
5230	return_code = sendcmd_withirq(h, CCISS_CACHE_FLUSH, flush_buf,
5231		4, 0, CTLR_LUNID, TYPE_CMD);
5232	kfree(flush_buf);
5233	if (return_code != IO_OK)
5234		dev_warn(&h->pdev->dev, "Error flushing cache\n");
5235	h->access.set_intr_mask(h, CCISS_INTR_OFF);
5236	free_irq(h->intr[h->intr_mode], h);
5237}
5238
5239static int cciss_enter_simple_mode(struct ctlr_info *h)
5240{
5241	u32 trans_support;
5242
5243	trans_support = readl(&(h->cfgtable->TransportSupport));
5244	if (!(trans_support & SIMPLE_MODE))
5245		return -ENOTSUPP;
5246
5247	h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
5248	writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
5249	writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5250	cciss_wait_for_mode_change_ack(h);
5251	print_cfg_table(h);
5252	if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
5253		dev_warn(&h->pdev->dev, "unable to get board into simple mode\n");
5254		return -ENODEV;
5255	}
5256	h->transMethod = CFGTBL_Trans_Simple;
5257	return 0;
5258}
5259
5260
5261static void cciss_remove_one(struct pci_dev *pdev)
5262{
5263	ctlr_info_t *h;
5264	int i, j;
5265
5266	if (pci_get_drvdata(pdev) == NULL) {
5267		dev_err(&pdev->dev, "Unable to remove device\n");
5268		return;
5269	}
5270
5271	h = pci_get_drvdata(pdev);
5272	i = h->ctlr;
5273	if (hba[i] == NULL) {
5274		dev_err(&pdev->dev, "device appears to already be removed\n");
5275		return;
5276	}
5277
5278	mutex_lock(&h->busy_shutting_down);
5279
5280	remove_from_scan_list(h);
5281	remove_proc_entry(h->devname, proc_cciss);
5282	unregister_blkdev(h->major, h->devname);
5283
5284	/* remove it from the disk list */
5285	for (j = 0; j < CISS_MAX_LUN; j++) {
5286		struct gendisk *disk = h->gendisk[j];
5287		if (disk) {
5288			struct request_queue *q = disk->queue;
5289
5290			if (disk->flags & GENHD_FL_UP) {
5291				cciss_destroy_ld_sysfs_entry(h, j, 1);
5292				del_gendisk(disk);
5293			}
5294			if (q)
5295				blk_cleanup_queue(q);
5296		}
5297	}
5298
5299#ifdef CONFIG_CISS_SCSI_TAPE
5300	cciss_unregister_scsi(h);	/* unhook from SCSI subsystem */
5301#endif
5302
5303	cciss_shutdown(pdev);
5304
5305#ifdef CONFIG_PCI_MSI
5306	if (h->msix_vector)
5307		pci_disable_msix(h->pdev);
5308	else if (h->msi_vector)
5309		pci_disable_msi(h->pdev);
5310#endif				/* CONFIG_PCI_MSI */
5311
5312	iounmap(h->transtable);
5313	iounmap(h->cfgtable);
5314	iounmap(h->vaddr);
5315
5316	cciss_free_cmd_pool(h);
5317	/* Free up sg elements */
5318	for (j = 0; j < h->nr_cmds; j++)
5319		kfree(h->scatter_list[j]);
5320	kfree(h->scatter_list);
5321	cciss_free_sg_chain_blocks(h->cmd_sg_list, h->nr_cmds);
5322	kfree(h->blockFetchTable);
5323	if (h->reply_pool)
5324		pci_free_consistent(h->pdev, h->max_commands * sizeof(__u64),
5325				h->reply_pool, h->reply_pool_dhandle);
5326	/*
5327	 * Deliberately omit pci_disable_device(): it does something nasty to
5328	 * Smart Array controllers that pci_enable_device does not undo
5329	 */
5330	pci_release_regions(pdev);
5331	pci_set_drvdata(pdev, NULL);
5332	cciss_destroy_hba_sysfs_entry(h);
5333	mutex_unlock(&h->busy_shutting_down);
5334	free_hba(h);
5335}
5336
5337static struct pci_driver cciss_pci_driver = {
5338	.name = "cciss",
5339	.probe = cciss_init_one,
5340	.remove = cciss_remove_one,
5341	.id_table = cciss_pci_device_id,	/* id_table */
5342	.shutdown = cciss_shutdown,
5343};
5344
5345/*
5346 *  This is it.  Register the PCI driver information for the cards we control
5347 *  the OS will call our registered routines when it finds one of our cards.
5348 */
5349static int __init cciss_init(void)
5350{
5351	int err;
5352
5353	/*
5354	 * The hardware requires that commands are aligned on a 64-bit
5355	 * boundary. Given that we use pci_alloc_consistent() to allocate an
5356	 * array of them, the size must be a multiple of 8 bytes.
5357	 */
5358	BUILD_BUG_ON(sizeof(CommandList_struct) % COMMANDLIST_ALIGNMENT);
5359	printk(KERN_INFO DRIVER_NAME "\n");
5360
5361	err = bus_register(&cciss_bus_type);
5362	if (err)
5363		return err;
5364
5365	/* Start the scan thread */
5366	cciss_scan_thread = kthread_run(scan_thread, NULL, "cciss_scan");
5367	if (IS_ERR(cciss_scan_thread)) {
5368		err = PTR_ERR(cciss_scan_thread);
5369		goto err_bus_unregister;
5370	}
5371
5372	/* Register for our PCI devices */
5373	err = pci_register_driver(&cciss_pci_driver);
5374	if (err)
5375		goto err_thread_stop;
5376
5377	return err;
5378
5379err_thread_stop:
5380	kthread_stop(cciss_scan_thread);
5381err_bus_unregister:
5382	bus_unregister(&cciss_bus_type);
5383
5384	return err;
5385}
5386
5387static void __exit cciss_cleanup(void)
5388{
5389	int i;
5390
5391	pci_unregister_driver(&cciss_pci_driver);
5392	/* double check that all controller entrys have been removed */
5393	for (i = 0; i < MAX_CTLR; i++) {
5394		if (hba[i] != NULL) {
5395			dev_warn(&hba[i]->pdev->dev,
5396				"had to remove controller\n");
5397			cciss_remove_one(hba[i]->pdev);
5398		}
5399	}
5400	kthread_stop(cciss_scan_thread);
5401	if (proc_cciss)
5402		remove_proc_entry("driver/cciss", NULL);
5403	bus_unregister(&cciss_bus_type);
5404}
5405
5406module_init(cciss_init);
5407module_exit(cciss_cleanup);
5408