1/* lanai.c -- Copyright 1999-2003 by Mitchell Blank Jr <mitch@sfgoth.com>
2 *
3 *  This program is free software; you can redistribute it and/or
4 *  modify it under the terms of the GNU General Public License
5 *  as published by the Free Software Foundation; either version
6 *  2 of the License, or (at your option) any later version.
7 *
8 * This driver supports ATM cards based on the Efficient "Lanai"
9 * chipset such as the Speedstream 3010 and the ENI-25p.  The
10 * Speedstream 3060 is currently not supported since we don't
11 * have the code to drive the on-board Alcatel DSL chipset (yet).
12 *
13 * Thanks to Efficient for supporting this project with hardware,
14 * documentation, and by answering my questions.
15 *
16 * Things not working yet:
17 *
18 * o  We don't support the Speedstream 3060 yet - this card has
19 *    an on-board DSL modem chip by Alcatel and the driver will
20 *    need some extra code added to handle it
21 *
22 * o  Note that due to limitations of the Lanai only one VCC can be
23 *    in CBR at once
24 *
25 * o We don't currently parse the EEPROM at all.  The code is all
26 *   there as per the spec, but it doesn't actually work.  I think
27 *   there may be some issues with the docs.  Anyway, do NOT
28 *   enable it yet - bugs in that code may actually damage your
29 *   hardware!  Because of this you should hardware an ESI before
30 *   trying to use this in a LANE or MPOA environment.
31 *
32 * o  AAL0 is stubbed in but the actual rx/tx path isn't written yet:
33 *	vcc_tx_aal0() needs to send or queue a SKB
34 *	vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs
35 *	vcc_rx_aal0() needs to handle AAL0 interrupts
36 *    This isn't too much work - I just wanted to get other things
37 *    done first.
38 *
39 * o  lanai_change_qos() isn't written yet
40 *
41 * o  There aren't any ioctl's yet -- I'd like to eventually support
42 *    setting loopback and LED modes that way.
43 *
44 * o  If the segmentation engine or DMA gets shut down we should restart
45 *    card as per section 17.0i.  (see lanai_reset)
46 *
47 * o setsockopt(SO_CIRANGE) isn't done (although despite what the
48 *   API says it isn't exactly commonly implemented)
49 */
50
51/* Version history:
52 *   v.1.00 -- 26-JUL-2003 -- PCI/DMA updates
53 *   v.0.02 -- 11-JAN-2000 -- Endian fixes
54 *   v.0.01 -- 30-NOV-1999 -- Initial release
55 */
56
57#include <linux/module.h>
58#include <linux/slab.h>
59#include <linux/mm.h>
60#include <linux/atmdev.h>
61#include <asm/io.h>
62#include <asm/byteorder.h>
63#include <linux/spinlock.h>
64#include <linux/pci.h>
65#include <linux/dma-mapping.h>
66#include <linux/init.h>
67#include <linux/delay.h>
68#include <linux/interrupt.h>
69
70/* -------------------- TUNABLE PARAMATERS: */
71
72/*
73 * Maximum number of VCIs per card.  Setting it lower could theoretically
74 * save some memory, but since we allocate our vcc list with get_free_pages,
75 * it's not really likely for most architectures
76 */
77#define NUM_VCI			(1024)
78
79/*
80 * Enable extra debugging
81 */
82#define DEBUG
83/*
84 * Debug _all_ register operations with card, except the memory test.
85 * Also disables the timed poll to prevent extra chattiness.  This
86 * isn't for normal use
87 */
88#undef DEBUG_RW
89
90/*
91 * The programming guide specifies a full test of the on-board SRAM
92 * at initialization time.  Undefine to remove this
93 */
94#define FULL_MEMORY_TEST
95
96/*
97 * This is the number of (4 byte) service entries that we will
98 * try to allocate at startup.  Note that we will end up with
99 * one PAGE_SIZE's worth regardless of what this is set to
100 */
101#define SERVICE_ENTRIES		(1024)
102/* TODO: make above a module load-time option */
103
104/*
105 * We normally read the onboard EEPROM in order to discover our MAC
106 * address.  Undefine to _not_ do this
107 */
108/* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */
109/* TODO: make above a module load-time option (also) */
110
111/*
112 * Depth of TX fifo (in 128 byte units; range 2-31)
113 * Smaller numbers are better for network latency
114 * Larger numbers are better for PCI latency
115 * I'm really sure where the best tradeoff is, but the BSD driver uses
116 * 7 and it seems to work ok.
117 */
118#define TX_FIFO_DEPTH		(7)
119/* TODO: make above a module load-time option */
120
121/*
122 * How often (in jiffies) we will try to unstick stuck connections -
123 * shouldn't need to happen much
124 */
125#define LANAI_POLL_PERIOD	(10*HZ)
126/* TODO: make above a module load-time option */
127
128/*
129 * When allocating an AAL5 receiving buffer, try to make it at least
130 * large enough to hold this many max_sdu sized PDUs
131 */
132#define AAL5_RX_MULTIPLIER	(3)
133/* TODO: make above a module load-time option */
134
135/*
136 * Same for transmitting buffer
137 */
138#define AAL5_TX_MULTIPLIER	(3)
139/* TODO: make above a module load-time option */
140
141/*
142 * When allocating an AAL0 transmiting buffer, how many cells should fit.
143 * Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't
144 * really critical
145 */
146#define AAL0_TX_MULTIPLIER	(40)
147/* TODO: make above a module load-time option */
148
149/*
150 * How large should we make the AAL0 receiving buffer.  Remember that this
151 * is shared between all AAL0 VC's
152 */
153#define AAL0_RX_BUFFER_SIZE	(PAGE_SIZE)
154/* TODO: make above a module load-time option */
155
156/*
157 * Should we use Lanai's "powerdown" feature when no vcc's are bound?
158 */
159/* #define USE_POWERDOWN */
160/* TODO: make above a module load-time option (also) */
161
162/* -------------------- DEBUGGING AIDS: */
163
164#define DEV_LABEL "lanai"
165
166#ifdef DEBUG
167
168#define DPRINTK(format, args...) \
169	printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
170#define APRINTK(truth, format, args...) \
171	do { \
172		if (unlikely(!(truth))) \
173			printk(KERN_ERR DEV_LABEL ": " format, ##args); \
174	} while (0)
175
176#else /* !DEBUG */
177
178#define DPRINTK(format, args...)
179#define APRINTK(truth, format, args...)
180
181#endif /* DEBUG */
182
183#ifdef DEBUG_RW
184#define RWDEBUG(format, args...) \
185	printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
186#else /* !DEBUG_RW */
187#define RWDEBUG(format, args...)
188#endif
189
190/* -------------------- DATA DEFINITIONS: */
191
192#define LANAI_MAPPING_SIZE	(0x40000)
193#define LANAI_EEPROM_SIZE	(128)
194
195typedef int vci_t;
196typedef void __iomem *bus_addr_t;
197
198/* DMA buffer in host memory for TX, RX, or service list. */
199struct lanai_buffer {
200	u32 *start;	/* From get_free_pages */
201	u32 *end;	/* One past last byte */
202	u32 *ptr;	/* Pointer to current host location */
203	dma_addr_t dmaaddr;
204};
205
206struct lanai_vcc_stats {
207	unsigned rx_nomem;
208	union {
209		struct {
210			unsigned rx_badlen;
211			unsigned service_trash;
212			unsigned service_stream;
213			unsigned service_rxcrc;
214		} aal5;
215		struct {
216		} aal0;
217	} x;
218};
219
220struct lanai_dev;			/* Forward declaration */
221
222/*
223 * This is the card-specific per-vcc data.  Note that unlike some other
224 * drivers there is NOT a 1-to-1 correspondance between these and
225 * atm_vcc's - each one of these represents an actual 2-way vcc, but
226 * an atm_vcc can be 1-way and share with a 1-way vcc in the other
227 * direction.  To make it weirder, there can even be 0-way vccs
228 * bound to us, waiting to do a change_qos
229 */
230struct lanai_vcc {
231	bus_addr_t vbase;		/* Base of VCC's registers */
232	struct lanai_vcc_stats stats;
233	int nref;			/* # of atm_vcc's who reference us */
234	vci_t vci;
235	struct {
236		struct lanai_buffer buf;
237		struct atm_vcc *atmvcc;	/* atm_vcc who is receiver */
238	} rx;
239	struct {
240		struct lanai_buffer buf;
241		struct atm_vcc *atmvcc;	/* atm_vcc who is transmitter */
242		int endptr;		/* last endptr from service entry */
243		struct sk_buff_head backlog;
244		void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int);
245	} tx;
246};
247
248enum lanai_type {
249	lanai2	= PCI_DEVICE_ID_EF_ATM_LANAI2,
250	lanaihb	= PCI_DEVICE_ID_EF_ATM_LANAIHB
251};
252
253struct lanai_dev_stats {
254	unsigned ovfl_trash;	/* # of cells dropped - buffer overflow */
255	unsigned vci_trash;	/* # of cells dropped - closed vci */
256	unsigned hec_err;	/* # of cells dropped - bad HEC */
257	unsigned atm_ovfl;	/* # of cells dropped - rx fifo overflow */
258	unsigned pcierr_parity_detect;
259	unsigned pcierr_serr_set;
260	unsigned pcierr_master_abort;
261	unsigned pcierr_m_target_abort;
262	unsigned pcierr_s_target_abort;
263	unsigned pcierr_master_parity;
264	unsigned service_notx;
265	unsigned service_norx;
266	unsigned service_rxnotaal5;
267	unsigned dma_reenable;
268	unsigned card_reset;
269};
270
271struct lanai_dev {
272	bus_addr_t base;
273	struct lanai_dev_stats stats;
274	struct lanai_buffer service;
275	struct lanai_vcc **vccs;
276#ifdef USE_POWERDOWN
277	int nbound;			/* number of bound vccs */
278#endif
279	enum lanai_type type;
280	vci_t num_vci;			/* Currently just NUM_VCI */
281	u8 eeprom[LANAI_EEPROM_SIZE];
282	u32 serialno, magicno;
283	struct pci_dev *pci;
284	DECLARE_BITMAP(backlog_vccs, NUM_VCI);   /* VCCs with tx backlog */
285	DECLARE_BITMAP(transmit_ready, NUM_VCI); /* VCCs with transmit space */
286	struct timer_list timer;
287	int naal0;
288	struct lanai_buffer aal0buf;	/* AAL0 RX buffers */
289	u32 conf1, conf2;		/* CONFIG[12] registers */
290	u32 status;			/* STATUS register */
291	spinlock_t endtxlock;
292	spinlock_t servicelock;
293	struct atm_vcc *cbrvcc;
294	int number;
295	int board_rev;
296/* TODO - look at race conditions with maintence of conf1/conf2 */
297/* TODO - transmit locking: should we use _irq not _irqsave? */
298/* TODO - organize above in some rational fashion (see <asm/cache.h>) */
299};
300
301/*
302 * Each device has two bitmaps for each VCC (baclog_vccs and transmit_ready)
303 * This function iterates one of these, calling a given function for each
304 * vci with their bit set
305 */
306static void vci_bitfield_iterate(struct lanai_dev *lanai,
307	const unsigned long *lp,
308	void (*func)(struct lanai_dev *,vci_t vci))
309{
310	vci_t vci;
311
312	for_each_set_bit(vci, lp, NUM_VCI)
313		func(lanai, vci);
314}
315
316/* -------------------- BUFFER  UTILITIES: */
317
318/*
319 * Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes -
320 * usually any page allocation will do.  Just to be safe in case
321 * PAGE_SIZE is insanely tiny, though...
322 */
323#define LANAI_PAGE_SIZE   ((PAGE_SIZE >= 1024) ? PAGE_SIZE : 1024)
324
325/*
326 * Allocate a buffer in host RAM for service list, RX, or TX
327 * Returns buf->start==NULL if no memory
328 * Note that the size will be rounded up 2^n bytes, and
329 * if we can't allocate that we'll settle for something smaller
330 * until minbytes
331 */
332static void lanai_buf_allocate(struct lanai_buffer *buf,
333	size_t bytes, size_t minbytes, struct pci_dev *pci)
334{
335	int size;
336
337	if (bytes > (128 * 1024))	/* max lanai buffer size */
338		bytes = 128 * 1024;
339	for (size = LANAI_PAGE_SIZE; size < bytes; size *= 2)
340		;
341	if (minbytes < LANAI_PAGE_SIZE)
342		minbytes = LANAI_PAGE_SIZE;
343	do {
344		/*
345		 * Technically we could use non-consistent mappings for
346		 * everything, but the way the lanai uses DMA memory would
347		 * make that a terrific pain.  This is much simpler.
348		 */
349		buf->start = dma_alloc_coherent(&pci->dev,
350						size, &buf->dmaaddr, GFP_KERNEL);
351		if (buf->start != NULL) {	/* Success */
352			/* Lanai requires 256-byte alignment of DMA bufs */
353			APRINTK((buf->dmaaddr & ~0xFFFFFF00) == 0,
354			    "bad dmaaddr: 0x%lx\n",
355			    (unsigned long) buf->dmaaddr);
356			buf->ptr = buf->start;
357			buf->end = (u32 *)
358			    (&((unsigned char *) buf->start)[size]);
359			memset(buf->start, 0, size);
360			break;
361		}
362		size /= 2;
363	} while (size >= minbytes);
364}
365
366/* size of buffer in bytes */
367static inline size_t lanai_buf_size(const struct lanai_buffer *buf)
368{
369	return ((unsigned long) buf->end) - ((unsigned long) buf->start);
370}
371
372static void lanai_buf_deallocate(struct lanai_buffer *buf,
373	struct pci_dev *pci)
374{
375	if (buf->start != NULL) {
376		dma_free_coherent(&pci->dev, lanai_buf_size(buf),
377				  buf->start, buf->dmaaddr);
378		buf->start = buf->end = buf->ptr = NULL;
379	}
380}
381
382/* size of buffer as "card order" (0=1k .. 7=128k) */
383static int lanai_buf_size_cardorder(const struct lanai_buffer *buf)
384{
385	int order = get_order(lanai_buf_size(buf)) + (PAGE_SHIFT - 10);
386
387	/* This can only happen if PAGE_SIZE is gigantic, but just in case */
388	if (order > 7)
389		order = 7;
390	return order;
391}
392
393/* -------------------- PORT I/O UTILITIES: */
394
395/* Registers (and their bit-fields) */
396enum lanai_register {
397	Reset_Reg		= 0x00,	/* Reset; read for chip type; bits: */
398#define   RESET_GET_BOARD_REV(x)    (((x)>> 0)&0x03)	/* Board revision */
399#define   RESET_GET_BOARD_ID(x)	    (((x)>> 2)&0x03)	/* Board ID */
400#define     BOARD_ID_LANAI256		(0)	/* 25.6M adapter card */
401	Endian_Reg		= 0x04,	/* Endian setting */
402	IntStatus_Reg		= 0x08,	/* Interrupt status */
403	IntStatusMasked_Reg	= 0x0C,	/* Interrupt status (masked) */
404	IntAck_Reg		= 0x10,	/* Interrupt acknowledge */
405	IntAckMasked_Reg	= 0x14,	/* Interrupt acknowledge (masked) */
406	IntStatusSet_Reg	= 0x18,	/* Get status + enable/disable */
407	IntStatusSetMasked_Reg	= 0x1C,	/* Get status + en/di (masked) */
408	IntControlEna_Reg	= 0x20,	/* Interrupt control enable */
409	IntControlDis_Reg	= 0x24,	/* Interrupt control disable */
410	Status_Reg		= 0x28,	/* Status */
411#define   STATUS_PROMDATA	 (0x00000001)	/* PROM_DATA pin */
412#define   STATUS_WAITING	 (0x00000002)	/* Interrupt being delayed */
413#define	  STATUS_SOOL		 (0x00000004)	/* SOOL alarm */
414#define   STATUS_LOCD		 (0x00000008)	/* LOCD alarm */
415#define	  STATUS_LED		 (0x00000010)	/* LED (HAPPI) output */
416#define   STATUS_GPIN		 (0x00000020)	/* GPIN pin */
417#define   STATUS_BUTTBUSY	 (0x00000040)	/* Butt register is pending */
418	Config1_Reg		= 0x2C,	/* Config word 1; bits: */
419#define   CONFIG1_PROMDATA	 (0x00000001)	/* PROM_DATA pin */
420#define   CONFIG1_PROMCLK	 (0x00000002)	/* PROM_CLK pin */
421#define   CONFIG1_SET_READMODE(x) ((x)*0x004)	/* PCI BM reads; values: */
422#define     READMODE_PLAIN	    (0)		/*   Plain memory read */
423#define     READMODE_LINE	    (2)		/*   Memory read line */
424#define     READMODE_MULTIPLE	    (3)		/*   Memory read multiple */
425#define   CONFIG1_DMA_ENABLE	 (0x00000010)	/* Turn on DMA */
426#define   CONFIG1_POWERDOWN	 (0x00000020)	/* Turn off clocks */
427#define   CONFIG1_SET_LOOPMODE(x) ((x)*0x080)	/* Clock&loop mode; values: */
428#define     LOOPMODE_NORMAL	    (0)		/*   Normal - no loop */
429#define     LOOPMODE_TIME	    (1)
430#define     LOOPMODE_DIAG	    (2)
431#define     LOOPMODE_LINE	    (3)
432#define   CONFIG1_MASK_LOOPMODE  (0x00000180)
433#define   CONFIG1_SET_LEDMODE(x) ((x)*0x0200)	/* Mode of LED; values: */
434#define     LEDMODE_NOT_SOOL	    (0)		/*   !SOOL */
435#define	    LEDMODE_OFF		    (1)		/*   0     */
436#define	    LEDMODE_ON		    (2)		/*   1     */
437#define	    LEDMODE_NOT_LOCD	    (3)		/*   !LOCD */
438#define	    LEDMORE_GPIN	    (4)		/*   GPIN  */
439#define     LEDMODE_NOT_GPIN	    (7)		/*   !GPIN */
440#define   CONFIG1_MASK_LEDMODE	 (0x00000E00)
441#define   CONFIG1_GPOUT1	 (0x00001000)	/* Toggle for reset */
442#define   CONFIG1_GPOUT2	 (0x00002000)	/* Loopback PHY */
443#define   CONFIG1_GPOUT3	 (0x00004000)	/* Loopback lanai */
444	Config2_Reg		= 0x30,	/* Config word 2; bits: */
445#define   CONFIG2_HOWMANY	 (0x00000001)	/* >512 VCIs? */
446#define   CONFIG2_PTI7_MODE	 (0x00000002)	/* Make PTI=7 RM, not OAM */
447#define   CONFIG2_VPI_CHK_DIS	 (0x00000004)	/* Ignore RX VPI value */
448#define   CONFIG2_HEC_DROP	 (0x00000008)	/* Drop cells w/ HEC errors */
449#define   CONFIG2_VCI0_NORMAL	 (0x00000010)	/* Treat VCI=0 normally */
450#define   CONFIG2_CBR_ENABLE	 (0x00000020)	/* Deal with CBR traffic */
451#define   CONFIG2_TRASH_ALL	 (0x00000040)	/* Trashing incoming cells */
452#define   CONFIG2_TX_DISABLE	 (0x00000080)	/* Trashing outgoing cells */
453#define   CONFIG2_SET_TRASH	 (0x00000100)	/* Turn trashing on */
454	Statistics_Reg		= 0x34,	/* Statistics; bits: */
455#define   STATS_GET_FIFO_OVFL(x)    (((x)>> 0)&0xFF)	/* FIFO overflowed */
456#define   STATS_GET_HEC_ERR(x)      (((x)>> 8)&0xFF)	/* HEC was bad */
457#define   STATS_GET_BAD_VCI(x)      (((x)>>16)&0xFF)	/* VCI not open */
458#define   STATS_GET_BUF_OVFL(x)     (((x)>>24)&0xFF)	/* VCC buffer full */
459	ServiceStuff_Reg	= 0x38,	/* Service stuff; bits: */
460#define   SSTUFF_SET_SIZE(x) ((x)*0x20000000)	/* size of service buffer */
461#define   SSTUFF_SET_ADDR(x)	    ((x)>>8)	/* set address of buffer */
462	ServWrite_Reg		= 0x3C,	/* ServWrite Pointer */
463	ServRead_Reg		= 0x40,	/* ServRead Pointer */
464	TxDepth_Reg		= 0x44,	/* FIFO Transmit Depth */
465	Butt_Reg		= 0x48,	/* Butt register */
466	CBR_ICG_Reg		= 0x50,
467	CBR_PTR_Reg		= 0x54,
468	PingCount_Reg		= 0x58,	/* Ping count */
469	DMA_Addr_Reg		= 0x5C	/* DMA address */
470};
471
472static inline bus_addr_t reg_addr(const struct lanai_dev *lanai,
473	enum lanai_register reg)
474{
475	return lanai->base + reg;
476}
477
478static inline u32 reg_read(const struct lanai_dev *lanai,
479	enum lanai_register reg)
480{
481	u32 t;
482	t = readl(reg_addr(lanai, reg));
483	RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base,
484	    (int) reg, t);
485	return t;
486}
487
488static inline void reg_write(const struct lanai_dev *lanai, u32 val,
489	enum lanai_register reg)
490{
491	RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base,
492	    (int) reg, val);
493	writel(val, reg_addr(lanai, reg));
494}
495
496static inline void conf1_write(const struct lanai_dev *lanai)
497{
498	reg_write(lanai, lanai->conf1, Config1_Reg);
499}
500
501static inline void conf2_write(const struct lanai_dev *lanai)
502{
503	reg_write(lanai, lanai->conf2, Config2_Reg);
504}
505
506/* Same as conf2_write(), but defers I/O if we're powered down */
507static inline void conf2_write_if_powerup(const struct lanai_dev *lanai)
508{
509#ifdef USE_POWERDOWN
510	if (unlikely((lanai->conf1 & CONFIG1_POWERDOWN) != 0))
511		return;
512#endif /* USE_POWERDOWN */
513	conf2_write(lanai);
514}
515
516static inline void reset_board(const struct lanai_dev *lanai)
517{
518	DPRINTK("about to reset board\n");
519	reg_write(lanai, 0, Reset_Reg);
520	/*
521	 * If we don't delay a little while here then we can end up
522	 * leaving the card in a VERY weird state and lock up the
523	 * PCI bus.  This isn't documented anywhere but I've convinced
524	 * myself after a lot of painful experimentation
525	 */
526	udelay(5);
527}
528
529/* -------------------- CARD SRAM UTILITIES: */
530
531/* The SRAM is mapped into normal PCI memory space - the only catch is
532 * that it is only 16-bits wide but must be accessed as 32-bit.  The
533 * 16 high bits will be zero.  We don't hide this, since they get
534 * programmed mostly like discrete registers anyway
535 */
536#define SRAM_START (0x20000)
537#define SRAM_BYTES (0x20000)	/* Again, half don't really exist */
538
539static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset)
540{
541	return lanai->base + SRAM_START + offset;
542}
543
544static inline u32 sram_read(const struct lanai_dev *lanai, int offset)
545{
546	return readl(sram_addr(lanai, offset));
547}
548
549static inline void sram_write(const struct lanai_dev *lanai,
550	u32 val, int offset)
551{
552	writel(val, sram_addr(lanai, offset));
553}
554
555static int sram_test_word(const struct lanai_dev *lanai, int offset,
556			  u32 pattern)
557{
558	u32 readback;
559	sram_write(lanai, pattern, offset);
560	readback = sram_read(lanai, offset);
561	if (likely(readback == pattern))
562		return 0;
563	printk(KERN_ERR DEV_LABEL
564	    "(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n",
565	    lanai->number, offset,
566	    (unsigned int) pattern, (unsigned int) readback);
567	return -EIO;
568}
569
570static int sram_test_pass(const struct lanai_dev *lanai, u32 pattern)
571{
572	int offset, result = 0;
573	for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4)
574		result = sram_test_word(lanai, offset, pattern);
575	return result;
576}
577
578static int sram_test_and_clear(const struct lanai_dev *lanai)
579{
580#ifdef FULL_MEMORY_TEST
581	int result;
582	DPRINTK("testing SRAM\n");
583	if ((result = sram_test_pass(lanai, 0x5555)) != 0)
584		return result;
585	if ((result = sram_test_pass(lanai, 0xAAAA)) != 0)
586		return result;
587#endif
588	DPRINTK("clearing SRAM\n");
589	return sram_test_pass(lanai, 0x0000);
590}
591
592/* -------------------- CARD-BASED VCC TABLE UTILITIES: */
593
594/* vcc table */
595enum lanai_vcc_offset {
596	vcc_rxaddr1		= 0x00,	/* Location1, plus bits: */
597#define   RXADDR1_SET_SIZE(x) ((x)*0x0000100)	/* size of RX buffer */
598#define   RXADDR1_SET_RMMODE(x) ((x)*0x00800)	/* RM cell action; values: */
599#define     RMMODE_TRASH	  (0)		/*   discard */
600#define     RMMODE_PRESERVE	  (1)		/*   input as AAL0 */
601#define     RMMODE_PIPE		  (2)		/*   pipe to coscheduler */
602#define     RMMODE_PIPEALL	  (3)		/*   pipe non-RM too */
603#define   RXADDR1_OAM_PRESERVE	 (0x00002000)	/* Input OAM cells as AAL0 */
604#define   RXADDR1_SET_MODE(x) ((x)*0x0004000)	/* Reassembly mode */
605#define     RXMODE_TRASH	  (0)		/*   discard */
606#define     RXMODE_AAL0		  (1)		/*   non-AAL5 mode */
607#define     RXMODE_AAL5		  (2)		/*   AAL5, intr. each PDU */
608#define     RXMODE_AAL5_STREAM	  (3)		/*   AAL5 w/o per-PDU intr */
609	vcc_rxaddr2		= 0x04,	/* Location2 */
610	vcc_rxcrc1		= 0x08,	/* RX CRC claculation space */
611	vcc_rxcrc2		= 0x0C,
612	vcc_rxwriteptr		= 0x10, /* RX writeptr, plus bits: */
613#define   RXWRITEPTR_LASTEFCI	 (0x00002000)	/* Last PDU had EFCI bit */
614#define   RXWRITEPTR_DROPPING	 (0x00004000)	/* Had error, dropping */
615#define   RXWRITEPTR_TRASHING	 (0x00008000)	/* Trashing */
616	vcc_rxbufstart		= 0x14,	/* RX bufstart, plus bits: */
617#define   RXBUFSTART_CLP	 (0x00004000)
618#define   RXBUFSTART_CI		 (0x00008000)
619	vcc_rxreadptr		= 0x18,	/* RX readptr */
620	vcc_txicg		= 0x1C, /* TX ICG */
621	vcc_txaddr1		= 0x20,	/* Location1, plus bits: */
622#define   TXADDR1_SET_SIZE(x) ((x)*0x0000100)	/* size of TX buffer */
623#define   TXADDR1_ABR		 (0x00008000)	/* use ABR (doesn't work) */
624	vcc_txaddr2		= 0x24,	/* Location2 */
625	vcc_txcrc1		= 0x28,	/* TX CRC claculation space */
626	vcc_txcrc2		= 0x2C,
627	vcc_txreadptr		= 0x30, /* TX Readptr, plus bits: */
628#define   TXREADPTR_GET_PTR(x) ((x)&0x01FFF)
629#define   TXREADPTR_MASK_DELTA	(0x0000E000)	/* ? */
630	vcc_txendptr		= 0x34, /* TX Endptr, plus bits: */
631#define   TXENDPTR_CLP		(0x00002000)
632#define   TXENDPTR_MASK_PDUMODE	(0x0000C000)	/* PDU mode; values: */
633#define     PDUMODE_AAL0	 (0*0x04000)
634#define     PDUMODE_AAL5	 (2*0x04000)
635#define     PDUMODE_AAL5STREAM	 (3*0x04000)
636	vcc_txwriteptr		= 0x38,	/* TX Writeptr */
637#define   TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF)
638	vcc_txcbr_next		= 0x3C	/* # of next CBR VCI in ring */
639#define   TXCBR_NEXT_BOZO	(0x00008000)	/* "bozo bit" */
640};
641
642#define CARDVCC_SIZE	(0x40)
643
644static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai,
645	vci_t vci)
646{
647	return sram_addr(lanai, vci * CARDVCC_SIZE);
648}
649
650static inline u32 cardvcc_read(const struct lanai_vcc *lvcc,
651	enum lanai_vcc_offset offset)
652{
653	u32 val;
654	APRINTK(lvcc->vbase != NULL, "cardvcc_read: unbound vcc!\n");
655	val= readl(lvcc->vbase + offset);
656	RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n",
657	    lvcc->vci, (int) offset, val);
658	return val;
659}
660
661static inline void cardvcc_write(const struct lanai_vcc *lvcc,
662	u32 val, enum lanai_vcc_offset offset)
663{
664	APRINTK(lvcc->vbase != NULL, "cardvcc_write: unbound vcc!\n");
665	APRINTK((val & ~0xFFFF) == 0,
666	    "cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n",
667	    (unsigned int) val, lvcc->vci, (unsigned int) offset);
668	RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n",
669	    lvcc->vci, (unsigned int) offset, (unsigned int) val);
670	writel(val, lvcc->vbase + offset);
671}
672
673/* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */
674
675/* How many bytes will an AAL5 PDU take to transmit - remember that:
676 *   o  we need to add 8 bytes for length, CPI, UU, and CRC
677 *   o  we need to round up to 48 bytes for cells
678 */
679static inline int aal5_size(int size)
680{
681	int cells = (size + 8 + 47) / 48;
682	return cells * 48;
683}
684
685/* -------------------- FREE AN ATM SKB: */
686
687static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb)
688{
689	if (atmvcc->pop != NULL)
690		atmvcc->pop(atmvcc, skb);
691	else
692		dev_kfree_skb_any(skb);
693}
694
695/* -------------------- TURN VCCS ON AND OFF: */
696
697static void host_vcc_start_rx(const struct lanai_vcc *lvcc)
698{
699	u32 addr1;
700	if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) {
701		dma_addr_t dmaaddr = lvcc->rx.buf.dmaaddr;
702		cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1);
703		cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2);
704		cardvcc_write(lvcc, 0, vcc_rxwriteptr);
705		cardvcc_write(lvcc, 0, vcc_rxbufstart);
706		cardvcc_write(lvcc, 0, vcc_rxreadptr);
707		cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2);
708		addr1 = ((dmaaddr >> 8) & 0xFF) |
709		    RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))|
710		    RXADDR1_SET_RMMODE(RMMODE_TRASH) |	/* ??? */
711		 /* RXADDR1_OAM_PRESERVE |	--- no OAM support yet */
712		    RXADDR1_SET_MODE(RXMODE_AAL5);
713	} else
714		addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */
715		    RXADDR1_OAM_PRESERVE |		      /* ??? */
716		    RXADDR1_SET_MODE(RXMODE_AAL0);
717	/* This one must be last! */
718	cardvcc_write(lvcc, addr1, vcc_rxaddr1);
719}
720
721static void host_vcc_start_tx(const struct lanai_vcc *lvcc)
722{
723	dma_addr_t dmaaddr = lvcc->tx.buf.dmaaddr;
724	cardvcc_write(lvcc, 0, vcc_txicg);
725	cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1);
726	cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2);
727	cardvcc_write(lvcc, 0, vcc_txreadptr);
728	cardvcc_write(lvcc, 0, vcc_txendptr);
729	cardvcc_write(lvcc, 0, vcc_txwriteptr);
730	cardvcc_write(lvcc,
731		(lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ?
732		TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next);
733	cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2);
734	cardvcc_write(lvcc,
735	    ((dmaaddr >> 8) & 0xFF) |
736	    TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)),
737	    vcc_txaddr1);
738}
739
740/* Shutdown receiving on card */
741static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc)
742{
743	if (lvcc->vbase == NULL)	/* We were never bound to a VCI */
744		return;
745	/* 15.1.1 - set to trashing, wait one cell time (15us) */
746	cardvcc_write(lvcc,
747	    RXADDR1_SET_RMMODE(RMMODE_TRASH) |
748	    RXADDR1_SET_MODE(RXMODE_TRASH), vcc_rxaddr1);
749	udelay(15);
750	/* 15.1.2 - clear rest of entries */
751	cardvcc_write(lvcc, 0, vcc_rxaddr2);
752	cardvcc_write(lvcc, 0, vcc_rxcrc1);
753	cardvcc_write(lvcc, 0, vcc_rxcrc2);
754	cardvcc_write(lvcc, 0, vcc_rxwriteptr);
755	cardvcc_write(lvcc, 0, vcc_rxbufstart);
756	cardvcc_write(lvcc, 0, vcc_rxreadptr);
757}
758
759/* Shutdown transmitting on card.
760 * Unfortunately the lanai needs us to wait until all the data
761 * drains out of the buffer before we can dealloc it, so this
762 * can take awhile -- up to 370ms for a full 128KB buffer
763 * assuming everone else is quiet.  In theory the time is
764 * boundless if there's a CBR VCC holding things up.
765 */
766static void lanai_shutdown_tx_vci(struct lanai_dev *lanai,
767	struct lanai_vcc *lvcc)
768{
769	struct sk_buff *skb;
770	unsigned long flags, timeout;
771	int read, write, lastread = -1;
772	APRINTK(!in_interrupt(),
773	    "lanai_shutdown_tx_vci called w/o process context!\n");
774	if (lvcc->vbase == NULL)	/* We were never bound to a VCI */
775		return;
776	/* 15.2.1 - wait for queue to drain */
777	while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL)
778		lanai_free_skb(lvcc->tx.atmvcc, skb);
779	read_lock_irqsave(&vcc_sklist_lock, flags);
780	__clear_bit(lvcc->vci, lanai->backlog_vccs);
781	read_unlock_irqrestore(&vcc_sklist_lock, flags);
782	/*
783	 * We need to wait for the VCC to drain but don't wait forever.  We
784	 * give each 1K of buffer size 1/128th of a second to clear out.
785	 * TODO: maybe disable CBR if we're about to timeout?
786	 */
787	timeout = jiffies +
788	    (((lanai_buf_size(&lvcc->tx.buf) / 1024) * HZ) >> 7);
789	write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr));
790	for (;;) {
791		read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
792		if (read == write &&	   /* Is TX buffer empty? */
793		    (lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR ||
794		    (cardvcc_read(lvcc, vcc_txcbr_next) &
795		    TXCBR_NEXT_BOZO) == 0))
796			break;
797		if (read != lastread) {	   /* Has there been any progress? */
798			lastread = read;
799			timeout += HZ / 10;
800		}
801		if (unlikely(time_after(jiffies, timeout))) {
802			printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on "
803			    "backlog closing vci %d\n",
804			    lvcc->tx.atmvcc->dev->number, lvcc->vci);
805			DPRINTK("read, write = %d, %d\n", read, write);
806			break;
807		}
808		msleep(40);
809	}
810	/* 15.2.2 - clear out all tx registers */
811	cardvcc_write(lvcc, 0, vcc_txreadptr);
812	cardvcc_write(lvcc, 0, vcc_txwriteptr);
813	cardvcc_write(lvcc, 0, vcc_txendptr);
814	cardvcc_write(lvcc, 0, vcc_txcrc1);
815	cardvcc_write(lvcc, 0, vcc_txcrc2);
816	cardvcc_write(lvcc, 0, vcc_txaddr2);
817	cardvcc_write(lvcc, 0, vcc_txaddr1);
818}
819
820/* -------------------- MANAGING AAL0 RX BUFFER: */
821
822static inline int aal0_buffer_allocate(struct lanai_dev *lanai)
823{
824	DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n");
825	lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80,
826			   lanai->pci);
827	return (lanai->aal0buf.start == NULL) ? -ENOMEM : 0;
828}
829
830static inline void aal0_buffer_free(struct lanai_dev *lanai)
831{
832	DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n");
833	lanai_buf_deallocate(&lanai->aal0buf, lanai->pci);
834}
835
836/* -------------------- EEPROM UTILITIES: */
837
838/* Offsets of data in the EEPROM */
839#define EEPROM_COPYRIGHT	(0)
840#define EEPROM_COPYRIGHT_LEN	(44)
841#define EEPROM_CHECKSUM		(62)
842#define EEPROM_CHECKSUM_REV	(63)
843#define EEPROM_MAC		(64)
844#define EEPROM_MAC_REV		(70)
845#define EEPROM_SERIAL		(112)
846#define EEPROM_SERIAL_REV	(116)
847#define EEPROM_MAGIC		(120)
848#define EEPROM_MAGIC_REV	(124)
849
850#define EEPROM_MAGIC_VALUE	(0x5AB478D2)
851
852#ifndef READ_EEPROM
853
854/* Stub functions to use if EEPROM reading is disabled */
855static int eeprom_read(struct lanai_dev *lanai)
856{
857	printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n",
858	    lanai->number);
859	memset(&lanai->eeprom[EEPROM_MAC], 0, 6);
860	return 0;
861}
862
863static int eeprom_validate(struct lanai_dev *lanai)
864{
865	lanai->serialno = 0;
866	lanai->magicno = EEPROM_MAGIC_VALUE;
867	return 0;
868}
869
870#else /* READ_EEPROM */
871
872static int eeprom_read(struct lanai_dev *lanai)
873{
874	int i, address;
875	u8 data;
876	u32 tmp;
877#define set_config1(x)   do { lanai->conf1 = x; conf1_write(lanai); \
878			    } while (0)
879#define clock_h()	 set_config1(lanai->conf1 | CONFIG1_PROMCLK)
880#define clock_l()	 set_config1(lanai->conf1 &~ CONFIG1_PROMCLK)
881#define data_h()	 set_config1(lanai->conf1 | CONFIG1_PROMDATA)
882#define data_l()	 set_config1(lanai->conf1 &~ CONFIG1_PROMDATA)
883#define pre_read()	 do { data_h(); clock_h(); udelay(5); } while (0)
884#define read_pin()	 (reg_read(lanai, Status_Reg) & STATUS_PROMDATA)
885#define send_stop()	 do { data_l(); udelay(5); clock_h(); udelay(5); \
886			      data_h(); udelay(5); } while (0)
887	/* start with both clock and data high */
888	data_h(); clock_h(); udelay(5);
889	for (address = 0; address < LANAI_EEPROM_SIZE; address++) {
890		data = (address << 1) | 1;	/* Command=read + address */
891		/* send start bit */
892		data_l(); udelay(5);
893		clock_l(); udelay(5);
894		for (i = 128; i != 0; i >>= 1) {   /* write command out */
895			tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) |
896			    ((data & i) ? CONFIG1_PROMDATA : 0);
897			if (lanai->conf1 != tmp) {
898				set_config1(tmp);
899				udelay(5);	/* Let new data settle */
900			}
901			clock_h(); udelay(5); clock_l(); udelay(5);
902		}
903		/* look for ack */
904		data_h(); clock_h(); udelay(5);
905		if (read_pin() != 0)
906			goto error;	/* No ack seen */
907		clock_l(); udelay(5);
908		/* read back result */
909		for (data = 0, i = 7; i >= 0; i--) {
910			data_h(); clock_h(); udelay(5);
911			data = (data << 1) | !!read_pin();
912			clock_l(); udelay(5);
913		}
914		/* look again for ack */
915		data_h(); clock_h(); udelay(5);
916		if (read_pin() == 0)
917			goto error;	/* Spurious ack */
918		clock_l(); udelay(5);
919		send_stop();
920		lanai->eeprom[address] = data;
921		DPRINTK("EEPROM 0x%04X %02X\n",
922		    (unsigned int) address, (unsigned int) data);
923	}
924	return 0;
925    error:
926	clock_l(); udelay(5);		/* finish read */
927	send_stop();
928	printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n",
929	    lanai->number, address);
930	return -EIO;
931#undef set_config1
932#undef clock_h
933#undef clock_l
934#undef data_h
935#undef data_l
936#undef pre_read
937#undef read_pin
938#undef send_stop
939}
940
941/* read a big-endian 4-byte value out of eeprom */
942static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address)
943{
944	return be32_to_cpup((const u32 *) &lanai->eeprom[address]);
945}
946
947/* Checksum/validate EEPROM contents */
948static int eeprom_validate(struct lanai_dev *lanai)
949{
950	int i, s;
951	u32 v;
952	const u8 *e = lanai->eeprom;
953#ifdef DEBUG
954	/* First, see if we can get an ASCIIZ string out of the copyright */
955	for (i = EEPROM_COPYRIGHT;
956	    i < (EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN); i++)
957		if (e[i] < 0x20 || e[i] > 0x7E)
958			break;
959	if ( i != EEPROM_COPYRIGHT &&
960	    i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0')
961		DPRINTK("eeprom: copyright = \"%s\"\n",
962		    (char *) &e[EEPROM_COPYRIGHT]);
963	else
964		DPRINTK("eeprom: copyright not found\n");
965#endif
966	/* Validate checksum */
967	for (i = s = 0; i < EEPROM_CHECKSUM; i++)
968		s += e[i];
969	s &= 0xFF;
970	if (s != e[EEPROM_CHECKSUM]) {
971		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad "
972		    "(wanted 0x%02X, got 0x%02X)\n", lanai->number,
973		    (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM]);
974		return -EIO;
975	}
976	s ^= 0xFF;
977	if (s != e[EEPROM_CHECKSUM_REV]) {
978		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum "
979		    "bad (wanted 0x%02X, got 0x%02X)\n", lanai->number,
980		    (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM_REV]);
981		return -EIO;
982	}
983	/* Verify MAC address */
984	for (i = 0; i < 6; i++)
985		if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) {
986			printk(KERN_ERR DEV_LABEL
987			    "(itf %d) : EEPROM MAC addresses don't match "
988			    "(0x%02X, inverse 0x%02X)\n", lanai->number,
989			    (unsigned int) e[EEPROM_MAC + i],
990			    (unsigned int) e[EEPROM_MAC_REV + i]);
991			return -EIO;
992		}
993	DPRINTK("eeprom: MAC address = %pM\n", &e[EEPROM_MAC]);
994	/* Verify serial number */
995	lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL);
996	v = eeprom_be4(lanai, EEPROM_SERIAL_REV);
997	if ((lanai->serialno ^ v) != 0xFFFFFFFF) {
998		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers "
999		    "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1000		    (unsigned int) lanai->serialno, (unsigned int) v);
1001		return -EIO;
1002	}
1003	DPRINTK("eeprom: Serial number = %d\n", (unsigned int) lanai->serialno);
1004	/* Verify magic number */
1005	lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC);
1006	v = eeprom_be4(lanai, EEPROM_MAGIC_REV);
1007	if ((lanai->magicno ^ v) != 0xFFFFFFFF) {
1008		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers "
1009		    "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1010		    lanai->magicno, v);
1011		return -EIO;
1012	}
1013	DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno);
1014	if (lanai->magicno != EEPROM_MAGIC_VALUE)
1015		printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM "
1016		    "magic not what expected (got 0x%08X, not 0x%08X)\n",
1017		    lanai->number, (unsigned int) lanai->magicno,
1018		    (unsigned int) EEPROM_MAGIC_VALUE);
1019	return 0;
1020}
1021
1022#endif /* READ_EEPROM */
1023
1024static inline const u8 *eeprom_mac(const struct lanai_dev *lanai)
1025{
1026	return &lanai->eeprom[EEPROM_MAC];
1027}
1028
1029/* -------------------- INTERRUPT HANDLING UTILITIES: */
1030
1031/* Interrupt types */
1032#define INT_STATS	(0x00000002)	/* Statistics counter overflow */
1033#define INT_SOOL	(0x00000004)	/* SOOL changed state */
1034#define INT_LOCD	(0x00000008)	/* LOCD changed state */
1035#define INT_LED		(0x00000010)	/* LED (HAPPI) changed state */
1036#define INT_GPIN	(0x00000020)	/* GPIN changed state */
1037#define INT_PING	(0x00000040)	/* PING_COUNT fulfilled */
1038#define INT_WAKE	(0x00000080)	/* Lanai wants bus */
1039#define INT_CBR0	(0x00000100)	/* CBR sched hit VCI 0 */
1040#define INT_LOCK	(0x00000200)	/* Service list overflow */
1041#define INT_MISMATCH	(0x00000400)	/* TX magic list mismatch */
1042#define INT_AAL0_STR	(0x00000800)	/* Non-AAL5 buffer half filled */
1043#define INT_AAL0	(0x00001000)	/* Non-AAL5 data available */
1044#define INT_SERVICE	(0x00002000)	/* Service list entries available */
1045#define INT_TABORTSENT	(0x00004000)	/* Target abort sent by lanai */
1046#define INT_TABORTBM	(0x00008000)	/* Abort rcv'd as bus master */
1047#define INT_TIMEOUTBM	(0x00010000)	/* No response to bus master */
1048#define INT_PCIPARITY	(0x00020000)	/* Parity error on PCI */
1049
1050/* Sets of the above */
1051#define INT_ALL		(0x0003FFFE)	/* All interrupts */
1052#define INT_STATUS	(0x0000003C)	/* Some status pin changed */
1053#define INT_DMASHUT	(0x00038000)	/* DMA engine got shut down */
1054#define INT_SEGSHUT	(0x00000700)	/* Segmentation got shut down */
1055
1056static inline u32 intr_pending(const struct lanai_dev *lanai)
1057{
1058	return reg_read(lanai, IntStatusMasked_Reg);
1059}
1060
1061static inline void intr_enable(const struct lanai_dev *lanai, u32 i)
1062{
1063	reg_write(lanai, i, IntControlEna_Reg);
1064}
1065
1066static inline void intr_disable(const struct lanai_dev *lanai, u32 i)
1067{
1068	reg_write(lanai, i, IntControlDis_Reg);
1069}
1070
1071/* -------------------- CARD/PCI STATUS: */
1072
1073static void status_message(int itf, const char *name, int status)
1074{
1075	static const char *onoff[2] = { "off to on", "on to off" };
1076	printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n",
1077	    itf, name, onoff[!status]);
1078}
1079
1080static void lanai_check_status(struct lanai_dev *lanai)
1081{
1082	u32 new = reg_read(lanai, Status_Reg);
1083	u32 changes = new ^ lanai->status;
1084	lanai->status = new;
1085#define e(flag, name) \
1086		if (changes & flag) \
1087			status_message(lanai->number, name, new & flag)
1088	e(STATUS_SOOL, "SOOL");
1089	e(STATUS_LOCD, "LOCD");
1090	e(STATUS_LED, "LED");
1091	e(STATUS_GPIN, "GPIN");
1092#undef e
1093}
1094
1095static void pcistatus_got(int itf, const char *name)
1096{
1097	printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name);
1098}
1099
1100static void pcistatus_check(struct lanai_dev *lanai, int clearonly)
1101{
1102	u16 s;
1103	int result;
1104	result = pci_read_config_word(lanai->pci, PCI_STATUS, &s);
1105	if (result != PCIBIOS_SUCCESSFUL) {
1106		printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: "
1107		    "%d\n", lanai->number, result);
1108		return;
1109	}
1110	s &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1111	    PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT |
1112	    PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_PARITY;
1113	if (s == 0)
1114		return;
1115	result = pci_write_config_word(lanai->pci, PCI_STATUS, s);
1116	if (result != PCIBIOS_SUCCESSFUL)
1117		printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: "
1118		    "%d\n", lanai->number, result);
1119	if (clearonly)
1120		return;
1121#define e(flag, name, stat) \
1122		if (s & flag) { \
1123			pcistatus_got(lanai->number, name); \
1124			++lanai->stats.pcierr_##stat; \
1125		}
1126	e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect);
1127	e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set);
1128	e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort);
1129	e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort);
1130	e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort);
1131	e(PCI_STATUS_PARITY, "master parity", master_parity);
1132#undef e
1133}
1134
1135/* -------------------- VCC TX BUFFER UTILITIES: */
1136
1137/* space left in tx buffer in bytes */
1138static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr)
1139{
1140	int r;
1141	r = endptr * 16;
1142	r -= ((unsigned long) lvcc->tx.buf.ptr) -
1143	    ((unsigned long) lvcc->tx.buf.start);
1144	r -= 16;	/* Leave "bubble" - if start==end it looks empty */
1145	if (r < 0)
1146		r += lanai_buf_size(&lvcc->tx.buf);
1147	return r;
1148}
1149
1150/* test if VCC is currently backlogged */
1151static inline int vcc_is_backlogged(const struct lanai_vcc *lvcc)
1152{
1153	return !skb_queue_empty(&lvcc->tx.backlog);
1154}
1155
1156/* Bit fields in the segmentation buffer descriptor */
1157#define DESCRIPTOR_MAGIC	(0xD0000000)
1158#define DESCRIPTOR_AAL5		(0x00008000)
1159#define DESCRIPTOR_AAL5_STREAM	(0x00004000)
1160#define DESCRIPTOR_CLP		(0x00002000)
1161
1162/* Add 32-bit descriptor with its padding */
1163static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc,
1164	u32 flags, int len)
1165{
1166	int pos;
1167	APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0,
1168	    "vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr);
1169	lvcc->tx.buf.ptr += 4;	/* Hope the values REALLY don't matter */
1170	pos = ((unsigned char *) lvcc->tx.buf.ptr) -
1171	    (unsigned char *) lvcc->tx.buf.start;
1172	APRINTK((pos & ~0x0001FFF0) == 0,
1173	    "vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, "
1174	    "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1175	    lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1176	pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1);
1177	APRINTK((pos & ~0x0001FFF0) == 0,
1178	    "vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, "
1179	    "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1180	    lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1181	lvcc->tx.buf.ptr[-1] =
1182	    cpu_to_le32(DESCRIPTOR_MAGIC | DESCRIPTOR_AAL5 |
1183	    ((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ?
1184	    DESCRIPTOR_CLP : 0) | flags | pos >> 4);
1185	if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1186		lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1187}
1188
1189/* Add 32-bit AAL5 trailer and leave room for its CRC */
1190static inline void vcc_tx_add_aal5_trailer(struct lanai_vcc *lvcc,
1191	int len, int cpi, int uu)
1192{
1193	APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8,
1194	    "vcc_tx_add_aal5_trailer: bad ptr=%p\n", lvcc->tx.buf.ptr);
1195	lvcc->tx.buf.ptr += 2;
1196	lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len);
1197	if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1198		lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1199}
1200
1201static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc,
1202	const unsigned char *src, int n)
1203{
1204	unsigned char *e;
1205	int m;
1206	e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1207	m = e - (unsigned char *) lvcc->tx.buf.end;
1208	if (m < 0)
1209		m = 0;
1210	memcpy(lvcc->tx.buf.ptr, src, n - m);
1211	if (m != 0) {
1212		memcpy(lvcc->tx.buf.start, src + n - m, m);
1213		e = ((unsigned char *) lvcc->tx.buf.start) + m;
1214	}
1215	lvcc->tx.buf.ptr = (u32 *) e;
1216}
1217
1218static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n)
1219{
1220	unsigned char *e;
1221	int m;
1222	if (n == 0)
1223		return;
1224	e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1225	m = e - (unsigned char *) lvcc->tx.buf.end;
1226	if (m < 0)
1227		m = 0;
1228	memset(lvcc->tx.buf.ptr, 0, n - m);
1229	if (m != 0) {
1230		memset(lvcc->tx.buf.start, 0, m);
1231		e = ((unsigned char *) lvcc->tx.buf.start) + m;
1232	}
1233	lvcc->tx.buf.ptr = (u32 *) e;
1234}
1235
1236/* Update "butt" register to specify new WritePtr */
1237static inline void lanai_endtx(struct lanai_dev *lanai,
1238	const struct lanai_vcc *lvcc)
1239{
1240	int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) -
1241	    (unsigned char *) lvcc->tx.buf.start;
1242	APRINTK((ptr & ~0x0001FFF0) == 0,
1243	    "lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n",
1244	    ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr,
1245	    lvcc->tx.buf.end);
1246
1247	/*
1248	 * Since the "butt register" is a shared resounce on the card we
1249	 * serialize all accesses to it through this spinlock.  This is
1250	 * mostly just paranoia since the register is rarely "busy" anyway
1251	 * but is needed for correctness.
1252	 */
1253	spin_lock(&lanai->endtxlock);
1254	/*
1255	 * We need to check if the "butt busy" bit is set before
1256	 * updating the butt register.  In theory this should
1257	 * never happen because the ATM card is plenty fast at
1258	 * updating the register.  Still, we should make sure
1259	 */
1260	for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) {
1261		if (unlikely(i > 50)) {
1262			printk(KERN_ERR DEV_LABEL "(itf %d): butt register "
1263			    "always busy!\n", lanai->number);
1264			break;
1265		}
1266		udelay(5);
1267	}
1268	/*
1269	 * Before we tall the card to start work we need to be sure 100% of
1270	 * the info in the service buffer has been written before we tell
1271	 * the card about it
1272	 */
1273	wmb();
1274	reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg);
1275	spin_unlock(&lanai->endtxlock);
1276}
1277
1278/*
1279 * Add one AAL5 PDU to lvcc's transmit buffer.  Caller garauntees there's
1280 * space available.  "pdusize" is the number of bytes the PDU will take
1281 */
1282static void lanai_send_one_aal5(struct lanai_dev *lanai,
1283	struct lanai_vcc *lvcc, struct sk_buff *skb, int pdusize)
1284{
1285	int pad;
1286	APRINTK(pdusize == aal5_size(skb->len),
1287	    "lanai_send_one_aal5: wrong size packet (%d != %d)\n",
1288	    pdusize, aal5_size(skb->len));
1289	vcc_tx_add_aal5_descriptor(lvcc, 0, pdusize);
1290	pad = pdusize - skb->len - 8;
1291	APRINTK(pad >= 0, "pad is negative (%d)\n", pad);
1292	APRINTK(pad < 48, "pad is too big (%d)\n", pad);
1293	vcc_tx_memcpy(lvcc, skb->data, skb->len);
1294	vcc_tx_memzero(lvcc, pad);
1295	vcc_tx_add_aal5_trailer(lvcc, skb->len, 0, 0);
1296	lanai_endtx(lanai, lvcc);
1297	lanai_free_skb(lvcc->tx.atmvcc, skb);
1298	atomic_inc(&lvcc->tx.atmvcc->stats->tx);
1299}
1300
1301/* Try to fill the buffer - don't call unless there is backlog */
1302static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai,
1303	struct lanai_vcc *lvcc, int endptr)
1304{
1305	int n;
1306	struct sk_buff *skb;
1307	int space = vcc_tx_space(lvcc, endptr);
1308	APRINTK(vcc_is_backlogged(lvcc),
1309	    "vcc_tx_unqueue() called with empty backlog (vci=%d)\n",
1310	    lvcc->vci);
1311	while (space >= 64) {
1312		skb = skb_dequeue(&lvcc->tx.backlog);
1313		if (skb == NULL)
1314			goto no_backlog;
1315		n = aal5_size(skb->len);
1316		if (n + 16 > space) {
1317			/* No room for this packet - put it back on queue */
1318			skb_queue_head(&lvcc->tx.backlog, skb);
1319			return;
1320		}
1321		lanai_send_one_aal5(lanai, lvcc, skb, n);
1322		space -= n + 16;
1323	}
1324	if (!vcc_is_backlogged(lvcc)) {
1325	    no_backlog:
1326		__clear_bit(lvcc->vci, lanai->backlog_vccs);
1327	}
1328}
1329
1330/* Given an skb that we want to transmit either send it now or queue */
1331static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1332	struct sk_buff *skb)
1333{
1334	int space, n;
1335	if (vcc_is_backlogged(lvcc))		/* Already backlogged */
1336		goto queue_it;
1337	space = vcc_tx_space(lvcc,
1338		    TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)));
1339	n = aal5_size(skb->len);
1340	APRINTK(n + 16 >= 64, "vcc_tx_aal5: n too small (%d)\n", n);
1341	if (space < n + 16) {			/* No space for this PDU */
1342		__set_bit(lvcc->vci, lanai->backlog_vccs);
1343	    queue_it:
1344		skb_queue_tail(&lvcc->tx.backlog, skb);
1345		return;
1346	}
1347	lanai_send_one_aal5(lanai, lvcc, skb, n);
1348}
1349
1350static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai,
1351	struct lanai_vcc *lvcc, int endptr)
1352{
1353	printk(KERN_INFO DEV_LABEL
1354	    ": vcc_tx_unqueue_aal0: not implemented\n");
1355}
1356
1357static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1358	struct sk_buff *skb)
1359{
1360	printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n");
1361	/* Remember to increment lvcc->tx.atmvcc->stats->tx */
1362	lanai_free_skb(lvcc->tx.atmvcc, skb);
1363}
1364
1365/* -------------------- VCC RX BUFFER UTILITIES: */
1366
1367/* unlike the _tx_ cousins, this doesn't update ptr */
1368static inline void vcc_rx_memcpy(unsigned char *dest,
1369	const struct lanai_vcc *lvcc, int n)
1370{
1371	int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n -
1372	    ((const unsigned char *) (lvcc->rx.buf.end));
1373	if (m < 0)
1374		m = 0;
1375	memcpy(dest, lvcc->rx.buf.ptr, n - m);
1376	memcpy(dest + n - m, lvcc->rx.buf.start, m);
1377	/* Make sure that these copies don't get reordered */
1378	barrier();
1379}
1380
1381/* Receive AAL5 data on a VCC with a particular endptr */
1382static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr)
1383{
1384	int size;
1385	struct sk_buff *skb;
1386	const u32 *x;
1387	u32 *end = &lvcc->rx.buf.start[endptr * 4];
1388	int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr);
1389	if (n < 0)
1390		n += lanai_buf_size(&lvcc->rx.buf);
1391	APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15),
1392	    "vcc_rx_aal5: n out of range (%d/%Zu)\n",
1393	    n, lanai_buf_size(&lvcc->rx.buf));
1394	/* Recover the second-to-last word to get true pdu length */
1395	if ((x = &end[-2]) < lvcc->rx.buf.start)
1396		x = &lvcc->rx.buf.end[-2];
1397	/*
1398	 * Before we actually read from the buffer, make sure the memory
1399	 * changes have arrived
1400	 */
1401	rmb();
1402	size = be32_to_cpup(x) & 0xffff;
1403	if (unlikely(n != aal5_size(size))) {
1404		/* Make sure size matches padding */
1405		printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length "
1406		    "on vci=%d - size=%d n=%d\n",
1407		    lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n);
1408		lvcc->stats.x.aal5.rx_badlen++;
1409		goto out;
1410	}
1411	skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC);
1412	if (unlikely(skb == NULL)) {
1413		lvcc->stats.rx_nomem++;
1414		goto out;
1415	}
1416	skb_put(skb, size);
1417	vcc_rx_memcpy(skb->data, lvcc, size);
1418	ATM_SKB(skb)->vcc = lvcc->rx.atmvcc;
1419	__net_timestamp(skb);
1420	lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb);
1421	atomic_inc(&lvcc->rx.atmvcc->stats->rx);
1422    out:
1423	lvcc->rx.buf.ptr = end;
1424	cardvcc_write(lvcc, endptr, vcc_rxreadptr);
1425}
1426
1427static void vcc_rx_aal0(struct lanai_dev *lanai)
1428{
1429	printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n");
1430	/* Remember to get read_lock(&vcc_sklist_lock) while looking up VC */
1431	/* Remember to increment lvcc->rx.atmvcc->stats->rx */
1432}
1433
1434/* -------------------- MANAGING HOST-BASED VCC TABLE: */
1435
1436/* Decide whether to use vmalloc or get_zeroed_page for VCC table */
1437#if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE
1438#define VCCTABLE_GETFREEPAGE
1439#else
1440#include <linux/vmalloc.h>
1441#endif
1442
1443static int vcc_table_allocate(struct lanai_dev *lanai)
1444{
1445#ifdef VCCTABLE_GETFREEPAGE
1446	APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE,
1447	    "vcc table > PAGE_SIZE!");
1448	lanai->vccs = (struct lanai_vcc **) get_zeroed_page(GFP_KERNEL);
1449	return (lanai->vccs == NULL) ? -ENOMEM : 0;
1450#else
1451	int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *);
1452	lanai->vccs = vzalloc(bytes);
1453	if (unlikely(lanai->vccs == NULL))
1454		return -ENOMEM;
1455	return 0;
1456#endif
1457}
1458
1459static inline void vcc_table_deallocate(const struct lanai_dev *lanai)
1460{
1461#ifdef VCCTABLE_GETFREEPAGE
1462	free_page((unsigned long) lanai->vccs);
1463#else
1464	vfree(lanai->vccs);
1465#endif
1466}
1467
1468/* Allocate a fresh lanai_vcc, with the appropriate things cleared */
1469static inline struct lanai_vcc *new_lanai_vcc(void)
1470{
1471	struct lanai_vcc *lvcc;
1472	lvcc =  kzalloc(sizeof(*lvcc), GFP_KERNEL);
1473	if (likely(lvcc != NULL)) {
1474		skb_queue_head_init(&lvcc->tx.backlog);
1475#ifdef DEBUG
1476		lvcc->vci = -1;
1477#endif
1478	}
1479	return lvcc;
1480}
1481
1482static int lanai_get_sized_buffer(struct lanai_dev *lanai,
1483	struct lanai_buffer *buf, int max_sdu, int multiplier,
1484	const char *name)
1485{
1486	int size;
1487	if (unlikely(max_sdu < 1))
1488		max_sdu = 1;
1489	max_sdu = aal5_size(max_sdu);
1490	size = (max_sdu + 16) * multiplier + 16;
1491	lanai_buf_allocate(buf, size, max_sdu + 32, lanai->pci);
1492	if (unlikely(buf->start == NULL))
1493		return -ENOMEM;
1494	if (unlikely(lanai_buf_size(buf) < size))
1495		printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes "
1496		    "for %s buffer, got only %Zu\n", lanai->number, size,
1497		    name, lanai_buf_size(buf));
1498	DPRINTK("Allocated %Zu byte %s buffer\n", lanai_buf_size(buf), name);
1499	return 0;
1500}
1501
1502/* Setup a RX buffer for a currently unbound AAL5 vci */
1503static inline int lanai_setup_rx_vci_aal5(struct lanai_dev *lanai,
1504	struct lanai_vcc *lvcc, const struct atm_qos *qos)
1505{
1506	return lanai_get_sized_buffer(lanai, &lvcc->rx.buf,
1507	    qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, "RX");
1508}
1509
1510/* Setup a TX buffer for a currently unbound AAL5 vci */
1511static int lanai_setup_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1512	const struct atm_qos *qos)
1513{
1514	int max_sdu, multiplier;
1515	if (qos->aal == ATM_AAL0) {
1516		lvcc->tx.unqueue = vcc_tx_unqueue_aal0;
1517		max_sdu = ATM_CELL_SIZE - 1;
1518		multiplier = AAL0_TX_MULTIPLIER;
1519	} else {
1520		lvcc->tx.unqueue = vcc_tx_unqueue_aal5;
1521		max_sdu = qos->txtp.max_sdu;
1522		multiplier = AAL5_TX_MULTIPLIER;
1523	}
1524	return lanai_get_sized_buffer(lanai, &lvcc->tx.buf, max_sdu,
1525	    multiplier, "TX");
1526}
1527
1528static inline void host_vcc_bind(struct lanai_dev *lanai,
1529	struct lanai_vcc *lvcc, vci_t vci)
1530{
1531	if (lvcc->vbase != NULL)
1532		return;    /* We already were bound in the other direction */
1533	DPRINTK("Binding vci %d\n", vci);
1534#ifdef USE_POWERDOWN
1535	if (lanai->nbound++ == 0) {
1536		DPRINTK("Coming out of powerdown\n");
1537		lanai->conf1 &= ~CONFIG1_POWERDOWN;
1538		conf1_write(lanai);
1539		conf2_write(lanai);
1540	}
1541#endif
1542	lvcc->vbase = cardvcc_addr(lanai, vci);
1543	lanai->vccs[lvcc->vci = vci] = lvcc;
1544}
1545
1546static inline void host_vcc_unbind(struct lanai_dev *lanai,
1547	struct lanai_vcc *lvcc)
1548{
1549	if (lvcc->vbase == NULL)
1550		return;	/* This vcc was never bound */
1551	DPRINTK("Unbinding vci %d\n", lvcc->vci);
1552	lvcc->vbase = NULL;
1553	lanai->vccs[lvcc->vci] = NULL;
1554#ifdef USE_POWERDOWN
1555	if (--lanai->nbound == 0) {
1556		DPRINTK("Going into powerdown\n");
1557		lanai->conf1 |= CONFIG1_POWERDOWN;
1558		conf1_write(lanai);
1559	}
1560#endif
1561}
1562
1563/* -------------------- RESET CARD: */
1564
1565static void lanai_reset(struct lanai_dev *lanai)
1566{
1567	printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* resetting - not "
1568	    "implemented\n", lanai->number);
1569	/* TODO */
1570	/* The following is just a hack until we write the real
1571	 * resetter - at least ack whatever interrupt sent us
1572	 * here
1573	 */
1574	reg_write(lanai, INT_ALL, IntAck_Reg);
1575	lanai->stats.card_reset++;
1576}
1577
1578/* -------------------- SERVICE LIST UTILITIES: */
1579
1580/*
1581 * Allocate service buffer and tell card about it
1582 */
1583static int service_buffer_allocate(struct lanai_dev *lanai)
1584{
1585	lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 8,
1586	    lanai->pci);
1587	if (unlikely(lanai->service.start == NULL))
1588		return -ENOMEM;
1589	DPRINTK("allocated service buffer at 0x%08lX, size %Zu(%d)\n",
1590	    (unsigned long) lanai->service.start,
1591	    lanai_buf_size(&lanai->service),
1592	    lanai_buf_size_cardorder(&lanai->service));
1593	/* Clear ServWrite register to be safe */
1594	reg_write(lanai, 0, ServWrite_Reg);
1595	/* ServiceStuff register contains size and address of buffer */
1596	reg_write(lanai,
1597	    SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) |
1598	    SSTUFF_SET_ADDR(lanai->service.dmaaddr),
1599	    ServiceStuff_Reg);
1600	return 0;
1601}
1602
1603static inline void service_buffer_deallocate(struct lanai_dev *lanai)
1604{
1605	lanai_buf_deallocate(&lanai->service, lanai->pci);
1606}
1607
1608/* Bitfields in service list */
1609#define SERVICE_TX	(0x80000000)	/* Was from transmission */
1610#define SERVICE_TRASH	(0x40000000)	/* RXed PDU was trashed */
1611#define SERVICE_CRCERR	(0x20000000)	/* RXed PDU had CRC error */
1612#define SERVICE_CI	(0x10000000)	/* RXed PDU had CI set */
1613#define SERVICE_CLP	(0x08000000)	/* RXed PDU had CLP set */
1614#define SERVICE_STREAM	(0x04000000)	/* RX Stream mode */
1615#define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF)
1616#define SERVICE_GET_END(x) ((x)&0x1FFF)
1617
1618/* Handle one thing from the service list - returns true if it marked a
1619 * VCC ready for xmit
1620 */
1621static int handle_service(struct lanai_dev *lanai, u32 s)
1622{
1623	vci_t vci = SERVICE_GET_VCI(s);
1624	struct lanai_vcc *lvcc;
1625	read_lock(&vcc_sklist_lock);
1626	lvcc = lanai->vccs[vci];
1627	if (unlikely(lvcc == NULL)) {
1628		read_unlock(&vcc_sklist_lock);
1629		DPRINTK("(itf %d) got service entry 0x%X for nonexistent "
1630		    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1631		if (s & SERVICE_TX)
1632			lanai->stats.service_notx++;
1633		else
1634			lanai->stats.service_norx++;
1635		return 0;
1636	}
1637	if (s & SERVICE_TX) {			/* segmentation interrupt */
1638		if (unlikely(lvcc->tx.atmvcc == NULL)) {
1639			read_unlock(&vcc_sklist_lock);
1640			DPRINTK("(itf %d) got service entry 0x%X for non-TX "
1641			    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1642			lanai->stats.service_notx++;
1643			return 0;
1644		}
1645		__set_bit(vci, lanai->transmit_ready);
1646		lvcc->tx.endptr = SERVICE_GET_END(s);
1647		read_unlock(&vcc_sklist_lock);
1648		return 1;
1649	}
1650	if (unlikely(lvcc->rx.atmvcc == NULL)) {
1651		read_unlock(&vcc_sklist_lock);
1652		DPRINTK("(itf %d) got service entry 0x%X for non-RX "
1653		    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1654		lanai->stats.service_norx++;
1655		return 0;
1656	}
1657	if (unlikely(lvcc->rx.atmvcc->qos.aal != ATM_AAL5)) {
1658		read_unlock(&vcc_sklist_lock);
1659		DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 "
1660		    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1661		lanai->stats.service_rxnotaal5++;
1662		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1663		return 0;
1664	}
1665	if (likely(!(s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)))) {
1666		vcc_rx_aal5(lvcc, SERVICE_GET_END(s));
1667		read_unlock(&vcc_sklist_lock);
1668		return 0;
1669	}
1670	if (s & SERVICE_TRASH) {
1671		int bytes;
1672		read_unlock(&vcc_sklist_lock);
1673		DPRINTK("got trashed rx pdu on vci %d\n", vci);
1674		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1675		lvcc->stats.x.aal5.service_trash++;
1676		bytes = (SERVICE_GET_END(s) * 16) -
1677		    (((unsigned long) lvcc->rx.buf.ptr) -
1678		    ((unsigned long) lvcc->rx.buf.start)) + 47;
1679		if (bytes < 0)
1680			bytes += lanai_buf_size(&lvcc->rx.buf);
1681		lanai->stats.ovfl_trash += (bytes / 48);
1682		return 0;
1683	}
1684	if (s & SERVICE_STREAM) {
1685		read_unlock(&vcc_sklist_lock);
1686		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1687		lvcc->stats.x.aal5.service_stream++;
1688		printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream "
1689		    "PDU on VCI %d!\n", lanai->number, vci);
1690		lanai_reset(lanai);
1691		return 0;
1692	}
1693	DPRINTK("got rx crc error on vci %d\n", vci);
1694	atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1695	lvcc->stats.x.aal5.service_rxcrc++;
1696	lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4];
1697	cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr);
1698	read_unlock(&vcc_sklist_lock);
1699	return 0;
1700}
1701
1702/* Try transmitting on all VCIs that we marked ready to serve */
1703static void iter_transmit(struct lanai_dev *lanai, vci_t vci)
1704{
1705	struct lanai_vcc *lvcc = lanai->vccs[vci];
1706	if (vcc_is_backlogged(lvcc))
1707		lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr);
1708}
1709
1710/* Run service queue -- called from interrupt context or with
1711 * interrupts otherwise disabled and with the lanai->servicelock
1712 * lock held
1713 */
1714static void run_service(struct lanai_dev *lanai)
1715{
1716	int ntx = 0;
1717	u32 wreg = reg_read(lanai, ServWrite_Reg);
1718	const u32 *end = lanai->service.start + wreg;
1719	while (lanai->service.ptr != end) {
1720		ntx += handle_service(lanai,
1721		    le32_to_cpup(lanai->service.ptr++));
1722		if (lanai->service.ptr >= lanai->service.end)
1723			lanai->service.ptr = lanai->service.start;
1724	}
1725	reg_write(lanai, wreg, ServRead_Reg);
1726	if (ntx != 0) {
1727		read_lock(&vcc_sklist_lock);
1728		vci_bitfield_iterate(lanai, lanai->transmit_ready,
1729		    iter_transmit);
1730		bitmap_zero(lanai->transmit_ready, NUM_VCI);
1731		read_unlock(&vcc_sklist_lock);
1732	}
1733}
1734
1735/* -------------------- GATHER STATISTICS: */
1736
1737static void get_statistics(struct lanai_dev *lanai)
1738{
1739	u32 statreg = reg_read(lanai, Statistics_Reg);
1740	lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg);
1741	lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg);
1742	lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg);
1743	lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg);
1744}
1745
1746/* -------------------- POLLING TIMER: */
1747
1748#ifndef DEBUG_RW
1749/* Try to undequeue 1 backlogged vcc */
1750static void iter_dequeue(struct lanai_dev *lanai, vci_t vci)
1751{
1752	struct lanai_vcc *lvcc = lanai->vccs[vci];
1753	int endptr;
1754	if (lvcc == NULL || lvcc->tx.atmvcc == NULL ||
1755	    !vcc_is_backlogged(lvcc)) {
1756		__clear_bit(vci, lanai->backlog_vccs);
1757		return;
1758	}
1759	endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
1760	lvcc->tx.unqueue(lanai, lvcc, endptr);
1761}
1762#endif /* !DEBUG_RW */
1763
1764static void lanai_timed_poll(unsigned long arg)
1765{
1766	struct lanai_dev *lanai = (struct lanai_dev *) arg;
1767#ifndef DEBUG_RW
1768	unsigned long flags;
1769#ifdef USE_POWERDOWN
1770	if (lanai->conf1 & CONFIG1_POWERDOWN)
1771		return;
1772#endif /* USE_POWERDOWN */
1773	local_irq_save(flags);
1774	/* If we can grab the spinlock, check if any services need to be run */
1775	if (spin_trylock(&lanai->servicelock)) {
1776		run_service(lanai);
1777		spin_unlock(&lanai->servicelock);
1778	}
1779	/* ...and see if any backlogged VCs can make progress */
1780	/* unfortunately linux has no read_trylock() currently */
1781	read_lock(&vcc_sklist_lock);
1782	vci_bitfield_iterate(lanai, lanai->backlog_vccs, iter_dequeue);
1783	read_unlock(&vcc_sklist_lock);
1784	local_irq_restore(flags);
1785
1786	get_statistics(lanai);
1787#endif /* !DEBUG_RW */
1788	mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD);
1789}
1790
1791static inline void lanai_timed_poll_start(struct lanai_dev *lanai)
1792{
1793	init_timer(&lanai->timer);
1794	lanai->timer.expires = jiffies + LANAI_POLL_PERIOD;
1795	lanai->timer.data = (unsigned long) lanai;
1796	lanai->timer.function = lanai_timed_poll;
1797	add_timer(&lanai->timer);
1798}
1799
1800static inline void lanai_timed_poll_stop(struct lanai_dev *lanai)
1801{
1802	del_timer_sync(&lanai->timer);
1803}
1804
1805/* -------------------- INTERRUPT SERVICE: */
1806
1807static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason)
1808{
1809	u32 ack = 0;
1810	if (reason & INT_SERVICE) {
1811		ack = INT_SERVICE;
1812		spin_lock(&lanai->servicelock);
1813		run_service(lanai);
1814		spin_unlock(&lanai->servicelock);
1815	}
1816	if (reason & (INT_AAL0_STR | INT_AAL0)) {
1817		ack |= reason & (INT_AAL0_STR | INT_AAL0);
1818		vcc_rx_aal0(lanai);
1819	}
1820	/* The rest of the interrupts are pretty rare */
1821	if (ack == reason)
1822		goto done;
1823	if (reason & INT_STATS) {
1824		reason &= ~INT_STATS;	/* No need to ack */
1825		get_statistics(lanai);
1826	}
1827	if (reason & INT_STATUS) {
1828		ack |= reason & INT_STATUS;
1829		lanai_check_status(lanai);
1830	}
1831	if (unlikely(reason & INT_DMASHUT)) {
1832		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA "
1833		    "shutdown, reason=0x%08X, address=0x%08X\n",
1834		    lanai->number, (unsigned int) (reason & INT_DMASHUT),
1835		    (unsigned int) reg_read(lanai, DMA_Addr_Reg));
1836		if (reason & INT_TABORTBM) {
1837			lanai_reset(lanai);
1838			return;
1839		}
1840		ack |= (reason & INT_DMASHUT);
1841		printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n",
1842		    lanai->number);
1843		conf1_write(lanai);
1844		lanai->stats.dma_reenable++;
1845		pcistatus_check(lanai, 0);
1846	}
1847	if (unlikely(reason & INT_TABORTSENT)) {
1848		ack |= (reason & INT_TABORTSENT);
1849		printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n",
1850		    lanai->number);
1851		pcistatus_check(lanai, 0);
1852	}
1853	if (unlikely(reason & INT_SEGSHUT)) {
1854		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1855		    "segmentation shutdown, reason=0x%08X\n", lanai->number,
1856		    (unsigned int) (reason & INT_SEGSHUT));
1857		lanai_reset(lanai);
1858		return;
1859	}
1860	if (unlikely(reason & (INT_PING | INT_WAKE))) {
1861		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1862		    "unexpected interrupt 0x%08X, resetting\n",
1863		    lanai->number,
1864		    (unsigned int) (reason & (INT_PING | INT_WAKE)));
1865		lanai_reset(lanai);
1866		return;
1867	}
1868#ifdef DEBUG
1869	if (unlikely(ack != reason)) {
1870		DPRINTK("unacked ints: 0x%08X\n",
1871		    (unsigned int) (reason & ~ack));
1872		ack = reason;
1873	}
1874#endif
1875   done:
1876	if (ack != 0)
1877		reg_write(lanai, ack, IntAck_Reg);
1878}
1879
1880static irqreturn_t lanai_int(int irq, void *devid)
1881{
1882	struct lanai_dev *lanai = devid;
1883	u32 reason;
1884
1885#ifdef USE_POWERDOWN
1886	/*
1887	 * If we're powered down we shouldn't be generating any interrupts -
1888	 * so assume that this is a shared interrupt line and it's for someone
1889	 * else
1890	 */
1891	if (unlikely(lanai->conf1 & CONFIG1_POWERDOWN))
1892		return IRQ_NONE;
1893#endif
1894
1895	reason = intr_pending(lanai);
1896	if (reason == 0)
1897		return IRQ_NONE;	/* Must be for someone else */
1898
1899	do {
1900		if (unlikely(reason == 0xFFFFFFFF))
1901			break;		/* Maybe we've been unplugged? */
1902		lanai_int_1(lanai, reason);
1903		reason = intr_pending(lanai);
1904	} while (reason != 0);
1905
1906	return IRQ_HANDLED;
1907}
1908
1909/* TODO - it would be nice if we could use the "delayed interrupt" system
1910 *   to some advantage
1911 */
1912
1913/* -------------------- CHECK BOARD ID/REV: */
1914
1915/*
1916 * The board id and revision are stored both in the reset register and
1917 * in the PCI configuration space - the documentation says to check
1918 * each of them.  If revp!=NULL we store the revision there
1919 */
1920static int check_board_id_and_rev(const char *name, u32 val, int *revp)
1921{
1922	DPRINTK("%s says board_id=%d, board_rev=%d\n", name,
1923		(int) RESET_GET_BOARD_ID(val),
1924		(int) RESET_GET_BOARD_REV(val));
1925	if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) {
1926		printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a "
1927		    "Lanai 25.6\n", name, (int) RESET_GET_BOARD_ID(val));
1928		return -ENODEV;
1929	}
1930	if (revp != NULL)
1931		*revp = RESET_GET_BOARD_REV(val);
1932	return 0;
1933}
1934
1935/* -------------------- PCI INITIALIZATION/SHUTDOWN: */
1936
1937static int lanai_pci_start(struct lanai_dev *lanai)
1938{
1939	struct pci_dev *pci = lanai->pci;
1940	int result;
1941
1942	if (pci_enable_device(pci) != 0) {
1943		printk(KERN_ERR DEV_LABEL "(itf %d): can't enable "
1944		    "PCI device", lanai->number);
1945		return -ENXIO;
1946	}
1947	pci_set_master(pci);
1948	if (dma_set_mask_and_coherent(&pci->dev, DMA_BIT_MASK(32)) != 0) {
1949		printk(KERN_WARNING DEV_LABEL
1950		    "(itf %d): No suitable DMA available.\n", lanai->number);
1951		return -EBUSY;
1952	}
1953	result = check_board_id_and_rev("PCI", pci->subsystem_device, NULL);
1954	if (result != 0)
1955		return result;
1956	/* Set latency timer to zero as per lanai docs */
1957	result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0);
1958	if (result != PCIBIOS_SUCCESSFUL) {
1959		printk(KERN_ERR DEV_LABEL "(itf %d): can't write "
1960		    "PCI_LATENCY_TIMER: %d\n", lanai->number, result);
1961		return -EINVAL;
1962	}
1963	pcistatus_check(lanai, 1);
1964	pcistatus_check(lanai, 0);
1965	return 0;
1966}
1967
1968/* -------------------- VPI/VCI ALLOCATION: */
1969
1970/*
1971 * We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll
1972 * get a CBRZERO interrupt), and we can use it only if no one is receiving
1973 * AAL0 traffic (since they will use the same queue) - according to the
1974 * docs we shouldn't even use it for AAL0 traffic
1975 */
1976static inline int vci0_is_ok(struct lanai_dev *lanai,
1977	const struct atm_qos *qos)
1978{
1979	if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0)
1980		return 0;
1981	if (qos->rxtp.traffic_class != ATM_NONE) {
1982		if (lanai->naal0 != 0)
1983			return 0;
1984		lanai->conf2 |= CONFIG2_VCI0_NORMAL;
1985		conf2_write_if_powerup(lanai);
1986	}
1987	return 1;
1988}
1989
1990/* return true if vci is currently unused, or if requested qos is
1991 * compatible
1992 */
1993static int vci_is_ok(struct lanai_dev *lanai, vci_t vci,
1994	const struct atm_vcc *atmvcc)
1995{
1996	const struct atm_qos *qos = &atmvcc->qos;
1997	const struct lanai_vcc *lvcc = lanai->vccs[vci];
1998	if (vci == 0 && !vci0_is_ok(lanai, qos))
1999		return 0;
2000	if (unlikely(lvcc != NULL)) {
2001		if (qos->rxtp.traffic_class != ATM_NONE &&
2002		    lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc)
2003			return 0;
2004		if (qos->txtp.traffic_class != ATM_NONE &&
2005		    lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc)
2006			return 0;
2007		if (qos->txtp.traffic_class == ATM_CBR &&
2008		    lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc)
2009			return 0;
2010	}
2011	if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 &&
2012	    qos->rxtp.traffic_class != ATM_NONE) {
2013		const struct lanai_vcc *vci0 = lanai->vccs[0];
2014		if (vci0 != NULL && vci0->rx.atmvcc != NULL)
2015			return 0;
2016		lanai->conf2 &= ~CONFIG2_VCI0_NORMAL;
2017		conf2_write_if_powerup(lanai);
2018	}
2019	return 1;
2020}
2021
2022static int lanai_normalize_ci(struct lanai_dev *lanai,
2023	const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip)
2024{
2025	switch (*vpip) {
2026		case ATM_VPI_ANY:
2027			*vpip = 0;
2028			/* FALLTHROUGH */
2029		case 0:
2030			break;
2031		default:
2032			return -EADDRINUSE;
2033	}
2034	switch (*vcip) {
2035		case ATM_VCI_ANY:
2036			for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci;
2037			    (*vcip)++)
2038				if (vci_is_ok(lanai, *vcip, atmvcc))
2039					return 0;
2040			return -EADDRINUSE;
2041		default:
2042			if (*vcip >= lanai->num_vci || *vcip < 0 ||
2043			    !vci_is_ok(lanai, *vcip, atmvcc))
2044				return -EADDRINUSE;
2045	}
2046	return 0;
2047}
2048
2049/* -------------------- MANAGE CBR: */
2050
2051/*
2052 * CBR ICG is stored as a fixed-point number with 4 fractional bits.
2053 * Note that storing a number greater than 2046.0 will result in
2054 * incorrect shaping
2055 */
2056#define CBRICG_FRAC_BITS	(4)
2057#define CBRICG_MAX		(2046 << CBRICG_FRAC_BITS)
2058
2059/*
2060 * ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1)
2061 * where MAXPCR is (according to the docs) 25600000/(54*8),
2062 * which is equal to (3125<<9)/27.
2063 *
2064 * Solving for ICG, we get:
2065 *    ICG = MAXPCR/PCR - 1
2066 *    ICG = (3125<<9)/(27*PCR) - 1
2067 *    ICG = ((3125<<9) - (27*PCR)) / (27*PCR)
2068 *
2069 * The end result is supposed to be a fixed-point number with FRAC_BITS
2070 * bits of a fractional part, so we keep everything in the numerator
2071 * shifted by that much as we compute
2072 *
2073 */
2074static int pcr_to_cbricg(const struct atm_qos *qos)
2075{
2076	int rounddown = 0;	/* 1 = Round PCR down, i.e. round ICG _up_ */
2077	int x, icg, pcr = atm_pcr_goal(&qos->txtp);
2078	if (pcr == 0)		/* Use maximum bandwidth */
2079		return 0;
2080	if (pcr < 0) {
2081		rounddown = 1;
2082		pcr = -pcr;
2083	}
2084	x = pcr * 27;
2085	icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS);
2086	if (rounddown)
2087		icg += x - 1;
2088	icg /= x;
2089	if (icg > CBRICG_MAX)
2090		icg = CBRICG_MAX;
2091	DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n",
2092	    pcr, rounddown ? 'Y' : 'N', icg);
2093	return icg;
2094}
2095
2096static inline void lanai_cbr_setup(struct lanai_dev *lanai)
2097{
2098	reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg);
2099	reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg);
2100	lanai->conf2 |= CONFIG2_CBR_ENABLE;
2101	conf2_write(lanai);
2102}
2103
2104static inline void lanai_cbr_shutdown(struct lanai_dev *lanai)
2105{
2106	lanai->conf2 &= ~CONFIG2_CBR_ENABLE;
2107	conf2_write(lanai);
2108}
2109
2110/* -------------------- OPERATIONS: */
2111
2112/* setup a newly detected device */
2113static int lanai_dev_open(struct atm_dev *atmdev)
2114{
2115	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2116	unsigned long raw_base;
2117	int result;
2118
2119	DPRINTK("In lanai_dev_open()\n");
2120	/* Basic device fields */
2121	lanai->number = atmdev->number;
2122	lanai->num_vci = NUM_VCI;
2123	bitmap_zero(lanai->backlog_vccs, NUM_VCI);
2124	bitmap_zero(lanai->transmit_ready, NUM_VCI);
2125	lanai->naal0 = 0;
2126#ifdef USE_POWERDOWN
2127	lanai->nbound = 0;
2128#endif
2129	lanai->cbrvcc = NULL;
2130	memset(&lanai->stats, 0, sizeof lanai->stats);
2131	spin_lock_init(&lanai->endtxlock);
2132	spin_lock_init(&lanai->servicelock);
2133	atmdev->ci_range.vpi_bits = 0;
2134	atmdev->ci_range.vci_bits = 0;
2135	while (1 << atmdev->ci_range.vci_bits < lanai->num_vci)
2136		atmdev->ci_range.vci_bits++;
2137	atmdev->link_rate = ATM_25_PCR;
2138
2139	/* 3.2: PCI initialization */
2140	if ((result = lanai_pci_start(lanai)) != 0)
2141		goto error;
2142	raw_base = lanai->pci->resource[0].start;
2143	lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE);
2144	if (lanai->base == NULL) {
2145		printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n");
2146		goto error_pci;
2147	}
2148	/* 3.3: Reset lanai and PHY */
2149	reset_board(lanai);
2150	lanai->conf1 = reg_read(lanai, Config1_Reg);
2151	lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN |
2152	    CONFIG1_MASK_LEDMODE);
2153	lanai->conf1 |= CONFIG1_SET_LEDMODE(LEDMODE_NOT_SOOL);
2154	reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2155	udelay(1000);
2156	conf1_write(lanai);
2157
2158	/*
2159	 * 3.4: Turn on endian mode for big-endian hardware
2160	 *   We don't actually want to do this - the actual bit fields
2161	 *   in the endian register are not documented anywhere.
2162	 *   Instead we do the bit-flipping ourselves on big-endian
2163	 *   hardware.
2164	 *
2165	 * 3.5: get the board ID/rev by reading the reset register
2166	 */
2167	result = check_board_id_and_rev("register",
2168	    reg_read(lanai, Reset_Reg), &lanai->board_rev);
2169	if (result != 0)
2170		goto error_unmap;
2171
2172	/* 3.6: read EEPROM */
2173	if ((result = eeprom_read(lanai)) != 0)
2174		goto error_unmap;
2175	if ((result = eeprom_validate(lanai)) != 0)
2176		goto error_unmap;
2177
2178	/* 3.7: re-reset PHY, do loopback tests, setup PHY */
2179	reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2180	udelay(1000);
2181	conf1_write(lanai);
2182	/* TODO - loopback tests */
2183	lanai->conf1 |= (CONFIG1_GPOUT2 | CONFIG1_GPOUT3 | CONFIG1_DMA_ENABLE);
2184	conf1_write(lanai);
2185
2186	/* 3.8/3.9: test and initialize card SRAM */
2187	if ((result = sram_test_and_clear(lanai)) != 0)
2188		goto error_unmap;
2189
2190	/* 3.10: initialize lanai registers */
2191	lanai->conf1 |= CONFIG1_DMA_ENABLE;
2192	conf1_write(lanai);
2193	if ((result = service_buffer_allocate(lanai)) != 0)
2194		goto error_unmap;
2195	if ((result = vcc_table_allocate(lanai)) != 0)
2196		goto error_service;
2197	lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) |
2198	    CONFIG2_HEC_DROP |	/* ??? */ CONFIG2_PTI7_MODE;
2199	conf2_write(lanai);
2200	reg_write(lanai, TX_FIFO_DEPTH, TxDepth_Reg);
2201	reg_write(lanai, 0, CBR_ICG_Reg);	/* CBR defaults to no limit */
2202	if ((result = request_irq(lanai->pci->irq, lanai_int, IRQF_SHARED,
2203	    DEV_LABEL, lanai)) != 0) {
2204		printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n");
2205		goto error_vcctable;
2206	}
2207	mb();				/* Make sure that all that made it */
2208	intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE));
2209	/* 3.11: initialize loop mode (i.e. turn looping off) */
2210	lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) |
2211	    CONFIG1_SET_LOOPMODE(LOOPMODE_NORMAL) |
2212	    CONFIG1_GPOUT2 | CONFIG1_GPOUT3;
2213	conf1_write(lanai);
2214	lanai->status = reg_read(lanai, Status_Reg);
2215	/* We're now done initializing this card */
2216#ifdef USE_POWERDOWN
2217	lanai->conf1 |= CONFIG1_POWERDOWN;
2218	conf1_write(lanai);
2219#endif
2220	memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN);
2221	lanai_timed_poll_start(lanai);
2222	printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=0x%lx, irq=%u "
2223		"(%pMF)\n", lanai->number, (int) lanai->pci->revision,
2224		(unsigned long) lanai->base, lanai->pci->irq, atmdev->esi);
2225	printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%u(0x%X), "
2226	    "board_rev=%d\n", lanai->number,
2227	    lanai->type==lanai2 ? "2" : "HB", (unsigned int) lanai->serialno,
2228	    (unsigned int) lanai->serialno, lanai->board_rev);
2229	return 0;
2230
2231    error_vcctable:
2232	vcc_table_deallocate(lanai);
2233    error_service:
2234	service_buffer_deallocate(lanai);
2235    error_unmap:
2236	reset_board(lanai);
2237#ifdef USE_POWERDOWN
2238	lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN;
2239	conf1_write(lanai);
2240#endif
2241	iounmap(lanai->base);
2242    error_pci:
2243	pci_disable_device(lanai->pci);
2244    error:
2245	return result;
2246}
2247
2248/* called when device is being shutdown, and all vcc's are gone - higher
2249 * levels will deallocate the atm device for us
2250 */
2251static void lanai_dev_close(struct atm_dev *atmdev)
2252{
2253	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2254	printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n",
2255	    lanai->number);
2256	lanai_timed_poll_stop(lanai);
2257#ifdef USE_POWERDOWN
2258	lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN;
2259	conf1_write(lanai);
2260#endif
2261	intr_disable(lanai, INT_ALL);
2262	free_irq(lanai->pci->irq, lanai);
2263	reset_board(lanai);
2264#ifdef USE_POWERDOWN
2265	lanai->conf1 |= CONFIG1_POWERDOWN;
2266	conf1_write(lanai);
2267#endif
2268	pci_disable_device(lanai->pci);
2269	vcc_table_deallocate(lanai);
2270	service_buffer_deallocate(lanai);
2271	iounmap(lanai->base);
2272	kfree(lanai);
2273}
2274
2275/* close a vcc */
2276static void lanai_close(struct atm_vcc *atmvcc)
2277{
2278	struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2279	struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2280	if (lvcc == NULL)
2281		return;
2282	clear_bit(ATM_VF_READY, &atmvcc->flags);
2283	clear_bit(ATM_VF_PARTIAL, &atmvcc->flags);
2284	if (lvcc->rx.atmvcc == atmvcc) {
2285		lanai_shutdown_rx_vci(lvcc);
2286		if (atmvcc->qos.aal == ATM_AAL0) {
2287			if (--lanai->naal0 <= 0)
2288				aal0_buffer_free(lanai);
2289		} else
2290			lanai_buf_deallocate(&lvcc->rx.buf, lanai->pci);
2291		lvcc->rx.atmvcc = NULL;
2292	}
2293	if (lvcc->tx.atmvcc == atmvcc) {
2294		if (atmvcc == lanai->cbrvcc) {
2295			if (lvcc->vbase != NULL)
2296				lanai_cbr_shutdown(lanai);
2297			lanai->cbrvcc = NULL;
2298		}
2299		lanai_shutdown_tx_vci(lanai, lvcc);
2300		lanai_buf_deallocate(&lvcc->tx.buf, lanai->pci);
2301		lvcc->tx.atmvcc = NULL;
2302	}
2303	if (--lvcc->nref == 0) {
2304		host_vcc_unbind(lanai, lvcc);
2305		kfree(lvcc);
2306	}
2307	atmvcc->dev_data = NULL;
2308	clear_bit(ATM_VF_ADDR, &atmvcc->flags);
2309}
2310
2311/* open a vcc on the card to vpi/vci */
2312static int lanai_open(struct atm_vcc *atmvcc)
2313{
2314	struct lanai_dev *lanai;
2315	struct lanai_vcc *lvcc;
2316	int result = 0;
2317	int vci = atmvcc->vci;
2318	short vpi = atmvcc->vpi;
2319	/* we don't support partial open - it's not really useful anyway */
2320	if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) ||
2321	    (vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC))
2322		return -EINVAL;
2323	lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2324	result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci);
2325	if (unlikely(result != 0))
2326		goto out;
2327	set_bit(ATM_VF_ADDR, &atmvcc->flags);
2328	if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5)
2329		return -EINVAL;
2330	DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number,
2331	    (int) vpi, vci);
2332	lvcc = lanai->vccs[vci];
2333	if (lvcc == NULL) {
2334		lvcc = new_lanai_vcc();
2335		if (unlikely(lvcc == NULL))
2336			return -ENOMEM;
2337		atmvcc->dev_data = lvcc;
2338	}
2339	lvcc->nref++;
2340	if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) {
2341		APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n",
2342		    vci);
2343		if (atmvcc->qos.aal == ATM_AAL0) {
2344			if (lanai->naal0 == 0)
2345				result = aal0_buffer_allocate(lanai);
2346		} else
2347			result = lanai_setup_rx_vci_aal5(
2348			    lanai, lvcc, &atmvcc->qos);
2349		if (unlikely(result != 0))
2350			goto out_free;
2351		lvcc->rx.atmvcc = atmvcc;
2352		lvcc->stats.rx_nomem = 0;
2353		lvcc->stats.x.aal5.rx_badlen = 0;
2354		lvcc->stats.x.aal5.service_trash = 0;
2355		lvcc->stats.x.aal5.service_stream = 0;
2356		lvcc->stats.x.aal5.service_rxcrc = 0;
2357		if (atmvcc->qos.aal == ATM_AAL0)
2358			lanai->naal0++;
2359	}
2360	if (atmvcc->qos.txtp.traffic_class != ATM_NONE) {
2361		APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n",
2362		    vci);
2363		result = lanai_setup_tx_vci(lanai, lvcc, &atmvcc->qos);
2364		if (unlikely(result != 0))
2365			goto out_free;
2366		lvcc->tx.atmvcc = atmvcc;
2367		if (atmvcc->qos.txtp.traffic_class == ATM_CBR) {
2368			APRINTK(lanai->cbrvcc == NULL,
2369			    "cbrvcc!=NULL, vci=%d\n", vci);
2370			lanai->cbrvcc = atmvcc;
2371		}
2372	}
2373	host_vcc_bind(lanai, lvcc, vci);
2374	/*
2375	 * Make sure everything made it to RAM before we tell the card about
2376	 * the VCC
2377	 */
2378	wmb();
2379	if (atmvcc == lvcc->rx.atmvcc)
2380		host_vcc_start_rx(lvcc);
2381	if (atmvcc == lvcc->tx.atmvcc) {
2382		host_vcc_start_tx(lvcc);
2383		if (lanai->cbrvcc == atmvcc)
2384			lanai_cbr_setup(lanai);
2385	}
2386	set_bit(ATM_VF_READY, &atmvcc->flags);
2387	return 0;
2388    out_free:
2389	lanai_close(atmvcc);
2390    out:
2391	return result;
2392}
2393
2394static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb)
2395{
2396	struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2397	struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2398	unsigned long flags;
2399	if (unlikely(lvcc == NULL || lvcc->vbase == NULL ||
2400	      lvcc->tx.atmvcc != atmvcc))
2401		goto einval;
2402#ifdef DEBUG
2403	if (unlikely(skb == NULL)) {
2404		DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci);
2405		goto einval;
2406	}
2407	if (unlikely(lanai == NULL)) {
2408		DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci);
2409		goto einval;
2410	}
2411#endif
2412	ATM_SKB(skb)->vcc = atmvcc;
2413	switch (atmvcc->qos.aal) {
2414		case ATM_AAL5:
2415			read_lock_irqsave(&vcc_sklist_lock, flags);
2416			vcc_tx_aal5(lanai, lvcc, skb);
2417			read_unlock_irqrestore(&vcc_sklist_lock, flags);
2418			return 0;
2419		case ATM_AAL0:
2420			if (unlikely(skb->len != ATM_CELL_SIZE-1))
2421				goto einval;
2422  /* NOTE - this next line is technically invalid - we haven't unshared skb */
2423			cpu_to_be32s((u32 *) skb->data);
2424			read_lock_irqsave(&vcc_sklist_lock, flags);
2425			vcc_tx_aal0(lanai, lvcc, skb);
2426			read_unlock_irqrestore(&vcc_sklist_lock, flags);
2427			return 0;
2428	}
2429	DPRINTK("lanai_send: bad aal=%d on vci=%d\n", (int) atmvcc->qos.aal,
2430	    atmvcc->vci);
2431    einval:
2432	lanai_free_skb(atmvcc, skb);
2433	return -EINVAL;
2434}
2435
2436static int lanai_change_qos(struct atm_vcc *atmvcc,
2437	/*const*/ struct atm_qos *qos, int flags)
2438{
2439	return -EBUSY;		/* TODO: need to write this */
2440}
2441
2442#ifndef CONFIG_PROC_FS
2443#define lanai_proc_read NULL
2444#else
2445static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page)
2446{
2447	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2448	loff_t left = *pos;
2449	struct lanai_vcc *lvcc;
2450	if (left-- == 0)
2451		return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, "
2452		    "serial=%u, magic=0x%08X, num_vci=%d\n",
2453		    atmdev->number, lanai->type==lanai2 ? "2" : "HB",
2454		    (unsigned int) lanai->serialno,
2455		    (unsigned int) lanai->magicno, lanai->num_vci);
2456	if (left-- == 0)
2457		return sprintf(page, "revision: board=%d, pci_if=%d\n",
2458		    lanai->board_rev, (int) lanai->pci->revision);
2459	if (left-- == 0)
2460		return sprintf(page, "EEPROM ESI: %pM\n",
2461		    &lanai->eeprom[EEPROM_MAC]);
2462	if (left-- == 0)
2463		return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, "
2464		    "GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0,
2465		    (lanai->status & STATUS_LOCD) ? 1 : 0,
2466		    (lanai->status & STATUS_LED) ? 1 : 0,
2467		    (lanai->status & STATUS_GPIN) ? 1 : 0);
2468	if (left-- == 0)
2469		return sprintf(page, "global buffer sizes: service=%Zu, "
2470		    "aal0_rx=%Zu\n", lanai_buf_size(&lanai->service),
2471		    lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0);
2472	if (left-- == 0) {
2473		get_statistics(lanai);
2474		return sprintf(page, "cells in error: overflow=%u, "
2475		    "closed_vci=%u, bad_HEC=%u, rx_fifo=%u\n",
2476		    lanai->stats.ovfl_trash, lanai->stats.vci_trash,
2477		    lanai->stats.hec_err, lanai->stats.atm_ovfl);
2478	}
2479	if (left-- == 0)
2480		return sprintf(page, "PCI errors: parity_detect=%u, "
2481		    "master_abort=%u, master_target_abort=%u,\n",
2482		    lanai->stats.pcierr_parity_detect,
2483		    lanai->stats.pcierr_serr_set,
2484		    lanai->stats.pcierr_m_target_abort);
2485	if (left-- == 0)
2486		return sprintf(page, "            slave_target_abort=%u, "
2487		    "master_parity=%u\n", lanai->stats.pcierr_s_target_abort,
2488		    lanai->stats.pcierr_master_parity);
2489	if (left-- == 0)
2490		return sprintf(page, "                     no_tx=%u, "
2491		    "no_rx=%u, bad_rx_aal=%u\n", lanai->stats.service_norx,
2492		    lanai->stats.service_notx,
2493		    lanai->stats.service_rxnotaal5);
2494	if (left-- == 0)
2495		return sprintf(page, "resets: dma=%u, card=%u\n",
2496		    lanai->stats.dma_reenable, lanai->stats.card_reset);
2497	/* At this point, "left" should be the VCI we're looking for */
2498	read_lock(&vcc_sklist_lock);
2499	for (; ; left++) {
2500		if (left >= NUM_VCI) {
2501			left = 0;
2502			goto out;
2503		}
2504		if ((lvcc = lanai->vccs[left]) != NULL)
2505			break;
2506		(*pos)++;
2507	}
2508	/* Note that we re-use "left" here since we're done with it */
2509	left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%u",  (vci_t) left,
2510	    lvcc->nref, lvcc->stats.rx_nomem);
2511	if (lvcc->rx.atmvcc != NULL) {
2512		left += sprintf(&page[left], ",\n          rx_AAL=%d",
2513		    lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0);
2514		if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5)
2515			left += sprintf(&page[left], ", rx_buf_size=%Zu, "
2516			    "rx_bad_len=%u,\n          rx_service_trash=%u, "
2517			    "rx_service_stream=%u, rx_bad_crc=%u",
2518			    lanai_buf_size(&lvcc->rx.buf),
2519			    lvcc->stats.x.aal5.rx_badlen,
2520			    lvcc->stats.x.aal5.service_trash,
2521			    lvcc->stats.x.aal5.service_stream,
2522			    lvcc->stats.x.aal5.service_rxcrc);
2523	}
2524	if (lvcc->tx.atmvcc != NULL)
2525		left += sprintf(&page[left], ",\n          tx_AAL=%d, "
2526		    "tx_buf_size=%Zu, tx_qos=%cBR, tx_backlogged=%c",
2527		    lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0,
2528		    lanai_buf_size(&lvcc->tx.buf),
2529		    lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U',
2530		    vcc_is_backlogged(lvcc) ? 'Y' : 'N');
2531	page[left++] = '\n';
2532	page[left] = '\0';
2533    out:
2534	read_unlock(&vcc_sklist_lock);
2535	return left;
2536}
2537#endif /* CONFIG_PROC_FS */
2538
2539/* -------------------- HOOKS: */
2540
2541static const struct atmdev_ops ops = {
2542	.dev_close	= lanai_dev_close,
2543	.open		= lanai_open,
2544	.close		= lanai_close,
2545	.getsockopt	= NULL,
2546	.setsockopt	= NULL,
2547	.send		= lanai_send,
2548	.phy_put	= NULL,
2549	.phy_get	= NULL,
2550	.change_qos	= lanai_change_qos,
2551	.proc_read	= lanai_proc_read,
2552	.owner		= THIS_MODULE
2553};
2554
2555/* initialize one probed card */
2556static int lanai_init_one(struct pci_dev *pci,
2557			  const struct pci_device_id *ident)
2558{
2559	struct lanai_dev *lanai;
2560	struct atm_dev *atmdev;
2561	int result;
2562
2563	lanai = kmalloc(sizeof(*lanai), GFP_KERNEL);
2564	if (lanai == NULL) {
2565		printk(KERN_ERR DEV_LABEL
2566		       ": couldn't allocate dev_data structure!\n");
2567		return -ENOMEM;
2568	}
2569
2570	atmdev = atm_dev_register(DEV_LABEL, &pci->dev, &ops, -1, NULL);
2571	if (atmdev == NULL) {
2572		printk(KERN_ERR DEV_LABEL
2573		    ": couldn't register atm device!\n");
2574		kfree(lanai);
2575		return -EBUSY;
2576	}
2577
2578	atmdev->dev_data = lanai;
2579	lanai->pci = pci;
2580	lanai->type = (enum lanai_type) ident->device;
2581
2582	result = lanai_dev_open(atmdev);
2583	if (result != 0) {
2584		DPRINTK("lanai_start() failed, err=%d\n", -result);
2585		atm_dev_deregister(atmdev);
2586		kfree(lanai);
2587	}
2588	return result;
2589}
2590
2591static struct pci_device_id lanai_pci_tbl[] = {
2592	{ PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAI2) },
2593	{ PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAIHB) },
2594	{ 0, }	/* terminal entry */
2595};
2596MODULE_DEVICE_TABLE(pci, lanai_pci_tbl);
2597
2598static struct pci_driver lanai_driver = {
2599	.name     = DEV_LABEL,
2600	.id_table = lanai_pci_tbl,
2601	.probe    = lanai_init_one,
2602};
2603
2604module_pci_driver(lanai_driver);
2605
2606MODULE_AUTHOR("Mitchell Blank Jr <mitch@sfgoth.com>");
2607MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver");
2608MODULE_LICENSE("GPL");
2609