1/*
2  A FORE Systems 200E-series driver for ATM on Linux.
3  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
4
5  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
6
7  This driver simultaneously supports PCA-200E and SBA-200E adapters
8  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
9
10  This program is free software; you can redistribute it and/or modify
11  it under the terms of the GNU General Public License as published by
12  the Free Software Foundation; either version 2 of the License, or
13  (at your option) any later version.
14
15  This program is distributed in the hope that it will be useful,
16  but WITHOUT ANY WARRANTY; without even the implied warranty of
17  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  GNU General Public License for more details.
19
20  You should have received a copy of the GNU General Public License
21  along with this program; if not, write to the Free Software
22  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23*/
24
25
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/init.h>
29#include <linux/capability.h>
30#include <linux/interrupt.h>
31#include <linux/bitops.h>
32#include <linux/pci.h>
33#include <linux/module.h>
34#include <linux/atmdev.h>
35#include <linux/sonet.h>
36#include <linux/atm_suni.h>
37#include <linux/dma-mapping.h>
38#include <linux/delay.h>
39#include <linux/firmware.h>
40#include <asm/io.h>
41#include <asm/string.h>
42#include <asm/page.h>
43#include <asm/irq.h>
44#include <asm/dma.h>
45#include <asm/byteorder.h>
46#include <asm/uaccess.h>
47#include <linux/atomic.h>
48
49#ifdef CONFIG_SBUS
50#include <linux/of.h>
51#include <linux/of_device.h>
52#include <asm/idprom.h>
53#include <asm/openprom.h>
54#include <asm/oplib.h>
55#include <asm/pgtable.h>
56#endif
57
58#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
59#define FORE200E_USE_TASKLET
60#endif
61
62#if 0 /* enable the debugging code of the buffer supply queues */
63#define FORE200E_BSQ_DEBUG
64#endif
65
66#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
67#define FORE200E_52BYTE_AAL0_SDU
68#endif
69
70#include "fore200e.h"
71#include "suni.h"
72
73#define FORE200E_VERSION "0.3e"
74
75#define FORE200E         "fore200e: "
76
77#if 0 /* override .config */
78#define CONFIG_ATM_FORE200E_DEBUG 1
79#endif
80#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
81#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
82                                                  printk(FORE200E format, ##args); } while (0)
83#else
84#define DPRINTK(level, format, args...)  do {} while (0)
85#endif
86
87
88#define FORE200E_ALIGN(addr, alignment) \
89        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
90
91#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
92
93#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
94
95#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
96
97#if 1
98#define ASSERT(expr)     if (!(expr)) { \
99			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
100				    __func__, __LINE__, #expr); \
101			     panic(FORE200E "%s", __func__); \
102			 }
103#else
104#define ASSERT(expr)     do {} while (0)
105#endif
106
107
108static const struct atmdev_ops   fore200e_ops;
109static const struct fore200e_bus fore200e_bus[];
110
111static LIST_HEAD(fore200e_boards);
112
113
114MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
115MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
116MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
117
118
119static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
120    { BUFFER_S1_NBR, BUFFER_L1_NBR },
121    { BUFFER_S2_NBR, BUFFER_L2_NBR }
122};
123
124static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
125    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
126    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
127};
128
129
130#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
131static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
132#endif
133
134
135#if 0 /* currently unused */
136static int
137fore200e_fore2atm_aal(enum fore200e_aal aal)
138{
139    switch(aal) {
140    case FORE200E_AAL0:  return ATM_AAL0;
141    case FORE200E_AAL34: return ATM_AAL34;
142    case FORE200E_AAL5:  return ATM_AAL5;
143    }
144
145    return -EINVAL;
146}
147#endif
148
149
150static enum fore200e_aal
151fore200e_atm2fore_aal(int aal)
152{
153    switch(aal) {
154    case ATM_AAL0:  return FORE200E_AAL0;
155    case ATM_AAL34: return FORE200E_AAL34;
156    case ATM_AAL1:
157    case ATM_AAL2:
158    case ATM_AAL5:  return FORE200E_AAL5;
159    }
160
161    return -EINVAL;
162}
163
164
165static char*
166fore200e_irq_itoa(int irq)
167{
168    static char str[8];
169    sprintf(str, "%d", irq);
170    return str;
171}
172
173
174/* allocate and align a chunk of memory intended to hold the data behing exchanged
175   between the driver and the adapter (using streaming DVMA) */
176
177static int
178fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
179{
180    unsigned long offset = 0;
181
182    if (alignment <= sizeof(int))
183	alignment = 0;
184
185    chunk->alloc_size = size + alignment;
186    chunk->align_size = size;
187    chunk->direction  = direction;
188
189    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
190    if (chunk->alloc_addr == NULL)
191	return -ENOMEM;
192
193    if (alignment > 0)
194	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
195
196    chunk->align_addr = chunk->alloc_addr + offset;
197
198    chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
199
200    return 0;
201}
202
203
204/* free a chunk of memory */
205
206static void
207fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
208{
209    fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
210
211    kfree(chunk->alloc_addr);
212}
213
214
215static void
216fore200e_spin(int msecs)
217{
218    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
219    while (time_before(jiffies, timeout));
220}
221
222
223static int
224fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
225{
226    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
227    int           ok;
228
229    mb();
230    do {
231	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
232	    break;
233
234    } while (time_before(jiffies, timeout));
235
236#if 1
237    if (!ok) {
238	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
239	       *addr, val);
240    }
241#endif
242
243    return ok;
244}
245
246
247static int
248fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
249{
250    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
251    int           ok;
252
253    do {
254	if ((ok = (fore200e->bus->read(addr) == val)))
255	    break;
256
257    } while (time_before(jiffies, timeout));
258
259#if 1
260    if (!ok) {
261	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
262	       fore200e->bus->read(addr), val);
263    }
264#endif
265
266    return ok;
267}
268
269
270static void
271fore200e_free_rx_buf(struct fore200e* fore200e)
272{
273    int scheme, magn, nbr;
274    struct buffer* buffer;
275
276    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
277	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
278
279	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
280
281		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
282
283		    struct chunk* data = &buffer[ nbr ].data;
284
285		    if (data->alloc_addr != NULL)
286			fore200e_chunk_free(fore200e, data);
287		}
288	    }
289	}
290    }
291}
292
293
294static void
295fore200e_uninit_bs_queue(struct fore200e* fore200e)
296{
297    int scheme, magn;
298
299    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
300	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
301
302	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
303	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
304
305	    if (status->alloc_addr)
306		fore200e->bus->dma_chunk_free(fore200e, status);
307
308	    if (rbd_block->alloc_addr)
309		fore200e->bus->dma_chunk_free(fore200e, rbd_block);
310	}
311    }
312}
313
314
315static int
316fore200e_reset(struct fore200e* fore200e, int diag)
317{
318    int ok;
319
320    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
321
322    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
323
324    fore200e->bus->reset(fore200e);
325
326    if (diag) {
327	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
328	if (ok == 0) {
329
330	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
331	    return -ENODEV;
332	}
333
334	printk(FORE200E "device %s self-test passed\n", fore200e->name);
335
336	fore200e->state = FORE200E_STATE_RESET;
337    }
338
339    return 0;
340}
341
342
343static void
344fore200e_shutdown(struct fore200e* fore200e)
345{
346    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
347	   fore200e->name, fore200e->phys_base,
348	   fore200e_irq_itoa(fore200e->irq));
349
350    if (fore200e->state > FORE200E_STATE_RESET) {
351	/* first, reset the board to prevent further interrupts or data transfers */
352	fore200e_reset(fore200e, 0);
353    }
354
355    /* then, release all allocated resources */
356    switch(fore200e->state) {
357
358    case FORE200E_STATE_COMPLETE:
359	kfree(fore200e->stats);
360
361    case FORE200E_STATE_IRQ:
362	free_irq(fore200e->irq, fore200e->atm_dev);
363
364    case FORE200E_STATE_ALLOC_BUF:
365	fore200e_free_rx_buf(fore200e);
366
367    case FORE200E_STATE_INIT_BSQ:
368	fore200e_uninit_bs_queue(fore200e);
369
370    case FORE200E_STATE_INIT_RXQ:
371	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
372	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
373
374    case FORE200E_STATE_INIT_TXQ:
375	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
376	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
377
378    case FORE200E_STATE_INIT_CMDQ:
379	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
380
381    case FORE200E_STATE_INITIALIZE:
382	/* nothing to do for that state */
383
384    case FORE200E_STATE_START_FW:
385	/* nothing to do for that state */
386
387    case FORE200E_STATE_RESET:
388	/* nothing to do for that state */
389
390    case FORE200E_STATE_MAP:
391	fore200e->bus->unmap(fore200e);
392
393    case FORE200E_STATE_CONFIGURE:
394	/* nothing to do for that state */
395
396    case FORE200E_STATE_REGISTER:
397	/* XXX shouldn't we *start* by deregistering the device? */
398	atm_dev_deregister(fore200e->atm_dev);
399
400    case FORE200E_STATE_BLANK:
401	/* nothing to do for that state */
402	break;
403    }
404}
405
406
407#ifdef CONFIG_PCI
408
409static u32 fore200e_pca_read(volatile u32 __iomem *addr)
410{
411    /* on big-endian hosts, the board is configured to convert
412       the endianess of slave RAM accesses  */
413    return le32_to_cpu(readl(addr));
414}
415
416
417static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
418{
419    /* on big-endian hosts, the board is configured to convert
420       the endianess of slave RAM accesses  */
421    writel(cpu_to_le32(val), addr);
422}
423
424
425static u32
426fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
427{
428    u32 dma_addr = dma_map_single(&((struct pci_dev *) fore200e->bus_dev)->dev, virt_addr, size, direction);
429
430    DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d,  --> dma_addr = 0x%08x\n",
431	    virt_addr, size, direction, dma_addr);
432
433    return dma_addr;
434}
435
436
437static void
438fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
439{
440    DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
441	    dma_addr, size, direction);
442
443    dma_unmap_single(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
444}
445
446
447static void
448fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
449{
450    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
451
452    dma_sync_single_for_cpu(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
453}
454
455static void
456fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
457{
458    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
459
460    dma_sync_single_for_device(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
461}
462
463
464/* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
465   (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
466
467static int
468fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
469			     int size, int nbr, int alignment)
470{
471    /* returned chunks are page-aligned */
472    chunk->alloc_size = size * nbr;
473    chunk->alloc_addr = dma_alloc_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
474					   chunk->alloc_size,
475					   &chunk->dma_addr,
476					   GFP_KERNEL);
477
478    if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
479	return -ENOMEM;
480
481    chunk->align_addr = chunk->alloc_addr;
482
483    return 0;
484}
485
486
487/* free a DMA consistent chunk of memory */
488
489static void
490fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
491{
492    dma_free_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
493			chunk->alloc_size,
494			chunk->alloc_addr,
495			chunk->dma_addr);
496}
497
498
499static int
500fore200e_pca_irq_check(struct fore200e* fore200e)
501{
502    /* this is a 1 bit register */
503    int irq_posted = readl(fore200e->regs.pca.psr);
504
505#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
506    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
507	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
508    }
509#endif
510
511    return irq_posted;
512}
513
514
515static void
516fore200e_pca_irq_ack(struct fore200e* fore200e)
517{
518    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
519}
520
521
522static void
523fore200e_pca_reset(struct fore200e* fore200e)
524{
525    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
526    fore200e_spin(10);
527    writel(0, fore200e->regs.pca.hcr);
528}
529
530
531static int fore200e_pca_map(struct fore200e* fore200e)
532{
533    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
534
535    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
536
537    if (fore200e->virt_base == NULL) {
538	printk(FORE200E "can't map device %s\n", fore200e->name);
539	return -EFAULT;
540    }
541
542    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
543
544    /* gain access to the PCA specific registers  */
545    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
546    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
547    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
548
549    fore200e->state = FORE200E_STATE_MAP;
550    return 0;
551}
552
553
554static void
555fore200e_pca_unmap(struct fore200e* fore200e)
556{
557    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
558
559    if (fore200e->virt_base != NULL)
560	iounmap(fore200e->virt_base);
561}
562
563
564static int fore200e_pca_configure(struct fore200e *fore200e)
565{
566    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
567    u8              master_ctrl, latency;
568
569    DPRINTK(2, "device %s being configured\n", fore200e->name);
570
571    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
572	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
573	return -EIO;
574    }
575
576    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
577
578    master_ctrl = master_ctrl
579#if defined(__BIG_ENDIAN)
580	/* request the PCA board to convert the endianess of slave RAM accesses */
581	| PCA200E_CTRL_CONVERT_ENDIAN
582#endif
583#if 0
584        | PCA200E_CTRL_DIS_CACHE_RD
585        | PCA200E_CTRL_DIS_WRT_INVAL
586        | PCA200E_CTRL_ENA_CONT_REQ_MODE
587        | PCA200E_CTRL_2_CACHE_WRT_INVAL
588#endif
589	| PCA200E_CTRL_LARGE_PCI_BURSTS;
590
591    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
592
593    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
594       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
595       this may impact the performances of other PCI devices on the same bus, though */
596    latency = 192;
597    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
598
599    fore200e->state = FORE200E_STATE_CONFIGURE;
600    return 0;
601}
602
603
604static int __init
605fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
606{
607    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
608    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
609    struct prom_opcode      opcode;
610    int                     ok;
611    u32                     prom_dma;
612
613    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
614
615    opcode.opcode = OPCODE_GET_PROM;
616    opcode.pad    = 0;
617
618    prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
619
620    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
621
622    *entry->status = STATUS_PENDING;
623
624    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
625
626    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
627
628    *entry->status = STATUS_FREE;
629
630    fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
631
632    if (ok == 0) {
633	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
634	return -EIO;
635    }
636
637#if defined(__BIG_ENDIAN)
638
639#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
640
641    /* MAC address is stored as little-endian */
642    swap_here(&prom->mac_addr[0]);
643    swap_here(&prom->mac_addr[4]);
644#endif
645
646    return 0;
647}
648
649
650static int
651fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
652{
653    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
654
655    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
656		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
657}
658
659#endif /* CONFIG_PCI */
660
661
662#ifdef CONFIG_SBUS
663
664static u32 fore200e_sba_read(volatile u32 __iomem *addr)
665{
666    return sbus_readl(addr);
667}
668
669static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
670{
671    sbus_writel(val, addr);
672}
673
674static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
675{
676	struct platform_device *op = fore200e->bus_dev;
677	u32 dma_addr;
678
679	dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
680
681	DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
682		virt_addr, size, direction, dma_addr);
683
684	return dma_addr;
685}
686
687static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
688{
689	struct platform_device *op = fore200e->bus_dev;
690
691	DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
692		dma_addr, size, direction);
693
694	dma_unmap_single(&op->dev, dma_addr, size, direction);
695}
696
697static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
698{
699	struct platform_device *op = fore200e->bus_dev;
700
701	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
702
703	dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
704}
705
706static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
707{
708	struct platform_device *op = fore200e->bus_dev;
709
710	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
711
712	dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
713}
714
715/* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
716 * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
717 */
718static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
719					int size, int nbr, int alignment)
720{
721	struct platform_device *op = fore200e->bus_dev;
722
723	chunk->alloc_size = chunk->align_size = size * nbr;
724
725	/* returned chunks are page-aligned */
726	chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
727					       &chunk->dma_addr, GFP_ATOMIC);
728
729	if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
730		return -ENOMEM;
731
732	chunk->align_addr = chunk->alloc_addr;
733
734	return 0;
735}
736
737/* free a DVMA consistent chunk of memory */
738static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
739{
740	struct platform_device *op = fore200e->bus_dev;
741
742	dma_free_coherent(&op->dev, chunk->alloc_size,
743			  chunk->alloc_addr, chunk->dma_addr);
744}
745
746static void fore200e_sba_irq_enable(struct fore200e *fore200e)
747{
748	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
749	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
750}
751
752static int fore200e_sba_irq_check(struct fore200e *fore200e)
753{
754	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
755}
756
757static void fore200e_sba_irq_ack(struct fore200e *fore200e)
758{
759	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
760	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
761}
762
763static void fore200e_sba_reset(struct fore200e *fore200e)
764{
765	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
766	fore200e_spin(10);
767	fore200e->bus->write(0, fore200e->regs.sba.hcr);
768}
769
770static int __init fore200e_sba_map(struct fore200e *fore200e)
771{
772	struct platform_device *op = fore200e->bus_dev;
773	unsigned int bursts;
774
775	/* gain access to the SBA specific registers  */
776	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
777	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
778	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
779	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
780
781	if (!fore200e->virt_base) {
782		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
783		return -EFAULT;
784	}
785
786	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
787
788	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
789
790	/* get the supported DVMA burst sizes */
791	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
792
793	if (sbus_can_dma_64bit())
794		sbus_set_sbus64(&op->dev, bursts);
795
796	fore200e->state = FORE200E_STATE_MAP;
797	return 0;
798}
799
800static void fore200e_sba_unmap(struct fore200e *fore200e)
801{
802	struct platform_device *op = fore200e->bus_dev;
803
804	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
805	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
806	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
807	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
808}
809
810static int __init fore200e_sba_configure(struct fore200e *fore200e)
811{
812	fore200e->state = FORE200E_STATE_CONFIGURE;
813	return 0;
814}
815
816static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
817{
818	struct platform_device *op = fore200e->bus_dev;
819	const u8 *prop;
820	int len;
821
822	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
823	if (!prop)
824		return -ENODEV;
825	memcpy(&prom->mac_addr[4], prop, 4);
826
827	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
828	if (!prop)
829		return -ENODEV;
830	memcpy(&prom->mac_addr[2], prop, 4);
831
832	prom->serial_number = of_getintprop_default(op->dev.of_node,
833						    "serialnumber", 0);
834	prom->hw_revision = of_getintprop_default(op->dev.of_node,
835						  "promversion", 0);
836
837	return 0;
838}
839
840static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
841{
842	struct platform_device *op = fore200e->bus_dev;
843	const struct linux_prom_registers *regs;
844
845	regs = of_get_property(op->dev.of_node, "reg", NULL);
846
847	return sprintf(page, "   SBUS slot/device:\t\t%d/'%s'\n",
848		       (regs ? regs->which_io : 0), op->dev.of_node->name);
849}
850#endif /* CONFIG_SBUS */
851
852
853static void
854fore200e_tx_irq(struct fore200e* fore200e)
855{
856    struct host_txq*        txq = &fore200e->host_txq;
857    struct host_txq_entry*  entry;
858    struct atm_vcc*         vcc;
859    struct fore200e_vc_map* vc_map;
860
861    if (fore200e->host_txq.txing == 0)
862	return;
863
864    for (;;) {
865
866	entry = &txq->host_entry[ txq->tail ];
867
868        if ((*entry->status & STATUS_COMPLETE) == 0) {
869	    break;
870	}
871
872	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
873		entry, txq->tail, entry->vc_map, entry->skb);
874
875	/* free copy of misaligned data */
876	kfree(entry->data);
877
878	/* remove DMA mapping */
879	fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
880				 DMA_TO_DEVICE);
881
882	vc_map = entry->vc_map;
883
884	/* vcc closed since the time the entry was submitted for tx? */
885	if ((vc_map->vcc == NULL) ||
886	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
887
888	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
889		    fore200e->atm_dev->number);
890
891	    dev_kfree_skb_any(entry->skb);
892	}
893	else {
894	    ASSERT(vc_map->vcc);
895
896	    /* vcc closed then immediately re-opened? */
897	    if (vc_map->incarn != entry->incarn) {
898
899		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
900		   if the same vcc is immediately re-opened, those pending PDUs must
901		   not be popped after the completion of their emission, as they refer
902		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
903		   would be decremented by the size of the (unrelated) skb, possibly
904		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
905		   we thus bind the tx entry to the current incarnation of the vcc
906		   when the entry is submitted for tx. When the tx later completes,
907		   if the incarnation number of the tx entry does not match the one
908		   of the vcc, then this implies that the vcc has been closed then re-opened.
909		   we thus just drop the skb here. */
910
911		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
912			fore200e->atm_dev->number);
913
914		dev_kfree_skb_any(entry->skb);
915	    }
916	    else {
917		vcc = vc_map->vcc;
918		ASSERT(vcc);
919
920		/* notify tx completion */
921		if (vcc->pop) {
922		    vcc->pop(vcc, entry->skb);
923		}
924		else {
925		    dev_kfree_skb_any(entry->skb);
926		}
927#if 1
928		/* race fixed by the above incarnation mechanism, but... */
929		if (atomic_read(&sk_atm(vcc)->sk_wmem_alloc) < 0) {
930		    atomic_set(&sk_atm(vcc)->sk_wmem_alloc, 0);
931		}
932#endif
933		/* check error condition */
934		if (*entry->status & STATUS_ERROR)
935		    atomic_inc(&vcc->stats->tx_err);
936		else
937		    atomic_inc(&vcc->stats->tx);
938	    }
939	}
940
941	*entry->status = STATUS_FREE;
942
943	fore200e->host_txq.txing--;
944
945	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
946    }
947}
948
949
950#ifdef FORE200E_BSQ_DEBUG
951int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
952{
953    struct buffer* buffer;
954    int count = 0;
955
956    buffer = bsq->freebuf;
957    while (buffer) {
958
959	if (buffer->supplied) {
960	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
961		   where, scheme, magn, buffer->index);
962	}
963
964	if (buffer->magn != magn) {
965	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
966		   where, scheme, magn, buffer->index, buffer->magn);
967	}
968
969	if (buffer->scheme != scheme) {
970	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
971		   where, scheme, magn, buffer->index, buffer->scheme);
972	}
973
974	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
975	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
976		   where, scheme, magn, buffer->index);
977	}
978
979	count++;
980	buffer = buffer->next;
981    }
982
983    if (count != bsq->freebuf_count) {
984	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
985	       where, scheme, magn, count, bsq->freebuf_count);
986    }
987    return 0;
988}
989#endif
990
991
992static void
993fore200e_supply(struct fore200e* fore200e)
994{
995    int  scheme, magn, i;
996
997    struct host_bsq*       bsq;
998    struct host_bsq_entry* entry;
999    struct buffer*         buffer;
1000
1001    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1002	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1003
1004	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1005
1006#ifdef FORE200E_BSQ_DEBUG
1007	    bsq_audit(1, bsq, scheme, magn);
1008#endif
1009	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1010
1011		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1012			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1013
1014		entry = &bsq->host_entry[ bsq->head ];
1015
1016		for (i = 0; i < RBD_BLK_SIZE; i++) {
1017
1018		    /* take the first buffer in the free buffer list */
1019		    buffer = bsq->freebuf;
1020		    if (!buffer) {
1021			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1022			       scheme, magn, bsq->freebuf_count);
1023			return;
1024		    }
1025		    bsq->freebuf = buffer->next;
1026
1027#ifdef FORE200E_BSQ_DEBUG
1028		    if (buffer->supplied)
1029			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1030			       scheme, magn, buffer->index);
1031		    buffer->supplied = 1;
1032#endif
1033		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1034		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
1035		}
1036
1037		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1038
1039 		/* decrease accordingly the number of free rx buffers */
1040		bsq->freebuf_count -= RBD_BLK_SIZE;
1041
1042		*entry->status = STATUS_PENDING;
1043		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1044	    }
1045	}
1046    }
1047}
1048
1049
1050static int
1051fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1052{
1053    struct sk_buff*      skb;
1054    struct buffer*       buffer;
1055    struct fore200e_vcc* fore200e_vcc;
1056    int                  i, pdu_len = 0;
1057#ifdef FORE200E_52BYTE_AAL0_SDU
1058    u32                  cell_header = 0;
1059#endif
1060
1061    ASSERT(vcc);
1062
1063    fore200e_vcc = FORE200E_VCC(vcc);
1064    ASSERT(fore200e_vcc);
1065
1066#ifdef FORE200E_52BYTE_AAL0_SDU
1067    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1068
1069	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1070	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1071                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1072                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
1073                       rpd->atm_header.clp;
1074	pdu_len = 4;
1075    }
1076#endif
1077
1078    /* compute total PDU length */
1079    for (i = 0; i < rpd->nseg; i++)
1080	pdu_len += rpd->rsd[ i ].length;
1081
1082    skb = alloc_skb(pdu_len, GFP_ATOMIC);
1083    if (skb == NULL) {
1084	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1085
1086	atomic_inc(&vcc->stats->rx_drop);
1087	return -ENOMEM;
1088    }
1089
1090    __net_timestamp(skb);
1091
1092#ifdef FORE200E_52BYTE_AAL0_SDU
1093    if (cell_header) {
1094	*((u32*)skb_put(skb, 4)) = cell_header;
1095    }
1096#endif
1097
1098    /* reassemble segments */
1099    for (i = 0; i < rpd->nseg; i++) {
1100
1101	/* rebuild rx buffer address from rsd handle */
1102	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1103
1104	/* Make device DMA transfer visible to CPU.  */
1105	fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1106
1107	memcpy(skb_put(skb, rpd->rsd[ i ].length), buffer->data.align_addr, rpd->rsd[ i ].length);
1108
1109	/* Now let the device get at it again.  */
1110	fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1111    }
1112
1113    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1114
1115    if (pdu_len < fore200e_vcc->rx_min_pdu)
1116	fore200e_vcc->rx_min_pdu = pdu_len;
1117    if (pdu_len > fore200e_vcc->rx_max_pdu)
1118	fore200e_vcc->rx_max_pdu = pdu_len;
1119    fore200e_vcc->rx_pdu++;
1120
1121    /* push PDU */
1122    if (atm_charge(vcc, skb->truesize) == 0) {
1123
1124	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1125		vcc->itf, vcc->vpi, vcc->vci);
1126
1127	dev_kfree_skb_any(skb);
1128
1129	atomic_inc(&vcc->stats->rx_drop);
1130	return -ENOMEM;
1131    }
1132
1133    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1134
1135    vcc->push(vcc, skb);
1136    atomic_inc(&vcc->stats->rx);
1137
1138    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1139
1140    return 0;
1141}
1142
1143
1144static void
1145fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1146{
1147    struct host_bsq* bsq;
1148    struct buffer*   buffer;
1149    int              i;
1150
1151    for (i = 0; i < rpd->nseg; i++) {
1152
1153	/* rebuild rx buffer address from rsd handle */
1154	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1155
1156	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1157
1158#ifdef FORE200E_BSQ_DEBUG
1159	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1160
1161	if (buffer->supplied == 0)
1162	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1163		   buffer->scheme, buffer->magn, buffer->index);
1164	buffer->supplied = 0;
1165#endif
1166
1167	/* re-insert the buffer into the free buffer list */
1168	buffer->next = bsq->freebuf;
1169	bsq->freebuf = buffer;
1170
1171	/* then increment the number of free rx buffers */
1172	bsq->freebuf_count++;
1173    }
1174}
1175
1176
1177static void
1178fore200e_rx_irq(struct fore200e* fore200e)
1179{
1180    struct host_rxq*        rxq = &fore200e->host_rxq;
1181    struct host_rxq_entry*  entry;
1182    struct atm_vcc*         vcc;
1183    struct fore200e_vc_map* vc_map;
1184
1185    for (;;) {
1186
1187	entry = &rxq->host_entry[ rxq->head ];
1188
1189	/* no more received PDUs */
1190	if ((*entry->status & STATUS_COMPLETE) == 0)
1191	    break;
1192
1193	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1194
1195	if ((vc_map->vcc == NULL) ||
1196	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1197
1198	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1199		    fore200e->atm_dev->number,
1200		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1201	}
1202	else {
1203	    vcc = vc_map->vcc;
1204	    ASSERT(vcc);
1205
1206	    if ((*entry->status & STATUS_ERROR) == 0) {
1207
1208		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1209	    }
1210	    else {
1211		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1212			fore200e->atm_dev->number,
1213			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1214		atomic_inc(&vcc->stats->rx_err);
1215	    }
1216	}
1217
1218	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1219
1220	fore200e_collect_rpd(fore200e, entry->rpd);
1221
1222	/* rewrite the rpd address to ack the received PDU */
1223	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1224	*entry->status = STATUS_FREE;
1225
1226	fore200e_supply(fore200e);
1227    }
1228}
1229
1230
1231#ifndef FORE200E_USE_TASKLET
1232static void
1233fore200e_irq(struct fore200e* fore200e)
1234{
1235    unsigned long flags;
1236
1237    spin_lock_irqsave(&fore200e->q_lock, flags);
1238    fore200e_rx_irq(fore200e);
1239    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1240
1241    spin_lock_irqsave(&fore200e->q_lock, flags);
1242    fore200e_tx_irq(fore200e);
1243    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1244}
1245#endif
1246
1247
1248static irqreturn_t
1249fore200e_interrupt(int irq, void* dev)
1250{
1251    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1252
1253    if (fore200e->bus->irq_check(fore200e) == 0) {
1254
1255	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1256	return IRQ_NONE;
1257    }
1258    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1259
1260#ifdef FORE200E_USE_TASKLET
1261    tasklet_schedule(&fore200e->tx_tasklet);
1262    tasklet_schedule(&fore200e->rx_tasklet);
1263#else
1264    fore200e_irq(fore200e);
1265#endif
1266
1267    fore200e->bus->irq_ack(fore200e);
1268    return IRQ_HANDLED;
1269}
1270
1271
1272#ifdef FORE200E_USE_TASKLET
1273static void
1274fore200e_tx_tasklet(unsigned long data)
1275{
1276    struct fore200e* fore200e = (struct fore200e*) data;
1277    unsigned long flags;
1278
1279    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1280
1281    spin_lock_irqsave(&fore200e->q_lock, flags);
1282    fore200e_tx_irq(fore200e);
1283    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1284}
1285
1286
1287static void
1288fore200e_rx_tasklet(unsigned long data)
1289{
1290    struct fore200e* fore200e = (struct fore200e*) data;
1291    unsigned long    flags;
1292
1293    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1294
1295    spin_lock_irqsave(&fore200e->q_lock, flags);
1296    fore200e_rx_irq((struct fore200e*) data);
1297    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1298}
1299#endif
1300
1301
1302static int
1303fore200e_select_scheme(struct atm_vcc* vcc)
1304{
1305    /* fairly balance the VCs over (identical) buffer schemes */
1306    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1307
1308    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1309	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1310
1311    return scheme;
1312}
1313
1314
1315static int
1316fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1317{
1318    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1319    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1320    struct activate_opcode   activ_opcode;
1321    struct deactivate_opcode deactiv_opcode;
1322    struct vpvc              vpvc;
1323    int                      ok;
1324    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1325
1326    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1327
1328    if (activate) {
1329	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1330
1331	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1332	activ_opcode.aal    = aal;
1333	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1334	activ_opcode.pad    = 0;
1335    }
1336    else {
1337	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1338	deactiv_opcode.pad    = 0;
1339    }
1340
1341    vpvc.vci = vcc->vci;
1342    vpvc.vpi = vcc->vpi;
1343
1344    *entry->status = STATUS_PENDING;
1345
1346    if (activate) {
1347
1348#ifdef FORE200E_52BYTE_AAL0_SDU
1349	mtu = 48;
1350#endif
1351	/* the MTU is not used by the cp, except in the case of AAL0 */
1352	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1353	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1354	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1355    }
1356    else {
1357	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1358	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1359    }
1360
1361    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1362
1363    *entry->status = STATUS_FREE;
1364
1365    if (ok == 0) {
1366	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1367	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1368	return -EIO;
1369    }
1370
1371    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
1372	    activate ? "open" : "clos");
1373
1374    return 0;
1375}
1376
1377
1378#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1379
1380static void
1381fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1382{
1383    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1384
1385	/* compute the data cells to idle cells ratio from the tx PCR */
1386	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1387	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1388    }
1389    else {
1390	/* disable rate control */
1391	rate->data_cells = rate->idle_cells = 0;
1392    }
1393}
1394
1395
1396static int
1397fore200e_open(struct atm_vcc *vcc)
1398{
1399    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1400    struct fore200e_vcc*    fore200e_vcc;
1401    struct fore200e_vc_map* vc_map;
1402    unsigned long	    flags;
1403    int			    vci = vcc->vci;
1404    short		    vpi = vcc->vpi;
1405
1406    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1407    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1408
1409    spin_lock_irqsave(&fore200e->q_lock, flags);
1410
1411    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1412    if (vc_map->vcc) {
1413
1414	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1415
1416	printk(FORE200E "VC %d.%d.%d already in use\n",
1417	       fore200e->atm_dev->number, vpi, vci);
1418
1419	return -EINVAL;
1420    }
1421
1422    vc_map->vcc = vcc;
1423
1424    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1425
1426    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1427    if (fore200e_vcc == NULL) {
1428	vc_map->vcc = NULL;
1429	return -ENOMEM;
1430    }
1431
1432    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1433	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1434	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1435	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1436	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1437	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1438	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1439
1440    /* pseudo-CBR bandwidth requested? */
1441    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1442
1443	mutex_lock(&fore200e->rate_mtx);
1444	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1445	    mutex_unlock(&fore200e->rate_mtx);
1446
1447	    kfree(fore200e_vcc);
1448	    vc_map->vcc = NULL;
1449	    return -EAGAIN;
1450	}
1451
1452	/* reserve bandwidth */
1453	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1454	mutex_unlock(&fore200e->rate_mtx);
1455    }
1456
1457    vcc->itf = vcc->dev->number;
1458
1459    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1460    set_bit(ATM_VF_ADDR, &vcc->flags);
1461
1462    vcc->dev_data = fore200e_vcc;
1463
1464    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1465
1466	vc_map->vcc = NULL;
1467
1468	clear_bit(ATM_VF_ADDR, &vcc->flags);
1469	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1470
1471	vcc->dev_data = NULL;
1472
1473	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1474
1475	kfree(fore200e_vcc);
1476	return -EINVAL;
1477    }
1478
1479    /* compute rate control parameters */
1480    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1481
1482	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1483	set_bit(ATM_VF_HASQOS, &vcc->flags);
1484
1485	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1486		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1487		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
1488		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1489    }
1490
1491    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1492    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1493    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1494
1495    /* new incarnation of the vcc */
1496    vc_map->incarn = ++fore200e->incarn_count;
1497
1498    /* VC unusable before this flag is set */
1499    set_bit(ATM_VF_READY, &vcc->flags);
1500
1501    return 0;
1502}
1503
1504
1505static void
1506fore200e_close(struct atm_vcc* vcc)
1507{
1508    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1509    struct fore200e_vcc*    fore200e_vcc;
1510    struct fore200e_vc_map* vc_map;
1511    unsigned long           flags;
1512
1513    ASSERT(vcc);
1514    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1515    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1516
1517    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1518
1519    clear_bit(ATM_VF_READY, &vcc->flags);
1520
1521    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1522
1523    spin_lock_irqsave(&fore200e->q_lock, flags);
1524
1525    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1526
1527    /* the vc is no longer considered as "in use" by fore200e_open() */
1528    vc_map->vcc = NULL;
1529
1530    vcc->itf = vcc->vci = vcc->vpi = 0;
1531
1532    fore200e_vcc = FORE200E_VCC(vcc);
1533    vcc->dev_data = NULL;
1534
1535    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1536
1537    /* release reserved bandwidth, if any */
1538    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1539
1540	mutex_lock(&fore200e->rate_mtx);
1541	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1542	mutex_unlock(&fore200e->rate_mtx);
1543
1544	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1545    }
1546
1547    clear_bit(ATM_VF_ADDR, &vcc->flags);
1548    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1549
1550    ASSERT(fore200e_vcc);
1551    kfree(fore200e_vcc);
1552}
1553
1554
1555static int
1556fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1557{
1558    struct fore200e*        fore200e     = FORE200E_DEV(vcc->dev);
1559    struct fore200e_vcc*    fore200e_vcc = FORE200E_VCC(vcc);
1560    struct fore200e_vc_map* vc_map;
1561    struct host_txq*        txq          = &fore200e->host_txq;
1562    struct host_txq_entry*  entry;
1563    struct tpd*             tpd;
1564    struct tpd_haddr        tpd_haddr;
1565    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1566    int                     tx_copy      = 0;
1567    int                     tx_len       = skb->len;
1568    u32*                    cell_header  = NULL;
1569    unsigned char*          skb_data;
1570    int                     skb_len;
1571    unsigned char*          data;
1572    unsigned long           flags;
1573
1574    ASSERT(vcc);
1575    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1576    ASSERT(fore200e);
1577    ASSERT(fore200e_vcc);
1578
1579    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1580	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1581	dev_kfree_skb_any(skb);
1582	return -EINVAL;
1583    }
1584
1585#ifdef FORE200E_52BYTE_AAL0_SDU
1586    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1587	cell_header = (u32*) skb->data;
1588	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1589	skb_len     = tx_len = skb->len  - 4;
1590
1591	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1592    }
1593    else
1594#endif
1595    {
1596	skb_data = skb->data;
1597	skb_len  = skb->len;
1598    }
1599
1600    if (((unsigned long)skb_data) & 0x3) {
1601
1602	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1603	tx_copy = 1;
1604	tx_len  = skb_len;
1605    }
1606
1607    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1608
1609        /* this simply NUKES the PCA board */
1610	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1611	tx_copy = 1;
1612	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1613    }
1614
1615    if (tx_copy) {
1616	data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1617	if (data == NULL) {
1618	    if (vcc->pop) {
1619		vcc->pop(vcc, skb);
1620	    }
1621	    else {
1622		dev_kfree_skb_any(skb);
1623	    }
1624	    return -ENOMEM;
1625	}
1626
1627	memcpy(data, skb_data, skb_len);
1628	if (skb_len < tx_len)
1629	    memset(data + skb_len, 0x00, tx_len - skb_len);
1630    }
1631    else {
1632	data = skb_data;
1633    }
1634
1635    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1636    ASSERT(vc_map->vcc == vcc);
1637
1638  retry_here:
1639
1640    spin_lock_irqsave(&fore200e->q_lock, flags);
1641
1642    entry = &txq->host_entry[ txq->head ];
1643
1644    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1645
1646	/* try to free completed tx queue entries */
1647	fore200e_tx_irq(fore200e);
1648
1649	if (*entry->status != STATUS_FREE) {
1650
1651	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1652
1653	    /* retry once again? */
1654	    if (--retry > 0) {
1655		udelay(50);
1656		goto retry_here;
1657	    }
1658
1659	    atomic_inc(&vcc->stats->tx_err);
1660
1661	    fore200e->tx_sat++;
1662	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1663		    fore200e->name, fore200e->cp_queues->heartbeat);
1664	    if (vcc->pop) {
1665		vcc->pop(vcc, skb);
1666	    }
1667	    else {
1668		dev_kfree_skb_any(skb);
1669	    }
1670
1671	    if (tx_copy)
1672		kfree(data);
1673
1674	    return -ENOBUFS;
1675	}
1676    }
1677
1678    entry->incarn = vc_map->incarn;
1679    entry->vc_map = vc_map;
1680    entry->skb    = skb;
1681    entry->data   = tx_copy ? data : NULL;
1682
1683    tpd = entry->tpd;
1684    tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
1685    tpd->tsd[ 0 ].length = tx_len;
1686
1687    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1688    txq->txing++;
1689
1690    /* The dma_map call above implies a dma_sync so the device can use it,
1691     * thus no explicit dma_sync call is necessary here.
1692     */
1693
1694    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
1695	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1696	    tpd->tsd[0].length, skb_len);
1697
1698    if (skb_len < fore200e_vcc->tx_min_pdu)
1699	fore200e_vcc->tx_min_pdu = skb_len;
1700    if (skb_len > fore200e_vcc->tx_max_pdu)
1701	fore200e_vcc->tx_max_pdu = skb_len;
1702    fore200e_vcc->tx_pdu++;
1703
1704    /* set tx rate control information */
1705    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1706    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1707
1708    if (cell_header) {
1709	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1710	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1711	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1712	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1713	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1714    }
1715    else {
1716	/* set the ATM header, common to all cells conveying the PDU */
1717	tpd->atm_header.clp = 0;
1718	tpd->atm_header.plt = 0;
1719	tpd->atm_header.vci = vcc->vci;
1720	tpd->atm_header.vpi = vcc->vpi;
1721	tpd->atm_header.gfc = 0;
1722    }
1723
1724    tpd->spec.length = tx_len;
1725    tpd->spec.nseg   = 1;
1726    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1727    tpd->spec.intr   = 1;
1728
1729    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1730    tpd_haddr.pad   = 0;
1731    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1732
1733    *entry->status = STATUS_PENDING;
1734    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1735
1736    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1737
1738    return 0;
1739}
1740
1741
1742static int
1743fore200e_getstats(struct fore200e* fore200e)
1744{
1745    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1746    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1747    struct stats_opcode     opcode;
1748    int                     ok;
1749    u32                     stats_dma_addr;
1750
1751    if (fore200e->stats == NULL) {
1752	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1753	if (fore200e->stats == NULL)
1754	    return -ENOMEM;
1755    }
1756
1757    stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1758					    sizeof(struct stats), DMA_FROM_DEVICE);
1759
1760    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1761
1762    opcode.opcode = OPCODE_GET_STATS;
1763    opcode.pad    = 0;
1764
1765    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1766
1767    *entry->status = STATUS_PENDING;
1768
1769    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1770
1771    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1772
1773    *entry->status = STATUS_FREE;
1774
1775    fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1776
1777    if (ok == 0) {
1778	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1779	return -EIO;
1780    }
1781
1782    return 0;
1783}
1784
1785
1786static int
1787fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1788{
1789    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1790
1791    DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1792	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1793
1794    return -EINVAL;
1795}
1796
1797
1798static int
1799fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1800{
1801    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1802
1803    DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1804	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1805
1806    return -EINVAL;
1807}
1808
1809
1810#if 0 /* currently unused */
1811static int
1812fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1813{
1814    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1815    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1816    struct oc3_opcode       opcode;
1817    int                     ok;
1818    u32                     oc3_regs_dma_addr;
1819
1820    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1821
1822    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1823
1824    opcode.opcode = OPCODE_GET_OC3;
1825    opcode.reg    = 0;
1826    opcode.value  = 0;
1827    opcode.mask   = 0;
1828
1829    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1830
1831    *entry->status = STATUS_PENDING;
1832
1833    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1834
1835    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1836
1837    *entry->status = STATUS_FREE;
1838
1839    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1840
1841    if (ok == 0) {
1842	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1843	return -EIO;
1844    }
1845
1846    return 0;
1847}
1848#endif
1849
1850
1851static int
1852fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1853{
1854    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1855    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1856    struct oc3_opcode       opcode;
1857    int                     ok;
1858
1859    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1860
1861    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1862
1863    opcode.opcode = OPCODE_SET_OC3;
1864    opcode.reg    = reg;
1865    opcode.value  = value;
1866    opcode.mask   = mask;
1867
1868    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1869
1870    *entry->status = STATUS_PENDING;
1871
1872    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1873
1874    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1875
1876    *entry->status = STATUS_FREE;
1877
1878    if (ok == 0) {
1879	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1880	return -EIO;
1881    }
1882
1883    return 0;
1884}
1885
1886
1887static int
1888fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1889{
1890    u32 mct_value, mct_mask;
1891    int error;
1892
1893    if (!capable(CAP_NET_ADMIN))
1894	return -EPERM;
1895
1896    switch (loop_mode) {
1897
1898    case ATM_LM_NONE:
1899	mct_value = 0;
1900	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1901	break;
1902
1903    case ATM_LM_LOC_PHY:
1904	mct_value = mct_mask = SUNI_MCT_DLE;
1905	break;
1906
1907    case ATM_LM_RMT_PHY:
1908	mct_value = mct_mask = SUNI_MCT_LLE;
1909	break;
1910
1911    default:
1912	return -EINVAL;
1913    }
1914
1915    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1916    if (error == 0)
1917	fore200e->loop_mode = loop_mode;
1918
1919    return error;
1920}
1921
1922
1923static int
1924fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1925{
1926    struct sonet_stats tmp;
1927
1928    if (fore200e_getstats(fore200e) < 0)
1929	return -EIO;
1930
1931    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1932    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1933    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1934    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1935    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1936    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1937    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1938    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1939	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1940	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1941    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1942	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1943	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1944
1945    if (arg)
1946	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
1947
1948    return 0;
1949}
1950
1951
1952static int
1953fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1954{
1955    struct fore200e* fore200e = FORE200E_DEV(dev);
1956
1957    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1958
1959    switch (cmd) {
1960
1961    case SONET_GETSTAT:
1962	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1963
1964    case SONET_GETDIAG:
1965	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1966
1967    case ATM_SETLOOP:
1968	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1969
1970    case ATM_GETLOOP:
1971	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1972
1973    case ATM_QUERYLOOP:
1974	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1975    }
1976
1977    return -ENOSYS; /* not implemented */
1978}
1979
1980
1981static int
1982fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1983{
1984    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1985    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1986
1987    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1988	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1989	return -EINVAL;
1990    }
1991
1992    DPRINTK(2, "change_qos %d.%d.%d, "
1993	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1994	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1995	    "available_cell_rate = %u",
1996	    vcc->itf, vcc->vpi, vcc->vci,
1997	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1998	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1999	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
2000	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
2001	    flags, fore200e->available_cell_rate);
2002
2003    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2004
2005	mutex_lock(&fore200e->rate_mtx);
2006	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
2007	    mutex_unlock(&fore200e->rate_mtx);
2008	    return -EAGAIN;
2009	}
2010
2011	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2012	fore200e->available_cell_rate -= qos->txtp.max_pcr;
2013
2014	mutex_unlock(&fore200e->rate_mtx);
2015
2016	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2017
2018	/* update rate control parameters */
2019	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2020
2021	set_bit(ATM_VF_HASQOS, &vcc->flags);
2022
2023	return 0;
2024    }
2025
2026    return -EINVAL;
2027}
2028
2029
2030static int fore200e_irq_request(struct fore200e *fore200e)
2031{
2032    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2033
2034	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2035	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
2036	return -EBUSY;
2037    }
2038
2039    printk(FORE200E "IRQ %s reserved for device %s\n",
2040	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
2041
2042#ifdef FORE200E_USE_TASKLET
2043    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2044    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2045#endif
2046
2047    fore200e->state = FORE200E_STATE_IRQ;
2048    return 0;
2049}
2050
2051
2052static int fore200e_get_esi(struct fore200e *fore200e)
2053{
2054    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2055    int ok, i;
2056
2057    if (!prom)
2058	return -ENOMEM;
2059
2060    ok = fore200e->bus->prom_read(fore200e, prom);
2061    if (ok < 0) {
2062	kfree(prom);
2063	return -EBUSY;
2064    }
2065
2066    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2067	   fore200e->name,
2068	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
2069	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2070
2071    for (i = 0; i < ESI_LEN; i++) {
2072	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2073    }
2074
2075    kfree(prom);
2076
2077    return 0;
2078}
2079
2080
2081static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
2082{
2083    int scheme, magn, nbr, size, i;
2084
2085    struct host_bsq* bsq;
2086    struct buffer*   buffer;
2087
2088    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2089	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2090
2091	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2092
2093	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
2094	    size = fore200e_rx_buf_size[ scheme ][ magn ];
2095
2096	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2097
2098	    /* allocate the array of receive buffers */
2099	    buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
2100
2101	    if (buffer == NULL)
2102		return -ENOMEM;
2103
2104	    bsq->freebuf = NULL;
2105
2106	    for (i = 0; i < nbr; i++) {
2107
2108		buffer[ i ].scheme = scheme;
2109		buffer[ i ].magn   = magn;
2110#ifdef FORE200E_BSQ_DEBUG
2111		buffer[ i ].index  = i;
2112		buffer[ i ].supplied = 0;
2113#endif
2114
2115		/* allocate the receive buffer body */
2116		if (fore200e_chunk_alloc(fore200e,
2117					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2118					 DMA_FROM_DEVICE) < 0) {
2119
2120		    while (i > 0)
2121			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2122		    kfree(buffer);
2123
2124		    return -ENOMEM;
2125		}
2126
2127		/* insert the buffer into the free buffer list */
2128		buffer[ i ].next = bsq->freebuf;
2129		bsq->freebuf = &buffer[ i ];
2130	    }
2131	    /* all the buffers are free, initially */
2132	    bsq->freebuf_count = nbr;
2133
2134#ifdef FORE200E_BSQ_DEBUG
2135	    bsq_audit(3, bsq, scheme, magn);
2136#endif
2137	}
2138    }
2139
2140    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2141    return 0;
2142}
2143
2144
2145static int fore200e_init_bs_queue(struct fore200e *fore200e)
2146{
2147    int scheme, magn, i;
2148
2149    struct host_bsq*     bsq;
2150    struct cp_bsq_entry __iomem * cp_entry;
2151
2152    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2153	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2154
2155	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2156
2157	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2158
2159	    /* allocate and align the array of status words */
2160	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2161					       &bsq->status,
2162					       sizeof(enum status),
2163					       QUEUE_SIZE_BS,
2164					       fore200e->bus->status_alignment) < 0) {
2165		return -ENOMEM;
2166	    }
2167
2168	    /* allocate and align the array of receive buffer descriptors */
2169	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2170					       &bsq->rbd_block,
2171					       sizeof(struct rbd_block),
2172					       QUEUE_SIZE_BS,
2173					       fore200e->bus->descr_alignment) < 0) {
2174
2175		fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2176		return -ENOMEM;
2177	    }
2178
2179	    /* get the base address of the cp resident buffer supply queue entries */
2180	    cp_entry = fore200e->virt_base +
2181		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2182
2183	    /* fill the host resident and cp resident buffer supply queue entries */
2184	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2185
2186		bsq->host_entry[ i ].status =
2187		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2188	        bsq->host_entry[ i ].rbd_block =
2189		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2190		bsq->host_entry[ i ].rbd_block_dma =
2191		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2192		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2193
2194		*bsq->host_entry[ i ].status = STATUS_FREE;
2195
2196		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
2197				     &cp_entry[ i ].status_haddr);
2198	    }
2199	}
2200    }
2201
2202    fore200e->state = FORE200E_STATE_INIT_BSQ;
2203    return 0;
2204}
2205
2206
2207static int fore200e_init_rx_queue(struct fore200e *fore200e)
2208{
2209    struct host_rxq*     rxq =  &fore200e->host_rxq;
2210    struct cp_rxq_entry __iomem * cp_entry;
2211    int i;
2212
2213    DPRINTK(2, "receive queue is being initialized\n");
2214
2215    /* allocate and align the array of status words */
2216    if (fore200e->bus->dma_chunk_alloc(fore200e,
2217				       &rxq->status,
2218				       sizeof(enum status),
2219				       QUEUE_SIZE_RX,
2220				       fore200e->bus->status_alignment) < 0) {
2221	return -ENOMEM;
2222    }
2223
2224    /* allocate and align the array of receive PDU descriptors */
2225    if (fore200e->bus->dma_chunk_alloc(fore200e,
2226				       &rxq->rpd,
2227				       sizeof(struct rpd),
2228				       QUEUE_SIZE_RX,
2229				       fore200e->bus->descr_alignment) < 0) {
2230
2231	fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2232	return -ENOMEM;
2233    }
2234
2235    /* get the base address of the cp resident rx queue entries */
2236    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2237
2238    /* fill the host resident and cp resident rx entries */
2239    for (i=0; i < QUEUE_SIZE_RX; i++) {
2240
2241	rxq->host_entry[ i ].status =
2242	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2243	rxq->host_entry[ i ].rpd =
2244	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2245	rxq->host_entry[ i ].rpd_dma =
2246	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2247	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2248
2249	*rxq->host_entry[ i ].status = STATUS_FREE;
2250
2251	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
2252			     &cp_entry[ i ].status_haddr);
2253
2254	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2255			     &cp_entry[ i ].rpd_haddr);
2256    }
2257
2258    /* set the head entry of the queue */
2259    rxq->head = 0;
2260
2261    fore200e->state = FORE200E_STATE_INIT_RXQ;
2262    return 0;
2263}
2264
2265
2266static int fore200e_init_tx_queue(struct fore200e *fore200e)
2267{
2268    struct host_txq*     txq =  &fore200e->host_txq;
2269    struct cp_txq_entry __iomem * cp_entry;
2270    int i;
2271
2272    DPRINTK(2, "transmit queue is being initialized\n");
2273
2274    /* allocate and align the array of status words */
2275    if (fore200e->bus->dma_chunk_alloc(fore200e,
2276				       &txq->status,
2277				       sizeof(enum status),
2278				       QUEUE_SIZE_TX,
2279				       fore200e->bus->status_alignment) < 0) {
2280	return -ENOMEM;
2281    }
2282
2283    /* allocate and align the array of transmit PDU descriptors */
2284    if (fore200e->bus->dma_chunk_alloc(fore200e,
2285				       &txq->tpd,
2286				       sizeof(struct tpd),
2287				       QUEUE_SIZE_TX,
2288				       fore200e->bus->descr_alignment) < 0) {
2289
2290	fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2291	return -ENOMEM;
2292    }
2293
2294    /* get the base address of the cp resident tx queue entries */
2295    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2296
2297    /* fill the host resident and cp resident tx entries */
2298    for (i=0; i < QUEUE_SIZE_TX; i++) {
2299
2300	txq->host_entry[ i ].status =
2301	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2302	txq->host_entry[ i ].tpd =
2303	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2304	txq->host_entry[ i ].tpd_dma  =
2305                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2306	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2307
2308	*txq->host_entry[ i ].status = STATUS_FREE;
2309
2310	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
2311			     &cp_entry[ i ].status_haddr);
2312
2313        /* although there is a one-to-one mapping of tx queue entries and tpds,
2314	   we do not write here the DMA (physical) base address of each tpd into
2315	   the related cp resident entry, because the cp relies on this write
2316	   operation to detect that a new pdu has been submitted for tx */
2317    }
2318
2319    /* set the head and tail entries of the queue */
2320    txq->head = 0;
2321    txq->tail = 0;
2322
2323    fore200e->state = FORE200E_STATE_INIT_TXQ;
2324    return 0;
2325}
2326
2327
2328static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2329{
2330    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2331    struct cp_cmdq_entry __iomem * cp_entry;
2332    int i;
2333
2334    DPRINTK(2, "command queue is being initialized\n");
2335
2336    /* allocate and align the array of status words */
2337    if (fore200e->bus->dma_chunk_alloc(fore200e,
2338				       &cmdq->status,
2339				       sizeof(enum status),
2340				       QUEUE_SIZE_CMD,
2341				       fore200e->bus->status_alignment) < 0) {
2342	return -ENOMEM;
2343    }
2344
2345    /* get the base address of the cp resident cmd queue entries */
2346    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2347
2348    /* fill the host resident and cp resident cmd entries */
2349    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2350
2351	cmdq->host_entry[ i ].status   =
2352                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2353	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2354
2355	*cmdq->host_entry[ i ].status = STATUS_FREE;
2356
2357	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
2358                             &cp_entry[ i ].status_haddr);
2359    }
2360
2361    /* set the head entry of the queue */
2362    cmdq->head = 0;
2363
2364    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2365    return 0;
2366}
2367
2368
2369static void fore200e_param_bs_queue(struct fore200e *fore200e,
2370				    enum buffer_scheme scheme,
2371				    enum buffer_magn magn, int queue_length,
2372				    int pool_size, int supply_blksize)
2373{
2374    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2375
2376    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2377    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2378    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2379    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2380}
2381
2382
2383static int fore200e_initialize(struct fore200e *fore200e)
2384{
2385    struct cp_queues __iomem * cpq;
2386    int               ok, scheme, magn;
2387
2388    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2389
2390    mutex_init(&fore200e->rate_mtx);
2391    spin_lock_init(&fore200e->q_lock);
2392
2393    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2394
2395    /* enable cp to host interrupts */
2396    fore200e->bus->write(1, &cpq->imask);
2397
2398    if (fore200e->bus->irq_enable)
2399	fore200e->bus->irq_enable(fore200e);
2400
2401    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2402
2403    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2404    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2405    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2406
2407    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2408    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2409
2410    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2411	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2412	    fore200e_param_bs_queue(fore200e, scheme, magn,
2413				    QUEUE_SIZE_BS,
2414				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2415				    RBD_BLK_SIZE);
2416
2417    /* issue the initialize command */
2418    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2419    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2420
2421    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2422    if (ok == 0) {
2423	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2424	return -ENODEV;
2425    }
2426
2427    printk(FORE200E "device %s initialized\n", fore200e->name);
2428
2429    fore200e->state = FORE200E_STATE_INITIALIZE;
2430    return 0;
2431}
2432
2433
2434static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2435{
2436    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2437
2438#if 0
2439    printk("%c", c);
2440#endif
2441    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2442}
2443
2444
2445static int fore200e_monitor_getc(struct fore200e *fore200e)
2446{
2447    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2448    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2449    int                c;
2450
2451    while (time_before(jiffies, timeout)) {
2452
2453	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2454
2455	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2456
2457	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2458#if 0
2459	    printk("%c", c & 0xFF);
2460#endif
2461	    return c & 0xFF;
2462	}
2463    }
2464
2465    return -1;
2466}
2467
2468
2469static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2470{
2471    while (*str) {
2472
2473	/* the i960 monitor doesn't accept any new character if it has something to say */
2474	while (fore200e_monitor_getc(fore200e) >= 0);
2475
2476	fore200e_monitor_putc(fore200e, *str++);
2477    }
2478
2479    while (fore200e_monitor_getc(fore200e) >= 0);
2480}
2481
2482#ifdef __LITTLE_ENDIAN
2483#define FW_EXT ".bin"
2484#else
2485#define FW_EXT "_ecd.bin2"
2486#endif
2487
2488static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2489{
2490    const struct firmware *firmware;
2491    struct device *device;
2492    struct fw_header *fw_header;
2493    const __le32 *fw_data;
2494    u32 fw_size;
2495    u32 __iomem *load_addr;
2496    char buf[48];
2497    int err = -ENODEV;
2498
2499    if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2500	device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2501#ifdef CONFIG_SBUS
2502    else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2503	device = &((struct platform_device *) fore200e->bus_dev)->dev;
2504#endif
2505    else
2506	return err;
2507
2508    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2509    if ((err = request_firmware(&firmware, buf, device)) < 0) {
2510	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2511	return err;
2512    }
2513
2514    fw_data = (__le32 *) firmware->data;
2515    fw_size = firmware->size / sizeof(u32);
2516    fw_header = (struct fw_header *) firmware->data;
2517    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2518
2519    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2520	    fore200e->name, load_addr, fw_size);
2521
2522    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2523	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2524	goto release;
2525    }
2526
2527    for (; fw_size--; fw_data++, load_addr++)
2528	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2529
2530    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2531
2532#if defined(__sparc_v9__)
2533    /* reported to be required by SBA cards on some sparc64 hosts */
2534    fore200e_spin(100);
2535#endif
2536
2537    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2538    fore200e_monitor_puts(fore200e, buf);
2539
2540    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2541	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2542	goto release;
2543    }
2544
2545    printk(FORE200E "device %s firmware started\n", fore200e->name);
2546
2547    fore200e->state = FORE200E_STATE_START_FW;
2548    err = 0;
2549
2550release:
2551    release_firmware(firmware);
2552    return err;
2553}
2554
2555
2556static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2557{
2558    struct atm_dev* atm_dev;
2559
2560    DPRINTK(2, "device %s being registered\n", fore200e->name);
2561
2562    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2563                               -1, NULL);
2564    if (atm_dev == NULL) {
2565	printk(FORE200E "unable to register device %s\n", fore200e->name);
2566	return -ENODEV;
2567    }
2568
2569    atm_dev->dev_data = fore200e;
2570    fore200e->atm_dev = atm_dev;
2571
2572    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2573    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2574
2575    fore200e->available_cell_rate = ATM_OC3_PCR;
2576
2577    fore200e->state = FORE200E_STATE_REGISTER;
2578    return 0;
2579}
2580
2581
2582static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2583{
2584    if (fore200e_register(fore200e, parent) < 0)
2585	return -ENODEV;
2586
2587    if (fore200e->bus->configure(fore200e) < 0)
2588	return -ENODEV;
2589
2590    if (fore200e->bus->map(fore200e) < 0)
2591	return -ENODEV;
2592
2593    if (fore200e_reset(fore200e, 1) < 0)
2594	return -ENODEV;
2595
2596    if (fore200e_load_and_start_fw(fore200e) < 0)
2597	return -ENODEV;
2598
2599    if (fore200e_initialize(fore200e) < 0)
2600	return -ENODEV;
2601
2602    if (fore200e_init_cmd_queue(fore200e) < 0)
2603	return -ENOMEM;
2604
2605    if (fore200e_init_tx_queue(fore200e) < 0)
2606	return -ENOMEM;
2607
2608    if (fore200e_init_rx_queue(fore200e) < 0)
2609	return -ENOMEM;
2610
2611    if (fore200e_init_bs_queue(fore200e) < 0)
2612	return -ENOMEM;
2613
2614    if (fore200e_alloc_rx_buf(fore200e) < 0)
2615	return -ENOMEM;
2616
2617    if (fore200e_get_esi(fore200e) < 0)
2618	return -EIO;
2619
2620    if (fore200e_irq_request(fore200e) < 0)
2621	return -EBUSY;
2622
2623    fore200e_supply(fore200e);
2624
2625    /* all done, board initialization is now complete */
2626    fore200e->state = FORE200E_STATE_COMPLETE;
2627    return 0;
2628}
2629
2630#ifdef CONFIG_SBUS
2631static const struct of_device_id fore200e_sba_match[];
2632static int fore200e_sba_probe(struct platform_device *op)
2633{
2634	const struct of_device_id *match;
2635	const struct fore200e_bus *bus;
2636	struct fore200e *fore200e;
2637	static int index = 0;
2638	int err;
2639
2640	match = of_match_device(fore200e_sba_match, &op->dev);
2641	if (!match)
2642		return -EINVAL;
2643	bus = match->data;
2644
2645	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2646	if (!fore200e)
2647		return -ENOMEM;
2648
2649	fore200e->bus = bus;
2650	fore200e->bus_dev = op;
2651	fore200e->irq = op->archdata.irqs[0];
2652	fore200e->phys_base = op->resource[0].start;
2653
2654	sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2655
2656	err = fore200e_init(fore200e, &op->dev);
2657	if (err < 0) {
2658		fore200e_shutdown(fore200e);
2659		kfree(fore200e);
2660		return err;
2661	}
2662
2663	index++;
2664	dev_set_drvdata(&op->dev, fore200e);
2665
2666	return 0;
2667}
2668
2669static int fore200e_sba_remove(struct platform_device *op)
2670{
2671	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2672
2673	fore200e_shutdown(fore200e);
2674	kfree(fore200e);
2675
2676	return 0;
2677}
2678
2679static const struct of_device_id fore200e_sba_match[] = {
2680	{
2681		.name = SBA200E_PROM_NAME,
2682		.data = (void *) &fore200e_bus[1],
2683	},
2684	{},
2685};
2686MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2687
2688static struct platform_driver fore200e_sba_driver = {
2689	.driver = {
2690		.name = "fore_200e",
2691		.of_match_table = fore200e_sba_match,
2692	},
2693	.probe		= fore200e_sba_probe,
2694	.remove		= fore200e_sba_remove,
2695};
2696#endif
2697
2698#ifdef CONFIG_PCI
2699static int fore200e_pca_detect(struct pci_dev *pci_dev,
2700			       const struct pci_device_id *pci_ent)
2701{
2702    const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2703    struct fore200e* fore200e;
2704    int err = 0;
2705    static int index = 0;
2706
2707    if (pci_enable_device(pci_dev)) {
2708	err = -EINVAL;
2709	goto out;
2710    }
2711
2712    if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2713	err = -EINVAL;
2714	goto out;
2715    }
2716
2717    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2718    if (fore200e == NULL) {
2719	err = -ENOMEM;
2720	goto out_disable;
2721    }
2722
2723    fore200e->bus       = bus;
2724    fore200e->bus_dev   = pci_dev;
2725    fore200e->irq       = pci_dev->irq;
2726    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2727
2728    sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2729
2730    pci_set_master(pci_dev);
2731
2732    printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2733	   fore200e->bus->model_name,
2734	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2735
2736    sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2737
2738    err = fore200e_init(fore200e, &pci_dev->dev);
2739    if (err < 0) {
2740	fore200e_shutdown(fore200e);
2741	goto out_free;
2742    }
2743
2744    ++index;
2745    pci_set_drvdata(pci_dev, fore200e);
2746
2747out:
2748    return err;
2749
2750out_free:
2751    kfree(fore200e);
2752out_disable:
2753    pci_disable_device(pci_dev);
2754    goto out;
2755}
2756
2757
2758static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2759{
2760    struct fore200e *fore200e;
2761
2762    fore200e = pci_get_drvdata(pci_dev);
2763
2764    fore200e_shutdown(fore200e);
2765    kfree(fore200e);
2766    pci_disable_device(pci_dev);
2767}
2768
2769
2770static struct pci_device_id fore200e_pca_tbl[] = {
2771    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2772      0, 0, (unsigned long) &fore200e_bus[0] },
2773    { 0, }
2774};
2775
2776MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2777
2778static struct pci_driver fore200e_pca_driver = {
2779    .name =     "fore_200e",
2780    .probe =    fore200e_pca_detect,
2781    .remove =   fore200e_pca_remove_one,
2782    .id_table = fore200e_pca_tbl,
2783};
2784#endif
2785
2786static int __init fore200e_module_init(void)
2787{
2788	int err = 0;
2789
2790	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2791
2792#ifdef CONFIG_SBUS
2793	err = platform_driver_register(&fore200e_sba_driver);
2794	if (err)
2795		return err;
2796#endif
2797
2798#ifdef CONFIG_PCI
2799	err = pci_register_driver(&fore200e_pca_driver);
2800#endif
2801
2802#ifdef CONFIG_SBUS
2803	if (err)
2804		platform_driver_unregister(&fore200e_sba_driver);
2805#endif
2806
2807	return err;
2808}
2809
2810static void __exit fore200e_module_cleanup(void)
2811{
2812#ifdef CONFIG_PCI
2813	pci_unregister_driver(&fore200e_pca_driver);
2814#endif
2815#ifdef CONFIG_SBUS
2816	platform_driver_unregister(&fore200e_sba_driver);
2817#endif
2818}
2819
2820static int
2821fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2822{
2823    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2824    struct fore200e_vcc* fore200e_vcc;
2825    struct atm_vcc*      vcc;
2826    int                  i, len, left = *pos;
2827    unsigned long        flags;
2828
2829    if (!left--) {
2830
2831	if (fore200e_getstats(fore200e) < 0)
2832	    return -EIO;
2833
2834	len = sprintf(page,"\n"
2835		       " device:\n"
2836		       "   internal name:\t\t%s\n", fore200e->name);
2837
2838	/* print bus-specific information */
2839	if (fore200e->bus->proc_read)
2840	    len += fore200e->bus->proc_read(fore200e, page + len);
2841
2842	len += sprintf(page + len,
2843		"   interrupt line:\t\t%s\n"
2844		"   physical base address:\t0x%p\n"
2845		"   virtual base address:\t0x%p\n"
2846		"   factory address (ESI):\t%pM\n"
2847		"   board serial number:\t\t%d\n\n",
2848		fore200e_irq_itoa(fore200e->irq),
2849		(void*)fore200e->phys_base,
2850		fore200e->virt_base,
2851		fore200e->esi,
2852		fore200e->esi[4] * 256 + fore200e->esi[5]);
2853
2854	return len;
2855    }
2856
2857    if (!left--)
2858	return sprintf(page,
2859		       "   free small bufs, scheme 1:\t%d\n"
2860		       "   free large bufs, scheme 1:\t%d\n"
2861		       "   free small bufs, scheme 2:\t%d\n"
2862		       "   free large bufs, scheme 2:\t%d\n",
2863		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2864		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2865		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2866		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2867
2868    if (!left--) {
2869	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2870
2871	len = sprintf(page,"\n\n"
2872		      " cell processor:\n"
2873		      "   heartbeat state:\t\t");
2874
2875	if (hb >> 16 != 0xDEAD)
2876	    len += sprintf(page + len, "0x%08x\n", hb);
2877	else
2878	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2879
2880	return len;
2881    }
2882
2883    if (!left--) {
2884	static const char* media_name[] = {
2885	    "unshielded twisted pair",
2886	    "multimode optical fiber ST",
2887	    "multimode optical fiber SC",
2888	    "single-mode optical fiber ST",
2889	    "single-mode optical fiber SC",
2890	    "unknown"
2891	};
2892
2893	static const char* oc3_mode[] = {
2894	    "normal operation",
2895	    "diagnostic loopback",
2896	    "line loopback",
2897	    "unknown"
2898	};
2899
2900	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2901	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2902	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2903	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2904	u32 oc3_index;
2905
2906	if (media_index > 4)
2907		media_index = 5;
2908
2909	switch (fore200e->loop_mode) {
2910	    case ATM_LM_NONE:    oc3_index = 0;
2911		                 break;
2912	    case ATM_LM_LOC_PHY: oc3_index = 1;
2913		                 break;
2914	    case ATM_LM_RMT_PHY: oc3_index = 2;
2915		                 break;
2916	    default:             oc3_index = 3;
2917	}
2918
2919	return sprintf(page,
2920		       "   firmware release:\t\t%d.%d.%d\n"
2921		       "   monitor release:\t\t%d.%d\n"
2922		       "   media type:\t\t\t%s\n"
2923		       "   OC-3 revision:\t\t0x%x\n"
2924                       "   OC-3 mode:\t\t\t%s",
2925		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2926		       mon960_release >> 16, mon960_release << 16 >> 16,
2927		       media_name[ media_index ],
2928		       oc3_revision,
2929		       oc3_mode[ oc3_index ]);
2930    }
2931
2932    if (!left--) {
2933	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2934
2935	return sprintf(page,
2936		       "\n\n"
2937		       " monitor:\n"
2938		       "   version number:\t\t%d\n"
2939		       "   boot status word:\t\t0x%08x\n",
2940		       fore200e->bus->read(&cp_monitor->mon_version),
2941		       fore200e->bus->read(&cp_monitor->bstat));
2942    }
2943
2944    if (!left--)
2945	return sprintf(page,
2946		       "\n"
2947		       " device statistics:\n"
2948		       "  4b5b:\n"
2949		       "     crc_header_errors:\t\t%10u\n"
2950		       "     framing_errors:\t\t%10u\n",
2951		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2952		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2953
2954    if (!left--)
2955	return sprintf(page, "\n"
2956		       "  OC-3:\n"
2957		       "     section_bip8_errors:\t%10u\n"
2958		       "     path_bip8_errors:\t\t%10u\n"
2959		       "     line_bip24_errors:\t\t%10u\n"
2960		       "     line_febe_errors:\t\t%10u\n"
2961		       "     path_febe_errors:\t\t%10u\n"
2962		       "     corr_hcs_errors:\t\t%10u\n"
2963		       "     ucorr_hcs_errors:\t\t%10u\n",
2964		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2965		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2966		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2967		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2968		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2969		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2970		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2971
2972    if (!left--)
2973	return sprintf(page,"\n"
2974		       "   ATM:\t\t\t\t     cells\n"
2975		       "     TX:\t\t\t%10u\n"
2976		       "     RX:\t\t\t%10u\n"
2977		       "     vpi out of range:\t\t%10u\n"
2978		       "     vpi no conn:\t\t%10u\n"
2979		       "     vci out of range:\t\t%10u\n"
2980		       "     vci no conn:\t\t%10u\n",
2981		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2982		       be32_to_cpu(fore200e->stats->atm.cells_received),
2983		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2984		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2985		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2986		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2987
2988    if (!left--)
2989	return sprintf(page,"\n"
2990		       "   AAL0:\t\t\t     cells\n"
2991		       "     TX:\t\t\t%10u\n"
2992		       "     RX:\t\t\t%10u\n"
2993		       "     dropped:\t\t\t%10u\n",
2994		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2995		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2996		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2997
2998    if (!left--)
2999	return sprintf(page,"\n"
3000		       "   AAL3/4:\n"
3001		       "     SAR sublayer:\t\t     cells\n"
3002		       "       TX:\t\t\t%10u\n"
3003		       "       RX:\t\t\t%10u\n"
3004		       "       dropped:\t\t\t%10u\n"
3005		       "       CRC errors:\t\t%10u\n"
3006		       "       protocol errors:\t\t%10u\n\n"
3007		       "     CS  sublayer:\t\t      PDUs\n"
3008		       "       TX:\t\t\t%10u\n"
3009		       "       RX:\t\t\t%10u\n"
3010		       "       dropped:\t\t\t%10u\n"
3011		       "       protocol errors:\t\t%10u\n",
3012		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3013		       be32_to_cpu(fore200e->stats->aal34.cells_received),
3014		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3015		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3016		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3017		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3018		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3019		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3020		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3021
3022    if (!left--)
3023	return sprintf(page,"\n"
3024		       "   AAL5:\n"
3025		       "     SAR sublayer:\t\t     cells\n"
3026		       "       TX:\t\t\t%10u\n"
3027		       "       RX:\t\t\t%10u\n"
3028		       "       dropped:\t\t\t%10u\n"
3029		       "       congestions:\t\t%10u\n\n"
3030		       "     CS  sublayer:\t\t      PDUs\n"
3031		       "       TX:\t\t\t%10u\n"
3032		       "       RX:\t\t\t%10u\n"
3033		       "       dropped:\t\t\t%10u\n"
3034		       "       CRC errors:\t\t%10u\n"
3035		       "       protocol errors:\t\t%10u\n",
3036		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3037		       be32_to_cpu(fore200e->stats->aal5.cells_received),
3038		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3039		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3040		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3041		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3042		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3043		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3044		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3045
3046    if (!left--)
3047	return sprintf(page,"\n"
3048		       "   AUX:\t\t       allocation failures\n"
3049		       "     small b1:\t\t\t%10u\n"
3050		       "     large b1:\t\t\t%10u\n"
3051		       "     small b2:\t\t\t%10u\n"
3052		       "     large b2:\t\t\t%10u\n"
3053		       "     RX PDUs:\t\t\t%10u\n"
3054		       "     TX PDUs:\t\t\t%10lu\n",
3055		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3056		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3057		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3058		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3059		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3060		       fore200e->tx_sat);
3061
3062    if (!left--)
3063	return sprintf(page,"\n"
3064		       " receive carrier:\t\t\t%s\n",
3065		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3066
3067    if (!left--) {
3068        return sprintf(page,"\n"
3069		       " VCCs:\n  address   VPI VCI   AAL "
3070		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
3071    }
3072
3073    for (i = 0; i < NBR_CONNECT; i++) {
3074
3075	vcc = fore200e->vc_map[i].vcc;
3076
3077	if (vcc == NULL)
3078	    continue;
3079
3080	spin_lock_irqsave(&fore200e->q_lock, flags);
3081
3082	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3083
3084	    fore200e_vcc = FORE200E_VCC(vcc);
3085	    ASSERT(fore200e_vcc);
3086
3087	    len = sprintf(page,
3088			  "  %08x  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
3089			  (u32)(unsigned long)vcc,
3090			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3091			  fore200e_vcc->tx_pdu,
3092			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3093			  fore200e_vcc->tx_max_pdu,
3094			  fore200e_vcc->rx_pdu,
3095			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3096			  fore200e_vcc->rx_max_pdu);
3097
3098	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
3099	    return len;
3100	}
3101
3102	spin_unlock_irqrestore(&fore200e->q_lock, flags);
3103    }
3104
3105    return 0;
3106}
3107
3108module_init(fore200e_module_init);
3109module_exit(fore200e_module_cleanup);
3110
3111
3112static const struct atmdev_ops fore200e_ops =
3113{
3114	.open       = fore200e_open,
3115	.close      = fore200e_close,
3116	.ioctl      = fore200e_ioctl,
3117	.getsockopt = fore200e_getsockopt,
3118	.setsockopt = fore200e_setsockopt,
3119	.send       = fore200e_send,
3120	.change_qos = fore200e_change_qos,
3121	.proc_read  = fore200e_proc_read,
3122	.owner      = THIS_MODULE
3123};
3124
3125
3126static const struct fore200e_bus fore200e_bus[] = {
3127#ifdef CONFIG_PCI
3128    { "PCA-200E", "pca200e", 32, 4, 32,
3129      fore200e_pca_read,
3130      fore200e_pca_write,
3131      fore200e_pca_dma_map,
3132      fore200e_pca_dma_unmap,
3133      fore200e_pca_dma_sync_for_cpu,
3134      fore200e_pca_dma_sync_for_device,
3135      fore200e_pca_dma_chunk_alloc,
3136      fore200e_pca_dma_chunk_free,
3137      fore200e_pca_configure,
3138      fore200e_pca_map,
3139      fore200e_pca_reset,
3140      fore200e_pca_prom_read,
3141      fore200e_pca_unmap,
3142      NULL,
3143      fore200e_pca_irq_check,
3144      fore200e_pca_irq_ack,
3145      fore200e_pca_proc_read,
3146    },
3147#endif
3148#ifdef CONFIG_SBUS
3149    { "SBA-200E", "sba200e", 32, 64, 32,
3150      fore200e_sba_read,
3151      fore200e_sba_write,
3152      fore200e_sba_dma_map,
3153      fore200e_sba_dma_unmap,
3154      fore200e_sba_dma_sync_for_cpu,
3155      fore200e_sba_dma_sync_for_device,
3156      fore200e_sba_dma_chunk_alloc,
3157      fore200e_sba_dma_chunk_free,
3158      fore200e_sba_configure,
3159      fore200e_sba_map,
3160      fore200e_sba_reset,
3161      fore200e_sba_prom_read,
3162      fore200e_sba_unmap,
3163      fore200e_sba_irq_enable,
3164      fore200e_sba_irq_check,
3165      fore200e_sba_irq_ack,
3166      fore200e_sba_proc_read,
3167    },
3168#endif
3169    {}
3170};
3171
3172MODULE_LICENSE("GPL");
3173#ifdef CONFIG_PCI
3174#ifdef __LITTLE_ENDIAN__
3175MODULE_FIRMWARE("pca200e.bin");
3176#else
3177MODULE_FIRMWARE("pca200e_ecd.bin2");
3178#endif
3179#endif /* CONFIG_PCI */
3180#ifdef CONFIG_SBUS
3181MODULE_FIRMWARE("sba200e_ecd.bin2");
3182#endif
3183