1/* 2 * Fast and scalable bitmap tagging variant. Uses sparser bitmaps spread 3 * over multiple cachelines to avoid ping-pong between multiple submitters 4 * or submitter and completer. Uses rolling wakeups to avoid falling of 5 * the scaling cliff when we run out of tags and have to start putting 6 * submitters to sleep. 7 * 8 * Uses active queue tracking to support fairer distribution of tags 9 * between multiple submitters when a shared tag map is used. 10 * 11 * Copyright (C) 2013-2014 Jens Axboe 12 */ 13#include <linux/kernel.h> 14#include <linux/module.h> 15#include <linux/random.h> 16 17#include <linux/blk-mq.h> 18#include "blk.h" 19#include "blk-mq.h" 20#include "blk-mq-tag.h" 21 22static bool bt_has_free_tags(struct blk_mq_bitmap_tags *bt) 23{ 24 int i; 25 26 for (i = 0; i < bt->map_nr; i++) { 27 struct blk_align_bitmap *bm = &bt->map[i]; 28 int ret; 29 30 ret = find_first_zero_bit(&bm->word, bm->depth); 31 if (ret < bm->depth) 32 return true; 33 } 34 35 return false; 36} 37 38bool blk_mq_has_free_tags(struct blk_mq_tags *tags) 39{ 40 if (!tags) 41 return true; 42 43 return bt_has_free_tags(&tags->bitmap_tags); 44} 45 46static inline int bt_index_inc(int index) 47{ 48 return (index + 1) & (BT_WAIT_QUEUES - 1); 49} 50 51static inline void bt_index_atomic_inc(atomic_t *index) 52{ 53 int old = atomic_read(index); 54 int new = bt_index_inc(old); 55 atomic_cmpxchg(index, old, new); 56} 57 58/* 59 * If a previously inactive queue goes active, bump the active user count. 60 */ 61bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx) 62{ 63 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) && 64 !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 65 atomic_inc(&hctx->tags->active_queues); 66 67 return true; 68} 69 70/* 71 * Wakeup all potentially sleeping on tags 72 */ 73void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve) 74{ 75 struct blk_mq_bitmap_tags *bt; 76 int i, wake_index; 77 78 /* 79 * Make sure all changes prior to this are visible from other CPUs. 80 */ 81 smp_mb(); 82 bt = &tags->bitmap_tags; 83 wake_index = atomic_read(&bt->wake_index); 84 for (i = 0; i < BT_WAIT_QUEUES; i++) { 85 struct bt_wait_state *bs = &bt->bs[wake_index]; 86 87 if (waitqueue_active(&bs->wait)) 88 wake_up(&bs->wait); 89 90 wake_index = bt_index_inc(wake_index); 91 } 92 93 if (include_reserve) { 94 bt = &tags->breserved_tags; 95 if (waitqueue_active(&bt->bs[0].wait)) 96 wake_up(&bt->bs[0].wait); 97 } 98} 99 100/* 101 * If a previously busy queue goes inactive, potential waiters could now 102 * be allowed to queue. Wake them up and check. 103 */ 104void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx) 105{ 106 struct blk_mq_tags *tags = hctx->tags; 107 108 if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 109 return; 110 111 atomic_dec(&tags->active_queues); 112 113 blk_mq_tag_wakeup_all(tags, false); 114} 115 116/* 117 * For shared tag users, we track the number of currently active users 118 * and attempt to provide a fair share of the tag depth for each of them. 119 */ 120static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx, 121 struct blk_mq_bitmap_tags *bt) 122{ 123 unsigned int depth, users; 124 125 if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED)) 126 return true; 127 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) 128 return true; 129 130 /* 131 * Don't try dividing an ant 132 */ 133 if (bt->depth == 1) 134 return true; 135 136 users = atomic_read(&hctx->tags->active_queues); 137 if (!users) 138 return true; 139 140 /* 141 * Allow at least some tags 142 */ 143 depth = max((bt->depth + users - 1) / users, 4U); 144 return atomic_read(&hctx->nr_active) < depth; 145} 146 147static int __bt_get_word(struct blk_align_bitmap *bm, unsigned int last_tag, 148 bool nowrap) 149{ 150 int tag, org_last_tag = last_tag; 151 152 while (1) { 153 tag = find_next_zero_bit(&bm->word, bm->depth, last_tag); 154 if (unlikely(tag >= bm->depth)) { 155 /* 156 * We started with an offset, and we didn't reset the 157 * offset to 0 in a failure case, so start from 0 to 158 * exhaust the map. 159 */ 160 if (org_last_tag && last_tag && !nowrap) { 161 last_tag = org_last_tag = 0; 162 continue; 163 } 164 return -1; 165 } 166 167 if (!test_and_set_bit(tag, &bm->word)) 168 break; 169 170 last_tag = tag + 1; 171 if (last_tag >= bm->depth - 1) 172 last_tag = 0; 173 } 174 175 return tag; 176} 177 178#define BT_ALLOC_RR(tags) (tags->alloc_policy == BLK_TAG_ALLOC_RR) 179 180/* 181 * Straight forward bitmap tag implementation, where each bit is a tag 182 * (cleared == free, and set == busy). The small twist is using per-cpu 183 * last_tag caches, which blk-mq stores in the blk_mq_ctx software queue 184 * contexts. This enables us to drastically limit the space searched, 185 * without dirtying an extra shared cacheline like we would if we stored 186 * the cache value inside the shared blk_mq_bitmap_tags structure. On top 187 * of that, each word of tags is in a separate cacheline. This means that 188 * multiple users will tend to stick to different cachelines, at least 189 * until the map is exhausted. 190 */ 191static int __bt_get(struct blk_mq_hw_ctx *hctx, struct blk_mq_bitmap_tags *bt, 192 unsigned int *tag_cache, struct blk_mq_tags *tags) 193{ 194 unsigned int last_tag, org_last_tag; 195 int index, i, tag; 196 197 if (!hctx_may_queue(hctx, bt)) 198 return -1; 199 200 last_tag = org_last_tag = *tag_cache; 201 index = TAG_TO_INDEX(bt, last_tag); 202 203 for (i = 0; i < bt->map_nr; i++) { 204 tag = __bt_get_word(&bt->map[index], TAG_TO_BIT(bt, last_tag), 205 BT_ALLOC_RR(tags)); 206 if (tag != -1) { 207 tag += (index << bt->bits_per_word); 208 goto done; 209 } 210 211 /* 212 * Jump to next index, and reset the last tag to be the 213 * first tag of that index 214 */ 215 index++; 216 last_tag = (index << bt->bits_per_word); 217 218 if (index >= bt->map_nr) { 219 index = 0; 220 last_tag = 0; 221 } 222 } 223 224 *tag_cache = 0; 225 return -1; 226 227 /* 228 * Only update the cache from the allocation path, if we ended 229 * up using the specific cached tag. 230 */ 231done: 232 if (tag == org_last_tag || unlikely(BT_ALLOC_RR(tags))) { 233 last_tag = tag + 1; 234 if (last_tag >= bt->depth - 1) 235 last_tag = 0; 236 237 *tag_cache = last_tag; 238 } 239 240 return tag; 241} 242 243static struct bt_wait_state *bt_wait_ptr(struct blk_mq_bitmap_tags *bt, 244 struct blk_mq_hw_ctx *hctx) 245{ 246 struct bt_wait_state *bs; 247 int wait_index; 248 249 if (!hctx) 250 return &bt->bs[0]; 251 252 wait_index = atomic_read(&hctx->wait_index); 253 bs = &bt->bs[wait_index]; 254 bt_index_atomic_inc(&hctx->wait_index); 255 return bs; 256} 257 258static int bt_get(struct blk_mq_alloc_data *data, 259 struct blk_mq_bitmap_tags *bt, 260 struct blk_mq_hw_ctx *hctx, 261 unsigned int *last_tag, struct blk_mq_tags *tags) 262{ 263 struct bt_wait_state *bs; 264 DEFINE_WAIT(wait); 265 int tag; 266 267 tag = __bt_get(hctx, bt, last_tag, tags); 268 if (tag != -1) 269 return tag; 270 271 if (!gfpflags_allow_blocking(data->gfp)) 272 return -1; 273 274 bs = bt_wait_ptr(bt, hctx); 275 do { 276 prepare_to_wait(&bs->wait, &wait, TASK_UNINTERRUPTIBLE); 277 278 tag = __bt_get(hctx, bt, last_tag, tags); 279 if (tag != -1) 280 break; 281 282 /* 283 * We're out of tags on this hardware queue, kick any 284 * pending IO submits before going to sleep waiting for 285 * some to complete. Note that hctx can be NULL here for 286 * reserved tag allocation. 287 */ 288 if (hctx) 289 blk_mq_run_hw_queue(hctx, false); 290 291 /* 292 * Retry tag allocation after running the hardware queue, 293 * as running the queue may also have found completions. 294 */ 295 tag = __bt_get(hctx, bt, last_tag, tags); 296 if (tag != -1) 297 break; 298 299 blk_mq_put_ctx(data->ctx); 300 301 io_schedule(); 302 303 data->ctx = blk_mq_get_ctx(data->q); 304 data->hctx = data->q->mq_ops->map_queue(data->q, 305 data->ctx->cpu); 306 if (data->reserved) { 307 bt = &data->hctx->tags->breserved_tags; 308 } else { 309 last_tag = &data->ctx->last_tag; 310 hctx = data->hctx; 311 bt = &hctx->tags->bitmap_tags; 312 } 313 finish_wait(&bs->wait, &wait); 314 bs = bt_wait_ptr(bt, hctx); 315 } while (1); 316 317 finish_wait(&bs->wait, &wait); 318 return tag; 319} 320 321static unsigned int __blk_mq_get_tag(struct blk_mq_alloc_data *data) 322{ 323 int tag; 324 325 tag = bt_get(data, &data->hctx->tags->bitmap_tags, data->hctx, 326 &data->ctx->last_tag, data->hctx->tags); 327 if (tag >= 0) 328 return tag + data->hctx->tags->nr_reserved_tags; 329 330 return BLK_MQ_TAG_FAIL; 331} 332 333static unsigned int __blk_mq_get_reserved_tag(struct blk_mq_alloc_data *data) 334{ 335 int tag, zero = 0; 336 337 if (unlikely(!data->hctx->tags->nr_reserved_tags)) { 338 WARN_ON_ONCE(1); 339 return BLK_MQ_TAG_FAIL; 340 } 341 342 tag = bt_get(data, &data->hctx->tags->breserved_tags, NULL, &zero, 343 data->hctx->tags); 344 if (tag < 0) 345 return BLK_MQ_TAG_FAIL; 346 347 return tag; 348} 349 350unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data) 351{ 352 if (!data->reserved) 353 return __blk_mq_get_tag(data); 354 355 return __blk_mq_get_reserved_tag(data); 356} 357 358static struct bt_wait_state *bt_wake_ptr(struct blk_mq_bitmap_tags *bt) 359{ 360 int i, wake_index; 361 362 wake_index = atomic_read(&bt->wake_index); 363 for (i = 0; i < BT_WAIT_QUEUES; i++) { 364 struct bt_wait_state *bs = &bt->bs[wake_index]; 365 366 if (waitqueue_active(&bs->wait)) { 367 int o = atomic_read(&bt->wake_index); 368 if (wake_index != o) 369 atomic_cmpxchg(&bt->wake_index, o, wake_index); 370 371 return bs; 372 } 373 374 wake_index = bt_index_inc(wake_index); 375 } 376 377 return NULL; 378} 379 380static void bt_clear_tag(struct blk_mq_bitmap_tags *bt, unsigned int tag) 381{ 382 const int index = TAG_TO_INDEX(bt, tag); 383 struct bt_wait_state *bs; 384 int wait_cnt; 385 386 clear_bit(TAG_TO_BIT(bt, tag), &bt->map[index].word); 387 388 /* Ensure that the wait list checks occur after clear_bit(). */ 389 smp_mb(); 390 391 bs = bt_wake_ptr(bt); 392 if (!bs) 393 return; 394 395 wait_cnt = atomic_dec_return(&bs->wait_cnt); 396 if (unlikely(wait_cnt < 0)) 397 wait_cnt = atomic_inc_return(&bs->wait_cnt); 398 if (wait_cnt == 0) { 399 atomic_add(bt->wake_cnt, &bs->wait_cnt); 400 bt_index_atomic_inc(&bt->wake_index); 401 wake_up(&bs->wait); 402 } 403} 404 405void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, unsigned int tag, 406 unsigned int *last_tag) 407{ 408 struct blk_mq_tags *tags = hctx->tags; 409 410 if (tag >= tags->nr_reserved_tags) { 411 const int real_tag = tag - tags->nr_reserved_tags; 412 413 BUG_ON(real_tag >= tags->nr_tags); 414 bt_clear_tag(&tags->bitmap_tags, real_tag); 415 if (likely(tags->alloc_policy == BLK_TAG_ALLOC_FIFO)) 416 *last_tag = real_tag; 417 } else { 418 BUG_ON(tag >= tags->nr_reserved_tags); 419 bt_clear_tag(&tags->breserved_tags, tag); 420 } 421} 422 423static void bt_for_each(struct blk_mq_hw_ctx *hctx, 424 struct blk_mq_bitmap_tags *bt, unsigned int off, 425 busy_iter_fn *fn, void *data, bool reserved) 426{ 427 struct request *rq; 428 int bit, i; 429 430 for (i = 0; i < bt->map_nr; i++) { 431 struct blk_align_bitmap *bm = &bt->map[i]; 432 433 for (bit = find_first_bit(&bm->word, bm->depth); 434 bit < bm->depth; 435 bit = find_next_bit(&bm->word, bm->depth, bit + 1)) { 436 rq = hctx->tags->rqs[off + bit]; 437 if (rq->q == hctx->queue) 438 fn(hctx, rq, data, reserved); 439 } 440 441 off += (1 << bt->bits_per_word); 442 } 443} 444 445static void bt_tags_for_each(struct blk_mq_tags *tags, 446 struct blk_mq_bitmap_tags *bt, unsigned int off, 447 busy_tag_iter_fn *fn, void *data, bool reserved) 448{ 449 struct request *rq; 450 int bit, i; 451 452 if (!tags->rqs) 453 return; 454 for (i = 0; i < bt->map_nr; i++) { 455 struct blk_align_bitmap *bm = &bt->map[i]; 456 457 for (bit = find_first_bit(&bm->word, bm->depth); 458 bit < bm->depth; 459 bit = find_next_bit(&bm->word, bm->depth, bit + 1)) { 460 rq = tags->rqs[off + bit]; 461 fn(rq, data, reserved); 462 } 463 464 off += (1 << bt->bits_per_word); 465 } 466} 467 468void blk_mq_all_tag_busy_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn, 469 void *priv) 470{ 471 if (tags->nr_reserved_tags) 472 bt_tags_for_each(tags, &tags->breserved_tags, 0, fn, priv, true); 473 bt_tags_for_each(tags, &tags->bitmap_tags, tags->nr_reserved_tags, fn, priv, 474 false); 475} 476EXPORT_SYMBOL(blk_mq_all_tag_busy_iter); 477 478void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_iter_fn *fn, 479 void *priv) 480{ 481 struct blk_mq_hw_ctx *hctx; 482 int i; 483 484 485 queue_for_each_hw_ctx(q, hctx, i) { 486 struct blk_mq_tags *tags = hctx->tags; 487 488 /* 489 * If not software queues are currently mapped to this 490 * hardware queue, there's nothing to check 491 */ 492 if (!blk_mq_hw_queue_mapped(hctx)) 493 continue; 494 495 if (tags->nr_reserved_tags) 496 bt_for_each(hctx, &tags->breserved_tags, 0, fn, priv, true); 497 bt_for_each(hctx, &tags->bitmap_tags, tags->nr_reserved_tags, fn, priv, 498 false); 499 } 500 501} 502 503static unsigned int bt_unused_tags(struct blk_mq_bitmap_tags *bt) 504{ 505 unsigned int i, used; 506 507 for (i = 0, used = 0; i < bt->map_nr; i++) { 508 struct blk_align_bitmap *bm = &bt->map[i]; 509 510 used += bitmap_weight(&bm->word, bm->depth); 511 } 512 513 return bt->depth - used; 514} 515 516static void bt_update_count(struct blk_mq_bitmap_tags *bt, 517 unsigned int depth) 518{ 519 unsigned int tags_per_word = 1U << bt->bits_per_word; 520 unsigned int map_depth = depth; 521 522 if (depth) { 523 int i; 524 525 for (i = 0; i < bt->map_nr; i++) { 526 bt->map[i].depth = min(map_depth, tags_per_word); 527 map_depth -= bt->map[i].depth; 528 } 529 } 530 531 bt->wake_cnt = BT_WAIT_BATCH; 532 if (bt->wake_cnt > depth / BT_WAIT_QUEUES) 533 bt->wake_cnt = max(1U, depth / BT_WAIT_QUEUES); 534 535 bt->depth = depth; 536} 537 538static int bt_alloc(struct blk_mq_bitmap_tags *bt, unsigned int depth, 539 int node, bool reserved) 540{ 541 int i; 542 543 bt->bits_per_word = ilog2(BITS_PER_LONG); 544 545 /* 546 * Depth can be zero for reserved tags, that's not a failure 547 * condition. 548 */ 549 if (depth) { 550 unsigned int nr, tags_per_word; 551 552 tags_per_word = (1 << bt->bits_per_word); 553 554 /* 555 * If the tag space is small, shrink the number of tags 556 * per word so we spread over a few cachelines, at least. 557 * If less than 4 tags, just forget about it, it's not 558 * going to work optimally anyway. 559 */ 560 if (depth >= 4) { 561 while (tags_per_word * 4 > depth) { 562 bt->bits_per_word--; 563 tags_per_word = (1 << bt->bits_per_word); 564 } 565 } 566 567 nr = ALIGN(depth, tags_per_word) / tags_per_word; 568 bt->map = kzalloc_node(nr * sizeof(struct blk_align_bitmap), 569 GFP_KERNEL, node); 570 if (!bt->map) 571 return -ENOMEM; 572 573 bt->map_nr = nr; 574 } 575 576 bt->bs = kzalloc(BT_WAIT_QUEUES * sizeof(*bt->bs), GFP_KERNEL); 577 if (!bt->bs) { 578 kfree(bt->map); 579 bt->map = NULL; 580 return -ENOMEM; 581 } 582 583 bt_update_count(bt, depth); 584 585 for (i = 0; i < BT_WAIT_QUEUES; i++) { 586 init_waitqueue_head(&bt->bs[i].wait); 587 atomic_set(&bt->bs[i].wait_cnt, bt->wake_cnt); 588 } 589 590 return 0; 591} 592 593static void bt_free(struct blk_mq_bitmap_tags *bt) 594{ 595 kfree(bt->map); 596 kfree(bt->bs); 597} 598 599static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags, 600 int node, int alloc_policy) 601{ 602 unsigned int depth = tags->nr_tags - tags->nr_reserved_tags; 603 604 tags->alloc_policy = alloc_policy; 605 606 if (bt_alloc(&tags->bitmap_tags, depth, node, false)) 607 goto enomem; 608 if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, node, true)) 609 goto enomem; 610 611 return tags; 612enomem: 613 bt_free(&tags->bitmap_tags); 614 kfree(tags); 615 return NULL; 616} 617 618struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags, 619 unsigned int reserved_tags, 620 int node, int alloc_policy) 621{ 622 struct blk_mq_tags *tags; 623 624 if (total_tags > BLK_MQ_TAG_MAX) { 625 pr_err("blk-mq: tag depth too large\n"); 626 return NULL; 627 } 628 629 tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node); 630 if (!tags) 631 return NULL; 632 633 if (!zalloc_cpumask_var(&tags->cpumask, GFP_KERNEL)) { 634 kfree(tags); 635 return NULL; 636 } 637 638 tags->nr_tags = total_tags; 639 tags->nr_reserved_tags = reserved_tags; 640 641 return blk_mq_init_bitmap_tags(tags, node, alloc_policy); 642} 643 644void blk_mq_free_tags(struct blk_mq_tags *tags) 645{ 646 bt_free(&tags->bitmap_tags); 647 bt_free(&tags->breserved_tags); 648 free_cpumask_var(tags->cpumask); 649 kfree(tags); 650} 651 652void blk_mq_tag_init_last_tag(struct blk_mq_tags *tags, unsigned int *tag) 653{ 654 unsigned int depth = tags->nr_tags - tags->nr_reserved_tags; 655 656 *tag = prandom_u32() % depth; 657} 658 659int blk_mq_tag_update_depth(struct blk_mq_tags *tags, unsigned int tdepth) 660{ 661 tdepth -= tags->nr_reserved_tags; 662 if (tdepth > tags->nr_tags) 663 return -EINVAL; 664 665 /* 666 * Don't need (or can't) update reserved tags here, they remain 667 * static and should never need resizing. 668 */ 669 bt_update_count(&tags->bitmap_tags, tdepth); 670 blk_mq_tag_wakeup_all(tags, false); 671 return 0; 672} 673 674/** 675 * blk_mq_unique_tag() - return a tag that is unique queue-wide 676 * @rq: request for which to compute a unique tag 677 * 678 * The tag field in struct request is unique per hardware queue but not over 679 * all hardware queues. Hence this function that returns a tag with the 680 * hardware context index in the upper bits and the per hardware queue tag in 681 * the lower bits. 682 * 683 * Note: When called for a request that is queued on a non-multiqueue request 684 * queue, the hardware context index is set to zero. 685 */ 686u32 blk_mq_unique_tag(struct request *rq) 687{ 688 struct request_queue *q = rq->q; 689 struct blk_mq_hw_ctx *hctx; 690 int hwq = 0; 691 692 if (q->mq_ops) { 693 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu); 694 hwq = hctx->queue_num; 695 } 696 697 return (hwq << BLK_MQ_UNIQUE_TAG_BITS) | 698 (rq->tag & BLK_MQ_UNIQUE_TAG_MASK); 699} 700EXPORT_SYMBOL(blk_mq_unique_tag); 701 702ssize_t blk_mq_tag_sysfs_show(struct blk_mq_tags *tags, char *page) 703{ 704 char *orig_page = page; 705 unsigned int free, res; 706 707 if (!tags) 708 return 0; 709 710 page += sprintf(page, "nr_tags=%u, reserved_tags=%u, " 711 "bits_per_word=%u\n", 712 tags->nr_tags, tags->nr_reserved_tags, 713 tags->bitmap_tags.bits_per_word); 714 715 free = bt_unused_tags(&tags->bitmap_tags); 716 res = bt_unused_tags(&tags->breserved_tags); 717 718 page += sprintf(page, "nr_free=%u, nr_reserved=%u\n", free, res); 719 page += sprintf(page, "active_queues=%u\n", atomic_read(&tags->active_queues)); 720 721 return page - orig_page; 722} 723