1#include <linux/gfp.h>
2#include <linux/initrd.h>
3#include <linux/ioport.h>
4#include <linux/swap.h>
5#include <linux/memblock.h>
6#include <linux/bootmem.h>	/* for max_low_pfn */
7
8#include <asm/cacheflush.h>
9#include <asm/e820.h>
10#include <asm/init.h>
11#include <asm/page.h>
12#include <asm/page_types.h>
13#include <asm/sections.h>
14#include <asm/setup.h>
15#include <asm/tlbflush.h>
16#include <asm/tlb.h>
17#include <asm/proto.h>
18#include <asm/dma.h>		/* for MAX_DMA_PFN */
19#include <asm/microcode.h>
20
21/*
22 * We need to define the tracepoints somewhere, and tlb.c
23 * is only compied when SMP=y.
24 */
25#define CREATE_TRACE_POINTS
26#include <trace/events/tlb.h>
27
28#include "mm_internal.h"
29
30/*
31 * Tables translating between page_cache_type_t and pte encoding.
32 *
33 * The default values are defined statically as minimal supported mode;
34 * WC and WT fall back to UC-.  pat_init() updates these values to support
35 * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
36 * for the details.  Note, __early_ioremap() used during early boot-time
37 * takes pgprot_t (pte encoding) and does not use these tables.
38 *
39 *   Index into __cachemode2pte_tbl[] is the cachemode.
40 *
41 *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
42 *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
43 */
44uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
45	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
46	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
47	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
48	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
49	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
50	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
51};
52EXPORT_SYMBOL(__cachemode2pte_tbl);
53
54uint8_t __pte2cachemode_tbl[8] = {
55	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
56	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
57	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
58	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
59	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
60	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
61	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
62	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
63};
64EXPORT_SYMBOL(__pte2cachemode_tbl);
65
66static unsigned long __initdata pgt_buf_start;
67static unsigned long __initdata pgt_buf_end;
68static unsigned long __initdata pgt_buf_top;
69
70static unsigned long min_pfn_mapped;
71
72static bool __initdata can_use_brk_pgt = true;
73
74/*
75 * Pages returned are already directly mapped.
76 *
77 * Changing that is likely to break Xen, see commit:
78 *
79 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
80 *
81 * for detailed information.
82 */
83__ref void *alloc_low_pages(unsigned int num)
84{
85	unsigned long pfn;
86	int i;
87
88	if (after_bootmem) {
89		unsigned int order;
90
91		order = get_order((unsigned long)num << PAGE_SHIFT);
92		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_NOTRACK |
93						__GFP_ZERO, order);
94	}
95
96	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
97		unsigned long ret;
98		if (min_pfn_mapped >= max_pfn_mapped)
99			panic("alloc_low_pages: ran out of memory");
100		ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
101					max_pfn_mapped << PAGE_SHIFT,
102					PAGE_SIZE * num , PAGE_SIZE);
103		if (!ret)
104			panic("alloc_low_pages: can not alloc memory");
105		memblock_reserve(ret, PAGE_SIZE * num);
106		pfn = ret >> PAGE_SHIFT;
107	} else {
108		pfn = pgt_buf_end;
109		pgt_buf_end += num;
110		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
111			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
112	}
113
114	for (i = 0; i < num; i++) {
115		void *adr;
116
117		adr = __va((pfn + i) << PAGE_SHIFT);
118		clear_page(adr);
119	}
120
121	return __va(pfn << PAGE_SHIFT);
122}
123
124/* need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS */
125#define INIT_PGT_BUF_SIZE	(6 * PAGE_SIZE)
126RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
127void  __init early_alloc_pgt_buf(void)
128{
129	unsigned long tables = INIT_PGT_BUF_SIZE;
130	phys_addr_t base;
131
132	base = __pa(extend_brk(tables, PAGE_SIZE));
133
134	pgt_buf_start = base >> PAGE_SHIFT;
135	pgt_buf_end = pgt_buf_start;
136	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
137}
138
139int after_bootmem;
140
141early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
142
143struct map_range {
144	unsigned long start;
145	unsigned long end;
146	unsigned page_size_mask;
147};
148
149static int page_size_mask;
150
151static void __init probe_page_size_mask(void)
152{
153#if !defined(CONFIG_DEBUG_PAGEALLOC) && !defined(CONFIG_KMEMCHECK)
154	/*
155	 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
156	 * This will simplify cpa(), which otherwise needs to support splitting
157	 * large pages into small in interrupt context, etc.
158	 */
159	if (cpu_has_pse)
160		page_size_mask |= 1 << PG_LEVEL_2M;
161#endif
162
163	/* Enable PSE if available */
164	if (cpu_has_pse)
165		cr4_set_bits_and_update_boot(X86_CR4_PSE);
166
167	/* Enable PGE if available */
168	if (cpu_has_pge) {
169		cr4_set_bits_and_update_boot(X86_CR4_PGE);
170		__supported_pte_mask |= _PAGE_GLOBAL;
171	} else
172		__supported_pte_mask &= ~_PAGE_GLOBAL;
173
174	/* Enable 1 GB linear kernel mappings if available: */
175	if (direct_gbpages && cpu_has_gbpages) {
176		printk(KERN_INFO "Using GB pages for direct mapping\n");
177		page_size_mask |= 1 << PG_LEVEL_1G;
178	} else {
179		direct_gbpages = 0;
180	}
181}
182
183#ifdef CONFIG_X86_32
184#define NR_RANGE_MR 3
185#else /* CONFIG_X86_64 */
186#define NR_RANGE_MR 5
187#endif
188
189static int __meminit save_mr(struct map_range *mr, int nr_range,
190			     unsigned long start_pfn, unsigned long end_pfn,
191			     unsigned long page_size_mask)
192{
193	if (start_pfn < end_pfn) {
194		if (nr_range >= NR_RANGE_MR)
195			panic("run out of range for init_memory_mapping\n");
196		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
197		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
198		mr[nr_range].page_size_mask = page_size_mask;
199		nr_range++;
200	}
201
202	return nr_range;
203}
204
205/*
206 * adjust the page_size_mask for small range to go with
207 *	big page size instead small one if nearby are ram too.
208 */
209static void __init_refok adjust_range_page_size_mask(struct map_range *mr,
210							 int nr_range)
211{
212	int i;
213
214	for (i = 0; i < nr_range; i++) {
215		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
216		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
217			unsigned long start = round_down(mr[i].start, PMD_SIZE);
218			unsigned long end = round_up(mr[i].end, PMD_SIZE);
219
220#ifdef CONFIG_X86_32
221			if ((end >> PAGE_SHIFT) > max_low_pfn)
222				continue;
223#endif
224
225			if (memblock_is_region_memory(start, end - start))
226				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
227		}
228		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
229		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
230			unsigned long start = round_down(mr[i].start, PUD_SIZE);
231			unsigned long end = round_up(mr[i].end, PUD_SIZE);
232
233			if (memblock_is_region_memory(start, end - start))
234				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
235		}
236	}
237}
238
239static const char *page_size_string(struct map_range *mr)
240{
241	static const char str_1g[] = "1G";
242	static const char str_2m[] = "2M";
243	static const char str_4m[] = "4M";
244	static const char str_4k[] = "4k";
245
246	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
247		return str_1g;
248	/*
249	 * 32-bit without PAE has a 4M large page size.
250	 * PG_LEVEL_2M is misnamed, but we can at least
251	 * print out the right size in the string.
252	 */
253	if (IS_ENABLED(CONFIG_X86_32) &&
254	    !IS_ENABLED(CONFIG_X86_PAE) &&
255	    mr->page_size_mask & (1<<PG_LEVEL_2M))
256		return str_4m;
257
258	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
259		return str_2m;
260
261	return str_4k;
262}
263
264static int __meminit split_mem_range(struct map_range *mr, int nr_range,
265				     unsigned long start,
266				     unsigned long end)
267{
268	unsigned long start_pfn, end_pfn, limit_pfn;
269	unsigned long pfn;
270	int i;
271
272	limit_pfn = PFN_DOWN(end);
273
274	/* head if not big page alignment ? */
275	pfn = start_pfn = PFN_DOWN(start);
276#ifdef CONFIG_X86_32
277	/*
278	 * Don't use a large page for the first 2/4MB of memory
279	 * because there are often fixed size MTRRs in there
280	 * and overlapping MTRRs into large pages can cause
281	 * slowdowns.
282	 */
283	if (pfn == 0)
284		end_pfn = PFN_DOWN(PMD_SIZE);
285	else
286		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
287#else /* CONFIG_X86_64 */
288	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
289#endif
290	if (end_pfn > limit_pfn)
291		end_pfn = limit_pfn;
292	if (start_pfn < end_pfn) {
293		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
294		pfn = end_pfn;
295	}
296
297	/* big page (2M) range */
298	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
299#ifdef CONFIG_X86_32
300	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
301#else /* CONFIG_X86_64 */
302	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
303	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
304		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
305#endif
306
307	if (start_pfn < end_pfn) {
308		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
309				page_size_mask & (1<<PG_LEVEL_2M));
310		pfn = end_pfn;
311	}
312
313#ifdef CONFIG_X86_64
314	/* big page (1G) range */
315	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
316	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
317	if (start_pfn < end_pfn) {
318		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
319				page_size_mask &
320				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
321		pfn = end_pfn;
322	}
323
324	/* tail is not big page (1G) alignment */
325	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
326	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
327	if (start_pfn < end_pfn) {
328		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
329				page_size_mask & (1<<PG_LEVEL_2M));
330		pfn = end_pfn;
331	}
332#endif
333
334	/* tail is not big page (2M) alignment */
335	start_pfn = pfn;
336	end_pfn = limit_pfn;
337	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
338
339	if (!after_bootmem)
340		adjust_range_page_size_mask(mr, nr_range);
341
342	/* try to merge same page size and continuous */
343	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
344		unsigned long old_start;
345		if (mr[i].end != mr[i+1].start ||
346		    mr[i].page_size_mask != mr[i+1].page_size_mask)
347			continue;
348		/* move it */
349		old_start = mr[i].start;
350		memmove(&mr[i], &mr[i+1],
351			(nr_range - 1 - i) * sizeof(struct map_range));
352		mr[i--].start = old_start;
353		nr_range--;
354	}
355
356	for (i = 0; i < nr_range; i++)
357		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
358				mr[i].start, mr[i].end - 1,
359				page_size_string(&mr[i]));
360
361	return nr_range;
362}
363
364struct range pfn_mapped[E820_X_MAX];
365int nr_pfn_mapped;
366
367static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
368{
369	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_X_MAX,
370					     nr_pfn_mapped, start_pfn, end_pfn);
371	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_X_MAX);
372
373	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
374
375	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
376		max_low_pfn_mapped = max(max_low_pfn_mapped,
377					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
378}
379
380bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
381{
382	int i;
383
384	for (i = 0; i < nr_pfn_mapped; i++)
385		if ((start_pfn >= pfn_mapped[i].start) &&
386		    (end_pfn <= pfn_mapped[i].end))
387			return true;
388
389	return false;
390}
391
392/*
393 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
394 * This runs before bootmem is initialized and gets pages directly from
395 * the physical memory. To access them they are temporarily mapped.
396 */
397unsigned long __init_refok init_memory_mapping(unsigned long start,
398					       unsigned long end)
399{
400	struct map_range mr[NR_RANGE_MR];
401	unsigned long ret = 0;
402	int nr_range, i;
403
404	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
405	       start, end - 1);
406
407	memset(mr, 0, sizeof(mr));
408	nr_range = split_mem_range(mr, 0, start, end);
409
410	for (i = 0; i < nr_range; i++)
411		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
412						   mr[i].page_size_mask);
413
414	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
415
416	return ret >> PAGE_SHIFT;
417}
418
419/*
420 * We need to iterate through the E820 memory map and create direct mappings
421 * for only E820_RAM and E820_KERN_RESERVED regions. We cannot simply
422 * create direct mappings for all pfns from [0 to max_low_pfn) and
423 * [4GB to max_pfn) because of possible memory holes in high addresses
424 * that cannot be marked as UC by fixed/variable range MTRRs.
425 * Depending on the alignment of E820 ranges, this may possibly result
426 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
427 *
428 * init_mem_mapping() calls init_range_memory_mapping() with big range.
429 * That range would have hole in the middle or ends, and only ram parts
430 * will be mapped in init_range_memory_mapping().
431 */
432static unsigned long __init init_range_memory_mapping(
433					   unsigned long r_start,
434					   unsigned long r_end)
435{
436	unsigned long start_pfn, end_pfn;
437	unsigned long mapped_ram_size = 0;
438	int i;
439
440	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
441		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
442		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
443		if (start >= end)
444			continue;
445
446		/*
447		 * if it is overlapping with brk pgt, we need to
448		 * alloc pgt buf from memblock instead.
449		 */
450		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
451				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
452		init_memory_mapping(start, end);
453		mapped_ram_size += end - start;
454		can_use_brk_pgt = true;
455	}
456
457	return mapped_ram_size;
458}
459
460static unsigned long __init get_new_step_size(unsigned long step_size)
461{
462	/*
463	 * Initial mapped size is PMD_SIZE (2M).
464	 * We can not set step_size to be PUD_SIZE (1G) yet.
465	 * In worse case, when we cross the 1G boundary, and
466	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
467	 * to map 1G range with PTE. Hence we use one less than the
468	 * difference of page table level shifts.
469	 *
470	 * Don't need to worry about overflow in the top-down case, on 32bit,
471	 * when step_size is 0, round_down() returns 0 for start, and that
472	 * turns it into 0x100000000ULL.
473	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
474	 * needs to be taken into consideration by the code below.
475	 */
476	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
477}
478
479/**
480 * memory_map_top_down - Map [map_start, map_end) top down
481 * @map_start: start address of the target memory range
482 * @map_end: end address of the target memory range
483 *
484 * This function will setup direct mapping for memory range
485 * [map_start, map_end) in top-down. That said, the page tables
486 * will be allocated at the end of the memory, and we map the
487 * memory in top-down.
488 */
489static void __init memory_map_top_down(unsigned long map_start,
490				       unsigned long map_end)
491{
492	unsigned long real_end, start, last_start;
493	unsigned long step_size;
494	unsigned long addr;
495	unsigned long mapped_ram_size = 0;
496
497	/* xen has big range in reserved near end of ram, skip it at first.*/
498	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
499	real_end = addr + PMD_SIZE;
500
501	/* step_size need to be small so pgt_buf from BRK could cover it */
502	step_size = PMD_SIZE;
503	max_pfn_mapped = 0; /* will get exact value next */
504	min_pfn_mapped = real_end >> PAGE_SHIFT;
505	last_start = start = real_end;
506
507	/*
508	 * We start from the top (end of memory) and go to the bottom.
509	 * The memblock_find_in_range() gets us a block of RAM from the
510	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
511	 * for page table.
512	 */
513	while (last_start > map_start) {
514		if (last_start > step_size) {
515			start = round_down(last_start - 1, step_size);
516			if (start < map_start)
517				start = map_start;
518		} else
519			start = map_start;
520		mapped_ram_size += init_range_memory_mapping(start,
521							last_start);
522		last_start = start;
523		min_pfn_mapped = last_start >> PAGE_SHIFT;
524		if (mapped_ram_size >= step_size)
525			step_size = get_new_step_size(step_size);
526	}
527
528	if (real_end < map_end)
529		init_range_memory_mapping(real_end, map_end);
530}
531
532/**
533 * memory_map_bottom_up - Map [map_start, map_end) bottom up
534 * @map_start: start address of the target memory range
535 * @map_end: end address of the target memory range
536 *
537 * This function will setup direct mapping for memory range
538 * [map_start, map_end) in bottom-up. Since we have limited the
539 * bottom-up allocation above the kernel, the page tables will
540 * be allocated just above the kernel and we map the memory
541 * in [map_start, map_end) in bottom-up.
542 */
543static void __init memory_map_bottom_up(unsigned long map_start,
544					unsigned long map_end)
545{
546	unsigned long next, start;
547	unsigned long mapped_ram_size = 0;
548	/* step_size need to be small so pgt_buf from BRK could cover it */
549	unsigned long step_size = PMD_SIZE;
550
551	start = map_start;
552	min_pfn_mapped = start >> PAGE_SHIFT;
553
554	/*
555	 * We start from the bottom (@map_start) and go to the top (@map_end).
556	 * The memblock_find_in_range() gets us a block of RAM from the
557	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
558	 * for page table.
559	 */
560	while (start < map_end) {
561		if (step_size && map_end - start > step_size) {
562			next = round_up(start + 1, step_size);
563			if (next > map_end)
564				next = map_end;
565		} else {
566			next = map_end;
567		}
568
569		mapped_ram_size += init_range_memory_mapping(start, next);
570		start = next;
571
572		if (mapped_ram_size >= step_size)
573			step_size = get_new_step_size(step_size);
574	}
575}
576
577void __init init_mem_mapping(void)
578{
579	unsigned long end;
580
581	probe_page_size_mask();
582
583#ifdef CONFIG_X86_64
584	end = max_pfn << PAGE_SHIFT;
585#else
586	end = max_low_pfn << PAGE_SHIFT;
587#endif
588
589	/* the ISA range is always mapped regardless of memory holes */
590	init_memory_mapping(0, ISA_END_ADDRESS);
591
592	/*
593	 * If the allocation is in bottom-up direction, we setup direct mapping
594	 * in bottom-up, otherwise we setup direct mapping in top-down.
595	 */
596	if (memblock_bottom_up()) {
597		unsigned long kernel_end = __pa_symbol(_end);
598
599		/*
600		 * we need two separate calls here. This is because we want to
601		 * allocate page tables above the kernel. So we first map
602		 * [kernel_end, end) to make memory above the kernel be mapped
603		 * as soon as possible. And then use page tables allocated above
604		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
605		 */
606		memory_map_bottom_up(kernel_end, end);
607		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
608	} else {
609		memory_map_top_down(ISA_END_ADDRESS, end);
610	}
611
612#ifdef CONFIG_X86_64
613	if (max_pfn > max_low_pfn) {
614		/* can we preseve max_low_pfn ?*/
615		max_low_pfn = max_pfn;
616	}
617#else
618	early_ioremap_page_table_range_init();
619#endif
620
621	load_cr3(swapper_pg_dir);
622	__flush_tlb_all();
623
624	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
625}
626
627/*
628 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
629 * is valid. The argument is a physical page number.
630 *
631 *
632 * On x86, access has to be given to the first megabyte of ram because that area
633 * contains BIOS code and data regions used by X and dosemu and similar apps.
634 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
635 * mmio resources as well as potential bios/acpi data regions.
636 */
637int devmem_is_allowed(unsigned long pagenr)
638{
639	if (pagenr < 256)
640		return 1;
641	if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
642		return 0;
643	if (!page_is_ram(pagenr))
644		return 1;
645	return 0;
646}
647
648void free_init_pages(char *what, unsigned long begin, unsigned long end)
649{
650	unsigned long begin_aligned, end_aligned;
651
652	/* Make sure boundaries are page aligned */
653	begin_aligned = PAGE_ALIGN(begin);
654	end_aligned   = end & PAGE_MASK;
655
656	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
657		begin = begin_aligned;
658		end   = end_aligned;
659	}
660
661	if (begin >= end)
662		return;
663
664	/*
665	 * If debugging page accesses then do not free this memory but
666	 * mark them not present - any buggy init-section access will
667	 * create a kernel page fault:
668	 */
669#ifdef CONFIG_DEBUG_PAGEALLOC
670	printk(KERN_INFO "debug: unmapping init [mem %#010lx-%#010lx]\n",
671		begin, end - 1);
672	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
673#else
674	/*
675	 * We just marked the kernel text read only above, now that
676	 * we are going to free part of that, we need to make that
677	 * writeable and non-executable first.
678	 */
679	set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
680	set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
681
682	free_reserved_area((void *)begin, (void *)end, POISON_FREE_INITMEM, what);
683#endif
684}
685
686void free_initmem(void)
687{
688	free_init_pages("unused kernel",
689			(unsigned long)(&__init_begin),
690			(unsigned long)(&__init_end));
691}
692
693#ifdef CONFIG_BLK_DEV_INITRD
694void __init free_initrd_mem(unsigned long start, unsigned long end)
695{
696	/*
697	 * Remember, initrd memory may contain microcode or other useful things.
698	 * Before we lose initrd mem, we need to find a place to hold them
699	 * now that normal virtual memory is enabled.
700	 */
701	save_microcode_in_initrd();
702
703	/*
704	 * end could be not aligned, and We can not align that,
705	 * decompresser could be confused by aligned initrd_end
706	 * We already reserve the end partial page before in
707	 *   - i386_start_kernel()
708	 *   - x86_64_start_kernel()
709	 *   - relocate_initrd()
710	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
711	 */
712	free_init_pages("initrd", start, PAGE_ALIGN(end));
713}
714#endif
715
716void __init zone_sizes_init(void)
717{
718	unsigned long max_zone_pfns[MAX_NR_ZONES];
719
720	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
721
722#ifdef CONFIG_ZONE_DMA
723	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
724#endif
725#ifdef CONFIG_ZONE_DMA32
726	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
727#endif
728	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
729#ifdef CONFIG_HIGHMEM
730	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
731#endif
732
733	free_area_init_nodes(max_zone_pfns);
734}
735
736DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
737#ifdef CONFIG_SMP
738	.active_mm = &init_mm,
739	.state = 0,
740#endif
741	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
742};
743EXPORT_SYMBOL_GPL(cpu_tlbstate);
744
745void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
746{
747	/* entry 0 MUST be WB (hardwired to speed up translations) */
748	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
749
750	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
751	__pte2cachemode_tbl[entry] = cache;
752}
753