1/*---------------------------------------------------------------------------+ 2 | poly_sin.c | 3 | | 4 | Computation of an approximation of the sin function and the cosine | 5 | function by a polynomial. | 6 | | 7 | Copyright (C) 1992,1993,1994,1997,1999 | 8 | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia | 9 | E-mail billm@melbpc.org.au | 10 | | 11 | | 12 +---------------------------------------------------------------------------*/ 13 14#include "exception.h" 15#include "reg_constant.h" 16#include "fpu_emu.h" 17#include "fpu_system.h" 18#include "control_w.h" 19#include "poly.h" 20 21#define N_COEFF_P 4 22#define N_COEFF_N 4 23 24static const unsigned long long pos_terms_l[N_COEFF_P] = { 25 0xaaaaaaaaaaaaaaabLL, 26 0x00d00d00d00cf906LL, 27 0x000006b99159a8bbLL, 28 0x000000000d7392e6LL 29}; 30 31static const unsigned long long neg_terms_l[N_COEFF_N] = { 32 0x2222222222222167LL, 33 0x0002e3bc74aab624LL, 34 0x0000000b09229062LL, 35 0x00000000000c7973LL 36}; 37 38#define N_COEFF_PH 4 39#define N_COEFF_NH 4 40static const unsigned long long pos_terms_h[N_COEFF_PH] = { 41 0x0000000000000000LL, 42 0x05b05b05b05b0406LL, 43 0x000049f93edd91a9LL, 44 0x00000000c9c9ed62LL 45}; 46 47static const unsigned long long neg_terms_h[N_COEFF_NH] = { 48 0xaaaaaaaaaaaaaa98LL, 49 0x001a01a01a019064LL, 50 0x0000008f76c68a77LL, 51 0x0000000000d58f5eLL 52}; 53 54/*--- poly_sine() -----------------------------------------------------------+ 55 | | 56 +---------------------------------------------------------------------------*/ 57void poly_sine(FPU_REG *st0_ptr) 58{ 59 int exponent, echange; 60 Xsig accumulator, argSqrd, argTo4; 61 unsigned long fix_up, adj; 62 unsigned long long fixed_arg; 63 FPU_REG result; 64 65 exponent = exponent(st0_ptr); 66 67 accumulator.lsw = accumulator.midw = accumulator.msw = 0; 68 69 /* Split into two ranges, for arguments below and above 1.0 */ 70 /* The boundary between upper and lower is approx 0.88309101259 */ 71 if ((exponent < -1) 72 || ((exponent == -1) && (st0_ptr->sigh <= 0xe21240aa))) { 73 /* The argument is <= 0.88309101259 */ 74 75 argSqrd.msw = st0_ptr->sigh; 76 argSqrd.midw = st0_ptr->sigl; 77 argSqrd.lsw = 0; 78 mul64_Xsig(&argSqrd, &significand(st0_ptr)); 79 shr_Xsig(&argSqrd, 2 * (-1 - exponent)); 80 argTo4.msw = argSqrd.msw; 81 argTo4.midw = argSqrd.midw; 82 argTo4.lsw = argSqrd.lsw; 83 mul_Xsig_Xsig(&argTo4, &argTo4); 84 85 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l, 86 N_COEFF_N - 1); 87 mul_Xsig_Xsig(&accumulator, &argSqrd); 88 negate_Xsig(&accumulator); 89 90 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l, 91 N_COEFF_P - 1); 92 93 shr_Xsig(&accumulator, 2); /* Divide by four */ 94 accumulator.msw |= 0x80000000; /* Add 1.0 */ 95 96 mul64_Xsig(&accumulator, &significand(st0_ptr)); 97 mul64_Xsig(&accumulator, &significand(st0_ptr)); 98 mul64_Xsig(&accumulator, &significand(st0_ptr)); 99 100 /* Divide by four, FPU_REG compatible, etc */ 101 exponent = 3 * exponent; 102 103 /* The minimum exponent difference is 3 */ 104 shr_Xsig(&accumulator, exponent(st0_ptr) - exponent); 105 106 negate_Xsig(&accumulator); 107 XSIG_LL(accumulator) += significand(st0_ptr); 108 109 echange = round_Xsig(&accumulator); 110 111 setexponentpos(&result, exponent(st0_ptr) + echange); 112 } else { 113 /* The argument is > 0.88309101259 */ 114 /* We use sin(st(0)) = cos(pi/2-st(0)) */ 115 116 fixed_arg = significand(st0_ptr); 117 118 if (exponent == 0) { 119 /* The argument is >= 1.0 */ 120 121 /* Put the binary point at the left. */ 122 fixed_arg <<= 1; 123 } 124 /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ 125 fixed_arg = 0x921fb54442d18469LL - fixed_arg; 126 /* There is a special case which arises due to rounding, to fix here. */ 127 if (fixed_arg == 0xffffffffffffffffLL) 128 fixed_arg = 0; 129 130 XSIG_LL(argSqrd) = fixed_arg; 131 argSqrd.lsw = 0; 132 mul64_Xsig(&argSqrd, &fixed_arg); 133 134 XSIG_LL(argTo4) = XSIG_LL(argSqrd); 135 argTo4.lsw = argSqrd.lsw; 136 mul_Xsig_Xsig(&argTo4, &argTo4); 137 138 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h, 139 N_COEFF_NH - 1); 140 mul_Xsig_Xsig(&accumulator, &argSqrd); 141 negate_Xsig(&accumulator); 142 143 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h, 144 N_COEFF_PH - 1); 145 negate_Xsig(&accumulator); 146 147 mul64_Xsig(&accumulator, &fixed_arg); 148 mul64_Xsig(&accumulator, &fixed_arg); 149 150 shr_Xsig(&accumulator, 3); 151 negate_Xsig(&accumulator); 152 153 add_Xsig_Xsig(&accumulator, &argSqrd); 154 155 shr_Xsig(&accumulator, 1); 156 157 accumulator.lsw |= 1; /* A zero accumulator here would cause problems */ 158 negate_Xsig(&accumulator); 159 160 /* The basic computation is complete. Now fix the answer to 161 compensate for the error due to the approximation used for 162 pi/2 163 */ 164 165 /* This has an exponent of -65 */ 166 fix_up = 0x898cc517; 167 /* The fix-up needs to be improved for larger args */ 168 if (argSqrd.msw & 0xffc00000) { 169 /* Get about 32 bit precision in these: */ 170 fix_up -= mul_32_32(0x898cc517, argSqrd.msw) / 6; 171 } 172 fix_up = mul_32_32(fix_up, LL_MSW(fixed_arg)); 173 174 adj = accumulator.lsw; /* temp save */ 175 accumulator.lsw -= fix_up; 176 if (accumulator.lsw > adj) 177 XSIG_LL(accumulator)--; 178 179 echange = round_Xsig(&accumulator); 180 181 setexponentpos(&result, echange - 1); 182 } 183 184 significand(&result) = XSIG_LL(accumulator); 185 setsign(&result, getsign(st0_ptr)); 186 FPU_copy_to_reg0(&result, TAG_Valid); 187 188#ifdef PARANOID 189 if ((exponent(&result) >= 0) 190 && (significand(&result) > 0x8000000000000000LL)) { 191 EXCEPTION(EX_INTERNAL | 0x150); 192 } 193#endif /* PARANOID */ 194 195} 196 197/*--- poly_cos() ------------------------------------------------------------+ 198 | | 199 +---------------------------------------------------------------------------*/ 200void poly_cos(FPU_REG *st0_ptr) 201{ 202 FPU_REG result; 203 long int exponent, exp2, echange; 204 Xsig accumulator, argSqrd, fix_up, argTo4; 205 unsigned long long fixed_arg; 206 207#ifdef PARANOID 208 if ((exponent(st0_ptr) > 0) 209 || ((exponent(st0_ptr) == 0) 210 && (significand(st0_ptr) > 0xc90fdaa22168c234LL))) { 211 EXCEPTION(EX_Invalid); 212 FPU_copy_to_reg0(&CONST_QNaN, TAG_Special); 213 return; 214 } 215#endif /* PARANOID */ 216 217 exponent = exponent(st0_ptr); 218 219 accumulator.lsw = accumulator.midw = accumulator.msw = 0; 220 221 if ((exponent < -1) 222 || ((exponent == -1) && (st0_ptr->sigh <= 0xb00d6f54))) { 223 /* arg is < 0.687705 */ 224 225 argSqrd.msw = st0_ptr->sigh; 226 argSqrd.midw = st0_ptr->sigl; 227 argSqrd.lsw = 0; 228 mul64_Xsig(&argSqrd, &significand(st0_ptr)); 229 230 if (exponent < -1) { 231 /* shift the argument right by the required places */ 232 shr_Xsig(&argSqrd, 2 * (-1 - exponent)); 233 } 234 235 argTo4.msw = argSqrd.msw; 236 argTo4.midw = argSqrd.midw; 237 argTo4.lsw = argSqrd.lsw; 238 mul_Xsig_Xsig(&argTo4, &argTo4); 239 240 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h, 241 N_COEFF_NH - 1); 242 mul_Xsig_Xsig(&accumulator, &argSqrd); 243 negate_Xsig(&accumulator); 244 245 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h, 246 N_COEFF_PH - 1); 247 negate_Xsig(&accumulator); 248 249 mul64_Xsig(&accumulator, &significand(st0_ptr)); 250 mul64_Xsig(&accumulator, &significand(st0_ptr)); 251 shr_Xsig(&accumulator, -2 * (1 + exponent)); 252 253 shr_Xsig(&accumulator, 3); 254 negate_Xsig(&accumulator); 255 256 add_Xsig_Xsig(&accumulator, &argSqrd); 257 258 shr_Xsig(&accumulator, 1); 259 260 /* It doesn't matter if accumulator is all zero here, the 261 following code will work ok */ 262 negate_Xsig(&accumulator); 263 264 if (accumulator.lsw & 0x80000000) 265 XSIG_LL(accumulator)++; 266 if (accumulator.msw == 0) { 267 /* The result is 1.0 */ 268 FPU_copy_to_reg0(&CONST_1, TAG_Valid); 269 return; 270 } else { 271 significand(&result) = XSIG_LL(accumulator); 272 273 /* will be a valid positive nr with expon = -1 */ 274 setexponentpos(&result, -1); 275 } 276 } else { 277 fixed_arg = significand(st0_ptr); 278 279 if (exponent == 0) { 280 /* The argument is >= 1.0 */ 281 282 /* Put the binary point at the left. */ 283 fixed_arg <<= 1; 284 } 285 /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ 286 fixed_arg = 0x921fb54442d18469LL - fixed_arg; 287 /* There is a special case which arises due to rounding, to fix here. */ 288 if (fixed_arg == 0xffffffffffffffffLL) 289 fixed_arg = 0; 290 291 exponent = -1; 292 exp2 = -1; 293 294 /* A shift is needed here only for a narrow range of arguments, 295 i.e. for fixed_arg approx 2^-32, but we pick up more... */ 296 if (!(LL_MSW(fixed_arg) & 0xffff0000)) { 297 fixed_arg <<= 16; 298 exponent -= 16; 299 exp2 -= 16; 300 } 301 302 XSIG_LL(argSqrd) = fixed_arg; 303 argSqrd.lsw = 0; 304 mul64_Xsig(&argSqrd, &fixed_arg); 305 306 if (exponent < -1) { 307 /* shift the argument right by the required places */ 308 shr_Xsig(&argSqrd, 2 * (-1 - exponent)); 309 } 310 311 argTo4.msw = argSqrd.msw; 312 argTo4.midw = argSqrd.midw; 313 argTo4.lsw = argSqrd.lsw; 314 mul_Xsig_Xsig(&argTo4, &argTo4); 315 316 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l, 317 N_COEFF_N - 1); 318 mul_Xsig_Xsig(&accumulator, &argSqrd); 319 negate_Xsig(&accumulator); 320 321 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l, 322 N_COEFF_P - 1); 323 324 shr_Xsig(&accumulator, 2); /* Divide by four */ 325 accumulator.msw |= 0x80000000; /* Add 1.0 */ 326 327 mul64_Xsig(&accumulator, &fixed_arg); 328 mul64_Xsig(&accumulator, &fixed_arg); 329 mul64_Xsig(&accumulator, &fixed_arg); 330 331 /* Divide by four, FPU_REG compatible, etc */ 332 exponent = 3 * exponent; 333 334 /* The minimum exponent difference is 3 */ 335 shr_Xsig(&accumulator, exp2 - exponent); 336 337 negate_Xsig(&accumulator); 338 XSIG_LL(accumulator) += fixed_arg; 339 340 /* The basic computation is complete. Now fix the answer to 341 compensate for the error due to the approximation used for 342 pi/2 343 */ 344 345 /* This has an exponent of -65 */ 346 XSIG_LL(fix_up) = 0x898cc51701b839a2ll; 347 fix_up.lsw = 0; 348 349 /* The fix-up needs to be improved for larger args */ 350 if (argSqrd.msw & 0xffc00000) { 351 /* Get about 32 bit precision in these: */ 352 fix_up.msw -= mul_32_32(0x898cc517, argSqrd.msw) / 2; 353 fix_up.msw += mul_32_32(0x898cc517, argTo4.msw) / 24; 354 } 355 356 exp2 += norm_Xsig(&accumulator); 357 shr_Xsig(&accumulator, 1); /* Prevent overflow */ 358 exp2++; 359 shr_Xsig(&fix_up, 65 + exp2); 360 361 add_Xsig_Xsig(&accumulator, &fix_up); 362 363 echange = round_Xsig(&accumulator); 364 365 setexponentpos(&result, exp2 + echange); 366 significand(&result) = XSIG_LL(accumulator); 367 } 368 369 FPU_copy_to_reg0(&result, TAG_Valid); 370 371#ifdef PARANOID 372 if ((exponent(&result) >= 0) 373 && (significand(&result) > 0x8000000000000000LL)) { 374 EXCEPTION(EX_INTERNAL | 0x151); 375 } 376#endif /* PARANOID */ 377 378} 379