1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21 
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
57 
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60 
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70 
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
74 
75 #define emul_to_vcpu(ctxt) \
76 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
77 
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static
84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
85 #else
86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
87 #endif
88 
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91 
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static void process_nmi(struct kvm_vcpu *vcpu);
94 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
95 
96 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98 
99 static bool __read_mostly ignore_msrs = 0;
100 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
101 
102 unsigned int min_timer_period_us = 500;
103 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
104 
105 static bool __read_mostly kvmclock_periodic_sync = true;
106 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
107 
108 bool __read_mostly kvm_has_tsc_control;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
110 u32  __read_mostly kvm_max_guest_tsc_khz;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
112 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
114 u64  __read_mostly kvm_max_tsc_scaling_ratio;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
117 
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm = 250;
120 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
121 
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns = 0;
124 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
125 
126 static bool __read_mostly backwards_tsc_observed = false;
127 
128 #define KVM_NR_SHARED_MSRS 16
129 
130 struct kvm_shared_msrs_global {
131 	int nr;
132 	u32 msrs[KVM_NR_SHARED_MSRS];
133 };
134 
135 struct kvm_shared_msrs {
136 	struct user_return_notifier urn;
137 	bool registered;
138 	struct kvm_shared_msr_values {
139 		u64 host;
140 		u64 curr;
141 	} values[KVM_NR_SHARED_MSRS];
142 };
143 
144 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
145 static struct kvm_shared_msrs __percpu *shared_msrs;
146 
147 struct kvm_stats_debugfs_item debugfs_entries[] = {
148 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
149 	{ "pf_guest", VCPU_STAT(pf_guest) },
150 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
151 	{ "invlpg", VCPU_STAT(invlpg) },
152 	{ "exits", VCPU_STAT(exits) },
153 	{ "io_exits", VCPU_STAT(io_exits) },
154 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
155 	{ "signal_exits", VCPU_STAT(signal_exits) },
156 	{ "irq_window", VCPU_STAT(irq_window_exits) },
157 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
158 	{ "halt_exits", VCPU_STAT(halt_exits) },
159 	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
160 	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
161 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
162 	{ "hypercalls", VCPU_STAT(hypercalls) },
163 	{ "request_irq", VCPU_STAT(request_irq_exits) },
164 	{ "irq_exits", VCPU_STAT(irq_exits) },
165 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
166 	{ "efer_reload", VCPU_STAT(efer_reload) },
167 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
168 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
169 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
170 	{ "irq_injections", VCPU_STAT(irq_injections) },
171 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
172 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
173 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
174 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
175 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
176 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
177 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
178 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
179 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
180 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
181 	{ "largepages", VM_STAT(lpages) },
182 	{ NULL }
183 };
184 
185 u64 __read_mostly host_xcr0;
186 
187 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
188 
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)189 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
190 {
191 	int i;
192 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
193 		vcpu->arch.apf.gfns[i] = ~0;
194 }
195 
kvm_on_user_return(struct user_return_notifier * urn)196 static void kvm_on_user_return(struct user_return_notifier *urn)
197 {
198 	unsigned slot;
199 	struct kvm_shared_msrs *locals
200 		= container_of(urn, struct kvm_shared_msrs, urn);
201 	struct kvm_shared_msr_values *values;
202 
203 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
204 		values = &locals->values[slot];
205 		if (values->host != values->curr) {
206 			wrmsrl(shared_msrs_global.msrs[slot], values->host);
207 			values->curr = values->host;
208 		}
209 	}
210 	locals->registered = false;
211 	user_return_notifier_unregister(urn);
212 }
213 
shared_msr_update(unsigned slot,u32 msr)214 static void shared_msr_update(unsigned slot, u32 msr)
215 {
216 	u64 value;
217 	unsigned int cpu = smp_processor_id();
218 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
219 
220 	/* only read, and nobody should modify it at this time,
221 	 * so don't need lock */
222 	if (slot >= shared_msrs_global.nr) {
223 		printk(KERN_ERR "kvm: invalid MSR slot!");
224 		return;
225 	}
226 	rdmsrl_safe(msr, &value);
227 	smsr->values[slot].host = value;
228 	smsr->values[slot].curr = value;
229 }
230 
kvm_define_shared_msr(unsigned slot,u32 msr)231 void kvm_define_shared_msr(unsigned slot, u32 msr)
232 {
233 	BUG_ON(slot >= KVM_NR_SHARED_MSRS);
234 	shared_msrs_global.msrs[slot] = msr;
235 	if (slot >= shared_msrs_global.nr)
236 		shared_msrs_global.nr = slot + 1;
237 }
238 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
239 
kvm_shared_msr_cpu_online(void)240 static void kvm_shared_msr_cpu_online(void)
241 {
242 	unsigned i;
243 
244 	for (i = 0; i < shared_msrs_global.nr; ++i)
245 		shared_msr_update(i, shared_msrs_global.msrs[i]);
246 }
247 
kvm_set_shared_msr(unsigned slot,u64 value,u64 mask)248 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
249 {
250 	unsigned int cpu = smp_processor_id();
251 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
252 	int err;
253 
254 	if (((value ^ smsr->values[slot].curr) & mask) == 0)
255 		return 0;
256 	smsr->values[slot].curr = value;
257 	err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
258 	if (err)
259 		return 1;
260 
261 	if (!smsr->registered) {
262 		smsr->urn.on_user_return = kvm_on_user_return;
263 		user_return_notifier_register(&smsr->urn);
264 		smsr->registered = true;
265 	}
266 	return 0;
267 }
268 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
269 
drop_user_return_notifiers(void)270 static void drop_user_return_notifiers(void)
271 {
272 	unsigned int cpu = smp_processor_id();
273 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
274 
275 	if (smsr->registered)
276 		kvm_on_user_return(&smsr->urn);
277 }
278 
kvm_get_apic_base(struct kvm_vcpu * vcpu)279 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
280 {
281 	return vcpu->arch.apic_base;
282 }
283 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
284 
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)285 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
286 {
287 	u64 old_state = vcpu->arch.apic_base &
288 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
289 	u64 new_state = msr_info->data &
290 		(MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
291 	u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
292 		0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
293 
294 	if (!msr_info->host_initiated &&
295 	    ((msr_info->data & reserved_bits) != 0 ||
296 	     new_state == X2APIC_ENABLE ||
297 	     (new_state == MSR_IA32_APICBASE_ENABLE &&
298 	      old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
299 	     (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
300 	      old_state == 0)))
301 		return 1;
302 
303 	kvm_lapic_set_base(vcpu, msr_info->data);
304 	return 0;
305 }
306 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
307 
kvm_spurious_fault(void)308 asmlinkage __visible void kvm_spurious_fault(void)
309 {
310 	/* Fault while not rebooting.  We want the trace. */
311 	BUG();
312 }
313 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
314 
315 #define EXCPT_BENIGN		0
316 #define EXCPT_CONTRIBUTORY	1
317 #define EXCPT_PF		2
318 
exception_class(int vector)319 static int exception_class(int vector)
320 {
321 	switch (vector) {
322 	case PF_VECTOR:
323 		return EXCPT_PF;
324 	case DE_VECTOR:
325 	case TS_VECTOR:
326 	case NP_VECTOR:
327 	case SS_VECTOR:
328 	case GP_VECTOR:
329 		return EXCPT_CONTRIBUTORY;
330 	default:
331 		break;
332 	}
333 	return EXCPT_BENIGN;
334 }
335 
336 #define EXCPT_FAULT		0
337 #define EXCPT_TRAP		1
338 #define EXCPT_ABORT		2
339 #define EXCPT_INTERRUPT		3
340 
exception_type(int vector)341 static int exception_type(int vector)
342 {
343 	unsigned int mask;
344 
345 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
346 		return EXCPT_INTERRUPT;
347 
348 	mask = 1 << vector;
349 
350 	/* #DB is trap, as instruction watchpoints are handled elsewhere */
351 	if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
352 		return EXCPT_TRAP;
353 
354 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
355 		return EXCPT_ABORT;
356 
357 	/* Reserved exceptions will result in fault */
358 	return EXCPT_FAULT;
359 }
360 
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool reinject)361 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
362 		unsigned nr, bool has_error, u32 error_code,
363 		bool reinject)
364 {
365 	u32 prev_nr;
366 	int class1, class2;
367 
368 	kvm_make_request(KVM_REQ_EVENT, vcpu);
369 
370 	if (!vcpu->arch.exception.pending) {
371 	queue:
372 		if (has_error && !is_protmode(vcpu))
373 			has_error = false;
374 		vcpu->arch.exception.pending = true;
375 		vcpu->arch.exception.has_error_code = has_error;
376 		vcpu->arch.exception.nr = nr;
377 		vcpu->arch.exception.error_code = error_code;
378 		vcpu->arch.exception.reinject = reinject;
379 		return;
380 	}
381 
382 	/* to check exception */
383 	prev_nr = vcpu->arch.exception.nr;
384 	if (prev_nr == DF_VECTOR) {
385 		/* triple fault -> shutdown */
386 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
387 		return;
388 	}
389 	class1 = exception_class(prev_nr);
390 	class2 = exception_class(nr);
391 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
392 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
393 		/* generate double fault per SDM Table 5-5 */
394 		vcpu->arch.exception.pending = true;
395 		vcpu->arch.exception.has_error_code = true;
396 		vcpu->arch.exception.nr = DF_VECTOR;
397 		vcpu->arch.exception.error_code = 0;
398 	} else
399 		/* replace previous exception with a new one in a hope
400 		   that instruction re-execution will regenerate lost
401 		   exception */
402 		goto queue;
403 }
404 
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)405 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
406 {
407 	kvm_multiple_exception(vcpu, nr, false, 0, false);
408 }
409 EXPORT_SYMBOL_GPL(kvm_queue_exception);
410 
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)411 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
412 {
413 	kvm_multiple_exception(vcpu, nr, false, 0, true);
414 }
415 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
416 
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)417 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
418 {
419 	if (err)
420 		kvm_inject_gp(vcpu, 0);
421 	else
422 		kvm_x86_ops->skip_emulated_instruction(vcpu);
423 }
424 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
425 
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)426 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
427 {
428 	++vcpu->stat.pf_guest;
429 	vcpu->arch.cr2 = fault->address;
430 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
431 }
432 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
433 
kvm_propagate_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)434 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
435 {
436 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
437 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
438 	else
439 		vcpu->arch.mmu.inject_page_fault(vcpu, fault);
440 
441 	return fault->nested_page_fault;
442 }
443 
kvm_inject_nmi(struct kvm_vcpu * vcpu)444 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
445 {
446 	atomic_inc(&vcpu->arch.nmi_queued);
447 	kvm_make_request(KVM_REQ_NMI, vcpu);
448 }
449 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
450 
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)451 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
452 {
453 	kvm_multiple_exception(vcpu, nr, true, error_code, false);
454 }
455 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
456 
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)457 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
458 {
459 	kvm_multiple_exception(vcpu, nr, true, error_code, true);
460 }
461 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
462 
463 /*
464  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
465  * a #GP and return false.
466  */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)467 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
468 {
469 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
470 		return true;
471 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
472 	return false;
473 }
474 EXPORT_SYMBOL_GPL(kvm_require_cpl);
475 
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)476 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
477 {
478 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
479 		return true;
480 
481 	kvm_queue_exception(vcpu, UD_VECTOR);
482 	return false;
483 }
484 EXPORT_SYMBOL_GPL(kvm_require_dr);
485 
486 /*
487  * This function will be used to read from the physical memory of the currently
488  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
489  * can read from guest physical or from the guest's guest physical memory.
490  */
kvm_read_guest_page_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gfn_t ngfn,void * data,int offset,int len,u32 access)491 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
492 			    gfn_t ngfn, void *data, int offset, int len,
493 			    u32 access)
494 {
495 	struct x86_exception exception;
496 	gfn_t real_gfn;
497 	gpa_t ngpa;
498 
499 	ngpa     = gfn_to_gpa(ngfn);
500 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
501 	if (real_gfn == UNMAPPED_GVA)
502 		return -EFAULT;
503 
504 	real_gfn = gpa_to_gfn(real_gfn);
505 
506 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
507 }
508 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
509 
kvm_read_nested_guest_page(struct kvm_vcpu * vcpu,gfn_t gfn,void * data,int offset,int len,u32 access)510 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
511 			       void *data, int offset, int len, u32 access)
512 {
513 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
514 				       data, offset, len, access);
515 }
516 
517 /*
518  * Load the pae pdptrs.  Return true is they are all valid.
519  */
load_pdptrs(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned long cr3)520 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
521 {
522 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
523 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
524 	int i;
525 	int ret;
526 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
527 
528 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
529 				      offset * sizeof(u64), sizeof(pdpte),
530 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
531 	if (ret < 0) {
532 		ret = 0;
533 		goto out;
534 	}
535 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
536 		if (is_present_gpte(pdpte[i]) &&
537 		    (pdpte[i] &
538 		     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
539 			ret = 0;
540 			goto out;
541 		}
542 	}
543 	ret = 1;
544 
545 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
546 	__set_bit(VCPU_EXREG_PDPTR,
547 		  (unsigned long *)&vcpu->arch.regs_avail);
548 	__set_bit(VCPU_EXREG_PDPTR,
549 		  (unsigned long *)&vcpu->arch.regs_dirty);
550 out:
551 
552 	return ret;
553 }
554 EXPORT_SYMBOL_GPL(load_pdptrs);
555 
pdptrs_changed(struct kvm_vcpu * vcpu)556 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
557 {
558 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
559 	bool changed = true;
560 	int offset;
561 	gfn_t gfn;
562 	int r;
563 
564 	if (is_long_mode(vcpu) || !is_pae(vcpu))
565 		return false;
566 
567 	if (!test_bit(VCPU_EXREG_PDPTR,
568 		      (unsigned long *)&vcpu->arch.regs_avail))
569 		return true;
570 
571 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
572 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
573 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
574 				       PFERR_USER_MASK | PFERR_WRITE_MASK);
575 	if (r < 0)
576 		goto out;
577 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
578 out:
579 
580 	return changed;
581 }
582 
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)583 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
584 {
585 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
586 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
587 
588 	cr0 |= X86_CR0_ET;
589 
590 #ifdef CONFIG_X86_64
591 	if (cr0 & 0xffffffff00000000UL)
592 		return 1;
593 #endif
594 
595 	cr0 &= ~CR0_RESERVED_BITS;
596 
597 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
598 		return 1;
599 
600 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
601 		return 1;
602 
603 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
604 #ifdef CONFIG_X86_64
605 		if ((vcpu->arch.efer & EFER_LME)) {
606 			int cs_db, cs_l;
607 
608 			if (!is_pae(vcpu))
609 				return 1;
610 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
611 			if (cs_l)
612 				return 1;
613 		} else
614 #endif
615 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
616 						 kvm_read_cr3(vcpu)))
617 			return 1;
618 	}
619 
620 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
621 		return 1;
622 
623 	kvm_x86_ops->set_cr0(vcpu, cr0);
624 
625 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
626 		kvm_clear_async_pf_completion_queue(vcpu);
627 		kvm_async_pf_hash_reset(vcpu);
628 	}
629 
630 	if ((cr0 ^ old_cr0) & update_bits)
631 		kvm_mmu_reset_context(vcpu);
632 
633 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
634 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
635 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
636 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
637 
638 	return 0;
639 }
640 EXPORT_SYMBOL_GPL(kvm_set_cr0);
641 
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)642 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
643 {
644 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
645 }
646 EXPORT_SYMBOL_GPL(kvm_lmsw);
647 
kvm_load_guest_xcr0(struct kvm_vcpu * vcpu)648 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
649 {
650 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
651 			!vcpu->guest_xcr0_loaded) {
652 		/* kvm_set_xcr() also depends on this */
653 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
654 		vcpu->guest_xcr0_loaded = 1;
655 	}
656 }
657 
kvm_put_guest_xcr0(struct kvm_vcpu * vcpu)658 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
659 {
660 	if (vcpu->guest_xcr0_loaded) {
661 		if (vcpu->arch.xcr0 != host_xcr0)
662 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
663 		vcpu->guest_xcr0_loaded = 0;
664 	}
665 }
666 
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)667 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
668 {
669 	u64 xcr0 = xcr;
670 	u64 old_xcr0 = vcpu->arch.xcr0;
671 	u64 valid_bits;
672 
673 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
674 	if (index != XCR_XFEATURE_ENABLED_MASK)
675 		return 1;
676 	if (!(xcr0 & XFEATURE_MASK_FP))
677 		return 1;
678 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
679 		return 1;
680 
681 	/*
682 	 * Do not allow the guest to set bits that we do not support
683 	 * saving.  However, xcr0 bit 0 is always set, even if the
684 	 * emulated CPU does not support XSAVE (see fx_init).
685 	 */
686 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
687 	if (xcr0 & ~valid_bits)
688 		return 1;
689 
690 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
691 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
692 		return 1;
693 
694 	if (xcr0 & XFEATURE_MASK_AVX512) {
695 		if (!(xcr0 & XFEATURE_MASK_YMM))
696 			return 1;
697 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
698 			return 1;
699 	}
700 	vcpu->arch.xcr0 = xcr0;
701 
702 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
703 		kvm_update_cpuid(vcpu);
704 	return 0;
705 }
706 
kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)707 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
708 {
709 	if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
710 	    __kvm_set_xcr(vcpu, index, xcr)) {
711 		kvm_inject_gp(vcpu, 0);
712 		return 1;
713 	}
714 	return 0;
715 }
716 EXPORT_SYMBOL_GPL(kvm_set_xcr);
717 
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)718 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
719 {
720 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
721 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
722 				   X86_CR4_SMEP | X86_CR4_SMAP;
723 
724 	if (cr4 & CR4_RESERVED_BITS)
725 		return 1;
726 
727 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
728 		return 1;
729 
730 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
731 		return 1;
732 
733 	if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
734 		return 1;
735 
736 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
737 		return 1;
738 
739 	if (is_long_mode(vcpu)) {
740 		if (!(cr4 & X86_CR4_PAE))
741 			return 1;
742 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
743 		   && ((cr4 ^ old_cr4) & pdptr_bits)
744 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
745 				   kvm_read_cr3(vcpu)))
746 		return 1;
747 
748 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
749 		if (!guest_cpuid_has_pcid(vcpu))
750 			return 1;
751 
752 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
753 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
754 			return 1;
755 	}
756 
757 	if (kvm_x86_ops->set_cr4(vcpu, cr4))
758 		return 1;
759 
760 	if (((cr4 ^ old_cr4) & pdptr_bits) ||
761 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
762 		kvm_mmu_reset_context(vcpu);
763 
764 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
765 		kvm_update_cpuid(vcpu);
766 
767 	return 0;
768 }
769 EXPORT_SYMBOL_GPL(kvm_set_cr4);
770 
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)771 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
772 {
773 #ifdef CONFIG_X86_64
774 	cr3 &= ~CR3_PCID_INVD;
775 #endif
776 
777 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
778 		kvm_mmu_sync_roots(vcpu);
779 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
780 		return 0;
781 	}
782 
783 	if (is_long_mode(vcpu)) {
784 		if (cr3 & CR3_L_MODE_RESERVED_BITS)
785 			return 1;
786 	} else if (is_pae(vcpu) && is_paging(vcpu) &&
787 		   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
788 		return 1;
789 
790 	vcpu->arch.cr3 = cr3;
791 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
792 	kvm_mmu_new_cr3(vcpu);
793 	return 0;
794 }
795 EXPORT_SYMBOL_GPL(kvm_set_cr3);
796 
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)797 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
798 {
799 	if (cr8 & CR8_RESERVED_BITS)
800 		return 1;
801 	if (lapic_in_kernel(vcpu))
802 		kvm_lapic_set_tpr(vcpu, cr8);
803 	else
804 		vcpu->arch.cr8 = cr8;
805 	return 0;
806 }
807 EXPORT_SYMBOL_GPL(kvm_set_cr8);
808 
kvm_get_cr8(struct kvm_vcpu * vcpu)809 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
810 {
811 	if (lapic_in_kernel(vcpu))
812 		return kvm_lapic_get_cr8(vcpu);
813 	else
814 		return vcpu->arch.cr8;
815 }
816 EXPORT_SYMBOL_GPL(kvm_get_cr8);
817 
kvm_update_dr0123(struct kvm_vcpu * vcpu)818 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
819 {
820 	int i;
821 
822 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
823 		for (i = 0; i < KVM_NR_DB_REGS; i++)
824 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
825 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
826 	}
827 }
828 
kvm_update_dr6(struct kvm_vcpu * vcpu)829 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
830 {
831 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
832 		kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
833 }
834 
kvm_update_dr7(struct kvm_vcpu * vcpu)835 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
836 {
837 	unsigned long dr7;
838 
839 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
840 		dr7 = vcpu->arch.guest_debug_dr7;
841 	else
842 		dr7 = vcpu->arch.dr7;
843 	kvm_x86_ops->set_dr7(vcpu, dr7);
844 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
845 	if (dr7 & DR7_BP_EN_MASK)
846 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
847 }
848 
kvm_dr6_fixed(struct kvm_vcpu * vcpu)849 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
850 {
851 	u64 fixed = DR6_FIXED_1;
852 
853 	if (!guest_cpuid_has_rtm(vcpu))
854 		fixed |= DR6_RTM;
855 	return fixed;
856 }
857 
__kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)858 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
859 {
860 	switch (dr) {
861 	case 0 ... 3:
862 		vcpu->arch.db[dr] = val;
863 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
864 			vcpu->arch.eff_db[dr] = val;
865 		break;
866 	case 4:
867 		/* fall through */
868 	case 6:
869 		if (val & 0xffffffff00000000ULL)
870 			return -1; /* #GP */
871 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
872 		kvm_update_dr6(vcpu);
873 		break;
874 	case 5:
875 		/* fall through */
876 	default: /* 7 */
877 		if (val & 0xffffffff00000000ULL)
878 			return -1; /* #GP */
879 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
880 		kvm_update_dr7(vcpu);
881 		break;
882 	}
883 
884 	return 0;
885 }
886 
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)887 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
888 {
889 	if (__kvm_set_dr(vcpu, dr, val)) {
890 		kvm_inject_gp(vcpu, 0);
891 		return 1;
892 	}
893 	return 0;
894 }
895 EXPORT_SYMBOL_GPL(kvm_set_dr);
896 
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)897 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
898 {
899 	switch (dr) {
900 	case 0 ... 3:
901 		*val = vcpu->arch.db[dr];
902 		break;
903 	case 4:
904 		/* fall through */
905 	case 6:
906 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
907 			*val = vcpu->arch.dr6;
908 		else
909 			*val = kvm_x86_ops->get_dr6(vcpu);
910 		break;
911 	case 5:
912 		/* fall through */
913 	default: /* 7 */
914 		*val = vcpu->arch.dr7;
915 		break;
916 	}
917 	return 0;
918 }
919 EXPORT_SYMBOL_GPL(kvm_get_dr);
920 
kvm_rdpmc(struct kvm_vcpu * vcpu)921 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
922 {
923 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
924 	u64 data;
925 	int err;
926 
927 	err = kvm_pmu_rdpmc(vcpu, ecx, &data);
928 	if (err)
929 		return err;
930 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
931 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
932 	return err;
933 }
934 EXPORT_SYMBOL_GPL(kvm_rdpmc);
935 
936 /*
937  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
938  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
939  *
940  * This list is modified at module load time to reflect the
941  * capabilities of the host cpu. This capabilities test skips MSRs that are
942  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
943  * may depend on host virtualization features rather than host cpu features.
944  */
945 
946 static u32 msrs_to_save[] = {
947 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
948 	MSR_STAR,
949 #ifdef CONFIG_X86_64
950 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
951 #endif
952 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
953 	MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
954 };
955 
956 static unsigned num_msrs_to_save;
957 
958 static u32 emulated_msrs[] = {
959 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
960 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
961 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
962 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
963 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
964 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
965 	HV_X64_MSR_RESET,
966 	HV_X64_MSR_VP_INDEX,
967 	HV_X64_MSR_VP_RUNTIME,
968 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
969 	MSR_KVM_PV_EOI_EN,
970 
971 	MSR_IA32_TSC_ADJUST,
972 	MSR_IA32_TSCDEADLINE,
973 	MSR_IA32_MISC_ENABLE,
974 	MSR_IA32_MCG_STATUS,
975 	MSR_IA32_MCG_CTL,
976 	MSR_IA32_SMBASE,
977 };
978 
979 static unsigned num_emulated_msrs;
980 
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)981 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
982 {
983 	if (efer & efer_reserved_bits)
984 		return false;
985 
986 	if (efer & EFER_FFXSR) {
987 		struct kvm_cpuid_entry2 *feat;
988 
989 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
990 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
991 			return false;
992 	}
993 
994 	if (efer & EFER_SVME) {
995 		struct kvm_cpuid_entry2 *feat;
996 
997 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
998 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
999 			return false;
1000 	}
1001 
1002 	return true;
1003 }
1004 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1005 
set_efer(struct kvm_vcpu * vcpu,u64 efer)1006 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1007 {
1008 	u64 old_efer = vcpu->arch.efer;
1009 
1010 	if (!kvm_valid_efer(vcpu, efer))
1011 		return 1;
1012 
1013 	if (is_paging(vcpu)
1014 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1015 		return 1;
1016 
1017 	efer &= ~EFER_LMA;
1018 	efer |= vcpu->arch.efer & EFER_LMA;
1019 
1020 	kvm_x86_ops->set_efer(vcpu, efer);
1021 
1022 	/* Update reserved bits */
1023 	if ((efer ^ old_efer) & EFER_NX)
1024 		kvm_mmu_reset_context(vcpu);
1025 
1026 	return 0;
1027 }
1028 
kvm_enable_efer_bits(u64 mask)1029 void kvm_enable_efer_bits(u64 mask)
1030 {
1031        efer_reserved_bits &= ~mask;
1032 }
1033 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1034 
1035 /*
1036  * Writes msr value into into the appropriate "register".
1037  * Returns 0 on success, non-0 otherwise.
1038  * Assumes vcpu_load() was already called.
1039  */
kvm_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)1040 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1041 {
1042 	switch (msr->index) {
1043 	case MSR_FS_BASE:
1044 	case MSR_GS_BASE:
1045 	case MSR_KERNEL_GS_BASE:
1046 	case MSR_CSTAR:
1047 	case MSR_LSTAR:
1048 		if (is_noncanonical_address(msr->data))
1049 			return 1;
1050 		break;
1051 	case MSR_IA32_SYSENTER_EIP:
1052 	case MSR_IA32_SYSENTER_ESP:
1053 		/*
1054 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1055 		 * non-canonical address is written on Intel but not on
1056 		 * AMD (which ignores the top 32-bits, because it does
1057 		 * not implement 64-bit SYSENTER).
1058 		 *
1059 		 * 64-bit code should hence be able to write a non-canonical
1060 		 * value on AMD.  Making the address canonical ensures that
1061 		 * vmentry does not fail on Intel after writing a non-canonical
1062 		 * value, and that something deterministic happens if the guest
1063 		 * invokes 64-bit SYSENTER.
1064 		 */
1065 		msr->data = get_canonical(msr->data);
1066 	}
1067 	return kvm_x86_ops->set_msr(vcpu, msr);
1068 }
1069 EXPORT_SYMBOL_GPL(kvm_set_msr);
1070 
1071 /*
1072  * Adapt set_msr() to msr_io()'s calling convention
1073  */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1074 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1075 {
1076 	struct msr_data msr;
1077 	int r;
1078 
1079 	msr.index = index;
1080 	msr.host_initiated = true;
1081 	r = kvm_get_msr(vcpu, &msr);
1082 	if (r)
1083 		return r;
1084 
1085 	*data = msr.data;
1086 	return 0;
1087 }
1088 
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1089 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1090 {
1091 	struct msr_data msr;
1092 
1093 	msr.data = *data;
1094 	msr.index = index;
1095 	msr.host_initiated = true;
1096 	return kvm_set_msr(vcpu, &msr);
1097 }
1098 
1099 #ifdef CONFIG_X86_64
1100 struct pvclock_gtod_data {
1101 	seqcount_t	seq;
1102 
1103 	struct { /* extract of a clocksource struct */
1104 		int vclock_mode;
1105 		cycle_t	cycle_last;
1106 		cycle_t	mask;
1107 		u32	mult;
1108 		u32	shift;
1109 	} clock;
1110 
1111 	u64		boot_ns;
1112 	u64		nsec_base;
1113 };
1114 
1115 static struct pvclock_gtod_data pvclock_gtod_data;
1116 
update_pvclock_gtod(struct timekeeper * tk)1117 static void update_pvclock_gtod(struct timekeeper *tk)
1118 {
1119 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1120 	u64 boot_ns;
1121 
1122 	boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1123 
1124 	write_seqcount_begin(&vdata->seq);
1125 
1126 	/* copy pvclock gtod data */
1127 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->archdata.vclock_mode;
1128 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
1129 	vdata->clock.mask		= tk->tkr_mono.mask;
1130 	vdata->clock.mult		= tk->tkr_mono.mult;
1131 	vdata->clock.shift		= tk->tkr_mono.shift;
1132 
1133 	vdata->boot_ns			= boot_ns;
1134 	vdata->nsec_base		= tk->tkr_mono.xtime_nsec;
1135 
1136 	write_seqcount_end(&vdata->seq);
1137 }
1138 #endif
1139 
kvm_set_pending_timer(struct kvm_vcpu * vcpu)1140 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1141 {
1142 	/*
1143 	 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1144 	 * vcpu_enter_guest.  This function is only called from
1145 	 * the physical CPU that is running vcpu.
1146 	 */
1147 	kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1148 }
1149 
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock)1150 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1151 {
1152 	int version;
1153 	int r;
1154 	struct pvclock_wall_clock wc;
1155 	struct timespec boot;
1156 
1157 	if (!wall_clock)
1158 		return;
1159 
1160 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1161 	if (r)
1162 		return;
1163 
1164 	if (version & 1)
1165 		++version;  /* first time write, random junk */
1166 
1167 	++version;
1168 
1169 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1170 
1171 	/*
1172 	 * The guest calculates current wall clock time by adding
1173 	 * system time (updated by kvm_guest_time_update below) to the
1174 	 * wall clock specified here.  guest system time equals host
1175 	 * system time for us, thus we must fill in host boot time here.
1176 	 */
1177 	getboottime(&boot);
1178 
1179 	if (kvm->arch.kvmclock_offset) {
1180 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1181 		boot = timespec_sub(boot, ts);
1182 	}
1183 	wc.sec = boot.tv_sec;
1184 	wc.nsec = boot.tv_nsec;
1185 	wc.version = version;
1186 
1187 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1188 
1189 	version++;
1190 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1191 }
1192 
div_frac(uint32_t dividend,uint32_t divisor)1193 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1194 {
1195 	uint32_t quotient, remainder;
1196 
1197 	/* Don't try to replace with do_div(), this one calculates
1198 	 * "(dividend << 32) / divisor" */
1199 	__asm__ ( "divl %4"
1200 		  : "=a" (quotient), "=d" (remainder)
1201 		  : "0" (0), "1" (dividend), "r" (divisor) );
1202 	return quotient;
1203 }
1204 
kvm_get_time_scale(uint32_t scaled_khz,uint32_t base_khz,s8 * pshift,u32 * pmultiplier)1205 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1206 			       s8 *pshift, u32 *pmultiplier)
1207 {
1208 	uint64_t scaled64;
1209 	int32_t  shift = 0;
1210 	uint64_t tps64;
1211 	uint32_t tps32;
1212 
1213 	tps64 = base_khz * 1000LL;
1214 	scaled64 = scaled_khz * 1000LL;
1215 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1216 		tps64 >>= 1;
1217 		shift--;
1218 	}
1219 
1220 	tps32 = (uint32_t)tps64;
1221 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1222 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1223 			scaled64 >>= 1;
1224 		else
1225 			tps32 <<= 1;
1226 		shift++;
1227 	}
1228 
1229 	*pshift = shift;
1230 	*pmultiplier = div_frac(scaled64, tps32);
1231 
1232 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1233 		 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1234 }
1235 
1236 #ifdef CONFIG_X86_64
1237 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1238 #endif
1239 
1240 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1241 static unsigned long max_tsc_khz;
1242 
nsec_to_cycles(struct kvm_vcpu * vcpu,u64 nsec)1243 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1244 {
1245 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1246 				   vcpu->arch.virtual_tsc_shift);
1247 }
1248 
adjust_tsc_khz(u32 khz,s32 ppm)1249 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1250 {
1251 	u64 v = (u64)khz * (1000000 + ppm);
1252 	do_div(v, 1000000);
1253 	return v;
1254 }
1255 
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)1256 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1257 {
1258 	u64 ratio;
1259 
1260 	/* Guest TSC same frequency as host TSC? */
1261 	if (!scale) {
1262 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1263 		return 0;
1264 	}
1265 
1266 	/* TSC scaling supported? */
1267 	if (!kvm_has_tsc_control) {
1268 		if (user_tsc_khz > tsc_khz) {
1269 			vcpu->arch.tsc_catchup = 1;
1270 			vcpu->arch.tsc_always_catchup = 1;
1271 			return 0;
1272 		} else {
1273 			WARN(1, "user requested TSC rate below hardware speed\n");
1274 			return -1;
1275 		}
1276 	}
1277 
1278 	/* TSC scaling required  - calculate ratio */
1279 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1280 				user_tsc_khz, tsc_khz);
1281 
1282 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1283 		WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1284 			  user_tsc_khz);
1285 		return -1;
1286 	}
1287 
1288 	vcpu->arch.tsc_scaling_ratio = ratio;
1289 	return 0;
1290 }
1291 
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 this_tsc_khz)1292 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1293 {
1294 	u32 thresh_lo, thresh_hi;
1295 	int use_scaling = 0;
1296 
1297 	/* tsc_khz can be zero if TSC calibration fails */
1298 	if (this_tsc_khz == 0) {
1299 		/* set tsc_scaling_ratio to a safe value */
1300 		vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1301 		return -1;
1302 	}
1303 
1304 	/* Compute a scale to convert nanoseconds in TSC cycles */
1305 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1306 			   &vcpu->arch.virtual_tsc_shift,
1307 			   &vcpu->arch.virtual_tsc_mult);
1308 	vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1309 
1310 	/*
1311 	 * Compute the variation in TSC rate which is acceptable
1312 	 * within the range of tolerance and decide if the
1313 	 * rate being applied is within that bounds of the hardware
1314 	 * rate.  If so, no scaling or compensation need be done.
1315 	 */
1316 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1317 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1318 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1319 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1320 		use_scaling = 1;
1321 	}
1322 	return set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1323 }
1324 
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)1325 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1326 {
1327 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1328 				      vcpu->arch.virtual_tsc_mult,
1329 				      vcpu->arch.virtual_tsc_shift);
1330 	tsc += vcpu->arch.this_tsc_write;
1331 	return tsc;
1332 }
1333 
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)1334 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1335 {
1336 #ifdef CONFIG_X86_64
1337 	bool vcpus_matched;
1338 	struct kvm_arch *ka = &vcpu->kvm->arch;
1339 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1340 
1341 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1342 			 atomic_read(&vcpu->kvm->online_vcpus));
1343 
1344 	/*
1345 	 * Once the masterclock is enabled, always perform request in
1346 	 * order to update it.
1347 	 *
1348 	 * In order to enable masterclock, the host clocksource must be TSC
1349 	 * and the vcpus need to have matched TSCs.  When that happens,
1350 	 * perform request to enable masterclock.
1351 	 */
1352 	if (ka->use_master_clock ||
1353 	    (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1354 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1355 
1356 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1357 			    atomic_read(&vcpu->kvm->online_vcpus),
1358 		            ka->use_master_clock, gtod->clock.vclock_mode);
1359 #endif
1360 }
1361 
update_ia32_tsc_adjust_msr(struct kvm_vcpu * vcpu,s64 offset)1362 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1363 {
1364 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1365 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1366 }
1367 
1368 /*
1369  * Multiply tsc by a fixed point number represented by ratio.
1370  *
1371  * The most significant 64-N bits (mult) of ratio represent the
1372  * integral part of the fixed point number; the remaining N bits
1373  * (frac) represent the fractional part, ie. ratio represents a fixed
1374  * point number (mult + frac * 2^(-N)).
1375  *
1376  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1377  */
__scale_tsc(u64 ratio,u64 tsc)1378 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1379 {
1380 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1381 }
1382 
kvm_scale_tsc(struct kvm_vcpu * vcpu,u64 tsc)1383 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1384 {
1385 	u64 _tsc = tsc;
1386 	u64 ratio = vcpu->arch.tsc_scaling_ratio;
1387 
1388 	if (ratio != kvm_default_tsc_scaling_ratio)
1389 		_tsc = __scale_tsc(ratio, tsc);
1390 
1391 	return _tsc;
1392 }
1393 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1394 
kvm_compute_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)1395 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1396 {
1397 	u64 tsc;
1398 
1399 	tsc = kvm_scale_tsc(vcpu, rdtsc());
1400 
1401 	return target_tsc - tsc;
1402 }
1403 
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)1404 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1405 {
1406 	return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1407 }
1408 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1409 
kvm_write_tsc(struct kvm_vcpu * vcpu,struct msr_data * msr)1410 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1411 {
1412 	struct kvm *kvm = vcpu->kvm;
1413 	u64 offset, ns, elapsed;
1414 	unsigned long flags;
1415 	s64 usdiff;
1416 	bool matched;
1417 	bool already_matched;
1418 	u64 data = msr->data;
1419 
1420 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1421 	offset = kvm_compute_tsc_offset(vcpu, data);
1422 	ns = get_kernel_ns();
1423 	elapsed = ns - kvm->arch.last_tsc_nsec;
1424 
1425 	if (vcpu->arch.virtual_tsc_khz) {
1426 		int faulted = 0;
1427 
1428 		/* n.b - signed multiplication and division required */
1429 		usdiff = data - kvm->arch.last_tsc_write;
1430 #ifdef CONFIG_X86_64
1431 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1432 #else
1433 		/* do_div() only does unsigned */
1434 		asm("1: idivl %[divisor]\n"
1435 		    "2: xor %%edx, %%edx\n"
1436 		    "   movl $0, %[faulted]\n"
1437 		    "3:\n"
1438 		    ".section .fixup,\"ax\"\n"
1439 		    "4: movl $1, %[faulted]\n"
1440 		    "   jmp  3b\n"
1441 		    ".previous\n"
1442 
1443 		_ASM_EXTABLE(1b, 4b)
1444 
1445 		: "=A"(usdiff), [faulted] "=r" (faulted)
1446 		: "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1447 
1448 #endif
1449 		do_div(elapsed, 1000);
1450 		usdiff -= elapsed;
1451 		if (usdiff < 0)
1452 			usdiff = -usdiff;
1453 
1454 		/* idivl overflow => difference is larger than USEC_PER_SEC */
1455 		if (faulted)
1456 			usdiff = USEC_PER_SEC;
1457 	} else
1458 		usdiff = USEC_PER_SEC; /* disable TSC match window below */
1459 
1460 	/*
1461 	 * Special case: TSC write with a small delta (1 second) of virtual
1462 	 * cycle time against real time is interpreted as an attempt to
1463 	 * synchronize the CPU.
1464          *
1465 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
1466 	 * TSC, we add elapsed time in this computation.  We could let the
1467 	 * compensation code attempt to catch up if we fall behind, but
1468 	 * it's better to try to match offsets from the beginning.
1469          */
1470 	if (usdiff < USEC_PER_SEC &&
1471 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1472 		if (!check_tsc_unstable()) {
1473 			offset = kvm->arch.cur_tsc_offset;
1474 			pr_debug("kvm: matched tsc offset for %llu\n", data);
1475 		} else {
1476 			u64 delta = nsec_to_cycles(vcpu, elapsed);
1477 			data += delta;
1478 			offset = kvm_compute_tsc_offset(vcpu, data);
1479 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1480 		}
1481 		matched = true;
1482 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1483 	} else {
1484 		/*
1485 		 * We split periods of matched TSC writes into generations.
1486 		 * For each generation, we track the original measured
1487 		 * nanosecond time, offset, and write, so if TSCs are in
1488 		 * sync, we can match exact offset, and if not, we can match
1489 		 * exact software computation in compute_guest_tsc()
1490 		 *
1491 		 * These values are tracked in kvm->arch.cur_xxx variables.
1492 		 */
1493 		kvm->arch.cur_tsc_generation++;
1494 		kvm->arch.cur_tsc_nsec = ns;
1495 		kvm->arch.cur_tsc_write = data;
1496 		kvm->arch.cur_tsc_offset = offset;
1497 		matched = false;
1498 		pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1499 			 kvm->arch.cur_tsc_generation, data);
1500 	}
1501 
1502 	/*
1503 	 * We also track th most recent recorded KHZ, write and time to
1504 	 * allow the matching interval to be extended at each write.
1505 	 */
1506 	kvm->arch.last_tsc_nsec = ns;
1507 	kvm->arch.last_tsc_write = data;
1508 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1509 
1510 	vcpu->arch.last_guest_tsc = data;
1511 
1512 	/* Keep track of which generation this VCPU has synchronized to */
1513 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1514 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1515 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1516 
1517 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1518 		update_ia32_tsc_adjust_msr(vcpu, offset);
1519 	kvm_x86_ops->write_tsc_offset(vcpu, offset);
1520 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1521 
1522 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1523 	if (!matched) {
1524 		kvm->arch.nr_vcpus_matched_tsc = 0;
1525 	} else if (!already_matched) {
1526 		kvm->arch.nr_vcpus_matched_tsc++;
1527 	}
1528 
1529 	kvm_track_tsc_matching(vcpu);
1530 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1531 }
1532 
1533 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1534 
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)1535 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1536 					   s64 adjustment)
1537 {
1538 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1539 }
1540 
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)1541 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1542 {
1543 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1544 		WARN_ON(adjustment < 0);
1545 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1546 	kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1547 }
1548 
1549 #ifdef CONFIG_X86_64
1550 
read_tsc(void)1551 static cycle_t read_tsc(void)
1552 {
1553 	cycle_t ret = (cycle_t)rdtsc_ordered();
1554 	u64 last = pvclock_gtod_data.clock.cycle_last;
1555 
1556 	if (likely(ret >= last))
1557 		return ret;
1558 
1559 	/*
1560 	 * GCC likes to generate cmov here, but this branch is extremely
1561 	 * predictable (it's just a funciton of time and the likely is
1562 	 * very likely) and there's a data dependence, so force GCC
1563 	 * to generate a branch instead.  I don't barrier() because
1564 	 * we don't actually need a barrier, and if this function
1565 	 * ever gets inlined it will generate worse code.
1566 	 */
1567 	asm volatile ("");
1568 	return last;
1569 }
1570 
vgettsc(cycle_t * cycle_now)1571 static inline u64 vgettsc(cycle_t *cycle_now)
1572 {
1573 	long v;
1574 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1575 
1576 	*cycle_now = read_tsc();
1577 
1578 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1579 	return v * gtod->clock.mult;
1580 }
1581 
do_monotonic_boot(s64 * t,cycle_t * cycle_now)1582 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1583 {
1584 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1585 	unsigned long seq;
1586 	int mode;
1587 	u64 ns;
1588 
1589 	do {
1590 		seq = read_seqcount_begin(&gtod->seq);
1591 		mode = gtod->clock.vclock_mode;
1592 		ns = gtod->nsec_base;
1593 		ns += vgettsc(cycle_now);
1594 		ns >>= gtod->clock.shift;
1595 		ns += gtod->boot_ns;
1596 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1597 	*t = ns;
1598 
1599 	return mode;
1600 }
1601 
1602 /* returns true if host is using tsc clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,cycle_t * cycle_now)1603 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1604 {
1605 	/* checked again under seqlock below */
1606 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1607 		return false;
1608 
1609 	return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1610 }
1611 #endif
1612 
1613 /*
1614  *
1615  * Assuming a stable TSC across physical CPUS, and a stable TSC
1616  * across virtual CPUs, the following condition is possible.
1617  * Each numbered line represents an event visible to both
1618  * CPUs at the next numbered event.
1619  *
1620  * "timespecX" represents host monotonic time. "tscX" represents
1621  * RDTSC value.
1622  *
1623  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
1624  *
1625  * 1.  read timespec0,tsc0
1626  * 2.					| timespec1 = timespec0 + N
1627  * 					| tsc1 = tsc0 + M
1628  * 3. transition to guest		| transition to guest
1629  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1630  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
1631  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1632  *
1633  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1634  *
1635  * 	- ret0 < ret1
1636  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1637  *		...
1638  *	- 0 < N - M => M < N
1639  *
1640  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1641  * always the case (the difference between two distinct xtime instances
1642  * might be smaller then the difference between corresponding TSC reads,
1643  * when updating guest vcpus pvclock areas).
1644  *
1645  * To avoid that problem, do not allow visibility of distinct
1646  * system_timestamp/tsc_timestamp values simultaneously: use a master
1647  * copy of host monotonic time values. Update that master copy
1648  * in lockstep.
1649  *
1650  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1651  *
1652  */
1653 
pvclock_update_vm_gtod_copy(struct kvm * kvm)1654 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1655 {
1656 #ifdef CONFIG_X86_64
1657 	struct kvm_arch *ka = &kvm->arch;
1658 	int vclock_mode;
1659 	bool host_tsc_clocksource, vcpus_matched;
1660 
1661 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1662 			atomic_read(&kvm->online_vcpus));
1663 
1664 	/*
1665 	 * If the host uses TSC clock, then passthrough TSC as stable
1666 	 * to the guest.
1667 	 */
1668 	host_tsc_clocksource = kvm_get_time_and_clockread(
1669 					&ka->master_kernel_ns,
1670 					&ka->master_cycle_now);
1671 
1672 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1673 				&& !backwards_tsc_observed
1674 				&& !ka->boot_vcpu_runs_old_kvmclock;
1675 
1676 	if (ka->use_master_clock)
1677 		atomic_set(&kvm_guest_has_master_clock, 1);
1678 
1679 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1680 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1681 					vcpus_matched);
1682 #endif
1683 }
1684 
kvm_gen_update_masterclock(struct kvm * kvm)1685 static void kvm_gen_update_masterclock(struct kvm *kvm)
1686 {
1687 #ifdef CONFIG_X86_64
1688 	int i;
1689 	struct kvm_vcpu *vcpu;
1690 	struct kvm_arch *ka = &kvm->arch;
1691 
1692 	spin_lock(&ka->pvclock_gtod_sync_lock);
1693 	kvm_make_mclock_inprogress_request(kvm);
1694 	/* no guest entries from this point */
1695 	pvclock_update_vm_gtod_copy(kvm);
1696 
1697 	kvm_for_each_vcpu(i, vcpu, kvm)
1698 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1699 
1700 	/* guest entries allowed */
1701 	kvm_for_each_vcpu(i, vcpu, kvm)
1702 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1703 
1704 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1705 #endif
1706 }
1707 
kvm_guest_time_update(struct kvm_vcpu * v)1708 static int kvm_guest_time_update(struct kvm_vcpu *v)
1709 {
1710 	unsigned long flags, this_tsc_khz, tgt_tsc_khz;
1711 	struct kvm_vcpu_arch *vcpu = &v->arch;
1712 	struct kvm_arch *ka = &v->kvm->arch;
1713 	s64 kernel_ns;
1714 	u64 tsc_timestamp, host_tsc;
1715 	struct pvclock_vcpu_time_info guest_hv_clock;
1716 	u8 pvclock_flags;
1717 	bool use_master_clock;
1718 
1719 	kernel_ns = 0;
1720 	host_tsc = 0;
1721 
1722 	/*
1723 	 * If the host uses TSC clock, then passthrough TSC as stable
1724 	 * to the guest.
1725 	 */
1726 	spin_lock(&ka->pvclock_gtod_sync_lock);
1727 	use_master_clock = ka->use_master_clock;
1728 	if (use_master_clock) {
1729 		host_tsc = ka->master_cycle_now;
1730 		kernel_ns = ka->master_kernel_ns;
1731 	}
1732 	spin_unlock(&ka->pvclock_gtod_sync_lock);
1733 
1734 	/* Keep irq disabled to prevent changes to the clock */
1735 	local_irq_save(flags);
1736 	this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1737 	if (unlikely(this_tsc_khz == 0)) {
1738 		local_irq_restore(flags);
1739 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1740 		return 1;
1741 	}
1742 	if (!use_master_clock) {
1743 		host_tsc = rdtsc();
1744 		kernel_ns = get_kernel_ns();
1745 	}
1746 
1747 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1748 
1749 	/*
1750 	 * We may have to catch up the TSC to match elapsed wall clock
1751 	 * time for two reasons, even if kvmclock is used.
1752 	 *   1) CPU could have been running below the maximum TSC rate
1753 	 *   2) Broken TSC compensation resets the base at each VCPU
1754 	 *      entry to avoid unknown leaps of TSC even when running
1755 	 *      again on the same CPU.  This may cause apparent elapsed
1756 	 *      time to disappear, and the guest to stand still or run
1757 	 *	very slowly.
1758 	 */
1759 	if (vcpu->tsc_catchup) {
1760 		u64 tsc = compute_guest_tsc(v, kernel_ns);
1761 		if (tsc > tsc_timestamp) {
1762 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1763 			tsc_timestamp = tsc;
1764 		}
1765 	}
1766 
1767 	local_irq_restore(flags);
1768 
1769 	if (!vcpu->pv_time_enabled)
1770 		return 0;
1771 
1772 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1773 		tgt_tsc_khz = kvm_has_tsc_control ?
1774 			vcpu->virtual_tsc_khz : this_tsc_khz;
1775 		kvm_get_time_scale(NSEC_PER_SEC / 1000, tgt_tsc_khz,
1776 				   &vcpu->hv_clock.tsc_shift,
1777 				   &vcpu->hv_clock.tsc_to_system_mul);
1778 		vcpu->hw_tsc_khz = this_tsc_khz;
1779 	}
1780 
1781 	/* With all the info we got, fill in the values */
1782 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1783 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1784 	vcpu->last_guest_tsc = tsc_timestamp;
1785 
1786 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1787 		&guest_hv_clock, sizeof(guest_hv_clock))))
1788 		return 0;
1789 
1790 	/* This VCPU is paused, but it's legal for a guest to read another
1791 	 * VCPU's kvmclock, so we really have to follow the specification where
1792 	 * it says that version is odd if data is being modified, and even after
1793 	 * it is consistent.
1794 	 *
1795 	 * Version field updates must be kept separate.  This is because
1796 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
1797 	 * writes within a string instruction are weakly ordered.  So there
1798 	 * are three writes overall.
1799 	 *
1800 	 * As a small optimization, only write the version field in the first
1801 	 * and third write.  The vcpu->pv_time cache is still valid, because the
1802 	 * version field is the first in the struct.
1803 	 */
1804 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1805 
1806 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
1807 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1808 				&vcpu->hv_clock,
1809 				sizeof(vcpu->hv_clock.version));
1810 
1811 	smp_wmb();
1812 
1813 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1814 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1815 
1816 	if (vcpu->pvclock_set_guest_stopped_request) {
1817 		pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1818 		vcpu->pvclock_set_guest_stopped_request = false;
1819 	}
1820 
1821 	/* If the host uses TSC clocksource, then it is stable */
1822 	if (use_master_clock)
1823 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1824 
1825 	vcpu->hv_clock.flags = pvclock_flags;
1826 
1827 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1828 
1829 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1830 				&vcpu->hv_clock,
1831 				sizeof(vcpu->hv_clock));
1832 
1833 	smp_wmb();
1834 
1835 	vcpu->hv_clock.version++;
1836 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1837 				&vcpu->hv_clock,
1838 				sizeof(vcpu->hv_clock.version));
1839 	return 0;
1840 }
1841 
1842 /*
1843  * kvmclock updates which are isolated to a given vcpu, such as
1844  * vcpu->cpu migration, should not allow system_timestamp from
1845  * the rest of the vcpus to remain static. Otherwise ntp frequency
1846  * correction applies to one vcpu's system_timestamp but not
1847  * the others.
1848  *
1849  * So in those cases, request a kvmclock update for all vcpus.
1850  * We need to rate-limit these requests though, as they can
1851  * considerably slow guests that have a large number of vcpus.
1852  * The time for a remote vcpu to update its kvmclock is bound
1853  * by the delay we use to rate-limit the updates.
1854  */
1855 
1856 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1857 
kvmclock_update_fn(struct work_struct * work)1858 static void kvmclock_update_fn(struct work_struct *work)
1859 {
1860 	int i;
1861 	struct delayed_work *dwork = to_delayed_work(work);
1862 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1863 					   kvmclock_update_work);
1864 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1865 	struct kvm_vcpu *vcpu;
1866 
1867 	kvm_for_each_vcpu(i, vcpu, kvm) {
1868 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1869 		kvm_vcpu_kick(vcpu);
1870 	}
1871 }
1872 
kvm_gen_kvmclock_update(struct kvm_vcpu * v)1873 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1874 {
1875 	struct kvm *kvm = v->kvm;
1876 
1877 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1878 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1879 					KVMCLOCK_UPDATE_DELAY);
1880 }
1881 
1882 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1883 
kvmclock_sync_fn(struct work_struct * work)1884 static void kvmclock_sync_fn(struct work_struct *work)
1885 {
1886 	struct delayed_work *dwork = to_delayed_work(work);
1887 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1888 					   kvmclock_sync_work);
1889 	struct kvm *kvm = container_of(ka, struct kvm, arch);
1890 
1891 	if (!kvmclock_periodic_sync)
1892 		return;
1893 
1894 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1895 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1896 					KVMCLOCK_SYNC_PERIOD);
1897 }
1898 
set_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 data)1899 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1900 {
1901 	u64 mcg_cap = vcpu->arch.mcg_cap;
1902 	unsigned bank_num = mcg_cap & 0xff;
1903 
1904 	switch (msr) {
1905 	case MSR_IA32_MCG_STATUS:
1906 		vcpu->arch.mcg_status = data;
1907 		break;
1908 	case MSR_IA32_MCG_CTL:
1909 		if (!(mcg_cap & MCG_CTL_P))
1910 			return 1;
1911 		if (data != 0 && data != ~(u64)0)
1912 			return -1;
1913 		vcpu->arch.mcg_ctl = data;
1914 		break;
1915 	default:
1916 		if (msr >= MSR_IA32_MC0_CTL &&
1917 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
1918 			u32 offset = msr - MSR_IA32_MC0_CTL;
1919 			/* only 0 or all 1s can be written to IA32_MCi_CTL
1920 			 * some Linux kernels though clear bit 10 in bank 4 to
1921 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1922 			 * this to avoid an uncatched #GP in the guest
1923 			 */
1924 			if ((offset & 0x3) == 0 &&
1925 			    data != 0 && (data | (1 << 10)) != ~(u64)0)
1926 				return -1;
1927 			vcpu->arch.mce_banks[offset] = data;
1928 			break;
1929 		}
1930 		return 1;
1931 	}
1932 	return 0;
1933 }
1934 
xen_hvm_config(struct kvm_vcpu * vcpu,u64 data)1935 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1936 {
1937 	struct kvm *kvm = vcpu->kvm;
1938 	int lm = is_long_mode(vcpu);
1939 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1940 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1941 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1942 		: kvm->arch.xen_hvm_config.blob_size_32;
1943 	u32 page_num = data & ~PAGE_MASK;
1944 	u64 page_addr = data & PAGE_MASK;
1945 	u8 *page;
1946 	int r;
1947 
1948 	r = -E2BIG;
1949 	if (page_num >= blob_size)
1950 		goto out;
1951 	r = -ENOMEM;
1952 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1953 	if (IS_ERR(page)) {
1954 		r = PTR_ERR(page);
1955 		goto out;
1956 	}
1957 	if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1958 		goto out_free;
1959 	r = 0;
1960 out_free:
1961 	kfree(page);
1962 out:
1963 	return r;
1964 }
1965 
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)1966 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1967 {
1968 	gpa_t gpa = data & ~0x3f;
1969 
1970 	/* Bits 2:5 are reserved, Should be zero */
1971 	if (data & 0x3c)
1972 		return 1;
1973 
1974 	vcpu->arch.apf.msr_val = data;
1975 
1976 	if (!(data & KVM_ASYNC_PF_ENABLED)) {
1977 		kvm_clear_async_pf_completion_queue(vcpu);
1978 		kvm_async_pf_hash_reset(vcpu);
1979 		return 0;
1980 	}
1981 
1982 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1983 					sizeof(u32)))
1984 		return 1;
1985 
1986 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1987 	kvm_async_pf_wakeup_all(vcpu);
1988 	return 0;
1989 }
1990 
kvmclock_reset(struct kvm_vcpu * vcpu)1991 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1992 {
1993 	vcpu->arch.pv_time_enabled = false;
1994 }
1995 
accumulate_steal_time(struct kvm_vcpu * vcpu)1996 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1997 {
1998 	u64 delta;
1999 
2000 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2001 		return;
2002 
2003 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2004 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
2005 	vcpu->arch.st.accum_steal = delta;
2006 }
2007 
record_steal_time(struct kvm_vcpu * vcpu)2008 static void record_steal_time(struct kvm_vcpu *vcpu)
2009 {
2010 	accumulate_steal_time(vcpu);
2011 
2012 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2013 		return;
2014 
2015 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2016 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2017 		return;
2018 
2019 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2020 	vcpu->arch.st.steal.version += 2;
2021 	vcpu->arch.st.accum_steal = 0;
2022 
2023 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2024 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2025 }
2026 
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2027 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2028 {
2029 	bool pr = false;
2030 	u32 msr = msr_info->index;
2031 	u64 data = msr_info->data;
2032 
2033 	switch (msr) {
2034 	case MSR_AMD64_NB_CFG:
2035 	case MSR_IA32_UCODE_REV:
2036 	case MSR_IA32_UCODE_WRITE:
2037 	case MSR_VM_HSAVE_PA:
2038 	case MSR_AMD64_PATCH_LOADER:
2039 	case MSR_AMD64_BU_CFG2:
2040 		break;
2041 
2042 	case MSR_EFER:
2043 		return set_efer(vcpu, data);
2044 	case MSR_K7_HWCR:
2045 		data &= ~(u64)0x40;	/* ignore flush filter disable */
2046 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
2047 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
2048 		data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2049 		if (data != 0) {
2050 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2051 				    data);
2052 			return 1;
2053 		}
2054 		break;
2055 	case MSR_FAM10H_MMIO_CONF_BASE:
2056 		if (data != 0) {
2057 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2058 				    "0x%llx\n", data);
2059 			return 1;
2060 		}
2061 		break;
2062 	case MSR_IA32_DEBUGCTLMSR:
2063 		if (!data) {
2064 			/* We support the non-activated case already */
2065 			break;
2066 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2067 			/* Values other than LBR and BTF are vendor-specific,
2068 			   thus reserved and should throw a #GP */
2069 			return 1;
2070 		}
2071 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2072 			    __func__, data);
2073 		break;
2074 	case 0x200 ... 0x2ff:
2075 		return kvm_mtrr_set_msr(vcpu, msr, data);
2076 	case MSR_IA32_APICBASE:
2077 		return kvm_set_apic_base(vcpu, msr_info);
2078 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2079 		return kvm_x2apic_msr_write(vcpu, msr, data);
2080 	case MSR_IA32_TSCDEADLINE:
2081 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
2082 		break;
2083 	case MSR_IA32_TSC_ADJUST:
2084 		if (guest_cpuid_has_tsc_adjust(vcpu)) {
2085 			if (!msr_info->host_initiated) {
2086 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2087 				adjust_tsc_offset_guest(vcpu, adj);
2088 			}
2089 			vcpu->arch.ia32_tsc_adjust_msr = data;
2090 		}
2091 		break;
2092 	case MSR_IA32_MISC_ENABLE:
2093 		vcpu->arch.ia32_misc_enable_msr = data;
2094 		break;
2095 	case MSR_IA32_SMBASE:
2096 		if (!msr_info->host_initiated)
2097 			return 1;
2098 		vcpu->arch.smbase = data;
2099 		break;
2100 	case MSR_KVM_WALL_CLOCK_NEW:
2101 	case MSR_KVM_WALL_CLOCK:
2102 		vcpu->kvm->arch.wall_clock = data;
2103 		kvm_write_wall_clock(vcpu->kvm, data);
2104 		break;
2105 	case MSR_KVM_SYSTEM_TIME_NEW:
2106 	case MSR_KVM_SYSTEM_TIME: {
2107 		u64 gpa_offset;
2108 		struct kvm_arch *ka = &vcpu->kvm->arch;
2109 
2110 		kvmclock_reset(vcpu);
2111 
2112 		if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2113 			bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2114 
2115 			if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2116 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2117 					&vcpu->requests);
2118 
2119 			ka->boot_vcpu_runs_old_kvmclock = tmp;
2120 		}
2121 
2122 		vcpu->arch.time = data;
2123 		kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2124 
2125 		/* we verify if the enable bit is set... */
2126 		if (!(data & 1))
2127 			break;
2128 
2129 		gpa_offset = data & ~(PAGE_MASK | 1);
2130 
2131 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2132 		     &vcpu->arch.pv_time, data & ~1ULL,
2133 		     sizeof(struct pvclock_vcpu_time_info)))
2134 			vcpu->arch.pv_time_enabled = false;
2135 		else
2136 			vcpu->arch.pv_time_enabled = true;
2137 
2138 		break;
2139 	}
2140 	case MSR_KVM_ASYNC_PF_EN:
2141 		if (kvm_pv_enable_async_pf(vcpu, data))
2142 			return 1;
2143 		break;
2144 	case MSR_KVM_STEAL_TIME:
2145 
2146 		if (unlikely(!sched_info_on()))
2147 			return 1;
2148 
2149 		if (data & KVM_STEAL_RESERVED_MASK)
2150 			return 1;
2151 
2152 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2153 						data & KVM_STEAL_VALID_BITS,
2154 						sizeof(struct kvm_steal_time)))
2155 			return 1;
2156 
2157 		vcpu->arch.st.msr_val = data;
2158 
2159 		if (!(data & KVM_MSR_ENABLED))
2160 			break;
2161 
2162 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2163 
2164 		break;
2165 	case MSR_KVM_PV_EOI_EN:
2166 		if (kvm_lapic_enable_pv_eoi(vcpu, data))
2167 			return 1;
2168 		break;
2169 
2170 	case MSR_IA32_MCG_CTL:
2171 	case MSR_IA32_MCG_STATUS:
2172 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2173 		return set_msr_mce(vcpu, msr, data);
2174 
2175 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2176 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2177 		pr = true; /* fall through */
2178 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2179 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2180 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2181 			return kvm_pmu_set_msr(vcpu, msr_info);
2182 
2183 		if (pr || data != 0)
2184 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2185 				    "0x%x data 0x%llx\n", msr, data);
2186 		break;
2187 	case MSR_K7_CLK_CTL:
2188 		/*
2189 		 * Ignore all writes to this no longer documented MSR.
2190 		 * Writes are only relevant for old K7 processors,
2191 		 * all pre-dating SVM, but a recommended workaround from
2192 		 * AMD for these chips. It is possible to specify the
2193 		 * affected processor models on the command line, hence
2194 		 * the need to ignore the workaround.
2195 		 */
2196 		break;
2197 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2198 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2199 	case HV_X64_MSR_CRASH_CTL:
2200 		return kvm_hv_set_msr_common(vcpu, msr, data,
2201 					     msr_info->host_initiated);
2202 	case MSR_IA32_BBL_CR_CTL3:
2203 		/* Drop writes to this legacy MSR -- see rdmsr
2204 		 * counterpart for further detail.
2205 		 */
2206 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2207 		break;
2208 	case MSR_AMD64_OSVW_ID_LENGTH:
2209 		if (!guest_cpuid_has_osvw(vcpu))
2210 			return 1;
2211 		vcpu->arch.osvw.length = data;
2212 		break;
2213 	case MSR_AMD64_OSVW_STATUS:
2214 		if (!guest_cpuid_has_osvw(vcpu))
2215 			return 1;
2216 		vcpu->arch.osvw.status = data;
2217 		break;
2218 	default:
2219 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2220 			return xen_hvm_config(vcpu, data);
2221 		if (kvm_pmu_is_valid_msr(vcpu, msr))
2222 			return kvm_pmu_set_msr(vcpu, msr_info);
2223 		if (!ignore_msrs) {
2224 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2225 				    msr, data);
2226 			return 1;
2227 		} else {
2228 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2229 				    msr, data);
2230 			break;
2231 		}
2232 	}
2233 	return 0;
2234 }
2235 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2236 
2237 
2238 /*
2239  * Reads an msr value (of 'msr_index') into 'pdata'.
2240  * Returns 0 on success, non-0 otherwise.
2241  * Assumes vcpu_load() was already called.
2242  */
kvm_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr)2243 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2244 {
2245 	return kvm_x86_ops->get_msr(vcpu, msr);
2246 }
2247 EXPORT_SYMBOL_GPL(kvm_get_msr);
2248 
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata)2249 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2250 {
2251 	u64 data;
2252 	u64 mcg_cap = vcpu->arch.mcg_cap;
2253 	unsigned bank_num = mcg_cap & 0xff;
2254 
2255 	switch (msr) {
2256 	case MSR_IA32_P5_MC_ADDR:
2257 	case MSR_IA32_P5_MC_TYPE:
2258 		data = 0;
2259 		break;
2260 	case MSR_IA32_MCG_CAP:
2261 		data = vcpu->arch.mcg_cap;
2262 		break;
2263 	case MSR_IA32_MCG_CTL:
2264 		if (!(mcg_cap & MCG_CTL_P))
2265 			return 1;
2266 		data = vcpu->arch.mcg_ctl;
2267 		break;
2268 	case MSR_IA32_MCG_STATUS:
2269 		data = vcpu->arch.mcg_status;
2270 		break;
2271 	default:
2272 		if (msr >= MSR_IA32_MC0_CTL &&
2273 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
2274 			u32 offset = msr - MSR_IA32_MC0_CTL;
2275 			data = vcpu->arch.mce_banks[offset];
2276 			break;
2277 		}
2278 		return 1;
2279 	}
2280 	*pdata = data;
2281 	return 0;
2282 }
2283 
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2284 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2285 {
2286 	switch (msr_info->index) {
2287 	case MSR_IA32_PLATFORM_ID:
2288 	case MSR_IA32_EBL_CR_POWERON:
2289 	case MSR_IA32_DEBUGCTLMSR:
2290 	case MSR_IA32_LASTBRANCHFROMIP:
2291 	case MSR_IA32_LASTBRANCHTOIP:
2292 	case MSR_IA32_LASTINTFROMIP:
2293 	case MSR_IA32_LASTINTTOIP:
2294 	case MSR_K8_SYSCFG:
2295 	case MSR_K8_TSEG_ADDR:
2296 	case MSR_K8_TSEG_MASK:
2297 	case MSR_K7_HWCR:
2298 	case MSR_VM_HSAVE_PA:
2299 	case MSR_K8_INT_PENDING_MSG:
2300 	case MSR_AMD64_NB_CFG:
2301 	case MSR_FAM10H_MMIO_CONF_BASE:
2302 	case MSR_AMD64_BU_CFG2:
2303 		msr_info->data = 0;
2304 		break;
2305 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2306 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2307 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2308 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2309 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2310 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2311 		msr_info->data = 0;
2312 		break;
2313 	case MSR_IA32_UCODE_REV:
2314 		msr_info->data = 0x100000000ULL;
2315 		break;
2316 	case MSR_MTRRcap:
2317 	case 0x200 ... 0x2ff:
2318 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2319 	case 0xcd: /* fsb frequency */
2320 		msr_info->data = 3;
2321 		break;
2322 		/*
2323 		 * MSR_EBC_FREQUENCY_ID
2324 		 * Conservative value valid for even the basic CPU models.
2325 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2326 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2327 		 * and 266MHz for model 3, or 4. Set Core Clock
2328 		 * Frequency to System Bus Frequency Ratio to 1 (bits
2329 		 * 31:24) even though these are only valid for CPU
2330 		 * models > 2, however guests may end up dividing or
2331 		 * multiplying by zero otherwise.
2332 		 */
2333 	case MSR_EBC_FREQUENCY_ID:
2334 		msr_info->data = 1 << 24;
2335 		break;
2336 	case MSR_IA32_APICBASE:
2337 		msr_info->data = kvm_get_apic_base(vcpu);
2338 		break;
2339 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2340 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2341 		break;
2342 	case MSR_IA32_TSCDEADLINE:
2343 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2344 		break;
2345 	case MSR_IA32_TSC_ADJUST:
2346 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2347 		break;
2348 	case MSR_IA32_MISC_ENABLE:
2349 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2350 		break;
2351 	case MSR_IA32_SMBASE:
2352 		if (!msr_info->host_initiated)
2353 			return 1;
2354 		msr_info->data = vcpu->arch.smbase;
2355 		break;
2356 	case MSR_IA32_PERF_STATUS:
2357 		/* TSC increment by tick */
2358 		msr_info->data = 1000ULL;
2359 		/* CPU multiplier */
2360 		msr_info->data |= (((uint64_t)4ULL) << 40);
2361 		break;
2362 	case MSR_EFER:
2363 		msr_info->data = vcpu->arch.efer;
2364 		break;
2365 	case MSR_KVM_WALL_CLOCK:
2366 	case MSR_KVM_WALL_CLOCK_NEW:
2367 		msr_info->data = vcpu->kvm->arch.wall_clock;
2368 		break;
2369 	case MSR_KVM_SYSTEM_TIME:
2370 	case MSR_KVM_SYSTEM_TIME_NEW:
2371 		msr_info->data = vcpu->arch.time;
2372 		break;
2373 	case MSR_KVM_ASYNC_PF_EN:
2374 		msr_info->data = vcpu->arch.apf.msr_val;
2375 		break;
2376 	case MSR_KVM_STEAL_TIME:
2377 		msr_info->data = vcpu->arch.st.msr_val;
2378 		break;
2379 	case MSR_KVM_PV_EOI_EN:
2380 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
2381 		break;
2382 	case MSR_IA32_P5_MC_ADDR:
2383 	case MSR_IA32_P5_MC_TYPE:
2384 	case MSR_IA32_MCG_CAP:
2385 	case MSR_IA32_MCG_CTL:
2386 	case MSR_IA32_MCG_STATUS:
2387 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2388 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2389 	case MSR_K7_CLK_CTL:
2390 		/*
2391 		 * Provide expected ramp-up count for K7. All other
2392 		 * are set to zero, indicating minimum divisors for
2393 		 * every field.
2394 		 *
2395 		 * This prevents guest kernels on AMD host with CPU
2396 		 * type 6, model 8 and higher from exploding due to
2397 		 * the rdmsr failing.
2398 		 */
2399 		msr_info->data = 0x20000000;
2400 		break;
2401 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2402 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2403 	case HV_X64_MSR_CRASH_CTL:
2404 		return kvm_hv_get_msr_common(vcpu,
2405 					     msr_info->index, &msr_info->data);
2406 		break;
2407 	case MSR_IA32_BBL_CR_CTL3:
2408 		/* This legacy MSR exists but isn't fully documented in current
2409 		 * silicon.  It is however accessed by winxp in very narrow
2410 		 * scenarios where it sets bit #19, itself documented as
2411 		 * a "reserved" bit.  Best effort attempt to source coherent
2412 		 * read data here should the balance of the register be
2413 		 * interpreted by the guest:
2414 		 *
2415 		 * L2 cache control register 3: 64GB range, 256KB size,
2416 		 * enabled, latency 0x1, configured
2417 		 */
2418 		msr_info->data = 0xbe702111;
2419 		break;
2420 	case MSR_AMD64_OSVW_ID_LENGTH:
2421 		if (!guest_cpuid_has_osvw(vcpu))
2422 			return 1;
2423 		msr_info->data = vcpu->arch.osvw.length;
2424 		break;
2425 	case MSR_AMD64_OSVW_STATUS:
2426 		if (!guest_cpuid_has_osvw(vcpu))
2427 			return 1;
2428 		msr_info->data = vcpu->arch.osvw.status;
2429 		break;
2430 	default:
2431 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2432 			return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2433 		if (!ignore_msrs) {
2434 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2435 			return 1;
2436 		} else {
2437 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2438 			msr_info->data = 0;
2439 		}
2440 		break;
2441 	}
2442 	return 0;
2443 }
2444 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2445 
2446 /*
2447  * Read or write a bunch of msrs. All parameters are kernel addresses.
2448  *
2449  * @return number of msrs set successfully.
2450  */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))2451 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2452 		    struct kvm_msr_entry *entries,
2453 		    int (*do_msr)(struct kvm_vcpu *vcpu,
2454 				  unsigned index, u64 *data))
2455 {
2456 	int i, idx;
2457 
2458 	idx = srcu_read_lock(&vcpu->kvm->srcu);
2459 	for (i = 0; i < msrs->nmsrs; ++i)
2460 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
2461 			break;
2462 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
2463 
2464 	return i;
2465 }
2466 
2467 /*
2468  * Read or write a bunch of msrs. Parameters are user addresses.
2469  *
2470  * @return number of msrs set successfully.
2471  */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)2472 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2473 		  int (*do_msr)(struct kvm_vcpu *vcpu,
2474 				unsigned index, u64 *data),
2475 		  int writeback)
2476 {
2477 	struct kvm_msrs msrs;
2478 	struct kvm_msr_entry *entries;
2479 	int r, n;
2480 	unsigned size;
2481 
2482 	r = -EFAULT;
2483 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2484 		goto out;
2485 
2486 	r = -E2BIG;
2487 	if (msrs.nmsrs >= MAX_IO_MSRS)
2488 		goto out;
2489 
2490 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2491 	entries = memdup_user(user_msrs->entries, size);
2492 	if (IS_ERR(entries)) {
2493 		r = PTR_ERR(entries);
2494 		goto out;
2495 	}
2496 
2497 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2498 	if (r < 0)
2499 		goto out_free;
2500 
2501 	r = -EFAULT;
2502 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
2503 		goto out_free;
2504 
2505 	r = n;
2506 
2507 out_free:
2508 	kfree(entries);
2509 out:
2510 	return r;
2511 }
2512 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)2513 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2514 {
2515 	int r;
2516 
2517 	switch (ext) {
2518 	case KVM_CAP_IRQCHIP:
2519 	case KVM_CAP_HLT:
2520 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2521 	case KVM_CAP_SET_TSS_ADDR:
2522 	case KVM_CAP_EXT_CPUID:
2523 	case KVM_CAP_EXT_EMUL_CPUID:
2524 	case KVM_CAP_CLOCKSOURCE:
2525 	case KVM_CAP_PIT:
2526 	case KVM_CAP_NOP_IO_DELAY:
2527 	case KVM_CAP_MP_STATE:
2528 	case KVM_CAP_SYNC_MMU:
2529 	case KVM_CAP_USER_NMI:
2530 	case KVM_CAP_REINJECT_CONTROL:
2531 	case KVM_CAP_IRQ_INJECT_STATUS:
2532 	case KVM_CAP_IOEVENTFD:
2533 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
2534 	case KVM_CAP_PIT2:
2535 	case KVM_CAP_PIT_STATE2:
2536 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2537 	case KVM_CAP_XEN_HVM:
2538 	case KVM_CAP_ADJUST_CLOCK:
2539 	case KVM_CAP_VCPU_EVENTS:
2540 	case KVM_CAP_HYPERV:
2541 	case KVM_CAP_HYPERV_VAPIC:
2542 	case KVM_CAP_HYPERV_SPIN:
2543 	case KVM_CAP_PCI_SEGMENT:
2544 	case KVM_CAP_DEBUGREGS:
2545 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
2546 	case KVM_CAP_XSAVE:
2547 	case KVM_CAP_ASYNC_PF:
2548 	case KVM_CAP_GET_TSC_KHZ:
2549 	case KVM_CAP_KVMCLOCK_CTRL:
2550 	case KVM_CAP_READONLY_MEM:
2551 	case KVM_CAP_HYPERV_TIME:
2552 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2553 	case KVM_CAP_TSC_DEADLINE_TIMER:
2554 	case KVM_CAP_ENABLE_CAP_VM:
2555 	case KVM_CAP_DISABLE_QUIRKS:
2556 	case KVM_CAP_SET_BOOT_CPU_ID:
2557  	case KVM_CAP_SPLIT_IRQCHIP:
2558 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2559 	case KVM_CAP_ASSIGN_DEV_IRQ:
2560 	case KVM_CAP_PCI_2_3:
2561 #endif
2562 		r = 1;
2563 		break;
2564 	case KVM_CAP_X86_SMM:
2565 		/* SMBASE is usually relocated above 1M on modern chipsets,
2566 		 * and SMM handlers might indeed rely on 4G segment limits,
2567 		 * so do not report SMM to be available if real mode is
2568 		 * emulated via vm86 mode.  Still, do not go to great lengths
2569 		 * to avoid userspace's usage of the feature, because it is a
2570 		 * fringe case that is not enabled except via specific settings
2571 		 * of the module parameters.
2572 		 */
2573 		r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2574 		break;
2575 	case KVM_CAP_COALESCED_MMIO:
2576 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2577 		break;
2578 	case KVM_CAP_VAPIC:
2579 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2580 		break;
2581 	case KVM_CAP_NR_VCPUS:
2582 		r = KVM_SOFT_MAX_VCPUS;
2583 		break;
2584 	case KVM_CAP_MAX_VCPUS:
2585 		r = KVM_MAX_VCPUS;
2586 		break;
2587 	case KVM_CAP_NR_MEMSLOTS:
2588 		r = KVM_USER_MEM_SLOTS;
2589 		break;
2590 	case KVM_CAP_PV_MMU:	/* obsolete */
2591 		r = 0;
2592 		break;
2593 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2594 	case KVM_CAP_IOMMU:
2595 		r = iommu_present(&pci_bus_type);
2596 		break;
2597 #endif
2598 	case KVM_CAP_MCE:
2599 		r = KVM_MAX_MCE_BANKS;
2600 		break;
2601 	case KVM_CAP_XCRS:
2602 		r = cpu_has_xsave;
2603 		break;
2604 	case KVM_CAP_TSC_CONTROL:
2605 		r = kvm_has_tsc_control;
2606 		break;
2607 	default:
2608 		r = 0;
2609 		break;
2610 	}
2611 	return r;
2612 
2613 }
2614 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2615 long kvm_arch_dev_ioctl(struct file *filp,
2616 			unsigned int ioctl, unsigned long arg)
2617 {
2618 	void __user *argp = (void __user *)arg;
2619 	long r;
2620 
2621 	switch (ioctl) {
2622 	case KVM_GET_MSR_INDEX_LIST: {
2623 		struct kvm_msr_list __user *user_msr_list = argp;
2624 		struct kvm_msr_list msr_list;
2625 		unsigned n;
2626 
2627 		r = -EFAULT;
2628 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2629 			goto out;
2630 		n = msr_list.nmsrs;
2631 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2632 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2633 			goto out;
2634 		r = -E2BIG;
2635 		if (n < msr_list.nmsrs)
2636 			goto out;
2637 		r = -EFAULT;
2638 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2639 				 num_msrs_to_save * sizeof(u32)))
2640 			goto out;
2641 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2642 				 &emulated_msrs,
2643 				 num_emulated_msrs * sizeof(u32)))
2644 			goto out;
2645 		r = 0;
2646 		break;
2647 	}
2648 	case KVM_GET_SUPPORTED_CPUID:
2649 	case KVM_GET_EMULATED_CPUID: {
2650 		struct kvm_cpuid2 __user *cpuid_arg = argp;
2651 		struct kvm_cpuid2 cpuid;
2652 
2653 		r = -EFAULT;
2654 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2655 			goto out;
2656 
2657 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2658 					    ioctl);
2659 		if (r)
2660 			goto out;
2661 
2662 		r = -EFAULT;
2663 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2664 			goto out;
2665 		r = 0;
2666 		break;
2667 	}
2668 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2669 		u64 mce_cap;
2670 
2671 		mce_cap = KVM_MCE_CAP_SUPPORTED;
2672 		r = -EFAULT;
2673 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2674 			goto out;
2675 		r = 0;
2676 		break;
2677 	}
2678 	default:
2679 		r = -EINVAL;
2680 	}
2681 out:
2682 	return r;
2683 }
2684 
wbinvd_ipi(void * garbage)2685 static void wbinvd_ipi(void *garbage)
2686 {
2687 	wbinvd();
2688 }
2689 
need_emulate_wbinvd(struct kvm_vcpu * vcpu)2690 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2691 {
2692 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2693 }
2694 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2695 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2696 {
2697 	/* Address WBINVD may be executed by guest */
2698 	if (need_emulate_wbinvd(vcpu)) {
2699 		if (kvm_x86_ops->has_wbinvd_exit())
2700 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2701 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2702 			smp_call_function_single(vcpu->cpu,
2703 					wbinvd_ipi, NULL, 1);
2704 	}
2705 
2706 	kvm_x86_ops->vcpu_load(vcpu, cpu);
2707 
2708 	/* Apply any externally detected TSC adjustments (due to suspend) */
2709 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2710 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2711 		vcpu->arch.tsc_offset_adjustment = 0;
2712 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2713 	}
2714 
2715 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2716 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2717 				rdtsc() - vcpu->arch.last_host_tsc;
2718 		if (tsc_delta < 0)
2719 			mark_tsc_unstable("KVM discovered backwards TSC");
2720 		if (check_tsc_unstable()) {
2721 			u64 offset = kvm_compute_tsc_offset(vcpu,
2722 						vcpu->arch.last_guest_tsc);
2723 			kvm_x86_ops->write_tsc_offset(vcpu, offset);
2724 			vcpu->arch.tsc_catchup = 1;
2725 		}
2726 		/*
2727 		 * On a host with synchronized TSC, there is no need to update
2728 		 * kvmclock on vcpu->cpu migration
2729 		 */
2730 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2731 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2732 		if (vcpu->cpu != cpu)
2733 			kvm_migrate_timers(vcpu);
2734 		vcpu->cpu = cpu;
2735 	}
2736 
2737 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2738 	vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
2739 }
2740 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)2741 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2742 {
2743 	kvm_x86_ops->vcpu_put(vcpu);
2744 	kvm_put_guest_fpu(vcpu);
2745 	vcpu->arch.last_host_tsc = rdtsc();
2746 }
2747 
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)2748 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2749 				    struct kvm_lapic_state *s)
2750 {
2751 	kvm_x86_ops->sync_pir_to_irr(vcpu);
2752 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2753 
2754 	return 0;
2755 }
2756 
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)2757 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2758 				    struct kvm_lapic_state *s)
2759 {
2760 	kvm_apic_post_state_restore(vcpu, s);
2761 	update_cr8_intercept(vcpu);
2762 
2763 	return 0;
2764 }
2765 
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)2766 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2767 {
2768 	return (!lapic_in_kernel(vcpu) ||
2769 		kvm_apic_accept_pic_intr(vcpu));
2770 }
2771 
2772 /*
2773  * if userspace requested an interrupt window, check that the
2774  * interrupt window is open.
2775  *
2776  * No need to exit to userspace if we already have an interrupt queued.
2777  */
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)2778 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2779 {
2780 	return kvm_arch_interrupt_allowed(vcpu) &&
2781 		!kvm_cpu_has_interrupt(vcpu) &&
2782 		!kvm_event_needs_reinjection(vcpu) &&
2783 		kvm_cpu_accept_dm_intr(vcpu);
2784 }
2785 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)2786 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2787 				    struct kvm_interrupt *irq)
2788 {
2789 	if (irq->irq >= KVM_NR_INTERRUPTS)
2790 		return -EINVAL;
2791 
2792 	if (!irqchip_in_kernel(vcpu->kvm)) {
2793 		kvm_queue_interrupt(vcpu, irq->irq, false);
2794 		kvm_make_request(KVM_REQ_EVENT, vcpu);
2795 		return 0;
2796 	}
2797 
2798 	/*
2799 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2800 	 * fail for in-kernel 8259.
2801 	 */
2802 	if (pic_in_kernel(vcpu->kvm))
2803 		return -ENXIO;
2804 
2805 	if (vcpu->arch.pending_external_vector != -1)
2806 		return -EEXIST;
2807 
2808 	vcpu->arch.pending_external_vector = irq->irq;
2809 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2810 	return 0;
2811 }
2812 
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)2813 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2814 {
2815 	kvm_inject_nmi(vcpu);
2816 
2817 	return 0;
2818 }
2819 
kvm_vcpu_ioctl_smi(struct kvm_vcpu * vcpu)2820 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2821 {
2822 	kvm_make_request(KVM_REQ_SMI, vcpu);
2823 
2824 	return 0;
2825 }
2826 
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)2827 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2828 					   struct kvm_tpr_access_ctl *tac)
2829 {
2830 	if (tac->flags)
2831 		return -EINVAL;
2832 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
2833 	return 0;
2834 }
2835 
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)2836 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2837 					u64 mcg_cap)
2838 {
2839 	int r;
2840 	unsigned bank_num = mcg_cap & 0xff, bank;
2841 
2842 	r = -EINVAL;
2843 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2844 		goto out;
2845 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2846 		goto out;
2847 	r = 0;
2848 	vcpu->arch.mcg_cap = mcg_cap;
2849 	/* Init IA32_MCG_CTL to all 1s */
2850 	if (mcg_cap & MCG_CTL_P)
2851 		vcpu->arch.mcg_ctl = ~(u64)0;
2852 	/* Init IA32_MCi_CTL to all 1s */
2853 	for (bank = 0; bank < bank_num; bank++)
2854 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2855 out:
2856 	return r;
2857 }
2858 
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)2859 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2860 				      struct kvm_x86_mce *mce)
2861 {
2862 	u64 mcg_cap = vcpu->arch.mcg_cap;
2863 	unsigned bank_num = mcg_cap & 0xff;
2864 	u64 *banks = vcpu->arch.mce_banks;
2865 
2866 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2867 		return -EINVAL;
2868 	/*
2869 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2870 	 * reporting is disabled
2871 	 */
2872 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2873 	    vcpu->arch.mcg_ctl != ~(u64)0)
2874 		return 0;
2875 	banks += 4 * mce->bank;
2876 	/*
2877 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2878 	 * reporting is disabled for the bank
2879 	 */
2880 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2881 		return 0;
2882 	if (mce->status & MCI_STATUS_UC) {
2883 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2884 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2885 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2886 			return 0;
2887 		}
2888 		if (banks[1] & MCI_STATUS_VAL)
2889 			mce->status |= MCI_STATUS_OVER;
2890 		banks[2] = mce->addr;
2891 		banks[3] = mce->misc;
2892 		vcpu->arch.mcg_status = mce->mcg_status;
2893 		banks[1] = mce->status;
2894 		kvm_queue_exception(vcpu, MC_VECTOR);
2895 	} else if (!(banks[1] & MCI_STATUS_VAL)
2896 		   || !(banks[1] & MCI_STATUS_UC)) {
2897 		if (banks[1] & MCI_STATUS_VAL)
2898 			mce->status |= MCI_STATUS_OVER;
2899 		banks[2] = mce->addr;
2900 		banks[3] = mce->misc;
2901 		banks[1] = mce->status;
2902 	} else
2903 		banks[1] |= MCI_STATUS_OVER;
2904 	return 0;
2905 }
2906 
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)2907 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2908 					       struct kvm_vcpu_events *events)
2909 {
2910 	process_nmi(vcpu);
2911 	events->exception.injected =
2912 		vcpu->arch.exception.pending &&
2913 		!kvm_exception_is_soft(vcpu->arch.exception.nr);
2914 	events->exception.nr = vcpu->arch.exception.nr;
2915 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2916 	events->exception.pad = 0;
2917 	events->exception.error_code = vcpu->arch.exception.error_code;
2918 
2919 	events->interrupt.injected =
2920 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2921 	events->interrupt.nr = vcpu->arch.interrupt.nr;
2922 	events->interrupt.soft = 0;
2923 	events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2924 
2925 	events->nmi.injected = vcpu->arch.nmi_injected;
2926 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
2927 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2928 	events->nmi.pad = 0;
2929 
2930 	events->sipi_vector = 0; /* never valid when reporting to user space */
2931 
2932 	events->smi.smm = is_smm(vcpu);
2933 	events->smi.pending = vcpu->arch.smi_pending;
2934 	events->smi.smm_inside_nmi =
2935 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2936 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2937 
2938 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2939 			 | KVM_VCPUEVENT_VALID_SHADOW
2940 			 | KVM_VCPUEVENT_VALID_SMM);
2941 	memset(&events->reserved, 0, sizeof(events->reserved));
2942 }
2943 
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)2944 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2945 					      struct kvm_vcpu_events *events)
2946 {
2947 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2948 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2949 			      | KVM_VCPUEVENT_VALID_SHADOW
2950 			      | KVM_VCPUEVENT_VALID_SMM))
2951 		return -EINVAL;
2952 
2953 	process_nmi(vcpu);
2954 	vcpu->arch.exception.pending = events->exception.injected;
2955 	vcpu->arch.exception.nr = events->exception.nr;
2956 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2957 	vcpu->arch.exception.error_code = events->exception.error_code;
2958 
2959 	vcpu->arch.interrupt.pending = events->interrupt.injected;
2960 	vcpu->arch.interrupt.nr = events->interrupt.nr;
2961 	vcpu->arch.interrupt.soft = events->interrupt.soft;
2962 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2963 		kvm_x86_ops->set_interrupt_shadow(vcpu,
2964 						  events->interrupt.shadow);
2965 
2966 	vcpu->arch.nmi_injected = events->nmi.injected;
2967 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2968 		vcpu->arch.nmi_pending = events->nmi.pending;
2969 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2970 
2971 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2972 	    kvm_vcpu_has_lapic(vcpu))
2973 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
2974 
2975 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2976 		if (events->smi.smm)
2977 			vcpu->arch.hflags |= HF_SMM_MASK;
2978 		else
2979 			vcpu->arch.hflags &= ~HF_SMM_MASK;
2980 		vcpu->arch.smi_pending = events->smi.pending;
2981 		if (events->smi.smm_inside_nmi)
2982 			vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
2983 		else
2984 			vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
2985 		if (kvm_vcpu_has_lapic(vcpu)) {
2986 			if (events->smi.latched_init)
2987 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2988 			else
2989 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2990 		}
2991 	}
2992 
2993 	kvm_make_request(KVM_REQ_EVENT, vcpu);
2994 
2995 	return 0;
2996 }
2997 
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)2998 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2999 					     struct kvm_debugregs *dbgregs)
3000 {
3001 	unsigned long val;
3002 
3003 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3004 	kvm_get_dr(vcpu, 6, &val);
3005 	dbgregs->dr6 = val;
3006 	dbgregs->dr7 = vcpu->arch.dr7;
3007 	dbgregs->flags = 0;
3008 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3009 }
3010 
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)3011 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3012 					    struct kvm_debugregs *dbgregs)
3013 {
3014 	if (dbgregs->flags)
3015 		return -EINVAL;
3016 
3017 	if (dbgregs->dr6 & ~0xffffffffull)
3018 		return -EINVAL;
3019 	if (dbgregs->dr7 & ~0xffffffffull)
3020 		return -EINVAL;
3021 
3022 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3023 	kvm_update_dr0123(vcpu);
3024 	vcpu->arch.dr6 = dbgregs->dr6;
3025 	kvm_update_dr6(vcpu);
3026 	vcpu->arch.dr7 = dbgregs->dr7;
3027 	kvm_update_dr7(vcpu);
3028 
3029 	return 0;
3030 }
3031 
3032 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3033 
fill_xsave(u8 * dest,struct kvm_vcpu * vcpu)3034 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3035 {
3036 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3037 	u64 xstate_bv = xsave->header.xfeatures;
3038 	u64 valid;
3039 
3040 	/*
3041 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3042 	 * leaves 0 and 1 in the loop below.
3043 	 */
3044 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3045 
3046 	/* Set XSTATE_BV */
3047 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3048 
3049 	/*
3050 	 * Copy each region from the possibly compacted offset to the
3051 	 * non-compacted offset.
3052 	 */
3053 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3054 	while (valid) {
3055 		u64 feature = valid & -valid;
3056 		int index = fls64(feature) - 1;
3057 		void *src = get_xsave_addr(xsave, feature);
3058 
3059 		if (src) {
3060 			u32 size, offset, ecx, edx;
3061 			cpuid_count(XSTATE_CPUID, index,
3062 				    &size, &offset, &ecx, &edx);
3063 			memcpy(dest + offset, src, size);
3064 		}
3065 
3066 		valid -= feature;
3067 	}
3068 }
3069 
load_xsave(struct kvm_vcpu * vcpu,u8 * src)3070 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3071 {
3072 	struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3073 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3074 	u64 valid;
3075 
3076 	/*
3077 	 * Copy legacy XSAVE area, to avoid complications with CPUID
3078 	 * leaves 0 and 1 in the loop below.
3079 	 */
3080 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
3081 
3082 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
3083 	xsave->header.xfeatures = xstate_bv;
3084 	if (cpu_has_xsaves)
3085 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3086 
3087 	/*
3088 	 * Copy each region from the non-compacted offset to the
3089 	 * possibly compacted offset.
3090 	 */
3091 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3092 	while (valid) {
3093 		u64 feature = valid & -valid;
3094 		int index = fls64(feature) - 1;
3095 		void *dest = get_xsave_addr(xsave, feature);
3096 
3097 		if (dest) {
3098 			u32 size, offset, ecx, edx;
3099 			cpuid_count(XSTATE_CPUID, index,
3100 				    &size, &offset, &ecx, &edx);
3101 			memcpy(dest, src + offset, size);
3102 		}
3103 
3104 		valid -= feature;
3105 	}
3106 }
3107 
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)3108 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3109 					 struct kvm_xsave *guest_xsave)
3110 {
3111 	if (cpu_has_xsave) {
3112 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3113 		fill_xsave((u8 *) guest_xsave->region, vcpu);
3114 	} else {
3115 		memcpy(guest_xsave->region,
3116 			&vcpu->arch.guest_fpu.state.fxsave,
3117 			sizeof(struct fxregs_state));
3118 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3119 			XFEATURE_MASK_FPSSE;
3120 	}
3121 }
3122 
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)3123 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3124 					struct kvm_xsave *guest_xsave)
3125 {
3126 	u64 xstate_bv =
3127 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3128 
3129 	if (cpu_has_xsave) {
3130 		/*
3131 		 * Here we allow setting states that are not present in
3132 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3133 		 * with old userspace.
3134 		 */
3135 		if (xstate_bv & ~kvm_supported_xcr0())
3136 			return -EINVAL;
3137 		load_xsave(vcpu, (u8 *)guest_xsave->region);
3138 	} else {
3139 		if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3140 			return -EINVAL;
3141 		memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3142 			guest_xsave->region, sizeof(struct fxregs_state));
3143 	}
3144 	return 0;
3145 }
3146 
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)3147 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3148 					struct kvm_xcrs *guest_xcrs)
3149 {
3150 	if (!cpu_has_xsave) {
3151 		guest_xcrs->nr_xcrs = 0;
3152 		return;
3153 	}
3154 
3155 	guest_xcrs->nr_xcrs = 1;
3156 	guest_xcrs->flags = 0;
3157 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3158 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3159 }
3160 
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)3161 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3162 				       struct kvm_xcrs *guest_xcrs)
3163 {
3164 	int i, r = 0;
3165 
3166 	if (!cpu_has_xsave)
3167 		return -EINVAL;
3168 
3169 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3170 		return -EINVAL;
3171 
3172 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3173 		/* Only support XCR0 currently */
3174 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3175 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3176 				guest_xcrs->xcrs[i].value);
3177 			break;
3178 		}
3179 	if (r)
3180 		r = -EINVAL;
3181 	return r;
3182 }
3183 
3184 /*
3185  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3186  * stopped by the hypervisor.  This function will be called from the host only.
3187  * EINVAL is returned when the host attempts to set the flag for a guest that
3188  * does not support pv clocks.
3189  */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)3190 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3191 {
3192 	if (!vcpu->arch.pv_time_enabled)
3193 		return -EINVAL;
3194 	vcpu->arch.pvclock_set_guest_stopped_request = true;
3195 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3196 	return 0;
3197 }
3198 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3199 long kvm_arch_vcpu_ioctl(struct file *filp,
3200 			 unsigned int ioctl, unsigned long arg)
3201 {
3202 	struct kvm_vcpu *vcpu = filp->private_data;
3203 	void __user *argp = (void __user *)arg;
3204 	int r;
3205 	union {
3206 		struct kvm_lapic_state *lapic;
3207 		struct kvm_xsave *xsave;
3208 		struct kvm_xcrs *xcrs;
3209 		void *buffer;
3210 	} u;
3211 
3212 	u.buffer = NULL;
3213 	switch (ioctl) {
3214 	case KVM_GET_LAPIC: {
3215 		r = -EINVAL;
3216 		if (!vcpu->arch.apic)
3217 			goto out;
3218 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3219 
3220 		r = -ENOMEM;
3221 		if (!u.lapic)
3222 			goto out;
3223 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3224 		if (r)
3225 			goto out;
3226 		r = -EFAULT;
3227 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3228 			goto out;
3229 		r = 0;
3230 		break;
3231 	}
3232 	case KVM_SET_LAPIC: {
3233 		r = -EINVAL;
3234 		if (!vcpu->arch.apic)
3235 			goto out;
3236 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
3237 		if (IS_ERR(u.lapic))
3238 			return PTR_ERR(u.lapic);
3239 
3240 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3241 		break;
3242 	}
3243 	case KVM_INTERRUPT: {
3244 		struct kvm_interrupt irq;
3245 
3246 		r = -EFAULT;
3247 		if (copy_from_user(&irq, argp, sizeof irq))
3248 			goto out;
3249 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3250 		break;
3251 	}
3252 	case KVM_NMI: {
3253 		r = kvm_vcpu_ioctl_nmi(vcpu);
3254 		break;
3255 	}
3256 	case KVM_SMI: {
3257 		r = kvm_vcpu_ioctl_smi(vcpu);
3258 		break;
3259 	}
3260 	case KVM_SET_CPUID: {
3261 		struct kvm_cpuid __user *cpuid_arg = argp;
3262 		struct kvm_cpuid cpuid;
3263 
3264 		r = -EFAULT;
3265 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3266 			goto out;
3267 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3268 		break;
3269 	}
3270 	case KVM_SET_CPUID2: {
3271 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3272 		struct kvm_cpuid2 cpuid;
3273 
3274 		r = -EFAULT;
3275 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3276 			goto out;
3277 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3278 					      cpuid_arg->entries);
3279 		break;
3280 	}
3281 	case KVM_GET_CPUID2: {
3282 		struct kvm_cpuid2 __user *cpuid_arg = argp;
3283 		struct kvm_cpuid2 cpuid;
3284 
3285 		r = -EFAULT;
3286 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3287 			goto out;
3288 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3289 					      cpuid_arg->entries);
3290 		if (r)
3291 			goto out;
3292 		r = -EFAULT;
3293 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3294 			goto out;
3295 		r = 0;
3296 		break;
3297 	}
3298 	case KVM_GET_MSRS:
3299 		r = msr_io(vcpu, argp, do_get_msr, 1);
3300 		break;
3301 	case KVM_SET_MSRS:
3302 		r = msr_io(vcpu, argp, do_set_msr, 0);
3303 		break;
3304 	case KVM_TPR_ACCESS_REPORTING: {
3305 		struct kvm_tpr_access_ctl tac;
3306 
3307 		r = -EFAULT;
3308 		if (copy_from_user(&tac, argp, sizeof tac))
3309 			goto out;
3310 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3311 		if (r)
3312 			goto out;
3313 		r = -EFAULT;
3314 		if (copy_to_user(argp, &tac, sizeof tac))
3315 			goto out;
3316 		r = 0;
3317 		break;
3318 	};
3319 	case KVM_SET_VAPIC_ADDR: {
3320 		struct kvm_vapic_addr va;
3321 
3322 		r = -EINVAL;
3323 		if (!lapic_in_kernel(vcpu))
3324 			goto out;
3325 		r = -EFAULT;
3326 		if (copy_from_user(&va, argp, sizeof va))
3327 			goto out;
3328 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3329 		break;
3330 	}
3331 	case KVM_X86_SETUP_MCE: {
3332 		u64 mcg_cap;
3333 
3334 		r = -EFAULT;
3335 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3336 			goto out;
3337 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3338 		break;
3339 	}
3340 	case KVM_X86_SET_MCE: {
3341 		struct kvm_x86_mce mce;
3342 
3343 		r = -EFAULT;
3344 		if (copy_from_user(&mce, argp, sizeof mce))
3345 			goto out;
3346 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3347 		break;
3348 	}
3349 	case KVM_GET_VCPU_EVENTS: {
3350 		struct kvm_vcpu_events events;
3351 
3352 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3353 
3354 		r = -EFAULT;
3355 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3356 			break;
3357 		r = 0;
3358 		break;
3359 	}
3360 	case KVM_SET_VCPU_EVENTS: {
3361 		struct kvm_vcpu_events events;
3362 
3363 		r = -EFAULT;
3364 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3365 			break;
3366 
3367 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3368 		break;
3369 	}
3370 	case KVM_GET_DEBUGREGS: {
3371 		struct kvm_debugregs dbgregs;
3372 
3373 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3374 
3375 		r = -EFAULT;
3376 		if (copy_to_user(argp, &dbgregs,
3377 				 sizeof(struct kvm_debugregs)))
3378 			break;
3379 		r = 0;
3380 		break;
3381 	}
3382 	case KVM_SET_DEBUGREGS: {
3383 		struct kvm_debugregs dbgregs;
3384 
3385 		r = -EFAULT;
3386 		if (copy_from_user(&dbgregs, argp,
3387 				   sizeof(struct kvm_debugregs)))
3388 			break;
3389 
3390 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3391 		break;
3392 	}
3393 	case KVM_GET_XSAVE: {
3394 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3395 		r = -ENOMEM;
3396 		if (!u.xsave)
3397 			break;
3398 
3399 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3400 
3401 		r = -EFAULT;
3402 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3403 			break;
3404 		r = 0;
3405 		break;
3406 	}
3407 	case KVM_SET_XSAVE: {
3408 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
3409 		if (IS_ERR(u.xsave))
3410 			return PTR_ERR(u.xsave);
3411 
3412 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3413 		break;
3414 	}
3415 	case KVM_GET_XCRS: {
3416 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3417 		r = -ENOMEM;
3418 		if (!u.xcrs)
3419 			break;
3420 
3421 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3422 
3423 		r = -EFAULT;
3424 		if (copy_to_user(argp, u.xcrs,
3425 				 sizeof(struct kvm_xcrs)))
3426 			break;
3427 		r = 0;
3428 		break;
3429 	}
3430 	case KVM_SET_XCRS: {
3431 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3432 		if (IS_ERR(u.xcrs))
3433 			return PTR_ERR(u.xcrs);
3434 
3435 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3436 		break;
3437 	}
3438 	case KVM_SET_TSC_KHZ: {
3439 		u32 user_tsc_khz;
3440 
3441 		r = -EINVAL;
3442 		user_tsc_khz = (u32)arg;
3443 
3444 		if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3445 			goto out;
3446 
3447 		if (user_tsc_khz == 0)
3448 			user_tsc_khz = tsc_khz;
3449 
3450 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3451 			r = 0;
3452 
3453 		goto out;
3454 	}
3455 	case KVM_GET_TSC_KHZ: {
3456 		r = vcpu->arch.virtual_tsc_khz;
3457 		goto out;
3458 	}
3459 	case KVM_KVMCLOCK_CTRL: {
3460 		r = kvm_set_guest_paused(vcpu);
3461 		goto out;
3462 	}
3463 	default:
3464 		r = -EINVAL;
3465 	}
3466 out:
3467 	kfree(u.buffer);
3468 	return r;
3469 }
3470 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)3471 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3472 {
3473 	return VM_FAULT_SIGBUS;
3474 }
3475 
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)3476 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3477 {
3478 	int ret;
3479 
3480 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
3481 		return -EINVAL;
3482 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3483 	return ret;
3484 }
3485 
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)3486 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3487 					      u64 ident_addr)
3488 {
3489 	kvm->arch.ept_identity_map_addr = ident_addr;
3490 	return 0;
3491 }
3492 
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,u32 kvm_nr_mmu_pages)3493 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3494 					  u32 kvm_nr_mmu_pages)
3495 {
3496 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3497 		return -EINVAL;
3498 
3499 	mutex_lock(&kvm->slots_lock);
3500 
3501 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3502 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3503 
3504 	mutex_unlock(&kvm->slots_lock);
3505 	return 0;
3506 }
3507 
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm * kvm)3508 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3509 {
3510 	return kvm->arch.n_max_mmu_pages;
3511 }
3512 
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)3513 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3514 {
3515 	int r;
3516 
3517 	r = 0;
3518 	switch (chip->chip_id) {
3519 	case KVM_IRQCHIP_PIC_MASTER:
3520 		memcpy(&chip->chip.pic,
3521 			&pic_irqchip(kvm)->pics[0],
3522 			sizeof(struct kvm_pic_state));
3523 		break;
3524 	case KVM_IRQCHIP_PIC_SLAVE:
3525 		memcpy(&chip->chip.pic,
3526 			&pic_irqchip(kvm)->pics[1],
3527 			sizeof(struct kvm_pic_state));
3528 		break;
3529 	case KVM_IRQCHIP_IOAPIC:
3530 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3531 		break;
3532 	default:
3533 		r = -EINVAL;
3534 		break;
3535 	}
3536 	return r;
3537 }
3538 
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)3539 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3540 {
3541 	int r;
3542 
3543 	r = 0;
3544 	switch (chip->chip_id) {
3545 	case KVM_IRQCHIP_PIC_MASTER:
3546 		spin_lock(&pic_irqchip(kvm)->lock);
3547 		memcpy(&pic_irqchip(kvm)->pics[0],
3548 			&chip->chip.pic,
3549 			sizeof(struct kvm_pic_state));
3550 		spin_unlock(&pic_irqchip(kvm)->lock);
3551 		break;
3552 	case KVM_IRQCHIP_PIC_SLAVE:
3553 		spin_lock(&pic_irqchip(kvm)->lock);
3554 		memcpy(&pic_irqchip(kvm)->pics[1],
3555 			&chip->chip.pic,
3556 			sizeof(struct kvm_pic_state));
3557 		spin_unlock(&pic_irqchip(kvm)->lock);
3558 		break;
3559 	case KVM_IRQCHIP_IOAPIC:
3560 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3561 		break;
3562 	default:
3563 		r = -EINVAL;
3564 		break;
3565 	}
3566 	kvm_pic_update_irq(pic_irqchip(kvm));
3567 	return r;
3568 }
3569 
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)3570 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3571 {
3572 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3573 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3574 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3575 	return 0;
3576 }
3577 
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)3578 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3579 {
3580 	int i;
3581 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3582 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3583 	for (i = 0; i < 3; i++)
3584 		kvm_pit_load_count(kvm, i, ps->channels[i].count, 0);
3585 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3586 	return 0;
3587 }
3588 
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)3589 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3590 {
3591 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3592 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3593 		sizeof(ps->channels));
3594 	ps->flags = kvm->arch.vpit->pit_state.flags;
3595 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3596 	memset(&ps->reserved, 0, sizeof(ps->reserved));
3597 	return 0;
3598 }
3599 
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)3600 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3601 {
3602 	int start = 0;
3603 	int i;
3604 	u32 prev_legacy, cur_legacy;
3605 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3606 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3607 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3608 	if (!prev_legacy && cur_legacy)
3609 		start = 1;
3610 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3611 	       sizeof(kvm->arch.vpit->pit_state.channels));
3612 	kvm->arch.vpit->pit_state.flags = ps->flags;
3613 	for (i = 0; i < 3; i++)
3614 		kvm_pit_load_count(kvm, i, kvm->arch.vpit->pit_state.channels[i].count,
3615 				   start && i == 0);
3616 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3617 	return 0;
3618 }
3619 
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)3620 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3621 				 struct kvm_reinject_control *control)
3622 {
3623 	if (!kvm->arch.vpit)
3624 		return -ENXIO;
3625 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
3626 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3627 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3628 	return 0;
3629 }
3630 
3631 /**
3632  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3633  * @kvm: kvm instance
3634  * @log: slot id and address to which we copy the log
3635  *
3636  * Steps 1-4 below provide general overview of dirty page logging. See
3637  * kvm_get_dirty_log_protect() function description for additional details.
3638  *
3639  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3640  * always flush the TLB (step 4) even if previous step failed  and the dirty
3641  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3642  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3643  * writes will be marked dirty for next log read.
3644  *
3645  *   1. Take a snapshot of the bit and clear it if needed.
3646  *   2. Write protect the corresponding page.
3647  *   3. Copy the snapshot to the userspace.
3648  *   4. Flush TLB's if needed.
3649  */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)3650 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3651 {
3652 	bool is_dirty = false;
3653 	int r;
3654 
3655 	mutex_lock(&kvm->slots_lock);
3656 
3657 	/*
3658 	 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3659 	 */
3660 	if (kvm_x86_ops->flush_log_dirty)
3661 		kvm_x86_ops->flush_log_dirty(kvm);
3662 
3663 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3664 
3665 	/*
3666 	 * All the TLBs can be flushed out of mmu lock, see the comments in
3667 	 * kvm_mmu_slot_remove_write_access().
3668 	 */
3669 	lockdep_assert_held(&kvm->slots_lock);
3670 	if (is_dirty)
3671 		kvm_flush_remote_tlbs(kvm);
3672 
3673 	mutex_unlock(&kvm->slots_lock);
3674 	return r;
3675 }
3676 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)3677 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3678 			bool line_status)
3679 {
3680 	if (!irqchip_in_kernel(kvm))
3681 		return -ENXIO;
3682 
3683 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3684 					irq_event->irq, irq_event->level,
3685 					line_status);
3686 	return 0;
3687 }
3688 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)3689 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3690 				   struct kvm_enable_cap *cap)
3691 {
3692 	int r;
3693 
3694 	if (cap->flags)
3695 		return -EINVAL;
3696 
3697 	switch (cap->cap) {
3698 	case KVM_CAP_DISABLE_QUIRKS:
3699 		kvm->arch.disabled_quirks = cap->args[0];
3700 		r = 0;
3701 		break;
3702 	case KVM_CAP_SPLIT_IRQCHIP: {
3703 		mutex_lock(&kvm->lock);
3704 		r = -EINVAL;
3705 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3706 			goto split_irqchip_unlock;
3707 		r = -EEXIST;
3708 		if (irqchip_in_kernel(kvm))
3709 			goto split_irqchip_unlock;
3710 		if (atomic_read(&kvm->online_vcpus))
3711 			goto split_irqchip_unlock;
3712 		r = kvm_setup_empty_irq_routing(kvm);
3713 		if (r)
3714 			goto split_irqchip_unlock;
3715 		/* Pairs with irqchip_in_kernel. */
3716 		smp_wmb();
3717 		kvm->arch.irqchip_split = true;
3718 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3719 		r = 0;
3720 split_irqchip_unlock:
3721 		mutex_unlock(&kvm->lock);
3722 		break;
3723 	}
3724 	default:
3725 		r = -EINVAL;
3726 		break;
3727 	}
3728 	return r;
3729 }
3730 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)3731 long kvm_arch_vm_ioctl(struct file *filp,
3732 		       unsigned int ioctl, unsigned long arg)
3733 {
3734 	struct kvm *kvm = filp->private_data;
3735 	void __user *argp = (void __user *)arg;
3736 	int r = -ENOTTY;
3737 	/*
3738 	 * This union makes it completely explicit to gcc-3.x
3739 	 * that these two variables' stack usage should be
3740 	 * combined, not added together.
3741 	 */
3742 	union {
3743 		struct kvm_pit_state ps;
3744 		struct kvm_pit_state2 ps2;
3745 		struct kvm_pit_config pit_config;
3746 	} u;
3747 
3748 	switch (ioctl) {
3749 	case KVM_SET_TSS_ADDR:
3750 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3751 		break;
3752 	case KVM_SET_IDENTITY_MAP_ADDR: {
3753 		u64 ident_addr;
3754 
3755 		r = -EFAULT;
3756 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3757 			goto out;
3758 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3759 		break;
3760 	}
3761 	case KVM_SET_NR_MMU_PAGES:
3762 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3763 		break;
3764 	case KVM_GET_NR_MMU_PAGES:
3765 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3766 		break;
3767 	case KVM_CREATE_IRQCHIP: {
3768 		struct kvm_pic *vpic;
3769 
3770 		mutex_lock(&kvm->lock);
3771 		r = -EEXIST;
3772 		if (kvm->arch.vpic)
3773 			goto create_irqchip_unlock;
3774 		r = -EINVAL;
3775 		if (atomic_read(&kvm->online_vcpus))
3776 			goto create_irqchip_unlock;
3777 		r = -ENOMEM;
3778 		vpic = kvm_create_pic(kvm);
3779 		if (vpic) {
3780 			r = kvm_ioapic_init(kvm);
3781 			if (r) {
3782 				mutex_lock(&kvm->slots_lock);
3783 				kvm_destroy_pic(vpic);
3784 				mutex_unlock(&kvm->slots_lock);
3785 				goto create_irqchip_unlock;
3786 			}
3787 		} else
3788 			goto create_irqchip_unlock;
3789 		r = kvm_setup_default_irq_routing(kvm);
3790 		if (r) {
3791 			mutex_lock(&kvm->slots_lock);
3792 			mutex_lock(&kvm->irq_lock);
3793 			kvm_ioapic_destroy(kvm);
3794 			kvm_destroy_pic(vpic);
3795 			mutex_unlock(&kvm->irq_lock);
3796 			mutex_unlock(&kvm->slots_lock);
3797 			goto create_irqchip_unlock;
3798 		}
3799 		/* Write kvm->irq_routing before kvm->arch.vpic.  */
3800 		smp_wmb();
3801 		kvm->arch.vpic = vpic;
3802 	create_irqchip_unlock:
3803 		mutex_unlock(&kvm->lock);
3804 		break;
3805 	}
3806 	case KVM_CREATE_PIT:
3807 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3808 		goto create_pit;
3809 	case KVM_CREATE_PIT2:
3810 		r = -EFAULT;
3811 		if (copy_from_user(&u.pit_config, argp,
3812 				   sizeof(struct kvm_pit_config)))
3813 			goto out;
3814 	create_pit:
3815 		mutex_lock(&kvm->slots_lock);
3816 		r = -EEXIST;
3817 		if (kvm->arch.vpit)
3818 			goto create_pit_unlock;
3819 		r = -ENOMEM;
3820 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3821 		if (kvm->arch.vpit)
3822 			r = 0;
3823 	create_pit_unlock:
3824 		mutex_unlock(&kvm->slots_lock);
3825 		break;
3826 	case KVM_GET_IRQCHIP: {
3827 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3828 		struct kvm_irqchip *chip;
3829 
3830 		chip = memdup_user(argp, sizeof(*chip));
3831 		if (IS_ERR(chip)) {
3832 			r = PTR_ERR(chip);
3833 			goto out;
3834 		}
3835 
3836 		r = -ENXIO;
3837 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3838 			goto get_irqchip_out;
3839 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3840 		if (r)
3841 			goto get_irqchip_out;
3842 		r = -EFAULT;
3843 		if (copy_to_user(argp, chip, sizeof *chip))
3844 			goto get_irqchip_out;
3845 		r = 0;
3846 	get_irqchip_out:
3847 		kfree(chip);
3848 		break;
3849 	}
3850 	case KVM_SET_IRQCHIP: {
3851 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3852 		struct kvm_irqchip *chip;
3853 
3854 		chip = memdup_user(argp, sizeof(*chip));
3855 		if (IS_ERR(chip)) {
3856 			r = PTR_ERR(chip);
3857 			goto out;
3858 		}
3859 
3860 		r = -ENXIO;
3861 		if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3862 			goto set_irqchip_out;
3863 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3864 		if (r)
3865 			goto set_irqchip_out;
3866 		r = 0;
3867 	set_irqchip_out:
3868 		kfree(chip);
3869 		break;
3870 	}
3871 	case KVM_GET_PIT: {
3872 		r = -EFAULT;
3873 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3874 			goto out;
3875 		r = -ENXIO;
3876 		if (!kvm->arch.vpit)
3877 			goto out;
3878 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3879 		if (r)
3880 			goto out;
3881 		r = -EFAULT;
3882 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3883 			goto out;
3884 		r = 0;
3885 		break;
3886 	}
3887 	case KVM_SET_PIT: {
3888 		r = -EFAULT;
3889 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
3890 			goto out;
3891 		r = -ENXIO;
3892 		if (!kvm->arch.vpit)
3893 			goto out;
3894 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3895 		break;
3896 	}
3897 	case KVM_GET_PIT2: {
3898 		r = -ENXIO;
3899 		if (!kvm->arch.vpit)
3900 			goto out;
3901 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3902 		if (r)
3903 			goto out;
3904 		r = -EFAULT;
3905 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3906 			goto out;
3907 		r = 0;
3908 		break;
3909 	}
3910 	case KVM_SET_PIT2: {
3911 		r = -EFAULT;
3912 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3913 			goto out;
3914 		r = -ENXIO;
3915 		if (!kvm->arch.vpit)
3916 			goto out;
3917 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3918 		break;
3919 	}
3920 	case KVM_REINJECT_CONTROL: {
3921 		struct kvm_reinject_control control;
3922 		r =  -EFAULT;
3923 		if (copy_from_user(&control, argp, sizeof(control)))
3924 			goto out;
3925 		r = kvm_vm_ioctl_reinject(kvm, &control);
3926 		break;
3927 	}
3928 	case KVM_SET_BOOT_CPU_ID:
3929 		r = 0;
3930 		mutex_lock(&kvm->lock);
3931 		if (atomic_read(&kvm->online_vcpus) != 0)
3932 			r = -EBUSY;
3933 		else
3934 			kvm->arch.bsp_vcpu_id = arg;
3935 		mutex_unlock(&kvm->lock);
3936 		break;
3937 	case KVM_XEN_HVM_CONFIG: {
3938 		r = -EFAULT;
3939 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3940 				   sizeof(struct kvm_xen_hvm_config)))
3941 			goto out;
3942 		r = -EINVAL;
3943 		if (kvm->arch.xen_hvm_config.flags)
3944 			goto out;
3945 		r = 0;
3946 		break;
3947 	}
3948 	case KVM_SET_CLOCK: {
3949 		struct kvm_clock_data user_ns;
3950 		u64 now_ns;
3951 		s64 delta;
3952 
3953 		r = -EFAULT;
3954 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3955 			goto out;
3956 
3957 		r = -EINVAL;
3958 		if (user_ns.flags)
3959 			goto out;
3960 
3961 		r = 0;
3962 		local_irq_disable();
3963 		now_ns = get_kernel_ns();
3964 		delta = user_ns.clock - now_ns;
3965 		local_irq_enable();
3966 		kvm->arch.kvmclock_offset = delta;
3967 		kvm_gen_update_masterclock(kvm);
3968 		break;
3969 	}
3970 	case KVM_GET_CLOCK: {
3971 		struct kvm_clock_data user_ns;
3972 		u64 now_ns;
3973 
3974 		local_irq_disable();
3975 		now_ns = get_kernel_ns();
3976 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3977 		local_irq_enable();
3978 		user_ns.flags = 0;
3979 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3980 
3981 		r = -EFAULT;
3982 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3983 			goto out;
3984 		r = 0;
3985 		break;
3986 	}
3987 	case KVM_ENABLE_CAP: {
3988 		struct kvm_enable_cap cap;
3989 
3990 		r = -EFAULT;
3991 		if (copy_from_user(&cap, argp, sizeof(cap)))
3992 			goto out;
3993 		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
3994 		break;
3995 	}
3996 	default:
3997 		r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
3998 	}
3999 out:
4000 	return r;
4001 }
4002 
kvm_init_msr_list(void)4003 static void kvm_init_msr_list(void)
4004 {
4005 	u32 dummy[2];
4006 	unsigned i, j;
4007 
4008 	for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4009 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4010 			continue;
4011 
4012 		/*
4013 		 * Even MSRs that are valid in the host may not be exposed
4014 		 * to the guests in some cases.
4015 		 */
4016 		switch (msrs_to_save[i]) {
4017 		case MSR_IA32_BNDCFGS:
4018 			if (!kvm_x86_ops->mpx_supported())
4019 				continue;
4020 			break;
4021 		case MSR_TSC_AUX:
4022 			if (!kvm_x86_ops->rdtscp_supported())
4023 				continue;
4024 			break;
4025 		default:
4026 			break;
4027 		}
4028 
4029 		if (j < i)
4030 			msrs_to_save[j] = msrs_to_save[i];
4031 		j++;
4032 	}
4033 	num_msrs_to_save = j;
4034 
4035 	for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4036 		switch (emulated_msrs[i]) {
4037 		case MSR_IA32_SMBASE:
4038 			if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4039 				continue;
4040 			break;
4041 		default:
4042 			break;
4043 		}
4044 
4045 		if (j < i)
4046 			emulated_msrs[j] = emulated_msrs[i];
4047 		j++;
4048 	}
4049 	num_emulated_msrs = j;
4050 }
4051 
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)4052 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4053 			   const void *v)
4054 {
4055 	int handled = 0;
4056 	int n;
4057 
4058 	do {
4059 		n = min(len, 8);
4060 		if (!(vcpu->arch.apic &&
4061 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4062 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4063 			break;
4064 		handled += n;
4065 		addr += n;
4066 		len -= n;
4067 		v += n;
4068 	} while (len);
4069 
4070 	return handled;
4071 }
4072 
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)4073 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4074 {
4075 	int handled = 0;
4076 	int n;
4077 
4078 	do {
4079 		n = min(len, 8);
4080 		if (!(vcpu->arch.apic &&
4081 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4082 					 addr, n, v))
4083 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4084 			break;
4085 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4086 		handled += n;
4087 		addr += n;
4088 		len -= n;
4089 		v += n;
4090 	} while (len);
4091 
4092 	return handled;
4093 }
4094 
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)4095 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4096 			struct kvm_segment *var, int seg)
4097 {
4098 	kvm_x86_ops->set_segment(vcpu, var, seg);
4099 }
4100 
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)4101 void kvm_get_segment(struct kvm_vcpu *vcpu,
4102 		     struct kvm_segment *var, int seg)
4103 {
4104 	kvm_x86_ops->get_segment(vcpu, var, seg);
4105 }
4106 
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)4107 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4108 			   struct x86_exception *exception)
4109 {
4110 	gpa_t t_gpa;
4111 
4112 	BUG_ON(!mmu_is_nested(vcpu));
4113 
4114 	/* NPT walks are always user-walks */
4115 	access |= PFERR_USER_MASK;
4116 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4117 
4118 	return t_gpa;
4119 }
4120 
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4121 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4122 			      struct x86_exception *exception)
4123 {
4124 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4125 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4126 }
4127 
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4128  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4129 				struct x86_exception *exception)
4130 {
4131 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4132 	access |= PFERR_FETCH_MASK;
4133 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4134 }
4135 
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4136 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4137 			       struct x86_exception *exception)
4138 {
4139 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4140 	access |= PFERR_WRITE_MASK;
4141 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4142 }
4143 
4144 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)4145 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4146 				struct x86_exception *exception)
4147 {
4148 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4149 }
4150 
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)4151 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4152 				      struct kvm_vcpu *vcpu, u32 access,
4153 				      struct x86_exception *exception)
4154 {
4155 	void *data = val;
4156 	int r = X86EMUL_CONTINUE;
4157 
4158 	while (bytes) {
4159 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4160 							    exception);
4161 		unsigned offset = addr & (PAGE_SIZE-1);
4162 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4163 		int ret;
4164 
4165 		if (gpa == UNMAPPED_GVA)
4166 			return X86EMUL_PROPAGATE_FAULT;
4167 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4168 					       offset, toread);
4169 		if (ret < 0) {
4170 			r = X86EMUL_IO_NEEDED;
4171 			goto out;
4172 		}
4173 
4174 		bytes -= toread;
4175 		data += toread;
4176 		addr += toread;
4177 	}
4178 out:
4179 	return r;
4180 }
4181 
4182 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4183 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4184 				gva_t addr, void *val, unsigned int bytes,
4185 				struct x86_exception *exception)
4186 {
4187 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4188 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4189 	unsigned offset;
4190 	int ret;
4191 
4192 	/* Inline kvm_read_guest_virt_helper for speed.  */
4193 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4194 						    exception);
4195 	if (unlikely(gpa == UNMAPPED_GVA))
4196 		return X86EMUL_PROPAGATE_FAULT;
4197 
4198 	offset = addr & (PAGE_SIZE-1);
4199 	if (WARN_ON(offset + bytes > PAGE_SIZE))
4200 		bytes = (unsigned)PAGE_SIZE - offset;
4201 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4202 				       offset, bytes);
4203 	if (unlikely(ret < 0))
4204 		return X86EMUL_IO_NEEDED;
4205 
4206 	return X86EMUL_CONTINUE;
4207 }
4208 
kvm_read_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4209 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4210 			       gva_t addr, void *val, unsigned int bytes,
4211 			       struct x86_exception *exception)
4212 {
4213 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4214 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4215 
4216 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4217 					  exception);
4218 }
4219 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4220 
kvm_read_guest_virt_system(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4221 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4222 				      gva_t addr, void *val, unsigned int bytes,
4223 				      struct x86_exception *exception)
4224 {
4225 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4226 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4227 }
4228 
kvm_read_guest_phys_system(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes)4229 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4230 		unsigned long addr, void *val, unsigned int bytes)
4231 {
4232 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4233 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4234 
4235 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4236 }
4237 
kvm_write_guest_virt_system(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)4238 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4239 				       gva_t addr, void *val,
4240 				       unsigned int bytes,
4241 				       struct x86_exception *exception)
4242 {
4243 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4244 	void *data = val;
4245 	int r = X86EMUL_CONTINUE;
4246 
4247 	while (bytes) {
4248 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4249 							     PFERR_WRITE_MASK,
4250 							     exception);
4251 		unsigned offset = addr & (PAGE_SIZE-1);
4252 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4253 		int ret;
4254 
4255 		if (gpa == UNMAPPED_GVA)
4256 			return X86EMUL_PROPAGATE_FAULT;
4257 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4258 		if (ret < 0) {
4259 			r = X86EMUL_IO_NEEDED;
4260 			goto out;
4261 		}
4262 
4263 		bytes -= towrite;
4264 		data += towrite;
4265 		addr += towrite;
4266 	}
4267 out:
4268 	return r;
4269 }
4270 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4271 
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)4272 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4273 				gpa_t *gpa, struct x86_exception *exception,
4274 				bool write)
4275 {
4276 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4277 		| (write ? PFERR_WRITE_MASK : 0);
4278 
4279 	if (vcpu_match_mmio_gva(vcpu, gva)
4280 	    && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4281 				 vcpu->arch.access, access)) {
4282 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4283 					(gva & (PAGE_SIZE - 1));
4284 		trace_vcpu_match_mmio(gva, *gpa, write, false);
4285 		return 1;
4286 	}
4287 
4288 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4289 
4290 	if (*gpa == UNMAPPED_GVA)
4291 		return -1;
4292 
4293 	/* For APIC access vmexit */
4294 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4295 		return 1;
4296 
4297 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4298 		trace_vcpu_match_mmio(gva, *gpa, write, true);
4299 		return 1;
4300 	}
4301 
4302 	return 0;
4303 }
4304 
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)4305 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4306 			const void *val, int bytes)
4307 {
4308 	int ret;
4309 
4310 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4311 	if (ret < 0)
4312 		return 0;
4313 	kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4314 	return 1;
4315 }
4316 
4317 struct read_write_emulator_ops {
4318 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4319 				  int bytes);
4320 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4321 				  void *val, int bytes);
4322 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4323 			       int bytes, void *val);
4324 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4325 				    void *val, int bytes);
4326 	bool write;
4327 };
4328 
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)4329 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4330 {
4331 	if (vcpu->mmio_read_completed) {
4332 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4333 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4334 		vcpu->mmio_read_completed = 0;
4335 		return 1;
4336 	}
4337 
4338 	return 0;
4339 }
4340 
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4341 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4342 			void *val, int bytes)
4343 {
4344 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4345 }
4346 
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4347 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4348 			 void *val, int bytes)
4349 {
4350 	return emulator_write_phys(vcpu, gpa, val, bytes);
4351 }
4352 
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)4353 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4354 {
4355 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4356 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
4357 }
4358 
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4359 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4360 			  void *val, int bytes)
4361 {
4362 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4363 	return X86EMUL_IO_NEEDED;
4364 }
4365 
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)4366 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4367 			   void *val, int bytes)
4368 {
4369 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4370 
4371 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4372 	return X86EMUL_CONTINUE;
4373 }
4374 
4375 static const struct read_write_emulator_ops read_emultor = {
4376 	.read_write_prepare = read_prepare,
4377 	.read_write_emulate = read_emulate,
4378 	.read_write_mmio = vcpu_mmio_read,
4379 	.read_write_exit_mmio = read_exit_mmio,
4380 };
4381 
4382 static const struct read_write_emulator_ops write_emultor = {
4383 	.read_write_emulate = write_emulate,
4384 	.read_write_mmio = write_mmio,
4385 	.read_write_exit_mmio = write_exit_mmio,
4386 	.write = true,
4387 };
4388 
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)4389 static int emulator_read_write_onepage(unsigned long addr, void *val,
4390 				       unsigned int bytes,
4391 				       struct x86_exception *exception,
4392 				       struct kvm_vcpu *vcpu,
4393 				       const struct read_write_emulator_ops *ops)
4394 {
4395 	gpa_t gpa;
4396 	int handled, ret;
4397 	bool write = ops->write;
4398 	struct kvm_mmio_fragment *frag;
4399 
4400 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4401 
4402 	if (ret < 0)
4403 		return X86EMUL_PROPAGATE_FAULT;
4404 
4405 	/* For APIC access vmexit */
4406 	if (ret)
4407 		goto mmio;
4408 
4409 	if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4410 		return X86EMUL_CONTINUE;
4411 
4412 mmio:
4413 	/*
4414 	 * Is this MMIO handled locally?
4415 	 */
4416 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4417 	if (handled == bytes)
4418 		return X86EMUL_CONTINUE;
4419 
4420 	gpa += handled;
4421 	bytes -= handled;
4422 	val += handled;
4423 
4424 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4425 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4426 	frag->gpa = gpa;
4427 	frag->data = val;
4428 	frag->len = bytes;
4429 	return X86EMUL_CONTINUE;
4430 }
4431 
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)4432 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4433 			unsigned long addr,
4434 			void *val, unsigned int bytes,
4435 			struct x86_exception *exception,
4436 			const struct read_write_emulator_ops *ops)
4437 {
4438 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4439 	gpa_t gpa;
4440 	int rc;
4441 
4442 	if (ops->read_write_prepare &&
4443 		  ops->read_write_prepare(vcpu, val, bytes))
4444 		return X86EMUL_CONTINUE;
4445 
4446 	vcpu->mmio_nr_fragments = 0;
4447 
4448 	/* Crossing a page boundary? */
4449 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4450 		int now;
4451 
4452 		now = -addr & ~PAGE_MASK;
4453 		rc = emulator_read_write_onepage(addr, val, now, exception,
4454 						 vcpu, ops);
4455 
4456 		if (rc != X86EMUL_CONTINUE)
4457 			return rc;
4458 		addr += now;
4459 		if (ctxt->mode != X86EMUL_MODE_PROT64)
4460 			addr = (u32)addr;
4461 		val += now;
4462 		bytes -= now;
4463 	}
4464 
4465 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
4466 					 vcpu, ops);
4467 	if (rc != X86EMUL_CONTINUE)
4468 		return rc;
4469 
4470 	if (!vcpu->mmio_nr_fragments)
4471 		return rc;
4472 
4473 	gpa = vcpu->mmio_fragments[0].gpa;
4474 
4475 	vcpu->mmio_needed = 1;
4476 	vcpu->mmio_cur_fragment = 0;
4477 
4478 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4479 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4480 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
4481 	vcpu->run->mmio.phys_addr = gpa;
4482 
4483 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4484 }
4485 
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)4486 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4487 				  unsigned long addr,
4488 				  void *val,
4489 				  unsigned int bytes,
4490 				  struct x86_exception *exception)
4491 {
4492 	return emulator_read_write(ctxt, addr, val, bytes,
4493 				   exception, &read_emultor);
4494 }
4495 
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)4496 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4497 			    unsigned long addr,
4498 			    const void *val,
4499 			    unsigned int bytes,
4500 			    struct x86_exception *exception)
4501 {
4502 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
4503 				   exception, &write_emultor);
4504 }
4505 
4506 #define CMPXCHG_TYPE(t, ptr, old, new) \
4507 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4508 
4509 #ifdef CONFIG_X86_64
4510 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4511 #else
4512 #  define CMPXCHG64(ptr, old, new) \
4513 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4514 #endif
4515 
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)4516 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4517 				     unsigned long addr,
4518 				     const void *old,
4519 				     const void *new,
4520 				     unsigned int bytes,
4521 				     struct x86_exception *exception)
4522 {
4523 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4524 	gpa_t gpa;
4525 	struct page *page;
4526 	char *kaddr;
4527 	bool exchanged;
4528 
4529 	/* guests cmpxchg8b have to be emulated atomically */
4530 	if (bytes > 8 || (bytes & (bytes - 1)))
4531 		goto emul_write;
4532 
4533 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4534 
4535 	if (gpa == UNMAPPED_GVA ||
4536 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4537 		goto emul_write;
4538 
4539 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4540 		goto emul_write;
4541 
4542 	page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4543 	if (is_error_page(page))
4544 		goto emul_write;
4545 
4546 	kaddr = kmap_atomic(page);
4547 	kaddr += offset_in_page(gpa);
4548 	switch (bytes) {
4549 	case 1:
4550 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4551 		break;
4552 	case 2:
4553 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4554 		break;
4555 	case 4:
4556 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4557 		break;
4558 	case 8:
4559 		exchanged = CMPXCHG64(kaddr, old, new);
4560 		break;
4561 	default:
4562 		BUG();
4563 	}
4564 	kunmap_atomic(kaddr);
4565 	kvm_release_page_dirty(page);
4566 
4567 	if (!exchanged)
4568 		return X86EMUL_CMPXCHG_FAILED;
4569 
4570 	kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4571 	kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4572 
4573 	return X86EMUL_CONTINUE;
4574 
4575 emul_write:
4576 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4577 
4578 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4579 }
4580 
kernel_pio(struct kvm_vcpu * vcpu,void * pd)4581 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4582 {
4583 	/* TODO: String I/O for in kernel device */
4584 	int r;
4585 
4586 	if (vcpu->arch.pio.in)
4587 		r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4588 				    vcpu->arch.pio.size, pd);
4589 	else
4590 		r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4591 				     vcpu->arch.pio.port, vcpu->arch.pio.size,
4592 				     pd);
4593 	return r;
4594 }
4595 
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count,bool in)4596 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4597 			       unsigned short port, void *val,
4598 			       unsigned int count, bool in)
4599 {
4600 	vcpu->arch.pio.port = port;
4601 	vcpu->arch.pio.in = in;
4602 	vcpu->arch.pio.count  = count;
4603 	vcpu->arch.pio.size = size;
4604 
4605 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4606 		vcpu->arch.pio.count = 0;
4607 		return 1;
4608 	}
4609 
4610 	vcpu->run->exit_reason = KVM_EXIT_IO;
4611 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4612 	vcpu->run->io.size = size;
4613 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4614 	vcpu->run->io.count = count;
4615 	vcpu->run->io.port = port;
4616 
4617 	return 0;
4618 }
4619 
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)4620 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4621 				    int size, unsigned short port, void *val,
4622 				    unsigned int count)
4623 {
4624 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4625 	int ret;
4626 
4627 	if (vcpu->arch.pio.count)
4628 		goto data_avail;
4629 
4630 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4631 	if (ret) {
4632 data_avail:
4633 		memcpy(val, vcpu->arch.pio_data, size * count);
4634 		trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4635 		vcpu->arch.pio.count = 0;
4636 		return 1;
4637 	}
4638 
4639 	return 0;
4640 }
4641 
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)4642 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4643 				     int size, unsigned short port,
4644 				     const void *val, unsigned int count)
4645 {
4646 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4647 
4648 	memcpy(vcpu->arch.pio_data, val, size * count);
4649 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4650 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4651 }
4652 
get_segment_base(struct kvm_vcpu * vcpu,int seg)4653 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4654 {
4655 	return kvm_x86_ops->get_segment_base(vcpu, seg);
4656 }
4657 
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)4658 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4659 {
4660 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4661 }
4662 
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)4663 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4664 {
4665 	if (!need_emulate_wbinvd(vcpu))
4666 		return X86EMUL_CONTINUE;
4667 
4668 	if (kvm_x86_ops->has_wbinvd_exit()) {
4669 		int cpu = get_cpu();
4670 
4671 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4672 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4673 				wbinvd_ipi, NULL, 1);
4674 		put_cpu();
4675 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4676 	} else
4677 		wbinvd();
4678 	return X86EMUL_CONTINUE;
4679 }
4680 
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)4681 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4682 {
4683 	kvm_x86_ops->skip_emulated_instruction(vcpu);
4684 	return kvm_emulate_wbinvd_noskip(vcpu);
4685 }
4686 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4687 
4688 
4689 
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)4690 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4691 {
4692 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4693 }
4694 
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)4695 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4696 			   unsigned long *dest)
4697 {
4698 	return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4699 }
4700 
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)4701 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4702 			   unsigned long value)
4703 {
4704 
4705 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4706 }
4707 
mk_cr_64(u64 curr_cr,u32 new_val)4708 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4709 {
4710 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4711 }
4712 
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)4713 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4714 {
4715 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4716 	unsigned long value;
4717 
4718 	switch (cr) {
4719 	case 0:
4720 		value = kvm_read_cr0(vcpu);
4721 		break;
4722 	case 2:
4723 		value = vcpu->arch.cr2;
4724 		break;
4725 	case 3:
4726 		value = kvm_read_cr3(vcpu);
4727 		break;
4728 	case 4:
4729 		value = kvm_read_cr4(vcpu);
4730 		break;
4731 	case 8:
4732 		value = kvm_get_cr8(vcpu);
4733 		break;
4734 	default:
4735 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4736 		return 0;
4737 	}
4738 
4739 	return value;
4740 }
4741 
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)4742 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4743 {
4744 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4745 	int res = 0;
4746 
4747 	switch (cr) {
4748 	case 0:
4749 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4750 		break;
4751 	case 2:
4752 		vcpu->arch.cr2 = val;
4753 		break;
4754 	case 3:
4755 		res = kvm_set_cr3(vcpu, val);
4756 		break;
4757 	case 4:
4758 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4759 		break;
4760 	case 8:
4761 		res = kvm_set_cr8(vcpu, val);
4762 		break;
4763 	default:
4764 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
4765 		res = -1;
4766 	}
4767 
4768 	return res;
4769 }
4770 
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)4771 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4772 {
4773 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4774 }
4775 
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4776 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4777 {
4778 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4779 }
4780 
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4781 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4782 {
4783 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4784 }
4785 
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4786 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4787 {
4788 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4789 }
4790 
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)4791 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4792 {
4793 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4794 }
4795 
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)4796 static unsigned long emulator_get_cached_segment_base(
4797 	struct x86_emulate_ctxt *ctxt, int seg)
4798 {
4799 	return get_segment_base(emul_to_vcpu(ctxt), seg);
4800 }
4801 
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)4802 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4803 				 struct desc_struct *desc, u32 *base3,
4804 				 int seg)
4805 {
4806 	struct kvm_segment var;
4807 
4808 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4809 	*selector = var.selector;
4810 
4811 	if (var.unusable) {
4812 		memset(desc, 0, sizeof(*desc));
4813 		return false;
4814 	}
4815 
4816 	if (var.g)
4817 		var.limit >>= 12;
4818 	set_desc_limit(desc, var.limit);
4819 	set_desc_base(desc, (unsigned long)var.base);
4820 #ifdef CONFIG_X86_64
4821 	if (base3)
4822 		*base3 = var.base >> 32;
4823 #endif
4824 	desc->type = var.type;
4825 	desc->s = var.s;
4826 	desc->dpl = var.dpl;
4827 	desc->p = var.present;
4828 	desc->avl = var.avl;
4829 	desc->l = var.l;
4830 	desc->d = var.db;
4831 	desc->g = var.g;
4832 
4833 	return true;
4834 }
4835 
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)4836 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4837 				 struct desc_struct *desc, u32 base3,
4838 				 int seg)
4839 {
4840 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4841 	struct kvm_segment var;
4842 
4843 	var.selector = selector;
4844 	var.base = get_desc_base(desc);
4845 #ifdef CONFIG_X86_64
4846 	var.base |= ((u64)base3) << 32;
4847 #endif
4848 	var.limit = get_desc_limit(desc);
4849 	if (desc->g)
4850 		var.limit = (var.limit << 12) | 0xfff;
4851 	var.type = desc->type;
4852 	var.dpl = desc->dpl;
4853 	var.db = desc->d;
4854 	var.s = desc->s;
4855 	var.l = desc->l;
4856 	var.g = desc->g;
4857 	var.avl = desc->avl;
4858 	var.present = desc->p;
4859 	var.unusable = !var.present;
4860 	var.padding = 0;
4861 
4862 	kvm_set_segment(vcpu, &var, seg);
4863 	return;
4864 }
4865 
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)4866 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4867 			    u32 msr_index, u64 *pdata)
4868 {
4869 	struct msr_data msr;
4870 	int r;
4871 
4872 	msr.index = msr_index;
4873 	msr.host_initiated = false;
4874 	r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4875 	if (r)
4876 		return r;
4877 
4878 	*pdata = msr.data;
4879 	return 0;
4880 }
4881 
emulator_set_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)4882 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4883 			    u32 msr_index, u64 data)
4884 {
4885 	struct msr_data msr;
4886 
4887 	msr.data = data;
4888 	msr.index = msr_index;
4889 	msr.host_initiated = false;
4890 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4891 }
4892 
emulator_get_smbase(struct x86_emulate_ctxt * ctxt)4893 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4894 {
4895 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4896 
4897 	return vcpu->arch.smbase;
4898 }
4899 
emulator_set_smbase(struct x86_emulate_ctxt * ctxt,u64 smbase)4900 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4901 {
4902 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4903 
4904 	vcpu->arch.smbase = smbase;
4905 }
4906 
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)4907 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4908 			      u32 pmc)
4909 {
4910 	return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4911 }
4912 
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)4913 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4914 			     u32 pmc, u64 *pdata)
4915 {
4916 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4917 }
4918 
emulator_halt(struct x86_emulate_ctxt * ctxt)4919 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4920 {
4921 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
4922 }
4923 
emulator_get_fpu(struct x86_emulate_ctxt * ctxt)4924 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4925 {
4926 	preempt_disable();
4927 	kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4928 	/*
4929 	 * CR0.TS may reference the host fpu state, not the guest fpu state,
4930 	 * so it may be clear at this point.
4931 	 */
4932 	clts();
4933 }
4934 
emulator_put_fpu(struct x86_emulate_ctxt * ctxt)4935 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4936 {
4937 	preempt_enable();
4938 }
4939 
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)4940 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4941 			      struct x86_instruction_info *info,
4942 			      enum x86_intercept_stage stage)
4943 {
4944 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4945 }
4946 
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx)4947 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4948 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4949 {
4950 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4951 }
4952 
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)4953 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4954 {
4955 	return kvm_register_read(emul_to_vcpu(ctxt), reg);
4956 }
4957 
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)4958 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4959 {
4960 	kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4961 }
4962 
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)4963 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4964 {
4965 	kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4966 }
4967 
4968 static const struct x86_emulate_ops emulate_ops = {
4969 	.read_gpr            = emulator_read_gpr,
4970 	.write_gpr           = emulator_write_gpr,
4971 	.read_std            = kvm_read_guest_virt_system,
4972 	.write_std           = kvm_write_guest_virt_system,
4973 	.read_phys           = kvm_read_guest_phys_system,
4974 	.fetch               = kvm_fetch_guest_virt,
4975 	.read_emulated       = emulator_read_emulated,
4976 	.write_emulated      = emulator_write_emulated,
4977 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
4978 	.invlpg              = emulator_invlpg,
4979 	.pio_in_emulated     = emulator_pio_in_emulated,
4980 	.pio_out_emulated    = emulator_pio_out_emulated,
4981 	.get_segment         = emulator_get_segment,
4982 	.set_segment         = emulator_set_segment,
4983 	.get_cached_segment_base = emulator_get_cached_segment_base,
4984 	.get_gdt             = emulator_get_gdt,
4985 	.get_idt	     = emulator_get_idt,
4986 	.set_gdt             = emulator_set_gdt,
4987 	.set_idt	     = emulator_set_idt,
4988 	.get_cr              = emulator_get_cr,
4989 	.set_cr              = emulator_set_cr,
4990 	.cpl                 = emulator_get_cpl,
4991 	.get_dr              = emulator_get_dr,
4992 	.set_dr              = emulator_set_dr,
4993 	.get_smbase          = emulator_get_smbase,
4994 	.set_smbase          = emulator_set_smbase,
4995 	.set_msr             = emulator_set_msr,
4996 	.get_msr             = emulator_get_msr,
4997 	.check_pmc	     = emulator_check_pmc,
4998 	.read_pmc            = emulator_read_pmc,
4999 	.halt                = emulator_halt,
5000 	.wbinvd              = emulator_wbinvd,
5001 	.fix_hypercall       = emulator_fix_hypercall,
5002 	.get_fpu             = emulator_get_fpu,
5003 	.put_fpu             = emulator_put_fpu,
5004 	.intercept           = emulator_intercept,
5005 	.get_cpuid           = emulator_get_cpuid,
5006 	.set_nmi_mask        = emulator_set_nmi_mask,
5007 };
5008 
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)5009 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5010 {
5011 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5012 	/*
5013 	 * an sti; sti; sequence only disable interrupts for the first
5014 	 * instruction. So, if the last instruction, be it emulated or
5015 	 * not, left the system with the INT_STI flag enabled, it
5016 	 * means that the last instruction is an sti. We should not
5017 	 * leave the flag on in this case. The same goes for mov ss
5018 	 */
5019 	if (int_shadow & mask)
5020 		mask = 0;
5021 	if (unlikely(int_shadow || mask)) {
5022 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5023 		if (!mask)
5024 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5025 	}
5026 }
5027 
inject_emulated_exception(struct kvm_vcpu * vcpu)5028 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5029 {
5030 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5031 	if (ctxt->exception.vector == PF_VECTOR)
5032 		return kvm_propagate_fault(vcpu, &ctxt->exception);
5033 
5034 	if (ctxt->exception.error_code_valid)
5035 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5036 				      ctxt->exception.error_code);
5037 	else
5038 		kvm_queue_exception(vcpu, ctxt->exception.vector);
5039 	return false;
5040 }
5041 
init_emulate_ctxt(struct kvm_vcpu * vcpu)5042 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5043 {
5044 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5045 	int cs_db, cs_l;
5046 
5047 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5048 
5049 	ctxt->eflags = kvm_get_rflags(vcpu);
5050 	ctxt->eip = kvm_rip_read(vcpu);
5051 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
5052 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
5053 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
5054 		     cs_db				? X86EMUL_MODE_PROT32 :
5055 							  X86EMUL_MODE_PROT16;
5056 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5057 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5058 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5059 	ctxt->emul_flags = vcpu->arch.hflags;
5060 
5061 	init_decode_cache(ctxt);
5062 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5063 }
5064 
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)5065 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5066 {
5067 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5068 	int ret;
5069 
5070 	init_emulate_ctxt(vcpu);
5071 
5072 	ctxt->op_bytes = 2;
5073 	ctxt->ad_bytes = 2;
5074 	ctxt->_eip = ctxt->eip + inc_eip;
5075 	ret = emulate_int_real(ctxt, irq);
5076 
5077 	if (ret != X86EMUL_CONTINUE)
5078 		return EMULATE_FAIL;
5079 
5080 	ctxt->eip = ctxt->_eip;
5081 	kvm_rip_write(vcpu, ctxt->eip);
5082 	kvm_set_rflags(vcpu, ctxt->eflags);
5083 
5084 	if (irq == NMI_VECTOR)
5085 		vcpu->arch.nmi_pending = 0;
5086 	else
5087 		vcpu->arch.interrupt.pending = false;
5088 
5089 	return EMULATE_DONE;
5090 }
5091 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5092 
handle_emulation_failure(struct kvm_vcpu * vcpu)5093 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5094 {
5095 	int r = EMULATE_DONE;
5096 
5097 	++vcpu->stat.insn_emulation_fail;
5098 	trace_kvm_emulate_insn_failed(vcpu);
5099 	if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5100 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5101 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5102 		vcpu->run->internal.ndata = 0;
5103 		r = EMULATE_FAIL;
5104 	}
5105 	kvm_queue_exception(vcpu, UD_VECTOR);
5106 
5107 	return r;
5108 }
5109 
reexecute_instruction(struct kvm_vcpu * vcpu,gva_t cr2,bool write_fault_to_shadow_pgtable,int emulation_type)5110 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5111 				  bool write_fault_to_shadow_pgtable,
5112 				  int emulation_type)
5113 {
5114 	gpa_t gpa = cr2;
5115 	pfn_t pfn;
5116 
5117 	if (emulation_type & EMULTYPE_NO_REEXECUTE)
5118 		return false;
5119 
5120 	if (!vcpu->arch.mmu.direct_map) {
5121 		/*
5122 		 * Write permission should be allowed since only
5123 		 * write access need to be emulated.
5124 		 */
5125 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5126 
5127 		/*
5128 		 * If the mapping is invalid in guest, let cpu retry
5129 		 * it to generate fault.
5130 		 */
5131 		if (gpa == UNMAPPED_GVA)
5132 			return true;
5133 	}
5134 
5135 	/*
5136 	 * Do not retry the unhandleable instruction if it faults on the
5137 	 * readonly host memory, otherwise it will goto a infinite loop:
5138 	 * retry instruction -> write #PF -> emulation fail -> retry
5139 	 * instruction -> ...
5140 	 */
5141 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5142 
5143 	/*
5144 	 * If the instruction failed on the error pfn, it can not be fixed,
5145 	 * report the error to userspace.
5146 	 */
5147 	if (is_error_noslot_pfn(pfn))
5148 		return false;
5149 
5150 	kvm_release_pfn_clean(pfn);
5151 
5152 	/* The instructions are well-emulated on direct mmu. */
5153 	if (vcpu->arch.mmu.direct_map) {
5154 		unsigned int indirect_shadow_pages;
5155 
5156 		spin_lock(&vcpu->kvm->mmu_lock);
5157 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5158 		spin_unlock(&vcpu->kvm->mmu_lock);
5159 
5160 		if (indirect_shadow_pages)
5161 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5162 
5163 		return true;
5164 	}
5165 
5166 	/*
5167 	 * if emulation was due to access to shadowed page table
5168 	 * and it failed try to unshadow page and re-enter the
5169 	 * guest to let CPU execute the instruction.
5170 	 */
5171 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5172 
5173 	/*
5174 	 * If the access faults on its page table, it can not
5175 	 * be fixed by unprotecting shadow page and it should
5176 	 * be reported to userspace.
5177 	 */
5178 	return !write_fault_to_shadow_pgtable;
5179 }
5180 
retry_instruction(struct x86_emulate_ctxt * ctxt,unsigned long cr2,int emulation_type)5181 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5182 			      unsigned long cr2,  int emulation_type)
5183 {
5184 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5185 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5186 
5187 	last_retry_eip = vcpu->arch.last_retry_eip;
5188 	last_retry_addr = vcpu->arch.last_retry_addr;
5189 
5190 	/*
5191 	 * If the emulation is caused by #PF and it is non-page_table
5192 	 * writing instruction, it means the VM-EXIT is caused by shadow
5193 	 * page protected, we can zap the shadow page and retry this
5194 	 * instruction directly.
5195 	 *
5196 	 * Note: if the guest uses a non-page-table modifying instruction
5197 	 * on the PDE that points to the instruction, then we will unmap
5198 	 * the instruction and go to an infinite loop. So, we cache the
5199 	 * last retried eip and the last fault address, if we meet the eip
5200 	 * and the address again, we can break out of the potential infinite
5201 	 * loop.
5202 	 */
5203 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5204 
5205 	if (!(emulation_type & EMULTYPE_RETRY))
5206 		return false;
5207 
5208 	if (x86_page_table_writing_insn(ctxt))
5209 		return false;
5210 
5211 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5212 		return false;
5213 
5214 	vcpu->arch.last_retry_eip = ctxt->eip;
5215 	vcpu->arch.last_retry_addr = cr2;
5216 
5217 	if (!vcpu->arch.mmu.direct_map)
5218 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5219 
5220 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5221 
5222 	return true;
5223 }
5224 
5225 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5226 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5227 
kvm_smm_changed(struct kvm_vcpu * vcpu)5228 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5229 {
5230 	if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5231 		/* This is a good place to trace that we are exiting SMM.  */
5232 		trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5233 
5234 		if (unlikely(vcpu->arch.smi_pending)) {
5235 			kvm_make_request(KVM_REQ_SMI, vcpu);
5236 			vcpu->arch.smi_pending = 0;
5237 		} else {
5238 			/* Process a latched INIT, if any.  */
5239 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5240 		}
5241 	}
5242 
5243 	kvm_mmu_reset_context(vcpu);
5244 }
5245 
kvm_set_hflags(struct kvm_vcpu * vcpu,unsigned emul_flags)5246 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5247 {
5248 	unsigned changed = vcpu->arch.hflags ^ emul_flags;
5249 
5250 	vcpu->arch.hflags = emul_flags;
5251 
5252 	if (changed & HF_SMM_MASK)
5253 		kvm_smm_changed(vcpu);
5254 }
5255 
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)5256 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5257 				unsigned long *db)
5258 {
5259 	u32 dr6 = 0;
5260 	int i;
5261 	u32 enable, rwlen;
5262 
5263 	enable = dr7;
5264 	rwlen = dr7 >> 16;
5265 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5266 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5267 			dr6 |= (1 << i);
5268 	return dr6;
5269 }
5270 
kvm_vcpu_check_singlestep(struct kvm_vcpu * vcpu,unsigned long rflags,int * r)5271 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5272 {
5273 	struct kvm_run *kvm_run = vcpu->run;
5274 
5275 	/*
5276 	 * rflags is the old, "raw" value of the flags.  The new value has
5277 	 * not been saved yet.
5278 	 *
5279 	 * This is correct even for TF set by the guest, because "the
5280 	 * processor will not generate this exception after the instruction
5281 	 * that sets the TF flag".
5282 	 */
5283 	if (unlikely(rflags & X86_EFLAGS_TF)) {
5284 		if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5285 			kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5286 						  DR6_RTM;
5287 			kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5288 			kvm_run->debug.arch.exception = DB_VECTOR;
5289 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5290 			*r = EMULATE_USER_EXIT;
5291 		} else {
5292 			vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5293 			/*
5294 			 * "Certain debug exceptions may clear bit 0-3.  The
5295 			 * remaining contents of the DR6 register are never
5296 			 * cleared by the processor".
5297 			 */
5298 			vcpu->arch.dr6 &= ~15;
5299 			vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5300 			kvm_queue_exception(vcpu, DB_VECTOR);
5301 		}
5302 	}
5303 }
5304 
kvm_vcpu_check_breakpoint(struct kvm_vcpu * vcpu,int * r)5305 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5306 {
5307 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5308 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5309 		struct kvm_run *kvm_run = vcpu->run;
5310 		unsigned long eip = kvm_get_linear_rip(vcpu);
5311 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5312 					   vcpu->arch.guest_debug_dr7,
5313 					   vcpu->arch.eff_db);
5314 
5315 		if (dr6 != 0) {
5316 			kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5317 			kvm_run->debug.arch.pc = eip;
5318 			kvm_run->debug.arch.exception = DB_VECTOR;
5319 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
5320 			*r = EMULATE_USER_EXIT;
5321 			return true;
5322 		}
5323 	}
5324 
5325 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5326 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5327 		unsigned long eip = kvm_get_linear_rip(vcpu);
5328 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5329 					   vcpu->arch.dr7,
5330 					   vcpu->arch.db);
5331 
5332 		if (dr6 != 0) {
5333 			vcpu->arch.dr6 &= ~15;
5334 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
5335 			kvm_queue_exception(vcpu, DB_VECTOR);
5336 			*r = EMULATE_DONE;
5337 			return true;
5338 		}
5339 	}
5340 
5341 	return false;
5342 }
5343 
x86_emulate_instruction(struct kvm_vcpu * vcpu,unsigned long cr2,int emulation_type,void * insn,int insn_len)5344 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5345 			    unsigned long cr2,
5346 			    int emulation_type,
5347 			    void *insn,
5348 			    int insn_len)
5349 {
5350 	int r;
5351 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5352 	bool writeback = true;
5353 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5354 
5355 	/*
5356 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
5357 	 * never reused.
5358 	 */
5359 	vcpu->arch.write_fault_to_shadow_pgtable = false;
5360 	kvm_clear_exception_queue(vcpu);
5361 
5362 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5363 		init_emulate_ctxt(vcpu);
5364 
5365 		/*
5366 		 * We will reenter on the same instruction since
5367 		 * we do not set complete_userspace_io.  This does not
5368 		 * handle watchpoints yet, those would be handled in
5369 		 * the emulate_ops.
5370 		 */
5371 		if (kvm_vcpu_check_breakpoint(vcpu, &r))
5372 			return r;
5373 
5374 		ctxt->interruptibility = 0;
5375 		ctxt->have_exception = false;
5376 		ctxt->exception.vector = -1;
5377 		ctxt->perm_ok = false;
5378 
5379 		ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5380 
5381 		r = x86_decode_insn(ctxt, insn, insn_len);
5382 
5383 		trace_kvm_emulate_insn_start(vcpu);
5384 		++vcpu->stat.insn_emulation;
5385 		if (r != EMULATION_OK)  {
5386 			if (emulation_type & EMULTYPE_TRAP_UD)
5387 				return EMULATE_FAIL;
5388 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5389 						emulation_type))
5390 				return EMULATE_DONE;
5391 			if (emulation_type & EMULTYPE_SKIP)
5392 				return EMULATE_FAIL;
5393 			return handle_emulation_failure(vcpu);
5394 		}
5395 	}
5396 
5397 	if (emulation_type & EMULTYPE_SKIP) {
5398 		kvm_rip_write(vcpu, ctxt->_eip);
5399 		if (ctxt->eflags & X86_EFLAGS_RF)
5400 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5401 		return EMULATE_DONE;
5402 	}
5403 
5404 	if (retry_instruction(ctxt, cr2, emulation_type))
5405 		return EMULATE_DONE;
5406 
5407 	/* this is needed for vmware backdoor interface to work since it
5408 	   changes registers values  during IO operation */
5409 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5410 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5411 		emulator_invalidate_register_cache(ctxt);
5412 	}
5413 
5414 restart:
5415 	r = x86_emulate_insn(ctxt);
5416 
5417 	if (r == EMULATION_INTERCEPTED)
5418 		return EMULATE_DONE;
5419 
5420 	if (r == EMULATION_FAILED) {
5421 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5422 					emulation_type))
5423 			return EMULATE_DONE;
5424 
5425 		return handle_emulation_failure(vcpu);
5426 	}
5427 
5428 	if (ctxt->have_exception) {
5429 		r = EMULATE_DONE;
5430 		if (inject_emulated_exception(vcpu))
5431 			return r;
5432 	} else if (vcpu->arch.pio.count) {
5433 		if (!vcpu->arch.pio.in) {
5434 			/* FIXME: return into emulator if single-stepping.  */
5435 			vcpu->arch.pio.count = 0;
5436 		} else {
5437 			writeback = false;
5438 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
5439 		}
5440 		r = EMULATE_USER_EXIT;
5441 	} else if (vcpu->mmio_needed) {
5442 		if (!vcpu->mmio_is_write)
5443 			writeback = false;
5444 		r = EMULATE_USER_EXIT;
5445 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5446 	} else if (r == EMULATION_RESTART)
5447 		goto restart;
5448 	else
5449 		r = EMULATE_DONE;
5450 
5451 	if (writeback) {
5452 		unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5453 		toggle_interruptibility(vcpu, ctxt->interruptibility);
5454 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5455 		if (vcpu->arch.hflags != ctxt->emul_flags)
5456 			kvm_set_hflags(vcpu, ctxt->emul_flags);
5457 		kvm_rip_write(vcpu, ctxt->eip);
5458 		if (r == EMULATE_DONE)
5459 			kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5460 		if (!ctxt->have_exception ||
5461 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5462 			__kvm_set_rflags(vcpu, ctxt->eflags);
5463 
5464 		/*
5465 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5466 		 * do nothing, and it will be requested again as soon as
5467 		 * the shadow expires.  But we still need to check here,
5468 		 * because POPF has no interrupt shadow.
5469 		 */
5470 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5471 			kvm_make_request(KVM_REQ_EVENT, vcpu);
5472 	} else
5473 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5474 
5475 	return r;
5476 }
5477 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5478 
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)5479 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5480 {
5481 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5482 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5483 					    size, port, &val, 1);
5484 	/* do not return to emulator after return from userspace */
5485 	vcpu->arch.pio.count = 0;
5486 	return ret;
5487 }
5488 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5489 
tsc_bad(void * info)5490 static void tsc_bad(void *info)
5491 {
5492 	__this_cpu_write(cpu_tsc_khz, 0);
5493 }
5494 
tsc_khz_changed(void * data)5495 static void tsc_khz_changed(void *data)
5496 {
5497 	struct cpufreq_freqs *freq = data;
5498 	unsigned long khz = 0;
5499 
5500 	if (data)
5501 		khz = freq->new;
5502 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5503 		khz = cpufreq_quick_get(raw_smp_processor_id());
5504 	if (!khz)
5505 		khz = tsc_khz;
5506 	__this_cpu_write(cpu_tsc_khz, khz);
5507 }
5508 
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)5509 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5510 				     void *data)
5511 {
5512 	struct cpufreq_freqs *freq = data;
5513 	struct kvm *kvm;
5514 	struct kvm_vcpu *vcpu;
5515 	int i, send_ipi = 0;
5516 
5517 	/*
5518 	 * We allow guests to temporarily run on slowing clocks,
5519 	 * provided we notify them after, or to run on accelerating
5520 	 * clocks, provided we notify them before.  Thus time never
5521 	 * goes backwards.
5522 	 *
5523 	 * However, we have a problem.  We can't atomically update
5524 	 * the frequency of a given CPU from this function; it is
5525 	 * merely a notifier, which can be called from any CPU.
5526 	 * Changing the TSC frequency at arbitrary points in time
5527 	 * requires a recomputation of local variables related to
5528 	 * the TSC for each VCPU.  We must flag these local variables
5529 	 * to be updated and be sure the update takes place with the
5530 	 * new frequency before any guests proceed.
5531 	 *
5532 	 * Unfortunately, the combination of hotplug CPU and frequency
5533 	 * change creates an intractable locking scenario; the order
5534 	 * of when these callouts happen is undefined with respect to
5535 	 * CPU hotplug, and they can race with each other.  As such,
5536 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5537 	 * undefined; you can actually have a CPU frequency change take
5538 	 * place in between the computation of X and the setting of the
5539 	 * variable.  To protect against this problem, all updates of
5540 	 * the per_cpu tsc_khz variable are done in an interrupt
5541 	 * protected IPI, and all callers wishing to update the value
5542 	 * must wait for a synchronous IPI to complete (which is trivial
5543 	 * if the caller is on the CPU already).  This establishes the
5544 	 * necessary total order on variable updates.
5545 	 *
5546 	 * Note that because a guest time update may take place
5547 	 * anytime after the setting of the VCPU's request bit, the
5548 	 * correct TSC value must be set before the request.  However,
5549 	 * to ensure the update actually makes it to any guest which
5550 	 * starts running in hardware virtualization between the set
5551 	 * and the acquisition of the spinlock, we must also ping the
5552 	 * CPU after setting the request bit.
5553 	 *
5554 	 */
5555 
5556 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5557 		return 0;
5558 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5559 		return 0;
5560 
5561 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5562 
5563 	spin_lock(&kvm_lock);
5564 	list_for_each_entry(kvm, &vm_list, vm_list) {
5565 		kvm_for_each_vcpu(i, vcpu, kvm) {
5566 			if (vcpu->cpu != freq->cpu)
5567 				continue;
5568 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5569 			if (vcpu->cpu != smp_processor_id())
5570 				send_ipi = 1;
5571 		}
5572 	}
5573 	spin_unlock(&kvm_lock);
5574 
5575 	if (freq->old < freq->new && send_ipi) {
5576 		/*
5577 		 * We upscale the frequency.  Must make the guest
5578 		 * doesn't see old kvmclock values while running with
5579 		 * the new frequency, otherwise we risk the guest sees
5580 		 * time go backwards.
5581 		 *
5582 		 * In case we update the frequency for another cpu
5583 		 * (which might be in guest context) send an interrupt
5584 		 * to kick the cpu out of guest context.  Next time
5585 		 * guest context is entered kvmclock will be updated,
5586 		 * so the guest will not see stale values.
5587 		 */
5588 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5589 	}
5590 	return 0;
5591 }
5592 
5593 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5594 	.notifier_call  = kvmclock_cpufreq_notifier
5595 };
5596 
kvmclock_cpu_notifier(struct notifier_block * nfb,unsigned long action,void * hcpu)5597 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5598 					unsigned long action, void *hcpu)
5599 {
5600 	unsigned int cpu = (unsigned long)hcpu;
5601 
5602 	switch (action) {
5603 		case CPU_ONLINE:
5604 		case CPU_DOWN_FAILED:
5605 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5606 			break;
5607 		case CPU_DOWN_PREPARE:
5608 			smp_call_function_single(cpu, tsc_bad, NULL, 1);
5609 			break;
5610 	}
5611 	return NOTIFY_OK;
5612 }
5613 
5614 static struct notifier_block kvmclock_cpu_notifier_block = {
5615 	.notifier_call  = kvmclock_cpu_notifier,
5616 	.priority = -INT_MAX
5617 };
5618 
kvm_timer_init(void)5619 static void kvm_timer_init(void)
5620 {
5621 	int cpu;
5622 
5623 	max_tsc_khz = tsc_khz;
5624 
5625 	cpu_notifier_register_begin();
5626 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5627 #ifdef CONFIG_CPU_FREQ
5628 		struct cpufreq_policy policy;
5629 		memset(&policy, 0, sizeof(policy));
5630 		cpu = get_cpu();
5631 		cpufreq_get_policy(&policy, cpu);
5632 		if (policy.cpuinfo.max_freq)
5633 			max_tsc_khz = policy.cpuinfo.max_freq;
5634 		put_cpu();
5635 #endif
5636 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5637 					  CPUFREQ_TRANSITION_NOTIFIER);
5638 	}
5639 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5640 	for_each_online_cpu(cpu)
5641 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5642 
5643 	__register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5644 	cpu_notifier_register_done();
5645 
5646 }
5647 
5648 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5649 
kvm_is_in_guest(void)5650 int kvm_is_in_guest(void)
5651 {
5652 	return __this_cpu_read(current_vcpu) != NULL;
5653 }
5654 
kvm_is_user_mode(void)5655 static int kvm_is_user_mode(void)
5656 {
5657 	int user_mode = 3;
5658 
5659 	if (__this_cpu_read(current_vcpu))
5660 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5661 
5662 	return user_mode != 0;
5663 }
5664 
kvm_get_guest_ip(void)5665 static unsigned long kvm_get_guest_ip(void)
5666 {
5667 	unsigned long ip = 0;
5668 
5669 	if (__this_cpu_read(current_vcpu))
5670 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5671 
5672 	return ip;
5673 }
5674 
5675 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5676 	.is_in_guest		= kvm_is_in_guest,
5677 	.is_user_mode		= kvm_is_user_mode,
5678 	.get_guest_ip		= kvm_get_guest_ip,
5679 };
5680 
kvm_before_handle_nmi(struct kvm_vcpu * vcpu)5681 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5682 {
5683 	__this_cpu_write(current_vcpu, vcpu);
5684 }
5685 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5686 
kvm_after_handle_nmi(struct kvm_vcpu * vcpu)5687 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5688 {
5689 	__this_cpu_write(current_vcpu, NULL);
5690 }
5691 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5692 
kvm_set_mmio_spte_mask(void)5693 static void kvm_set_mmio_spte_mask(void)
5694 {
5695 	u64 mask;
5696 	int maxphyaddr = boot_cpu_data.x86_phys_bits;
5697 
5698 	/*
5699 	 * Set the reserved bits and the present bit of an paging-structure
5700 	 * entry to generate page fault with PFER.RSV = 1.
5701 	 */
5702 	 /* Mask the reserved physical address bits. */
5703 	mask = rsvd_bits(maxphyaddr, 51);
5704 
5705 	/* Bit 62 is always reserved for 32bit host. */
5706 	mask |= 0x3ull << 62;
5707 
5708 	/* Set the present bit. */
5709 	mask |= 1ull;
5710 
5711 #ifdef CONFIG_X86_64
5712 	/*
5713 	 * If reserved bit is not supported, clear the present bit to disable
5714 	 * mmio page fault.
5715 	 */
5716 	if (maxphyaddr == 52)
5717 		mask &= ~1ull;
5718 #endif
5719 
5720 	kvm_mmu_set_mmio_spte_mask(mask);
5721 }
5722 
5723 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)5724 static void pvclock_gtod_update_fn(struct work_struct *work)
5725 {
5726 	struct kvm *kvm;
5727 
5728 	struct kvm_vcpu *vcpu;
5729 	int i;
5730 
5731 	spin_lock(&kvm_lock);
5732 	list_for_each_entry(kvm, &vm_list, vm_list)
5733 		kvm_for_each_vcpu(i, vcpu, kvm)
5734 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5735 	atomic_set(&kvm_guest_has_master_clock, 0);
5736 	spin_unlock(&kvm_lock);
5737 }
5738 
5739 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5740 
5741 /*
5742  * Notification about pvclock gtod data update.
5743  */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)5744 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5745 			       void *priv)
5746 {
5747 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5748 	struct timekeeper *tk = priv;
5749 
5750 	update_pvclock_gtod(tk);
5751 
5752 	/* disable master clock if host does not trust, or does not
5753 	 * use, TSC clocksource
5754 	 */
5755 	if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5756 	    atomic_read(&kvm_guest_has_master_clock) != 0)
5757 		queue_work(system_long_wq, &pvclock_gtod_work);
5758 
5759 	return 0;
5760 }
5761 
5762 static struct notifier_block pvclock_gtod_notifier = {
5763 	.notifier_call = pvclock_gtod_notify,
5764 };
5765 #endif
5766 
kvm_arch_init(void * opaque)5767 int kvm_arch_init(void *opaque)
5768 {
5769 	int r;
5770 	struct kvm_x86_ops *ops = opaque;
5771 
5772 	if (kvm_x86_ops) {
5773 		printk(KERN_ERR "kvm: already loaded the other module\n");
5774 		r = -EEXIST;
5775 		goto out;
5776 	}
5777 
5778 	if (!ops->cpu_has_kvm_support()) {
5779 		printk(KERN_ERR "kvm: no hardware support\n");
5780 		r = -EOPNOTSUPP;
5781 		goto out;
5782 	}
5783 	if (ops->disabled_by_bios()) {
5784 		printk(KERN_ERR "kvm: disabled by bios\n");
5785 		r = -EOPNOTSUPP;
5786 		goto out;
5787 	}
5788 
5789 	r = -ENOMEM;
5790 	shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5791 	if (!shared_msrs) {
5792 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5793 		goto out;
5794 	}
5795 
5796 	r = kvm_mmu_module_init();
5797 	if (r)
5798 		goto out_free_percpu;
5799 
5800 	kvm_set_mmio_spte_mask();
5801 
5802 	kvm_x86_ops = ops;
5803 
5804 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5805 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
5806 
5807 	kvm_timer_init();
5808 
5809 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
5810 
5811 	if (cpu_has_xsave)
5812 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5813 
5814 	kvm_lapic_init();
5815 #ifdef CONFIG_X86_64
5816 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5817 #endif
5818 
5819 	return 0;
5820 
5821 out_free_percpu:
5822 	free_percpu(shared_msrs);
5823 out:
5824 	return r;
5825 }
5826 
kvm_arch_exit(void)5827 void kvm_arch_exit(void)
5828 {
5829 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5830 
5831 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5832 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5833 					    CPUFREQ_TRANSITION_NOTIFIER);
5834 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5835 #ifdef CONFIG_X86_64
5836 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5837 #endif
5838 	kvm_x86_ops = NULL;
5839 	kvm_mmu_module_exit();
5840 	free_percpu(shared_msrs);
5841 }
5842 
kvm_vcpu_halt(struct kvm_vcpu * vcpu)5843 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5844 {
5845 	++vcpu->stat.halt_exits;
5846 	if (lapic_in_kernel(vcpu)) {
5847 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5848 		return 1;
5849 	} else {
5850 		vcpu->run->exit_reason = KVM_EXIT_HLT;
5851 		return 0;
5852 	}
5853 }
5854 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5855 
kvm_emulate_halt(struct kvm_vcpu * vcpu)5856 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5857 {
5858 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5859 	return kvm_vcpu_halt(vcpu);
5860 }
5861 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5862 
5863 /*
5864  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5865  *
5866  * @apicid - apicid of vcpu to be kicked.
5867  */
kvm_pv_kick_cpu_op(struct kvm * kvm,unsigned long flags,int apicid)5868 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5869 {
5870 	struct kvm_lapic_irq lapic_irq;
5871 
5872 	lapic_irq.shorthand = 0;
5873 	lapic_irq.dest_mode = 0;
5874 	lapic_irq.dest_id = apicid;
5875 	lapic_irq.msi_redir_hint = false;
5876 
5877 	lapic_irq.delivery_mode = APIC_DM_REMRD;
5878 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5879 }
5880 
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)5881 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5882 {
5883 	unsigned long nr, a0, a1, a2, a3, ret;
5884 	int op_64_bit, r = 1;
5885 
5886 	kvm_x86_ops->skip_emulated_instruction(vcpu);
5887 
5888 	if (kvm_hv_hypercall_enabled(vcpu->kvm))
5889 		return kvm_hv_hypercall(vcpu);
5890 
5891 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5892 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5893 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5894 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5895 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5896 
5897 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
5898 
5899 	op_64_bit = is_64_bit_mode(vcpu);
5900 	if (!op_64_bit) {
5901 		nr &= 0xFFFFFFFF;
5902 		a0 &= 0xFFFFFFFF;
5903 		a1 &= 0xFFFFFFFF;
5904 		a2 &= 0xFFFFFFFF;
5905 		a3 &= 0xFFFFFFFF;
5906 	}
5907 
5908 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5909 		ret = -KVM_EPERM;
5910 		goto out;
5911 	}
5912 
5913 	switch (nr) {
5914 	case KVM_HC_VAPIC_POLL_IRQ:
5915 		ret = 0;
5916 		break;
5917 	case KVM_HC_KICK_CPU:
5918 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5919 		ret = 0;
5920 		break;
5921 	default:
5922 		ret = -KVM_ENOSYS;
5923 		break;
5924 	}
5925 out:
5926 	if (!op_64_bit)
5927 		ret = (u32)ret;
5928 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5929 	++vcpu->stat.hypercalls;
5930 	return r;
5931 }
5932 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5933 
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)5934 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5935 {
5936 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5937 	char instruction[3];
5938 	unsigned long rip = kvm_rip_read(vcpu);
5939 
5940 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
5941 
5942 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5943 }
5944 
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)5945 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5946 {
5947 	return vcpu->run->request_interrupt_window &&
5948 		likely(!pic_in_kernel(vcpu->kvm));
5949 }
5950 
post_kvm_run_save(struct kvm_vcpu * vcpu)5951 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5952 {
5953 	struct kvm_run *kvm_run = vcpu->run;
5954 
5955 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5956 	kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
5957 	kvm_run->cr8 = kvm_get_cr8(vcpu);
5958 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
5959 	kvm_run->ready_for_interrupt_injection =
5960 		pic_in_kernel(vcpu->kvm) ||
5961 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
5962 }
5963 
update_cr8_intercept(struct kvm_vcpu * vcpu)5964 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5965 {
5966 	int max_irr, tpr;
5967 
5968 	if (!kvm_x86_ops->update_cr8_intercept)
5969 		return;
5970 
5971 	if (!vcpu->arch.apic)
5972 		return;
5973 
5974 	if (!vcpu->arch.apic->vapic_addr)
5975 		max_irr = kvm_lapic_find_highest_irr(vcpu);
5976 	else
5977 		max_irr = -1;
5978 
5979 	if (max_irr != -1)
5980 		max_irr >>= 4;
5981 
5982 	tpr = kvm_lapic_get_cr8(vcpu);
5983 
5984 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5985 }
5986 
inject_pending_event(struct kvm_vcpu * vcpu,bool req_int_win)5987 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
5988 {
5989 	int r;
5990 
5991 	/* try to reinject previous events if any */
5992 	if (vcpu->arch.exception.pending) {
5993 		trace_kvm_inj_exception(vcpu->arch.exception.nr,
5994 					vcpu->arch.exception.has_error_code,
5995 					vcpu->arch.exception.error_code);
5996 
5997 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
5998 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
5999 					     X86_EFLAGS_RF);
6000 
6001 		if (vcpu->arch.exception.nr == DB_VECTOR &&
6002 		    (vcpu->arch.dr7 & DR7_GD)) {
6003 			vcpu->arch.dr7 &= ~DR7_GD;
6004 			kvm_update_dr7(vcpu);
6005 		}
6006 
6007 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6008 					  vcpu->arch.exception.has_error_code,
6009 					  vcpu->arch.exception.error_code,
6010 					  vcpu->arch.exception.reinject);
6011 		return 0;
6012 	}
6013 
6014 	if (vcpu->arch.nmi_injected) {
6015 		kvm_x86_ops->set_nmi(vcpu);
6016 		return 0;
6017 	}
6018 
6019 	if (vcpu->arch.interrupt.pending) {
6020 		kvm_x86_ops->set_irq(vcpu);
6021 		return 0;
6022 	}
6023 
6024 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6025 		r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6026 		if (r != 0)
6027 			return r;
6028 	}
6029 
6030 	/* try to inject new event if pending */
6031 	if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6032 		--vcpu->arch.nmi_pending;
6033 		vcpu->arch.nmi_injected = true;
6034 		kvm_x86_ops->set_nmi(vcpu);
6035 	} else if (kvm_cpu_has_injectable_intr(vcpu)) {
6036 		/*
6037 		 * Because interrupts can be injected asynchronously, we are
6038 		 * calling check_nested_events again here to avoid a race condition.
6039 		 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6040 		 * proposal and current concerns.  Perhaps we should be setting
6041 		 * KVM_REQ_EVENT only on certain events and not unconditionally?
6042 		 */
6043 		if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6044 			r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6045 			if (r != 0)
6046 				return r;
6047 		}
6048 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6049 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6050 					    false);
6051 			kvm_x86_ops->set_irq(vcpu);
6052 		}
6053 	}
6054 	return 0;
6055 }
6056 
process_nmi(struct kvm_vcpu * vcpu)6057 static void process_nmi(struct kvm_vcpu *vcpu)
6058 {
6059 	unsigned limit = 2;
6060 
6061 	/*
6062 	 * x86 is limited to one NMI running, and one NMI pending after it.
6063 	 * If an NMI is already in progress, limit further NMIs to just one.
6064 	 * Otherwise, allow two (and we'll inject the first one immediately).
6065 	 */
6066 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6067 		limit = 1;
6068 
6069 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6070 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6071 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6072 }
6073 
6074 #define put_smstate(type, buf, offset, val)			  \
6075 	*(type *)((buf) + (offset) - 0x7e00) = val
6076 
process_smi_get_segment_flags(struct kvm_segment * seg)6077 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6078 {
6079 	u32 flags = 0;
6080 	flags |= seg->g       << 23;
6081 	flags |= seg->db      << 22;
6082 	flags |= seg->l       << 21;
6083 	flags |= seg->avl     << 20;
6084 	flags |= seg->present << 15;
6085 	flags |= seg->dpl     << 13;
6086 	flags |= seg->s       << 12;
6087 	flags |= seg->type    << 8;
6088 	return flags;
6089 }
6090 
process_smi_save_seg_32(struct kvm_vcpu * vcpu,char * buf,int n)6091 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6092 {
6093 	struct kvm_segment seg;
6094 	int offset;
6095 
6096 	kvm_get_segment(vcpu, &seg, n);
6097 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6098 
6099 	if (n < 3)
6100 		offset = 0x7f84 + n * 12;
6101 	else
6102 		offset = 0x7f2c + (n - 3) * 12;
6103 
6104 	put_smstate(u32, buf, offset + 8, seg.base);
6105 	put_smstate(u32, buf, offset + 4, seg.limit);
6106 	put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6107 }
6108 
6109 #ifdef CONFIG_X86_64
process_smi_save_seg_64(struct kvm_vcpu * vcpu,char * buf,int n)6110 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6111 {
6112 	struct kvm_segment seg;
6113 	int offset;
6114 	u16 flags;
6115 
6116 	kvm_get_segment(vcpu, &seg, n);
6117 	offset = 0x7e00 + n * 16;
6118 
6119 	flags = process_smi_get_segment_flags(&seg) >> 8;
6120 	put_smstate(u16, buf, offset, seg.selector);
6121 	put_smstate(u16, buf, offset + 2, flags);
6122 	put_smstate(u32, buf, offset + 4, seg.limit);
6123 	put_smstate(u64, buf, offset + 8, seg.base);
6124 }
6125 #endif
6126 
process_smi_save_state_32(struct kvm_vcpu * vcpu,char * buf)6127 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6128 {
6129 	struct desc_ptr dt;
6130 	struct kvm_segment seg;
6131 	unsigned long val;
6132 	int i;
6133 
6134 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6135 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6136 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6137 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6138 
6139 	for (i = 0; i < 8; i++)
6140 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6141 
6142 	kvm_get_dr(vcpu, 6, &val);
6143 	put_smstate(u32, buf, 0x7fcc, (u32)val);
6144 	kvm_get_dr(vcpu, 7, &val);
6145 	put_smstate(u32, buf, 0x7fc8, (u32)val);
6146 
6147 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6148 	put_smstate(u32, buf, 0x7fc4, seg.selector);
6149 	put_smstate(u32, buf, 0x7f64, seg.base);
6150 	put_smstate(u32, buf, 0x7f60, seg.limit);
6151 	put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6152 
6153 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6154 	put_smstate(u32, buf, 0x7fc0, seg.selector);
6155 	put_smstate(u32, buf, 0x7f80, seg.base);
6156 	put_smstate(u32, buf, 0x7f7c, seg.limit);
6157 	put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6158 
6159 	kvm_x86_ops->get_gdt(vcpu, &dt);
6160 	put_smstate(u32, buf, 0x7f74, dt.address);
6161 	put_smstate(u32, buf, 0x7f70, dt.size);
6162 
6163 	kvm_x86_ops->get_idt(vcpu, &dt);
6164 	put_smstate(u32, buf, 0x7f58, dt.address);
6165 	put_smstate(u32, buf, 0x7f54, dt.size);
6166 
6167 	for (i = 0; i < 6; i++)
6168 		process_smi_save_seg_32(vcpu, buf, i);
6169 
6170 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6171 
6172 	/* revision id */
6173 	put_smstate(u32, buf, 0x7efc, 0x00020000);
6174 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6175 }
6176 
process_smi_save_state_64(struct kvm_vcpu * vcpu,char * buf)6177 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6178 {
6179 #ifdef CONFIG_X86_64
6180 	struct desc_ptr dt;
6181 	struct kvm_segment seg;
6182 	unsigned long val;
6183 	int i;
6184 
6185 	for (i = 0; i < 16; i++)
6186 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6187 
6188 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6189 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6190 
6191 	kvm_get_dr(vcpu, 6, &val);
6192 	put_smstate(u64, buf, 0x7f68, val);
6193 	kvm_get_dr(vcpu, 7, &val);
6194 	put_smstate(u64, buf, 0x7f60, val);
6195 
6196 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6197 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6198 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6199 
6200 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6201 
6202 	/* revision id */
6203 	put_smstate(u32, buf, 0x7efc, 0x00020064);
6204 
6205 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6206 
6207 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6208 	put_smstate(u16, buf, 0x7e90, seg.selector);
6209 	put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6210 	put_smstate(u32, buf, 0x7e94, seg.limit);
6211 	put_smstate(u64, buf, 0x7e98, seg.base);
6212 
6213 	kvm_x86_ops->get_idt(vcpu, &dt);
6214 	put_smstate(u32, buf, 0x7e84, dt.size);
6215 	put_smstate(u64, buf, 0x7e88, dt.address);
6216 
6217 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6218 	put_smstate(u16, buf, 0x7e70, seg.selector);
6219 	put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6220 	put_smstate(u32, buf, 0x7e74, seg.limit);
6221 	put_smstate(u64, buf, 0x7e78, seg.base);
6222 
6223 	kvm_x86_ops->get_gdt(vcpu, &dt);
6224 	put_smstate(u32, buf, 0x7e64, dt.size);
6225 	put_smstate(u64, buf, 0x7e68, dt.address);
6226 
6227 	for (i = 0; i < 6; i++)
6228 		process_smi_save_seg_64(vcpu, buf, i);
6229 #else
6230 	WARN_ON_ONCE(1);
6231 #endif
6232 }
6233 
process_smi(struct kvm_vcpu * vcpu)6234 static void process_smi(struct kvm_vcpu *vcpu)
6235 {
6236 	struct kvm_segment cs, ds;
6237 	struct desc_ptr dt;
6238 	char buf[512];
6239 	u32 cr0;
6240 
6241 	if (is_smm(vcpu)) {
6242 		vcpu->arch.smi_pending = true;
6243 		return;
6244 	}
6245 
6246 	trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6247 	vcpu->arch.hflags |= HF_SMM_MASK;
6248 	memset(buf, 0, 512);
6249 	if (guest_cpuid_has_longmode(vcpu))
6250 		process_smi_save_state_64(vcpu, buf);
6251 	else
6252 		process_smi_save_state_32(vcpu, buf);
6253 
6254 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6255 
6256 	if (kvm_x86_ops->get_nmi_mask(vcpu))
6257 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6258 	else
6259 		kvm_x86_ops->set_nmi_mask(vcpu, true);
6260 
6261 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6262 	kvm_rip_write(vcpu, 0x8000);
6263 
6264 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6265 	kvm_x86_ops->set_cr0(vcpu, cr0);
6266 	vcpu->arch.cr0 = cr0;
6267 
6268 	kvm_x86_ops->set_cr4(vcpu, 0);
6269 
6270 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
6271 	dt.address = dt.size = 0;
6272 	kvm_x86_ops->set_idt(vcpu, &dt);
6273 
6274 	__kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6275 
6276 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6277 	cs.base = vcpu->arch.smbase;
6278 
6279 	ds.selector = 0;
6280 	ds.base = 0;
6281 
6282 	cs.limit    = ds.limit = 0xffffffff;
6283 	cs.type     = ds.type = 0x3;
6284 	cs.dpl      = ds.dpl = 0;
6285 	cs.db       = ds.db = 0;
6286 	cs.s        = ds.s = 1;
6287 	cs.l        = ds.l = 0;
6288 	cs.g        = ds.g = 1;
6289 	cs.avl      = ds.avl = 0;
6290 	cs.present  = ds.present = 1;
6291 	cs.unusable = ds.unusable = 0;
6292 	cs.padding  = ds.padding = 0;
6293 
6294 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6295 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6296 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6297 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6298 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6299 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6300 
6301 	if (guest_cpuid_has_longmode(vcpu))
6302 		kvm_x86_ops->set_efer(vcpu, 0);
6303 
6304 	kvm_update_cpuid(vcpu);
6305 	kvm_mmu_reset_context(vcpu);
6306 }
6307 
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)6308 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6309 {
6310 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6311 		return;
6312 
6313 	memset(vcpu->arch.eoi_exit_bitmap, 0, 256 / 8);
6314 
6315 	if (irqchip_split(vcpu->kvm))
6316 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.eoi_exit_bitmap);
6317 	else {
6318 		kvm_x86_ops->sync_pir_to_irr(vcpu);
6319 		kvm_ioapic_scan_entry(vcpu, vcpu->arch.eoi_exit_bitmap);
6320 	}
6321 	kvm_x86_ops->load_eoi_exitmap(vcpu);
6322 }
6323 
kvm_vcpu_flush_tlb(struct kvm_vcpu * vcpu)6324 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6325 {
6326 	++vcpu->stat.tlb_flush;
6327 	kvm_x86_ops->tlb_flush(vcpu);
6328 }
6329 
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)6330 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6331 {
6332 	struct page *page = NULL;
6333 
6334 	if (!lapic_in_kernel(vcpu))
6335 		return;
6336 
6337 	if (!kvm_x86_ops->set_apic_access_page_addr)
6338 		return;
6339 
6340 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6341 	if (is_error_page(page))
6342 		return;
6343 	kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6344 
6345 	/*
6346 	 * Do not pin apic access page in memory, the MMU notifier
6347 	 * will call us again if it is migrated or swapped out.
6348 	 */
6349 	put_page(page);
6350 }
6351 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6352 
kvm_arch_mmu_notifier_invalidate_page(struct kvm * kvm,unsigned long address)6353 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6354 					   unsigned long address)
6355 {
6356 	/*
6357 	 * The physical address of apic access page is stored in the VMCS.
6358 	 * Update it when it becomes invalid.
6359 	 */
6360 	if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6361 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6362 }
6363 
6364 /*
6365  * Returns 1 to let vcpu_run() continue the guest execution loop without
6366  * exiting to the userspace.  Otherwise, the value will be returned to the
6367  * userspace.
6368  */
vcpu_enter_guest(struct kvm_vcpu * vcpu)6369 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6370 {
6371 	int r;
6372 	bool req_int_win =
6373 		dm_request_for_irq_injection(vcpu) &&
6374 		kvm_cpu_accept_dm_intr(vcpu);
6375 
6376 	bool req_immediate_exit = false;
6377 
6378 	if (vcpu->requests) {
6379 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6380 			kvm_mmu_unload(vcpu);
6381 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6382 			__kvm_migrate_timers(vcpu);
6383 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6384 			kvm_gen_update_masterclock(vcpu->kvm);
6385 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6386 			kvm_gen_kvmclock_update(vcpu);
6387 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6388 			r = kvm_guest_time_update(vcpu);
6389 			if (unlikely(r))
6390 				goto out;
6391 		}
6392 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6393 			kvm_mmu_sync_roots(vcpu);
6394 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6395 			kvm_vcpu_flush_tlb(vcpu);
6396 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6397 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6398 			r = 0;
6399 			goto out;
6400 		}
6401 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6402 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6403 			r = 0;
6404 			goto out;
6405 		}
6406 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6407 			vcpu->fpu_active = 0;
6408 			kvm_x86_ops->fpu_deactivate(vcpu);
6409 		}
6410 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6411 			/* Page is swapped out. Do synthetic halt */
6412 			vcpu->arch.apf.halted = true;
6413 			r = 1;
6414 			goto out;
6415 		}
6416 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6417 			record_steal_time(vcpu);
6418 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
6419 			process_smi(vcpu);
6420 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
6421 			process_nmi(vcpu);
6422 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
6423 			kvm_pmu_handle_event(vcpu);
6424 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
6425 			kvm_pmu_deliver_pmi(vcpu);
6426 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6427 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6428 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
6429 				     (void *) vcpu->arch.eoi_exit_bitmap)) {
6430 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6431 				vcpu->run->eoi.vector =
6432 						vcpu->arch.pending_ioapic_eoi;
6433 				r = 0;
6434 				goto out;
6435 			}
6436 		}
6437 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6438 			vcpu_scan_ioapic(vcpu);
6439 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6440 			kvm_vcpu_reload_apic_access_page(vcpu);
6441 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6442 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6443 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6444 			r = 0;
6445 			goto out;
6446 		}
6447 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6448 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6449 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6450 			r = 0;
6451 			goto out;
6452 		}
6453 	}
6454 
6455 	/*
6456 	 * KVM_REQ_EVENT is not set when posted interrupts are set by
6457 	 * VT-d hardware, so we have to update RVI unconditionally.
6458 	 */
6459 	if (kvm_lapic_enabled(vcpu)) {
6460 		/*
6461 		 * Update architecture specific hints for APIC
6462 		 * virtual interrupt delivery.
6463 		 */
6464 		if (kvm_x86_ops->hwapic_irr_update)
6465 			kvm_x86_ops->hwapic_irr_update(vcpu,
6466 				kvm_lapic_find_highest_irr(vcpu));
6467 	}
6468 
6469 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6470 		kvm_apic_accept_events(vcpu);
6471 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6472 			r = 1;
6473 			goto out;
6474 		}
6475 
6476 		if (inject_pending_event(vcpu, req_int_win) != 0)
6477 			req_immediate_exit = true;
6478 		/* enable NMI/IRQ window open exits if needed */
6479 		else {
6480 			if (vcpu->arch.nmi_pending)
6481 				kvm_x86_ops->enable_nmi_window(vcpu);
6482 			if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6483 				kvm_x86_ops->enable_irq_window(vcpu);
6484 		}
6485 
6486 		if (kvm_lapic_enabled(vcpu)) {
6487 			update_cr8_intercept(vcpu);
6488 			kvm_lapic_sync_to_vapic(vcpu);
6489 		}
6490 	}
6491 
6492 	r = kvm_mmu_reload(vcpu);
6493 	if (unlikely(r)) {
6494 		goto cancel_injection;
6495 	}
6496 
6497 	preempt_disable();
6498 
6499 	kvm_x86_ops->prepare_guest_switch(vcpu);
6500 	if (vcpu->fpu_active)
6501 		kvm_load_guest_fpu(vcpu);
6502 	vcpu->mode = IN_GUEST_MODE;
6503 
6504 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6505 
6506 	/* We should set ->mode before check ->requests,
6507 	 * see the comment in make_all_cpus_request.
6508 	 */
6509 	smp_mb__after_srcu_read_unlock();
6510 
6511 	local_irq_disable();
6512 
6513 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6514 	    || need_resched() || signal_pending(current)) {
6515 		vcpu->mode = OUTSIDE_GUEST_MODE;
6516 		smp_wmb();
6517 		local_irq_enable();
6518 		preempt_enable();
6519 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6520 		r = 1;
6521 		goto cancel_injection;
6522 	}
6523 
6524 	kvm_load_guest_xcr0(vcpu);
6525 
6526 	if (req_immediate_exit)
6527 		smp_send_reschedule(vcpu->cpu);
6528 
6529 	trace_kvm_entry(vcpu->vcpu_id);
6530 	wait_lapic_expire(vcpu);
6531 	__kvm_guest_enter();
6532 
6533 	if (unlikely(vcpu->arch.switch_db_regs)) {
6534 		set_debugreg(0, 7);
6535 		set_debugreg(vcpu->arch.eff_db[0], 0);
6536 		set_debugreg(vcpu->arch.eff_db[1], 1);
6537 		set_debugreg(vcpu->arch.eff_db[2], 2);
6538 		set_debugreg(vcpu->arch.eff_db[3], 3);
6539 		set_debugreg(vcpu->arch.dr6, 6);
6540 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6541 	}
6542 
6543 	kvm_x86_ops->run(vcpu);
6544 
6545 	/*
6546 	 * Do this here before restoring debug registers on the host.  And
6547 	 * since we do this before handling the vmexit, a DR access vmexit
6548 	 * can (a) read the correct value of the debug registers, (b) set
6549 	 * KVM_DEBUGREG_WONT_EXIT again.
6550 	 */
6551 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6552 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6553 		kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6554 		kvm_update_dr0123(vcpu);
6555 		kvm_update_dr6(vcpu);
6556 		kvm_update_dr7(vcpu);
6557 		vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6558 	}
6559 
6560 	/*
6561 	 * If the guest has used debug registers, at least dr7
6562 	 * will be disabled while returning to the host.
6563 	 * If we don't have active breakpoints in the host, we don't
6564 	 * care about the messed up debug address registers. But if
6565 	 * we have some of them active, restore the old state.
6566 	 */
6567 	if (hw_breakpoint_active())
6568 		hw_breakpoint_restore();
6569 
6570 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6571 
6572 	vcpu->mode = OUTSIDE_GUEST_MODE;
6573 	smp_wmb();
6574 
6575 	kvm_put_guest_xcr0(vcpu);
6576 
6577 	/* Interrupt is enabled by handle_external_intr() */
6578 	kvm_x86_ops->handle_external_intr(vcpu);
6579 
6580 	++vcpu->stat.exits;
6581 
6582 	/*
6583 	 * We must have an instruction between local_irq_enable() and
6584 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6585 	 * the interrupt shadow.  The stat.exits increment will do nicely.
6586 	 * But we need to prevent reordering, hence this barrier():
6587 	 */
6588 	barrier();
6589 
6590 	kvm_guest_exit();
6591 
6592 	preempt_enable();
6593 
6594 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6595 
6596 	/*
6597 	 * Profile KVM exit RIPs:
6598 	 */
6599 	if (unlikely(prof_on == KVM_PROFILING)) {
6600 		unsigned long rip = kvm_rip_read(vcpu);
6601 		profile_hit(KVM_PROFILING, (void *)rip);
6602 	}
6603 
6604 	if (unlikely(vcpu->arch.tsc_always_catchup))
6605 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6606 
6607 	if (vcpu->arch.apic_attention)
6608 		kvm_lapic_sync_from_vapic(vcpu);
6609 
6610 	r = kvm_x86_ops->handle_exit(vcpu);
6611 	return r;
6612 
6613 cancel_injection:
6614 	kvm_x86_ops->cancel_injection(vcpu);
6615 	if (unlikely(vcpu->arch.apic_attention))
6616 		kvm_lapic_sync_from_vapic(vcpu);
6617 out:
6618 	return r;
6619 }
6620 
vcpu_block(struct kvm * kvm,struct kvm_vcpu * vcpu)6621 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6622 {
6623 	if (!kvm_arch_vcpu_runnable(vcpu) &&
6624 	    (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6625 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6626 		kvm_vcpu_block(vcpu);
6627 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6628 
6629 		if (kvm_x86_ops->post_block)
6630 			kvm_x86_ops->post_block(vcpu);
6631 
6632 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6633 			return 1;
6634 	}
6635 
6636 	kvm_apic_accept_events(vcpu);
6637 	switch(vcpu->arch.mp_state) {
6638 	case KVM_MP_STATE_HALTED:
6639 		vcpu->arch.pv.pv_unhalted = false;
6640 		vcpu->arch.mp_state =
6641 			KVM_MP_STATE_RUNNABLE;
6642 	case KVM_MP_STATE_RUNNABLE:
6643 		vcpu->arch.apf.halted = false;
6644 		break;
6645 	case KVM_MP_STATE_INIT_RECEIVED:
6646 		break;
6647 	default:
6648 		return -EINTR;
6649 		break;
6650 	}
6651 	return 1;
6652 }
6653 
kvm_vcpu_running(struct kvm_vcpu * vcpu)6654 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6655 {
6656 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6657 		!vcpu->arch.apf.halted);
6658 }
6659 
vcpu_run(struct kvm_vcpu * vcpu)6660 static int vcpu_run(struct kvm_vcpu *vcpu)
6661 {
6662 	int r;
6663 	struct kvm *kvm = vcpu->kvm;
6664 
6665 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6666 
6667 	for (;;) {
6668 		if (kvm_vcpu_running(vcpu)) {
6669 			r = vcpu_enter_guest(vcpu);
6670 		} else {
6671 			r = vcpu_block(kvm, vcpu);
6672 		}
6673 
6674 		if (r <= 0)
6675 			break;
6676 
6677 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6678 		if (kvm_cpu_has_pending_timer(vcpu))
6679 			kvm_inject_pending_timer_irqs(vcpu);
6680 
6681 		if (dm_request_for_irq_injection(vcpu) &&
6682 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6683 			r = 0;
6684 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6685 			++vcpu->stat.request_irq_exits;
6686 			break;
6687 		}
6688 
6689 		kvm_check_async_pf_completion(vcpu);
6690 
6691 		if (signal_pending(current)) {
6692 			r = -EINTR;
6693 			vcpu->run->exit_reason = KVM_EXIT_INTR;
6694 			++vcpu->stat.signal_exits;
6695 			break;
6696 		}
6697 		if (need_resched()) {
6698 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6699 			cond_resched();
6700 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6701 		}
6702 	}
6703 
6704 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6705 
6706 	return r;
6707 }
6708 
complete_emulated_io(struct kvm_vcpu * vcpu)6709 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6710 {
6711 	int r;
6712 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6713 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6714 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6715 	if (r != EMULATE_DONE)
6716 		return 0;
6717 	return 1;
6718 }
6719 
complete_emulated_pio(struct kvm_vcpu * vcpu)6720 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6721 {
6722 	BUG_ON(!vcpu->arch.pio.count);
6723 
6724 	return complete_emulated_io(vcpu);
6725 }
6726 
6727 /*
6728  * Implements the following, as a state machine:
6729  *
6730  * read:
6731  *   for each fragment
6732  *     for each mmio piece in the fragment
6733  *       write gpa, len
6734  *       exit
6735  *       copy data
6736  *   execute insn
6737  *
6738  * write:
6739  *   for each fragment
6740  *     for each mmio piece in the fragment
6741  *       write gpa, len
6742  *       copy data
6743  *       exit
6744  */
complete_emulated_mmio(struct kvm_vcpu * vcpu)6745 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6746 {
6747 	struct kvm_run *run = vcpu->run;
6748 	struct kvm_mmio_fragment *frag;
6749 	unsigned len;
6750 
6751 	BUG_ON(!vcpu->mmio_needed);
6752 
6753 	/* Complete previous fragment */
6754 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6755 	len = min(8u, frag->len);
6756 	if (!vcpu->mmio_is_write)
6757 		memcpy(frag->data, run->mmio.data, len);
6758 
6759 	if (frag->len <= 8) {
6760 		/* Switch to the next fragment. */
6761 		frag++;
6762 		vcpu->mmio_cur_fragment++;
6763 	} else {
6764 		/* Go forward to the next mmio piece. */
6765 		frag->data += len;
6766 		frag->gpa += len;
6767 		frag->len -= len;
6768 	}
6769 
6770 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6771 		vcpu->mmio_needed = 0;
6772 
6773 		/* FIXME: return into emulator if single-stepping.  */
6774 		if (vcpu->mmio_is_write)
6775 			return 1;
6776 		vcpu->mmio_read_completed = 1;
6777 		return complete_emulated_io(vcpu);
6778 	}
6779 
6780 	run->exit_reason = KVM_EXIT_MMIO;
6781 	run->mmio.phys_addr = frag->gpa;
6782 	if (vcpu->mmio_is_write)
6783 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6784 	run->mmio.len = min(8u, frag->len);
6785 	run->mmio.is_write = vcpu->mmio_is_write;
6786 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6787 	return 0;
6788 }
6789 
6790 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * kvm_run)6791 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6792 {
6793 	struct fpu *fpu = &current->thread.fpu;
6794 	int r;
6795 	sigset_t sigsaved;
6796 
6797 	fpu__activate_curr(fpu);
6798 
6799 	if (vcpu->sigset_active)
6800 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6801 
6802 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6803 		kvm_vcpu_block(vcpu);
6804 		kvm_apic_accept_events(vcpu);
6805 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6806 		r = -EAGAIN;
6807 		goto out;
6808 	}
6809 
6810 	/* re-sync apic's tpr */
6811 	if (!lapic_in_kernel(vcpu)) {
6812 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6813 			r = -EINVAL;
6814 			goto out;
6815 		}
6816 	}
6817 
6818 	if (unlikely(vcpu->arch.complete_userspace_io)) {
6819 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6820 		vcpu->arch.complete_userspace_io = NULL;
6821 		r = cui(vcpu);
6822 		if (r <= 0)
6823 			goto out;
6824 	} else
6825 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6826 
6827 	r = vcpu_run(vcpu);
6828 
6829 out:
6830 	post_kvm_run_save(vcpu);
6831 	if (vcpu->sigset_active)
6832 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6833 
6834 	return r;
6835 }
6836 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)6837 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6838 {
6839 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6840 		/*
6841 		 * We are here if userspace calls get_regs() in the middle of
6842 		 * instruction emulation. Registers state needs to be copied
6843 		 * back from emulation context to vcpu. Userspace shouldn't do
6844 		 * that usually, but some bad designed PV devices (vmware
6845 		 * backdoor interface) need this to work
6846 		 */
6847 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6848 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6849 	}
6850 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6851 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6852 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6853 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6854 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6855 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6856 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6857 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6858 #ifdef CONFIG_X86_64
6859 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6860 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6861 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6862 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6863 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6864 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6865 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6866 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6867 #endif
6868 
6869 	regs->rip = kvm_rip_read(vcpu);
6870 	regs->rflags = kvm_get_rflags(vcpu);
6871 
6872 	return 0;
6873 }
6874 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)6875 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6876 {
6877 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6878 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6879 
6880 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6881 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6882 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6883 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6884 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6885 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6886 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6887 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6888 #ifdef CONFIG_X86_64
6889 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6890 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6891 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6892 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6893 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6894 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6895 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6896 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6897 #endif
6898 
6899 	kvm_rip_write(vcpu, regs->rip);
6900 	kvm_set_rflags(vcpu, regs->rflags);
6901 
6902 	vcpu->arch.exception.pending = false;
6903 
6904 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6905 
6906 	return 0;
6907 }
6908 
kvm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)6909 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6910 {
6911 	struct kvm_segment cs;
6912 
6913 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6914 	*db = cs.db;
6915 	*l = cs.l;
6916 }
6917 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6918 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)6919 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6920 				  struct kvm_sregs *sregs)
6921 {
6922 	struct desc_ptr dt;
6923 
6924 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6925 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6926 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6927 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6928 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6929 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6930 
6931 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6932 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6933 
6934 	kvm_x86_ops->get_idt(vcpu, &dt);
6935 	sregs->idt.limit = dt.size;
6936 	sregs->idt.base = dt.address;
6937 	kvm_x86_ops->get_gdt(vcpu, &dt);
6938 	sregs->gdt.limit = dt.size;
6939 	sregs->gdt.base = dt.address;
6940 
6941 	sregs->cr0 = kvm_read_cr0(vcpu);
6942 	sregs->cr2 = vcpu->arch.cr2;
6943 	sregs->cr3 = kvm_read_cr3(vcpu);
6944 	sregs->cr4 = kvm_read_cr4(vcpu);
6945 	sregs->cr8 = kvm_get_cr8(vcpu);
6946 	sregs->efer = vcpu->arch.efer;
6947 	sregs->apic_base = kvm_get_apic_base(vcpu);
6948 
6949 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6950 
6951 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6952 		set_bit(vcpu->arch.interrupt.nr,
6953 			(unsigned long *)sregs->interrupt_bitmap);
6954 
6955 	return 0;
6956 }
6957 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)6958 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6959 				    struct kvm_mp_state *mp_state)
6960 {
6961 	kvm_apic_accept_events(vcpu);
6962 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6963 					vcpu->arch.pv.pv_unhalted)
6964 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6965 	else
6966 		mp_state->mp_state = vcpu->arch.mp_state;
6967 
6968 	return 0;
6969 }
6970 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)6971 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6972 				    struct kvm_mp_state *mp_state)
6973 {
6974 	if (!kvm_vcpu_has_lapic(vcpu) &&
6975 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6976 		return -EINVAL;
6977 
6978 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6979 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6980 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6981 	} else
6982 		vcpu->arch.mp_state = mp_state->mp_state;
6983 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6984 	return 0;
6985 }
6986 
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)6987 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6988 		    int reason, bool has_error_code, u32 error_code)
6989 {
6990 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6991 	int ret;
6992 
6993 	init_emulate_ctxt(vcpu);
6994 
6995 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6996 				   has_error_code, error_code);
6997 
6998 	if (ret)
6999 		return EMULATE_FAIL;
7000 
7001 	kvm_rip_write(vcpu, ctxt->eip);
7002 	kvm_set_rflags(vcpu, ctxt->eflags);
7003 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7004 	return EMULATE_DONE;
7005 }
7006 EXPORT_SYMBOL_GPL(kvm_task_switch);
7007 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)7008 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7009 				  struct kvm_sregs *sregs)
7010 {
7011 	struct msr_data apic_base_msr;
7012 	int mmu_reset_needed = 0;
7013 	int pending_vec, max_bits, idx;
7014 	struct desc_ptr dt;
7015 
7016 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7017 		return -EINVAL;
7018 
7019 	dt.size = sregs->idt.limit;
7020 	dt.address = sregs->idt.base;
7021 	kvm_x86_ops->set_idt(vcpu, &dt);
7022 	dt.size = sregs->gdt.limit;
7023 	dt.address = sregs->gdt.base;
7024 	kvm_x86_ops->set_gdt(vcpu, &dt);
7025 
7026 	vcpu->arch.cr2 = sregs->cr2;
7027 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7028 	vcpu->arch.cr3 = sregs->cr3;
7029 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7030 
7031 	kvm_set_cr8(vcpu, sregs->cr8);
7032 
7033 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7034 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
7035 	apic_base_msr.data = sregs->apic_base;
7036 	apic_base_msr.host_initiated = true;
7037 	kvm_set_apic_base(vcpu, &apic_base_msr);
7038 
7039 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7040 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7041 	vcpu->arch.cr0 = sregs->cr0;
7042 
7043 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7044 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7045 	if (sregs->cr4 & X86_CR4_OSXSAVE)
7046 		kvm_update_cpuid(vcpu);
7047 
7048 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7049 	if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7050 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7051 		mmu_reset_needed = 1;
7052 	}
7053 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7054 
7055 	if (mmu_reset_needed)
7056 		kvm_mmu_reset_context(vcpu);
7057 
7058 	max_bits = KVM_NR_INTERRUPTS;
7059 	pending_vec = find_first_bit(
7060 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
7061 	if (pending_vec < max_bits) {
7062 		kvm_queue_interrupt(vcpu, pending_vec, false);
7063 		pr_debug("Set back pending irq %d\n", pending_vec);
7064 	}
7065 
7066 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7067 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7068 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7069 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7070 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7071 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7072 
7073 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7074 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7075 
7076 	update_cr8_intercept(vcpu);
7077 
7078 	/* Older userspace won't unhalt the vcpu on reset. */
7079 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7080 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7081 	    !is_protmode(vcpu))
7082 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7083 
7084 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7085 
7086 	return 0;
7087 }
7088 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)7089 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7090 					struct kvm_guest_debug *dbg)
7091 {
7092 	unsigned long rflags;
7093 	int i, r;
7094 
7095 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7096 		r = -EBUSY;
7097 		if (vcpu->arch.exception.pending)
7098 			goto out;
7099 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7100 			kvm_queue_exception(vcpu, DB_VECTOR);
7101 		else
7102 			kvm_queue_exception(vcpu, BP_VECTOR);
7103 	}
7104 
7105 	/*
7106 	 * Read rflags as long as potentially injected trace flags are still
7107 	 * filtered out.
7108 	 */
7109 	rflags = kvm_get_rflags(vcpu);
7110 
7111 	vcpu->guest_debug = dbg->control;
7112 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7113 		vcpu->guest_debug = 0;
7114 
7115 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7116 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
7117 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7118 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7119 	} else {
7120 		for (i = 0; i < KVM_NR_DB_REGS; i++)
7121 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7122 	}
7123 	kvm_update_dr7(vcpu);
7124 
7125 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7126 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7127 			get_segment_base(vcpu, VCPU_SREG_CS);
7128 
7129 	/*
7130 	 * Trigger an rflags update that will inject or remove the trace
7131 	 * flags.
7132 	 */
7133 	kvm_set_rflags(vcpu, rflags);
7134 
7135 	kvm_x86_ops->update_bp_intercept(vcpu);
7136 
7137 	r = 0;
7138 
7139 out:
7140 
7141 	return r;
7142 }
7143 
7144 /*
7145  * Translate a guest virtual address to a guest physical address.
7146  */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)7147 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7148 				    struct kvm_translation *tr)
7149 {
7150 	unsigned long vaddr = tr->linear_address;
7151 	gpa_t gpa;
7152 	int idx;
7153 
7154 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7155 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7156 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7157 	tr->physical_address = gpa;
7158 	tr->valid = gpa != UNMAPPED_GVA;
7159 	tr->writeable = 1;
7160 	tr->usermode = 0;
7161 
7162 	return 0;
7163 }
7164 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)7165 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7166 {
7167 	struct fxregs_state *fxsave =
7168 			&vcpu->arch.guest_fpu.state.fxsave;
7169 
7170 	memcpy(fpu->fpr, fxsave->st_space, 128);
7171 	fpu->fcw = fxsave->cwd;
7172 	fpu->fsw = fxsave->swd;
7173 	fpu->ftwx = fxsave->twd;
7174 	fpu->last_opcode = fxsave->fop;
7175 	fpu->last_ip = fxsave->rip;
7176 	fpu->last_dp = fxsave->rdp;
7177 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7178 
7179 	return 0;
7180 }
7181 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)7182 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7183 {
7184 	struct fxregs_state *fxsave =
7185 			&vcpu->arch.guest_fpu.state.fxsave;
7186 
7187 	memcpy(fxsave->st_space, fpu->fpr, 128);
7188 	fxsave->cwd = fpu->fcw;
7189 	fxsave->swd = fpu->fsw;
7190 	fxsave->twd = fpu->ftwx;
7191 	fxsave->fop = fpu->last_opcode;
7192 	fxsave->rip = fpu->last_ip;
7193 	fxsave->rdp = fpu->last_dp;
7194 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7195 
7196 	return 0;
7197 }
7198 
fx_init(struct kvm_vcpu * vcpu)7199 static void fx_init(struct kvm_vcpu *vcpu)
7200 {
7201 	fpstate_init(&vcpu->arch.guest_fpu.state);
7202 	if (cpu_has_xsaves)
7203 		vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7204 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
7205 
7206 	/*
7207 	 * Ensure guest xcr0 is valid for loading
7208 	 */
7209 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7210 
7211 	vcpu->arch.cr0 |= X86_CR0_ET;
7212 }
7213 
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)7214 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7215 {
7216 	if (vcpu->guest_fpu_loaded)
7217 		return;
7218 
7219 	/*
7220 	 * Restore all possible states in the guest,
7221 	 * and assume host would use all available bits.
7222 	 * Guest xcr0 would be loaded later.
7223 	 */
7224 	vcpu->guest_fpu_loaded = 1;
7225 	__kernel_fpu_begin();
7226 	__copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7227 	trace_kvm_fpu(1);
7228 }
7229 
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)7230 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7231 {
7232 	if (!vcpu->guest_fpu_loaded) {
7233 		vcpu->fpu_counter = 0;
7234 		return;
7235 	}
7236 
7237 	vcpu->guest_fpu_loaded = 0;
7238 	copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7239 	__kernel_fpu_end();
7240 	++vcpu->stat.fpu_reload;
7241 	/*
7242 	 * If using eager FPU mode, or if the guest is a frequent user
7243 	 * of the FPU, just leave the FPU active for next time.
7244 	 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7245 	 * the FPU in bursts will revert to loading it on demand.
7246 	 */
7247 	if (!vcpu->arch.eager_fpu) {
7248 		if (++vcpu->fpu_counter < 5)
7249 			kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7250 	}
7251 	trace_kvm_fpu(0);
7252 }
7253 
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)7254 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7255 {
7256 	kvmclock_reset(vcpu);
7257 
7258 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7259 	kvm_x86_ops->vcpu_free(vcpu);
7260 }
7261 
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)7262 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7263 						unsigned int id)
7264 {
7265 	struct kvm_vcpu *vcpu;
7266 
7267 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7268 		printk_once(KERN_WARNING
7269 		"kvm: SMP vm created on host with unstable TSC; "
7270 		"guest TSC will not be reliable\n");
7271 
7272 	vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7273 
7274 	return vcpu;
7275 }
7276 
kvm_arch_vcpu_setup(struct kvm_vcpu * vcpu)7277 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7278 {
7279 	int r;
7280 
7281 	kvm_vcpu_mtrr_init(vcpu);
7282 	r = vcpu_load(vcpu);
7283 	if (r)
7284 		return r;
7285 	kvm_vcpu_reset(vcpu, false);
7286 	kvm_mmu_setup(vcpu);
7287 	vcpu_put(vcpu);
7288 	return r;
7289 }
7290 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)7291 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7292 {
7293 	struct msr_data msr;
7294 	struct kvm *kvm = vcpu->kvm;
7295 
7296 	if (vcpu_load(vcpu))
7297 		return;
7298 	msr.data = 0x0;
7299 	msr.index = MSR_IA32_TSC;
7300 	msr.host_initiated = true;
7301 	kvm_write_tsc(vcpu, &msr);
7302 	vcpu_put(vcpu);
7303 
7304 	if (!kvmclock_periodic_sync)
7305 		return;
7306 
7307 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7308 					KVMCLOCK_SYNC_PERIOD);
7309 }
7310 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)7311 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7312 {
7313 	int r;
7314 	vcpu->arch.apf.msr_val = 0;
7315 
7316 	r = vcpu_load(vcpu);
7317 	BUG_ON(r);
7318 	kvm_mmu_unload(vcpu);
7319 	vcpu_put(vcpu);
7320 
7321 	kvm_x86_ops->vcpu_free(vcpu);
7322 }
7323 
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)7324 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7325 {
7326 	vcpu->arch.hflags = 0;
7327 
7328 	atomic_set(&vcpu->arch.nmi_queued, 0);
7329 	vcpu->arch.nmi_pending = 0;
7330 	vcpu->arch.nmi_injected = false;
7331 	kvm_clear_interrupt_queue(vcpu);
7332 	kvm_clear_exception_queue(vcpu);
7333 
7334 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7335 	kvm_update_dr0123(vcpu);
7336 	vcpu->arch.dr6 = DR6_INIT;
7337 	kvm_update_dr6(vcpu);
7338 	vcpu->arch.dr7 = DR7_FIXED_1;
7339 	kvm_update_dr7(vcpu);
7340 
7341 	vcpu->arch.cr2 = 0;
7342 
7343 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7344 	vcpu->arch.apf.msr_val = 0;
7345 	vcpu->arch.st.msr_val = 0;
7346 
7347 	kvmclock_reset(vcpu);
7348 
7349 	kvm_clear_async_pf_completion_queue(vcpu);
7350 	kvm_async_pf_hash_reset(vcpu);
7351 	vcpu->arch.apf.halted = false;
7352 
7353 	if (!init_event) {
7354 		kvm_pmu_reset(vcpu);
7355 		vcpu->arch.smbase = 0x30000;
7356 	}
7357 
7358 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7359 	vcpu->arch.regs_avail = ~0;
7360 	vcpu->arch.regs_dirty = ~0;
7361 
7362 	kvm_x86_ops->vcpu_reset(vcpu, init_event);
7363 }
7364 
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)7365 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7366 {
7367 	struct kvm_segment cs;
7368 
7369 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7370 	cs.selector = vector << 8;
7371 	cs.base = vector << 12;
7372 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7373 	kvm_rip_write(vcpu, 0);
7374 }
7375 
kvm_arch_hardware_enable(void)7376 int kvm_arch_hardware_enable(void)
7377 {
7378 	struct kvm *kvm;
7379 	struct kvm_vcpu *vcpu;
7380 	int i;
7381 	int ret;
7382 	u64 local_tsc;
7383 	u64 max_tsc = 0;
7384 	bool stable, backwards_tsc = false;
7385 
7386 	kvm_shared_msr_cpu_online();
7387 	ret = kvm_x86_ops->hardware_enable();
7388 	if (ret != 0)
7389 		return ret;
7390 
7391 	local_tsc = rdtsc();
7392 	stable = !check_tsc_unstable();
7393 	list_for_each_entry(kvm, &vm_list, vm_list) {
7394 		kvm_for_each_vcpu(i, vcpu, kvm) {
7395 			if (!stable && vcpu->cpu == smp_processor_id())
7396 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7397 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7398 				backwards_tsc = true;
7399 				if (vcpu->arch.last_host_tsc > max_tsc)
7400 					max_tsc = vcpu->arch.last_host_tsc;
7401 			}
7402 		}
7403 	}
7404 
7405 	/*
7406 	 * Sometimes, even reliable TSCs go backwards.  This happens on
7407 	 * platforms that reset TSC during suspend or hibernate actions, but
7408 	 * maintain synchronization.  We must compensate.  Fortunately, we can
7409 	 * detect that condition here, which happens early in CPU bringup,
7410 	 * before any KVM threads can be running.  Unfortunately, we can't
7411 	 * bring the TSCs fully up to date with real time, as we aren't yet far
7412 	 * enough into CPU bringup that we know how much real time has actually
7413 	 * elapsed; our helper function, get_kernel_ns() will be using boot
7414 	 * variables that haven't been updated yet.
7415 	 *
7416 	 * So we simply find the maximum observed TSC above, then record the
7417 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7418 	 * the adjustment will be applied.  Note that we accumulate
7419 	 * adjustments, in case multiple suspend cycles happen before some VCPU
7420 	 * gets a chance to run again.  In the event that no KVM threads get a
7421 	 * chance to run, we will miss the entire elapsed period, as we'll have
7422 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7423 	 * loose cycle time.  This isn't too big a deal, since the loss will be
7424 	 * uniform across all VCPUs (not to mention the scenario is extremely
7425 	 * unlikely). It is possible that a second hibernate recovery happens
7426 	 * much faster than a first, causing the observed TSC here to be
7427 	 * smaller; this would require additional padding adjustment, which is
7428 	 * why we set last_host_tsc to the local tsc observed here.
7429 	 *
7430 	 * N.B. - this code below runs only on platforms with reliable TSC,
7431 	 * as that is the only way backwards_tsc is set above.  Also note
7432 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7433 	 * have the same delta_cyc adjustment applied if backwards_tsc
7434 	 * is detected.  Note further, this adjustment is only done once,
7435 	 * as we reset last_host_tsc on all VCPUs to stop this from being
7436 	 * called multiple times (one for each physical CPU bringup).
7437 	 *
7438 	 * Platforms with unreliable TSCs don't have to deal with this, they
7439 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
7440 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
7441 	 * guarantee that they stay in perfect synchronization.
7442 	 */
7443 	if (backwards_tsc) {
7444 		u64 delta_cyc = max_tsc - local_tsc;
7445 		backwards_tsc_observed = true;
7446 		list_for_each_entry(kvm, &vm_list, vm_list) {
7447 			kvm_for_each_vcpu(i, vcpu, kvm) {
7448 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
7449 				vcpu->arch.last_host_tsc = local_tsc;
7450 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7451 			}
7452 
7453 			/*
7454 			 * We have to disable TSC offset matching.. if you were
7455 			 * booting a VM while issuing an S4 host suspend....
7456 			 * you may have some problem.  Solving this issue is
7457 			 * left as an exercise to the reader.
7458 			 */
7459 			kvm->arch.last_tsc_nsec = 0;
7460 			kvm->arch.last_tsc_write = 0;
7461 		}
7462 
7463 	}
7464 	return 0;
7465 }
7466 
kvm_arch_hardware_disable(void)7467 void kvm_arch_hardware_disable(void)
7468 {
7469 	kvm_x86_ops->hardware_disable();
7470 	drop_user_return_notifiers();
7471 }
7472 
kvm_arch_hardware_setup(void)7473 int kvm_arch_hardware_setup(void)
7474 {
7475 	int r;
7476 
7477 	r = kvm_x86_ops->hardware_setup();
7478 	if (r != 0)
7479 		return r;
7480 
7481 	if (kvm_has_tsc_control) {
7482 		/*
7483 		 * Make sure the user can only configure tsc_khz values that
7484 		 * fit into a signed integer.
7485 		 * A min value is not calculated needed because it will always
7486 		 * be 1 on all machines.
7487 		 */
7488 		u64 max = min(0x7fffffffULL,
7489 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7490 		kvm_max_guest_tsc_khz = max;
7491 
7492 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7493 	}
7494 
7495 	kvm_init_msr_list();
7496 	return 0;
7497 }
7498 
kvm_arch_hardware_unsetup(void)7499 void kvm_arch_hardware_unsetup(void)
7500 {
7501 	kvm_x86_ops->hardware_unsetup();
7502 }
7503 
kvm_arch_check_processor_compat(void * rtn)7504 void kvm_arch_check_processor_compat(void *rtn)
7505 {
7506 	kvm_x86_ops->check_processor_compatibility(rtn);
7507 }
7508 
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)7509 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7510 {
7511 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7512 }
7513 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7514 
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)7515 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7516 {
7517 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7518 }
7519 
kvm_vcpu_compatible(struct kvm_vcpu * vcpu)7520 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7521 {
7522 	return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7523 }
7524 
7525 struct static_key kvm_no_apic_vcpu __read_mostly;
7526 
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)7527 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7528 {
7529 	struct page *page;
7530 	struct kvm *kvm;
7531 	int r;
7532 
7533 	BUG_ON(vcpu->kvm == NULL);
7534 	kvm = vcpu->kvm;
7535 
7536 	vcpu->arch.pv.pv_unhalted = false;
7537 	vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7538 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7539 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7540 	else
7541 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7542 
7543 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7544 	if (!page) {
7545 		r = -ENOMEM;
7546 		goto fail;
7547 	}
7548 	vcpu->arch.pio_data = page_address(page);
7549 
7550 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
7551 
7552 	r = kvm_mmu_create(vcpu);
7553 	if (r < 0)
7554 		goto fail_free_pio_data;
7555 
7556 	if (irqchip_in_kernel(kvm)) {
7557 		r = kvm_create_lapic(vcpu);
7558 		if (r < 0)
7559 			goto fail_mmu_destroy;
7560 	} else
7561 		static_key_slow_inc(&kvm_no_apic_vcpu);
7562 
7563 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7564 				       GFP_KERNEL);
7565 	if (!vcpu->arch.mce_banks) {
7566 		r = -ENOMEM;
7567 		goto fail_free_lapic;
7568 	}
7569 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7570 
7571 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7572 		r = -ENOMEM;
7573 		goto fail_free_mce_banks;
7574 	}
7575 
7576 	fx_init(vcpu);
7577 
7578 	vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7579 	vcpu->arch.pv_time_enabled = false;
7580 
7581 	vcpu->arch.guest_supported_xcr0 = 0;
7582 	vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7583 
7584 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7585 
7586 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7587 
7588 	kvm_async_pf_hash_reset(vcpu);
7589 	kvm_pmu_init(vcpu);
7590 
7591 	vcpu->arch.pending_external_vector = -1;
7592 
7593 	return 0;
7594 
7595 fail_free_mce_banks:
7596 	kfree(vcpu->arch.mce_banks);
7597 fail_free_lapic:
7598 	kvm_free_lapic(vcpu);
7599 fail_mmu_destroy:
7600 	kvm_mmu_destroy(vcpu);
7601 fail_free_pio_data:
7602 	free_page((unsigned long)vcpu->arch.pio_data);
7603 fail:
7604 	return r;
7605 }
7606 
kvm_arch_vcpu_uninit(struct kvm_vcpu * vcpu)7607 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7608 {
7609 	int idx;
7610 
7611 	kvm_pmu_destroy(vcpu);
7612 	kfree(vcpu->arch.mce_banks);
7613 	kvm_free_lapic(vcpu);
7614 	idx = srcu_read_lock(&vcpu->kvm->srcu);
7615 	kvm_mmu_destroy(vcpu);
7616 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
7617 	free_page((unsigned long)vcpu->arch.pio_data);
7618 	if (!lapic_in_kernel(vcpu))
7619 		static_key_slow_dec(&kvm_no_apic_vcpu);
7620 }
7621 
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)7622 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7623 {
7624 	kvm_x86_ops->sched_in(vcpu, cpu);
7625 }
7626 
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)7627 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7628 {
7629 	if (type)
7630 		return -EINVAL;
7631 
7632 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7633 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7634 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7635 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7636 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7637 
7638 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7639 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7640 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7641 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7642 		&kvm->arch.irq_sources_bitmap);
7643 
7644 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7645 	mutex_init(&kvm->arch.apic_map_lock);
7646 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7647 
7648 	pvclock_update_vm_gtod_copy(kvm);
7649 
7650 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7651 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7652 
7653 	return 0;
7654 }
7655 
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)7656 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7657 {
7658 	int r;
7659 	r = vcpu_load(vcpu);
7660 	BUG_ON(r);
7661 	kvm_mmu_unload(vcpu);
7662 	vcpu_put(vcpu);
7663 }
7664 
kvm_free_vcpus(struct kvm * kvm)7665 static void kvm_free_vcpus(struct kvm *kvm)
7666 {
7667 	unsigned int i;
7668 	struct kvm_vcpu *vcpu;
7669 
7670 	/*
7671 	 * Unpin any mmu pages first.
7672 	 */
7673 	kvm_for_each_vcpu(i, vcpu, kvm) {
7674 		kvm_clear_async_pf_completion_queue(vcpu);
7675 		kvm_unload_vcpu_mmu(vcpu);
7676 	}
7677 	kvm_for_each_vcpu(i, vcpu, kvm)
7678 		kvm_arch_vcpu_free(vcpu);
7679 
7680 	mutex_lock(&kvm->lock);
7681 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7682 		kvm->vcpus[i] = NULL;
7683 
7684 	atomic_set(&kvm->online_vcpus, 0);
7685 	mutex_unlock(&kvm->lock);
7686 }
7687 
kvm_arch_sync_events(struct kvm * kvm)7688 void kvm_arch_sync_events(struct kvm *kvm)
7689 {
7690 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7691 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7692 	kvm_free_all_assigned_devices(kvm);
7693 	kvm_free_pit(kvm);
7694 }
7695 
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)7696 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7697 {
7698 	int i, r;
7699 	unsigned long hva;
7700 	struct kvm_memslots *slots = kvm_memslots(kvm);
7701 	struct kvm_memory_slot *slot, old;
7702 
7703 	/* Called with kvm->slots_lock held.  */
7704 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7705 		return -EINVAL;
7706 
7707 	slot = id_to_memslot(slots, id);
7708 	if (size) {
7709 		if (WARN_ON(slot->npages))
7710 			return -EEXIST;
7711 
7712 		/*
7713 		 * MAP_SHARED to prevent internal slot pages from being moved
7714 		 * by fork()/COW.
7715 		 */
7716 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7717 			      MAP_SHARED | MAP_ANONYMOUS, 0);
7718 		if (IS_ERR((void *)hva))
7719 			return PTR_ERR((void *)hva);
7720 	} else {
7721 		if (!slot->npages)
7722 			return 0;
7723 
7724 		hva = 0;
7725 	}
7726 
7727 	old = *slot;
7728 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7729 		struct kvm_userspace_memory_region m;
7730 
7731 		m.slot = id | (i << 16);
7732 		m.flags = 0;
7733 		m.guest_phys_addr = gpa;
7734 		m.userspace_addr = hva;
7735 		m.memory_size = size;
7736 		r = __kvm_set_memory_region(kvm, &m);
7737 		if (r < 0)
7738 			return r;
7739 	}
7740 
7741 	if (!size) {
7742 		r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7743 		WARN_ON(r < 0);
7744 	}
7745 
7746 	return 0;
7747 }
7748 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7749 
x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)7750 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7751 {
7752 	int r;
7753 
7754 	mutex_lock(&kvm->slots_lock);
7755 	r = __x86_set_memory_region(kvm, id, gpa, size);
7756 	mutex_unlock(&kvm->slots_lock);
7757 
7758 	return r;
7759 }
7760 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7761 
kvm_arch_destroy_vm(struct kvm * kvm)7762 void kvm_arch_destroy_vm(struct kvm *kvm)
7763 {
7764 	if (current->mm == kvm->mm) {
7765 		/*
7766 		 * Free memory regions allocated on behalf of userspace,
7767 		 * unless the the memory map has changed due to process exit
7768 		 * or fd copying.
7769 		 */
7770 		x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7771 		x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7772 		x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7773 	}
7774 	kvm_iommu_unmap_guest(kvm);
7775 	kfree(kvm->arch.vpic);
7776 	kfree(kvm->arch.vioapic);
7777 	kvm_free_vcpus(kvm);
7778 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7779 }
7780 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free,struct kvm_memory_slot * dont)7781 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7782 			   struct kvm_memory_slot *dont)
7783 {
7784 	int i;
7785 
7786 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7787 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7788 			kvfree(free->arch.rmap[i]);
7789 			free->arch.rmap[i] = NULL;
7790 		}
7791 		if (i == 0)
7792 			continue;
7793 
7794 		if (!dont || free->arch.lpage_info[i - 1] !=
7795 			     dont->arch.lpage_info[i - 1]) {
7796 			kvfree(free->arch.lpage_info[i - 1]);
7797 			free->arch.lpage_info[i - 1] = NULL;
7798 		}
7799 	}
7800 }
7801 
kvm_arch_create_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)7802 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7803 			    unsigned long npages)
7804 {
7805 	int i;
7806 
7807 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7808 		unsigned long ugfn;
7809 		int lpages;
7810 		int level = i + 1;
7811 
7812 		lpages = gfn_to_index(slot->base_gfn + npages - 1,
7813 				      slot->base_gfn, level) + 1;
7814 
7815 		slot->arch.rmap[i] =
7816 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7817 		if (!slot->arch.rmap[i])
7818 			goto out_free;
7819 		if (i == 0)
7820 			continue;
7821 
7822 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7823 					sizeof(*slot->arch.lpage_info[i - 1]));
7824 		if (!slot->arch.lpage_info[i - 1])
7825 			goto out_free;
7826 
7827 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7828 			slot->arch.lpage_info[i - 1][0].write_count = 1;
7829 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7830 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7831 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
7832 		/*
7833 		 * If the gfn and userspace address are not aligned wrt each
7834 		 * other, or if explicitly asked to, disable large page
7835 		 * support for this slot
7836 		 */
7837 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7838 		    !kvm_largepages_enabled()) {
7839 			unsigned long j;
7840 
7841 			for (j = 0; j < lpages; ++j)
7842 				slot->arch.lpage_info[i - 1][j].write_count = 1;
7843 		}
7844 	}
7845 
7846 	return 0;
7847 
7848 out_free:
7849 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7850 		kvfree(slot->arch.rmap[i]);
7851 		slot->arch.rmap[i] = NULL;
7852 		if (i == 0)
7853 			continue;
7854 
7855 		kvfree(slot->arch.lpage_info[i - 1]);
7856 		slot->arch.lpage_info[i - 1] = NULL;
7857 	}
7858 	return -ENOMEM;
7859 }
7860 
kvm_arch_memslots_updated(struct kvm * kvm,struct kvm_memslots * slots)7861 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7862 {
7863 	/*
7864 	 * memslots->generation has been incremented.
7865 	 * mmio generation may have reached its maximum value.
7866 	 */
7867 	kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7868 }
7869 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)7870 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7871 				struct kvm_memory_slot *memslot,
7872 				const struct kvm_userspace_memory_region *mem,
7873 				enum kvm_mr_change change)
7874 {
7875 	return 0;
7876 }
7877 
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * new)7878 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7879 				     struct kvm_memory_slot *new)
7880 {
7881 	/* Still write protect RO slot */
7882 	if (new->flags & KVM_MEM_READONLY) {
7883 		kvm_mmu_slot_remove_write_access(kvm, new);
7884 		return;
7885 	}
7886 
7887 	/*
7888 	 * Call kvm_x86_ops dirty logging hooks when they are valid.
7889 	 *
7890 	 * kvm_x86_ops->slot_disable_log_dirty is called when:
7891 	 *
7892 	 *  - KVM_MR_CREATE with dirty logging is disabled
7893 	 *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7894 	 *
7895 	 * The reason is, in case of PML, we need to set D-bit for any slots
7896 	 * with dirty logging disabled in order to eliminate unnecessary GPA
7897 	 * logging in PML buffer (and potential PML buffer full VMEXT). This
7898 	 * guarantees leaving PML enabled during guest's lifetime won't have
7899 	 * any additonal overhead from PML when guest is running with dirty
7900 	 * logging disabled for memory slots.
7901 	 *
7902 	 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7903 	 * to dirty logging mode.
7904 	 *
7905 	 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7906 	 *
7907 	 * In case of write protect:
7908 	 *
7909 	 * Write protect all pages for dirty logging.
7910 	 *
7911 	 * All the sptes including the large sptes which point to this
7912 	 * slot are set to readonly. We can not create any new large
7913 	 * spte on this slot until the end of the logging.
7914 	 *
7915 	 * See the comments in fast_page_fault().
7916 	 */
7917 	if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7918 		if (kvm_x86_ops->slot_enable_log_dirty)
7919 			kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7920 		else
7921 			kvm_mmu_slot_remove_write_access(kvm, new);
7922 	} else {
7923 		if (kvm_x86_ops->slot_disable_log_dirty)
7924 			kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7925 	}
7926 }
7927 
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)7928 void kvm_arch_commit_memory_region(struct kvm *kvm,
7929 				const struct kvm_userspace_memory_region *mem,
7930 				const struct kvm_memory_slot *old,
7931 				const struct kvm_memory_slot *new,
7932 				enum kvm_mr_change change)
7933 {
7934 	int nr_mmu_pages = 0;
7935 
7936 	if (!kvm->arch.n_requested_mmu_pages)
7937 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7938 
7939 	if (nr_mmu_pages)
7940 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7941 
7942 	/*
7943 	 * Dirty logging tracks sptes in 4k granularity, meaning that large
7944 	 * sptes have to be split.  If live migration is successful, the guest
7945 	 * in the source machine will be destroyed and large sptes will be
7946 	 * created in the destination. However, if the guest continues to run
7947 	 * in the source machine (for example if live migration fails), small
7948 	 * sptes will remain around and cause bad performance.
7949 	 *
7950 	 * Scan sptes if dirty logging has been stopped, dropping those
7951 	 * which can be collapsed into a single large-page spte.  Later
7952 	 * page faults will create the large-page sptes.
7953 	 */
7954 	if ((change != KVM_MR_DELETE) &&
7955 		(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7956 		!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7957 		kvm_mmu_zap_collapsible_sptes(kvm, new);
7958 
7959 	/*
7960 	 * Set up write protection and/or dirty logging for the new slot.
7961 	 *
7962 	 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7963 	 * been zapped so no dirty logging staff is needed for old slot. For
7964 	 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7965 	 * new and it's also covered when dealing with the new slot.
7966 	 *
7967 	 * FIXME: const-ify all uses of struct kvm_memory_slot.
7968 	 */
7969 	if (change != KVM_MR_DELETE)
7970 		kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
7971 }
7972 
kvm_arch_flush_shadow_all(struct kvm * kvm)7973 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7974 {
7975 	kvm_mmu_invalidate_zap_all_pages(kvm);
7976 }
7977 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)7978 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7979 				   struct kvm_memory_slot *slot)
7980 {
7981 	kvm_mmu_invalidate_zap_all_pages(kvm);
7982 }
7983 
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)7984 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
7985 {
7986 	if (!list_empty_careful(&vcpu->async_pf.done))
7987 		return true;
7988 
7989 	if (kvm_apic_has_events(vcpu))
7990 		return true;
7991 
7992 	if (vcpu->arch.pv.pv_unhalted)
7993 		return true;
7994 
7995 	if (atomic_read(&vcpu->arch.nmi_queued))
7996 		return true;
7997 
7998 	if (test_bit(KVM_REQ_SMI, &vcpu->requests))
7999 		return true;
8000 
8001 	if (kvm_arch_interrupt_allowed(vcpu) &&
8002 	    kvm_cpu_has_interrupt(vcpu))
8003 		return true;
8004 
8005 	return false;
8006 }
8007 
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)8008 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8009 {
8010 	if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8011 		kvm_x86_ops->check_nested_events(vcpu, false);
8012 
8013 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8014 }
8015 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)8016 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8017 {
8018 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8019 }
8020 
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)8021 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8022 {
8023 	return kvm_x86_ops->interrupt_allowed(vcpu);
8024 }
8025 
kvm_get_linear_rip(struct kvm_vcpu * vcpu)8026 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8027 {
8028 	if (is_64_bit_mode(vcpu))
8029 		return kvm_rip_read(vcpu);
8030 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8031 		     kvm_rip_read(vcpu));
8032 }
8033 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8034 
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)8035 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8036 {
8037 	return kvm_get_linear_rip(vcpu) == linear_rip;
8038 }
8039 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8040 
kvm_get_rflags(struct kvm_vcpu * vcpu)8041 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8042 {
8043 	unsigned long rflags;
8044 
8045 	rflags = kvm_x86_ops->get_rflags(vcpu);
8046 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8047 		rflags &= ~X86_EFLAGS_TF;
8048 	return rflags;
8049 }
8050 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8051 
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)8052 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8053 {
8054 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8055 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8056 		rflags |= X86_EFLAGS_TF;
8057 	kvm_x86_ops->set_rflags(vcpu, rflags);
8058 }
8059 
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)8060 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8061 {
8062 	__kvm_set_rflags(vcpu, rflags);
8063 	kvm_make_request(KVM_REQ_EVENT, vcpu);
8064 }
8065 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8066 
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)8067 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8068 {
8069 	int r;
8070 
8071 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8072 	      work->wakeup_all)
8073 		return;
8074 
8075 	r = kvm_mmu_reload(vcpu);
8076 	if (unlikely(r))
8077 		return;
8078 
8079 	if (!vcpu->arch.mmu.direct_map &&
8080 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8081 		return;
8082 
8083 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8084 }
8085 
kvm_async_pf_hash_fn(gfn_t gfn)8086 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8087 {
8088 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8089 }
8090 
kvm_async_pf_next_probe(u32 key)8091 static inline u32 kvm_async_pf_next_probe(u32 key)
8092 {
8093 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8094 }
8095 
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)8096 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8097 {
8098 	u32 key = kvm_async_pf_hash_fn(gfn);
8099 
8100 	while (vcpu->arch.apf.gfns[key] != ~0)
8101 		key = kvm_async_pf_next_probe(key);
8102 
8103 	vcpu->arch.apf.gfns[key] = gfn;
8104 }
8105 
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)8106 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8107 {
8108 	int i;
8109 	u32 key = kvm_async_pf_hash_fn(gfn);
8110 
8111 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8112 		     (vcpu->arch.apf.gfns[key] != gfn &&
8113 		      vcpu->arch.apf.gfns[key] != ~0); i++)
8114 		key = kvm_async_pf_next_probe(key);
8115 
8116 	return key;
8117 }
8118 
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)8119 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8120 {
8121 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8122 }
8123 
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)8124 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8125 {
8126 	u32 i, j, k;
8127 
8128 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8129 	while (true) {
8130 		vcpu->arch.apf.gfns[i] = ~0;
8131 		do {
8132 			j = kvm_async_pf_next_probe(j);
8133 			if (vcpu->arch.apf.gfns[j] == ~0)
8134 				return;
8135 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8136 			/*
8137 			 * k lies cyclically in ]i,j]
8138 			 * |    i.k.j |
8139 			 * |....j i.k.| or  |.k..j i...|
8140 			 */
8141 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8142 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8143 		i = j;
8144 	}
8145 }
8146 
apf_put_user(struct kvm_vcpu * vcpu,u32 val)8147 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8148 {
8149 
8150 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8151 				      sizeof(val));
8152 }
8153 
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)8154 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8155 				     struct kvm_async_pf *work)
8156 {
8157 	struct x86_exception fault;
8158 
8159 	trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8160 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8161 
8162 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8163 	    (vcpu->arch.apf.send_user_only &&
8164 	     kvm_x86_ops->get_cpl(vcpu) == 0))
8165 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8166 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8167 		fault.vector = PF_VECTOR;
8168 		fault.error_code_valid = true;
8169 		fault.error_code = 0;
8170 		fault.nested_page_fault = false;
8171 		fault.address = work->arch.token;
8172 		kvm_inject_page_fault(vcpu, &fault);
8173 	}
8174 }
8175 
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)8176 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8177 				 struct kvm_async_pf *work)
8178 {
8179 	struct x86_exception fault;
8180 
8181 	trace_kvm_async_pf_ready(work->arch.token, work->gva);
8182 	if (work->wakeup_all)
8183 		work->arch.token = ~0; /* broadcast wakeup */
8184 	else
8185 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8186 
8187 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8188 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8189 		fault.vector = PF_VECTOR;
8190 		fault.error_code_valid = true;
8191 		fault.error_code = 0;
8192 		fault.nested_page_fault = false;
8193 		fault.address = work->arch.token;
8194 		kvm_inject_page_fault(vcpu, &fault);
8195 	}
8196 	vcpu->arch.apf.halted = false;
8197 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8198 }
8199 
kvm_arch_can_inject_async_page_present(struct kvm_vcpu * vcpu)8200 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8201 {
8202 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8203 		return true;
8204 	else
8205 		return !kvm_event_needs_reinjection(vcpu) &&
8206 			kvm_x86_ops->interrupt_allowed(vcpu);
8207 }
8208 
kvm_arch_start_assignment(struct kvm * kvm)8209 void kvm_arch_start_assignment(struct kvm *kvm)
8210 {
8211 	atomic_inc(&kvm->arch.assigned_device_count);
8212 }
8213 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8214 
kvm_arch_end_assignment(struct kvm * kvm)8215 void kvm_arch_end_assignment(struct kvm *kvm)
8216 {
8217 	atomic_dec(&kvm->arch.assigned_device_count);
8218 }
8219 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8220 
kvm_arch_has_assigned_device(struct kvm * kvm)8221 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8222 {
8223 	return atomic_read(&kvm->arch.assigned_device_count);
8224 }
8225 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8226 
kvm_arch_register_noncoherent_dma(struct kvm * kvm)8227 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8228 {
8229 	atomic_inc(&kvm->arch.noncoherent_dma_count);
8230 }
8231 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8232 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)8233 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8234 {
8235 	atomic_dec(&kvm->arch.noncoherent_dma_count);
8236 }
8237 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8238 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)8239 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8240 {
8241 	return atomic_read(&kvm->arch.noncoherent_dma_count);
8242 }
8243 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8244 
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)8245 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8246 				      struct irq_bypass_producer *prod)
8247 {
8248 	struct kvm_kernel_irqfd *irqfd =
8249 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8250 
8251 	if (kvm_x86_ops->update_pi_irte) {
8252 		irqfd->producer = prod;
8253 		return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8254 				prod->irq, irqfd->gsi, 1);
8255 	}
8256 
8257 	return -EINVAL;
8258 }
8259 
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)8260 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8261 				      struct irq_bypass_producer *prod)
8262 {
8263 	int ret;
8264 	struct kvm_kernel_irqfd *irqfd =
8265 		container_of(cons, struct kvm_kernel_irqfd, consumer);
8266 
8267 	if (!kvm_x86_ops->update_pi_irte) {
8268 		WARN_ON(irqfd->producer != NULL);
8269 		return;
8270 	}
8271 
8272 	WARN_ON(irqfd->producer != prod);
8273 	irqfd->producer = NULL;
8274 
8275 	/*
8276 	 * When producer of consumer is unregistered, we change back to
8277 	 * remapped mode, so we can re-use the current implementation
8278 	 * when the irq is masked/disabed or the consumer side (KVM
8279 	 * int this case doesn't want to receive the interrupts.
8280 	*/
8281 	ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8282 	if (ret)
8283 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8284 		       " fails: %d\n", irqfd->consumer.token, ret);
8285 }
8286 
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)8287 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8288 				   uint32_t guest_irq, bool set)
8289 {
8290 	if (!kvm_x86_ops->update_pi_irte)
8291 		return -EINVAL;
8292 
8293 	return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8294 }
8295 
8296 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8297 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8298 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8299 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8300 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8301 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8302 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8303 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8304 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8305 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8306 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8307 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8308 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8309 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8310 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8311 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8312 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8313