1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * AMD SVM support
5 *
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 *
9 * Authors:
10 *   Yaniv Kamay  <yaniv@qumranet.com>
11 *   Avi Kivity   <avi@qumranet.com>
12 *
13 * This work is licensed under the terms of the GNU GPL, version 2.  See
14 * the COPYING file in the top-level directory.
15 *
16 */
17#include <linux/kvm_host.h>
18
19#include "irq.h"
20#include "mmu.h"
21#include "kvm_cache_regs.h"
22#include "x86.h"
23#include "cpuid.h"
24#include "pmu.h"
25
26#include <linux/module.h>
27#include <linux/mod_devicetable.h>
28#include <linux/kernel.h>
29#include <linux/vmalloc.h>
30#include <linux/highmem.h>
31#include <linux/sched.h>
32#include <linux/trace_events.h>
33#include <linux/slab.h>
34
35#include <asm/perf_event.h>
36#include <asm/tlbflush.h>
37#include <asm/desc.h>
38#include <asm/debugreg.h>
39#include <asm/kvm_para.h>
40
41#include <asm/virtext.h>
42#include "trace.h"
43
44#define __ex(x) __kvm_handle_fault_on_reboot(x)
45
46MODULE_AUTHOR("Qumranet");
47MODULE_LICENSE("GPL");
48
49static const struct x86_cpu_id svm_cpu_id[] = {
50	X86_FEATURE_MATCH(X86_FEATURE_SVM),
51	{}
52};
53MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
54
55#define IOPM_ALLOC_ORDER 2
56#define MSRPM_ALLOC_ORDER 1
57
58#define SEG_TYPE_LDT 2
59#define SEG_TYPE_BUSY_TSS16 3
60
61#define SVM_FEATURE_NPT            (1 <<  0)
62#define SVM_FEATURE_LBRV           (1 <<  1)
63#define SVM_FEATURE_SVML           (1 <<  2)
64#define SVM_FEATURE_NRIP           (1 <<  3)
65#define SVM_FEATURE_TSC_RATE       (1 <<  4)
66#define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
67#define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
68#define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
69#define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
70
71#define NESTED_EXIT_HOST	0	/* Exit handled on host level */
72#define NESTED_EXIT_DONE	1	/* Exit caused nested vmexit  */
73#define NESTED_EXIT_CONTINUE	2	/* Further checks needed      */
74
75#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
76
77#define TSC_RATIO_RSVD          0xffffff0000000000ULL
78#define TSC_RATIO_MIN		0x0000000000000001ULL
79#define TSC_RATIO_MAX		0x000000ffffffffffULL
80
81static bool erratum_383_found __read_mostly;
82
83static const u32 host_save_user_msrs[] = {
84#ifdef CONFIG_X86_64
85	MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
86	MSR_FS_BASE,
87#endif
88	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
89};
90
91#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
92
93struct kvm_vcpu;
94
95struct nested_state {
96	struct vmcb *hsave;
97	u64 hsave_msr;
98	u64 vm_cr_msr;
99	u64 vmcb;
100
101	/* These are the merged vectors */
102	u32 *msrpm;
103
104	/* gpa pointers to the real vectors */
105	u64 vmcb_msrpm;
106	u64 vmcb_iopm;
107
108	/* A VMEXIT is required but not yet emulated */
109	bool exit_required;
110
111	/* cache for intercepts of the guest */
112	u32 intercept_cr;
113	u32 intercept_dr;
114	u32 intercept_exceptions;
115	u64 intercept;
116
117	/* Nested Paging related state */
118	u64 nested_cr3;
119};
120
121#define MSRPM_OFFSETS	16
122static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
123
124/*
125 * Set osvw_len to higher value when updated Revision Guides
126 * are published and we know what the new status bits are
127 */
128static uint64_t osvw_len = 4, osvw_status;
129
130struct vcpu_svm {
131	struct kvm_vcpu vcpu;
132	struct vmcb *vmcb;
133	unsigned long vmcb_pa;
134	struct svm_cpu_data *svm_data;
135	uint64_t asid_generation;
136	uint64_t sysenter_esp;
137	uint64_t sysenter_eip;
138
139	u64 next_rip;
140
141	u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
142	struct {
143		u16 fs;
144		u16 gs;
145		u16 ldt;
146		u64 gs_base;
147	} host;
148
149	u32 *msrpm;
150
151	ulong nmi_iret_rip;
152
153	struct nested_state nested;
154
155	bool nmi_singlestep;
156
157	unsigned int3_injected;
158	unsigned long int3_rip;
159	u32 apf_reason;
160
161	/* cached guest cpuid flags for faster access */
162	bool nrips_enabled	: 1;
163};
164
165static DEFINE_PER_CPU(u64, current_tsc_ratio);
166#define TSC_RATIO_DEFAULT	0x0100000000ULL
167
168#define MSR_INVALID			0xffffffffU
169
170static const struct svm_direct_access_msrs {
171	u32 index;   /* Index of the MSR */
172	bool always; /* True if intercept is always on */
173} direct_access_msrs[] = {
174	{ .index = MSR_STAR,				.always = true  },
175	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
176#ifdef CONFIG_X86_64
177	{ .index = MSR_GS_BASE,				.always = true  },
178	{ .index = MSR_FS_BASE,				.always = true  },
179	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
180	{ .index = MSR_LSTAR,				.always = true  },
181	{ .index = MSR_CSTAR,				.always = true  },
182	{ .index = MSR_SYSCALL_MASK,			.always = true  },
183#endif
184	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
185	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
186	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
187	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
188	{ .index = MSR_INVALID,				.always = false },
189};
190
191/* enable NPT for AMD64 and X86 with PAE */
192#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
193static bool npt_enabled = true;
194#else
195static bool npt_enabled;
196#endif
197
198/* allow nested paging (virtualized MMU) for all guests */
199static int npt = true;
200module_param(npt, int, S_IRUGO);
201
202/* allow nested virtualization in KVM/SVM */
203static int nested = true;
204module_param(nested, int, S_IRUGO);
205
206static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
207static void svm_flush_tlb(struct kvm_vcpu *vcpu);
208static void svm_complete_interrupts(struct vcpu_svm *svm);
209
210static int nested_svm_exit_handled(struct vcpu_svm *svm);
211static int nested_svm_intercept(struct vcpu_svm *svm);
212static int nested_svm_vmexit(struct vcpu_svm *svm);
213static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
214				      bool has_error_code, u32 error_code);
215
216enum {
217	VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
218			    pause filter count */
219	VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
220	VMCB_ASID,	 /* ASID */
221	VMCB_INTR,	 /* int_ctl, int_vector */
222	VMCB_NPT,        /* npt_en, nCR3, gPAT */
223	VMCB_CR,	 /* CR0, CR3, CR4, EFER */
224	VMCB_DR,         /* DR6, DR7 */
225	VMCB_DT,         /* GDT, IDT */
226	VMCB_SEG,        /* CS, DS, SS, ES, CPL */
227	VMCB_CR2,        /* CR2 only */
228	VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
229	VMCB_DIRTY_MAX,
230};
231
232/* TPR and CR2 are always written before VMRUN */
233#define VMCB_ALWAYS_DIRTY_MASK	((1U << VMCB_INTR) | (1U << VMCB_CR2))
234
235static inline void mark_all_dirty(struct vmcb *vmcb)
236{
237	vmcb->control.clean = 0;
238}
239
240static inline void mark_all_clean(struct vmcb *vmcb)
241{
242	vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
243			       & ~VMCB_ALWAYS_DIRTY_MASK;
244}
245
246static inline void mark_dirty(struct vmcb *vmcb, int bit)
247{
248	vmcb->control.clean &= ~(1 << bit);
249}
250
251static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
252{
253	return container_of(vcpu, struct vcpu_svm, vcpu);
254}
255
256static void recalc_intercepts(struct vcpu_svm *svm)
257{
258	struct vmcb_control_area *c, *h;
259	struct nested_state *g;
260
261	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
262
263	if (!is_guest_mode(&svm->vcpu))
264		return;
265
266	c = &svm->vmcb->control;
267	h = &svm->nested.hsave->control;
268	g = &svm->nested;
269
270	c->intercept_cr = h->intercept_cr | g->intercept_cr;
271	c->intercept_dr = h->intercept_dr | g->intercept_dr;
272	c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
273	c->intercept = h->intercept | g->intercept;
274}
275
276static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
277{
278	if (is_guest_mode(&svm->vcpu))
279		return svm->nested.hsave;
280	else
281		return svm->vmcb;
282}
283
284static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
285{
286	struct vmcb *vmcb = get_host_vmcb(svm);
287
288	vmcb->control.intercept_cr |= (1U << bit);
289
290	recalc_intercepts(svm);
291}
292
293static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
294{
295	struct vmcb *vmcb = get_host_vmcb(svm);
296
297	vmcb->control.intercept_cr &= ~(1U << bit);
298
299	recalc_intercepts(svm);
300}
301
302static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
303{
304	struct vmcb *vmcb = get_host_vmcb(svm);
305
306	return vmcb->control.intercept_cr & (1U << bit);
307}
308
309static inline void set_dr_intercepts(struct vcpu_svm *svm)
310{
311	struct vmcb *vmcb = get_host_vmcb(svm);
312
313	vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
314		| (1 << INTERCEPT_DR1_READ)
315		| (1 << INTERCEPT_DR2_READ)
316		| (1 << INTERCEPT_DR3_READ)
317		| (1 << INTERCEPT_DR4_READ)
318		| (1 << INTERCEPT_DR5_READ)
319		| (1 << INTERCEPT_DR6_READ)
320		| (1 << INTERCEPT_DR7_READ)
321		| (1 << INTERCEPT_DR0_WRITE)
322		| (1 << INTERCEPT_DR1_WRITE)
323		| (1 << INTERCEPT_DR2_WRITE)
324		| (1 << INTERCEPT_DR3_WRITE)
325		| (1 << INTERCEPT_DR4_WRITE)
326		| (1 << INTERCEPT_DR5_WRITE)
327		| (1 << INTERCEPT_DR6_WRITE)
328		| (1 << INTERCEPT_DR7_WRITE);
329
330	recalc_intercepts(svm);
331}
332
333static inline void clr_dr_intercepts(struct vcpu_svm *svm)
334{
335	struct vmcb *vmcb = get_host_vmcb(svm);
336
337	vmcb->control.intercept_dr = 0;
338
339	recalc_intercepts(svm);
340}
341
342static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
343{
344	struct vmcb *vmcb = get_host_vmcb(svm);
345
346	vmcb->control.intercept_exceptions |= (1U << bit);
347
348	recalc_intercepts(svm);
349}
350
351static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
352{
353	struct vmcb *vmcb = get_host_vmcb(svm);
354
355	vmcb->control.intercept_exceptions &= ~(1U << bit);
356
357	recalc_intercepts(svm);
358}
359
360static inline void set_intercept(struct vcpu_svm *svm, int bit)
361{
362	struct vmcb *vmcb = get_host_vmcb(svm);
363
364	vmcb->control.intercept |= (1ULL << bit);
365
366	recalc_intercepts(svm);
367}
368
369static inline void clr_intercept(struct vcpu_svm *svm, int bit)
370{
371	struct vmcb *vmcb = get_host_vmcb(svm);
372
373	vmcb->control.intercept &= ~(1ULL << bit);
374
375	recalc_intercepts(svm);
376}
377
378static inline void enable_gif(struct vcpu_svm *svm)
379{
380	svm->vcpu.arch.hflags |= HF_GIF_MASK;
381}
382
383static inline void disable_gif(struct vcpu_svm *svm)
384{
385	svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
386}
387
388static inline bool gif_set(struct vcpu_svm *svm)
389{
390	return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
391}
392
393static unsigned long iopm_base;
394
395struct kvm_ldttss_desc {
396	u16 limit0;
397	u16 base0;
398	unsigned base1:8, type:5, dpl:2, p:1;
399	unsigned limit1:4, zero0:3, g:1, base2:8;
400	u32 base3;
401	u32 zero1;
402} __attribute__((packed));
403
404struct svm_cpu_data {
405	int cpu;
406
407	u64 asid_generation;
408	u32 max_asid;
409	u32 next_asid;
410	struct kvm_ldttss_desc *tss_desc;
411
412	struct page *save_area;
413};
414
415static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
416
417struct svm_init_data {
418	int cpu;
419	int r;
420};
421
422static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
423
424#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
425#define MSRS_RANGE_SIZE 2048
426#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
427
428static u32 svm_msrpm_offset(u32 msr)
429{
430	u32 offset;
431	int i;
432
433	for (i = 0; i < NUM_MSR_MAPS; i++) {
434		if (msr < msrpm_ranges[i] ||
435		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
436			continue;
437
438		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
439		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
440
441		/* Now we have the u8 offset - but need the u32 offset */
442		return offset / 4;
443	}
444
445	/* MSR not in any range */
446	return MSR_INVALID;
447}
448
449#define MAX_INST_SIZE 15
450
451static inline void clgi(void)
452{
453	asm volatile (__ex(SVM_CLGI));
454}
455
456static inline void stgi(void)
457{
458	asm volatile (__ex(SVM_STGI));
459}
460
461static inline void invlpga(unsigned long addr, u32 asid)
462{
463	asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
464}
465
466static int get_npt_level(void)
467{
468#ifdef CONFIG_X86_64
469	return PT64_ROOT_LEVEL;
470#else
471	return PT32E_ROOT_LEVEL;
472#endif
473}
474
475static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
476{
477	vcpu->arch.efer = efer;
478	if (!npt_enabled && !(efer & EFER_LMA))
479		efer &= ~EFER_LME;
480
481	to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
482	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
483}
484
485static int is_external_interrupt(u32 info)
486{
487	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
488	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
489}
490
491static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
492{
493	struct vcpu_svm *svm = to_svm(vcpu);
494	u32 ret = 0;
495
496	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
497		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
498	return ret;
499}
500
501static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
502{
503	struct vcpu_svm *svm = to_svm(vcpu);
504
505	if (mask == 0)
506		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
507	else
508		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
509
510}
511
512static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
513{
514	struct vcpu_svm *svm = to_svm(vcpu);
515
516	if (svm->vmcb->control.next_rip != 0) {
517		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
518		svm->next_rip = svm->vmcb->control.next_rip;
519	}
520
521	if (!svm->next_rip) {
522		if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
523				EMULATE_DONE)
524			printk(KERN_DEBUG "%s: NOP\n", __func__);
525		return;
526	}
527	if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
528		printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
529		       __func__, kvm_rip_read(vcpu), svm->next_rip);
530
531	kvm_rip_write(vcpu, svm->next_rip);
532	svm_set_interrupt_shadow(vcpu, 0);
533}
534
535static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
536				bool has_error_code, u32 error_code,
537				bool reinject)
538{
539	struct vcpu_svm *svm = to_svm(vcpu);
540
541	/*
542	 * If we are within a nested VM we'd better #VMEXIT and let the guest
543	 * handle the exception
544	 */
545	if (!reinject &&
546	    nested_svm_check_exception(svm, nr, has_error_code, error_code))
547		return;
548
549	if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
550		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
551
552		/*
553		 * For guest debugging where we have to reinject #BP if some
554		 * INT3 is guest-owned:
555		 * Emulate nRIP by moving RIP forward. Will fail if injection
556		 * raises a fault that is not intercepted. Still better than
557		 * failing in all cases.
558		 */
559		skip_emulated_instruction(&svm->vcpu);
560		rip = kvm_rip_read(&svm->vcpu);
561		svm->int3_rip = rip + svm->vmcb->save.cs.base;
562		svm->int3_injected = rip - old_rip;
563	}
564
565	svm->vmcb->control.event_inj = nr
566		| SVM_EVTINJ_VALID
567		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
568		| SVM_EVTINJ_TYPE_EXEPT;
569	svm->vmcb->control.event_inj_err = error_code;
570}
571
572static void svm_init_erratum_383(void)
573{
574	u32 low, high;
575	int err;
576	u64 val;
577
578	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
579		return;
580
581	/* Use _safe variants to not break nested virtualization */
582	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
583	if (err)
584		return;
585
586	val |= (1ULL << 47);
587
588	low  = lower_32_bits(val);
589	high = upper_32_bits(val);
590
591	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
592
593	erratum_383_found = true;
594}
595
596static void svm_init_osvw(struct kvm_vcpu *vcpu)
597{
598	/*
599	 * Guests should see errata 400 and 415 as fixed (assuming that
600	 * HLT and IO instructions are intercepted).
601	 */
602	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
603	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
604
605	/*
606	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
607	 * all osvw.status bits inside that length, including bit 0 (which is
608	 * reserved for erratum 298), are valid. However, if host processor's
609	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
610	 * be conservative here and therefore we tell the guest that erratum 298
611	 * is present (because we really don't know).
612	 */
613	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
614		vcpu->arch.osvw.status |= 1;
615}
616
617static int has_svm(void)
618{
619	const char *msg;
620
621	if (!cpu_has_svm(&msg)) {
622		printk(KERN_INFO "has_svm: %s\n", msg);
623		return 0;
624	}
625
626	return 1;
627}
628
629static void svm_hardware_disable(void)
630{
631	/* Make sure we clean up behind us */
632	if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
633		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
634
635	cpu_svm_disable();
636
637	amd_pmu_disable_virt();
638}
639
640static int svm_hardware_enable(void)
641{
642
643	struct svm_cpu_data *sd;
644	uint64_t efer;
645	struct desc_ptr gdt_descr;
646	struct desc_struct *gdt;
647	int me = raw_smp_processor_id();
648
649	rdmsrl(MSR_EFER, efer);
650	if (efer & EFER_SVME)
651		return -EBUSY;
652
653	if (!has_svm()) {
654		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
655		return -EINVAL;
656	}
657	sd = per_cpu(svm_data, me);
658	if (!sd) {
659		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
660		return -EINVAL;
661	}
662
663	sd->asid_generation = 1;
664	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
665	sd->next_asid = sd->max_asid + 1;
666
667	native_store_gdt(&gdt_descr);
668	gdt = (struct desc_struct *)gdt_descr.address;
669	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
670
671	wrmsrl(MSR_EFER, efer | EFER_SVME);
672
673	wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
674
675	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
676		wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
677		__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
678	}
679
680
681	/*
682	 * Get OSVW bits.
683	 *
684	 * Note that it is possible to have a system with mixed processor
685	 * revisions and therefore different OSVW bits. If bits are not the same
686	 * on different processors then choose the worst case (i.e. if erratum
687	 * is present on one processor and not on another then assume that the
688	 * erratum is present everywhere).
689	 */
690	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
691		uint64_t len, status = 0;
692		int err;
693
694		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
695		if (!err)
696			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
697						      &err);
698
699		if (err)
700			osvw_status = osvw_len = 0;
701		else {
702			if (len < osvw_len)
703				osvw_len = len;
704			osvw_status |= status;
705			osvw_status &= (1ULL << osvw_len) - 1;
706		}
707	} else
708		osvw_status = osvw_len = 0;
709
710	svm_init_erratum_383();
711
712	amd_pmu_enable_virt();
713
714	return 0;
715}
716
717static void svm_cpu_uninit(int cpu)
718{
719	struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
720
721	if (!sd)
722		return;
723
724	per_cpu(svm_data, raw_smp_processor_id()) = NULL;
725	__free_page(sd->save_area);
726	kfree(sd);
727}
728
729static int svm_cpu_init(int cpu)
730{
731	struct svm_cpu_data *sd;
732	int r;
733
734	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
735	if (!sd)
736		return -ENOMEM;
737	sd->cpu = cpu;
738	sd->save_area = alloc_page(GFP_KERNEL);
739	r = -ENOMEM;
740	if (!sd->save_area)
741		goto err_1;
742
743	per_cpu(svm_data, cpu) = sd;
744
745	return 0;
746
747err_1:
748	kfree(sd);
749	return r;
750
751}
752
753static bool valid_msr_intercept(u32 index)
754{
755	int i;
756
757	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
758		if (direct_access_msrs[i].index == index)
759			return true;
760
761	return false;
762}
763
764static void set_msr_interception(u32 *msrpm, unsigned msr,
765				 int read, int write)
766{
767	u8 bit_read, bit_write;
768	unsigned long tmp;
769	u32 offset;
770
771	/*
772	 * If this warning triggers extend the direct_access_msrs list at the
773	 * beginning of the file
774	 */
775	WARN_ON(!valid_msr_intercept(msr));
776
777	offset    = svm_msrpm_offset(msr);
778	bit_read  = 2 * (msr & 0x0f);
779	bit_write = 2 * (msr & 0x0f) + 1;
780	tmp       = msrpm[offset];
781
782	BUG_ON(offset == MSR_INVALID);
783
784	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
785	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
786
787	msrpm[offset] = tmp;
788}
789
790static void svm_vcpu_init_msrpm(u32 *msrpm)
791{
792	int i;
793
794	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
795
796	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
797		if (!direct_access_msrs[i].always)
798			continue;
799
800		set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
801	}
802}
803
804static void add_msr_offset(u32 offset)
805{
806	int i;
807
808	for (i = 0; i < MSRPM_OFFSETS; ++i) {
809
810		/* Offset already in list? */
811		if (msrpm_offsets[i] == offset)
812			return;
813
814		/* Slot used by another offset? */
815		if (msrpm_offsets[i] != MSR_INVALID)
816			continue;
817
818		/* Add offset to list */
819		msrpm_offsets[i] = offset;
820
821		return;
822	}
823
824	/*
825	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
826	 * increase MSRPM_OFFSETS in this case.
827	 */
828	BUG();
829}
830
831static void init_msrpm_offsets(void)
832{
833	int i;
834
835	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
836
837	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
838		u32 offset;
839
840		offset = svm_msrpm_offset(direct_access_msrs[i].index);
841		BUG_ON(offset == MSR_INVALID);
842
843		add_msr_offset(offset);
844	}
845}
846
847static void svm_enable_lbrv(struct vcpu_svm *svm)
848{
849	u32 *msrpm = svm->msrpm;
850
851	svm->vmcb->control.lbr_ctl = 1;
852	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
853	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
854	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
855	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
856}
857
858static void svm_disable_lbrv(struct vcpu_svm *svm)
859{
860	u32 *msrpm = svm->msrpm;
861
862	svm->vmcb->control.lbr_ctl = 0;
863	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
864	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
865	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
866	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
867}
868
869static __init int svm_hardware_setup(void)
870{
871	int cpu;
872	struct page *iopm_pages;
873	void *iopm_va;
874	int r;
875
876	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
877
878	if (!iopm_pages)
879		return -ENOMEM;
880
881	iopm_va = page_address(iopm_pages);
882	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
883	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
884
885	init_msrpm_offsets();
886
887	if (boot_cpu_has(X86_FEATURE_NX))
888		kvm_enable_efer_bits(EFER_NX);
889
890	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
891		kvm_enable_efer_bits(EFER_FFXSR);
892
893	if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
894		kvm_has_tsc_control = true;
895		kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX;
896		kvm_tsc_scaling_ratio_frac_bits = 32;
897	}
898
899	if (nested) {
900		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
901		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
902	}
903
904	for_each_possible_cpu(cpu) {
905		r = svm_cpu_init(cpu);
906		if (r)
907			goto err;
908	}
909
910	if (!boot_cpu_has(X86_FEATURE_NPT))
911		npt_enabled = false;
912
913	if (npt_enabled && !npt) {
914		printk(KERN_INFO "kvm: Nested Paging disabled\n");
915		npt_enabled = false;
916	}
917
918	if (npt_enabled) {
919		printk(KERN_INFO "kvm: Nested Paging enabled\n");
920		kvm_enable_tdp();
921	} else
922		kvm_disable_tdp();
923
924	return 0;
925
926err:
927	__free_pages(iopm_pages, IOPM_ALLOC_ORDER);
928	iopm_base = 0;
929	return r;
930}
931
932static __exit void svm_hardware_unsetup(void)
933{
934	int cpu;
935
936	for_each_possible_cpu(cpu)
937		svm_cpu_uninit(cpu);
938
939	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
940	iopm_base = 0;
941}
942
943static void init_seg(struct vmcb_seg *seg)
944{
945	seg->selector = 0;
946	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
947		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
948	seg->limit = 0xffff;
949	seg->base = 0;
950}
951
952static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
953{
954	seg->selector = 0;
955	seg->attrib = SVM_SELECTOR_P_MASK | type;
956	seg->limit = 0xffff;
957	seg->base = 0;
958}
959
960static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
961{
962	struct vcpu_svm *svm = to_svm(vcpu);
963
964	return svm->vmcb->control.tsc_offset;
965}
966
967static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
968{
969	struct vcpu_svm *svm = to_svm(vcpu);
970	u64 g_tsc_offset = 0;
971
972	if (is_guest_mode(vcpu)) {
973		g_tsc_offset = svm->vmcb->control.tsc_offset -
974			       svm->nested.hsave->control.tsc_offset;
975		svm->nested.hsave->control.tsc_offset = offset;
976	} else
977		trace_kvm_write_tsc_offset(vcpu->vcpu_id,
978					   svm->vmcb->control.tsc_offset,
979					   offset);
980
981	svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
982
983	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
984}
985
986static void svm_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
987{
988	struct vcpu_svm *svm = to_svm(vcpu);
989
990	svm->vmcb->control.tsc_offset += adjustment;
991	if (is_guest_mode(vcpu))
992		svm->nested.hsave->control.tsc_offset += adjustment;
993	else
994		trace_kvm_write_tsc_offset(vcpu->vcpu_id,
995				     svm->vmcb->control.tsc_offset - adjustment,
996				     svm->vmcb->control.tsc_offset);
997
998	mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
999}
1000
1001static void init_vmcb(struct vcpu_svm *svm)
1002{
1003	struct vmcb_control_area *control = &svm->vmcb->control;
1004	struct vmcb_save_area *save = &svm->vmcb->save;
1005
1006	svm->vcpu.fpu_active = 1;
1007	svm->vcpu.arch.hflags = 0;
1008
1009	set_cr_intercept(svm, INTERCEPT_CR0_READ);
1010	set_cr_intercept(svm, INTERCEPT_CR3_READ);
1011	set_cr_intercept(svm, INTERCEPT_CR4_READ);
1012	set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1013	set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1014	set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1015	set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1016
1017	set_dr_intercepts(svm);
1018
1019	set_exception_intercept(svm, PF_VECTOR);
1020	set_exception_intercept(svm, UD_VECTOR);
1021	set_exception_intercept(svm, MC_VECTOR);
1022	set_exception_intercept(svm, AC_VECTOR);
1023	set_exception_intercept(svm, DB_VECTOR);
1024
1025	set_intercept(svm, INTERCEPT_INTR);
1026	set_intercept(svm, INTERCEPT_NMI);
1027	set_intercept(svm, INTERCEPT_SMI);
1028	set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1029	set_intercept(svm, INTERCEPT_RDPMC);
1030	set_intercept(svm, INTERCEPT_CPUID);
1031	set_intercept(svm, INTERCEPT_INVD);
1032	set_intercept(svm, INTERCEPT_HLT);
1033	set_intercept(svm, INTERCEPT_INVLPG);
1034	set_intercept(svm, INTERCEPT_INVLPGA);
1035	set_intercept(svm, INTERCEPT_IOIO_PROT);
1036	set_intercept(svm, INTERCEPT_MSR_PROT);
1037	set_intercept(svm, INTERCEPT_TASK_SWITCH);
1038	set_intercept(svm, INTERCEPT_SHUTDOWN);
1039	set_intercept(svm, INTERCEPT_VMRUN);
1040	set_intercept(svm, INTERCEPT_VMMCALL);
1041	set_intercept(svm, INTERCEPT_VMLOAD);
1042	set_intercept(svm, INTERCEPT_VMSAVE);
1043	set_intercept(svm, INTERCEPT_STGI);
1044	set_intercept(svm, INTERCEPT_CLGI);
1045	set_intercept(svm, INTERCEPT_SKINIT);
1046	set_intercept(svm, INTERCEPT_WBINVD);
1047	set_intercept(svm, INTERCEPT_MONITOR);
1048	set_intercept(svm, INTERCEPT_MWAIT);
1049	set_intercept(svm, INTERCEPT_XSETBV);
1050
1051	control->iopm_base_pa = iopm_base;
1052	control->msrpm_base_pa = __pa(svm->msrpm);
1053	control->int_ctl = V_INTR_MASKING_MASK;
1054
1055	init_seg(&save->es);
1056	init_seg(&save->ss);
1057	init_seg(&save->ds);
1058	init_seg(&save->fs);
1059	init_seg(&save->gs);
1060
1061	save->cs.selector = 0xf000;
1062	save->cs.base = 0xffff0000;
1063	/* Executable/Readable Code Segment */
1064	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1065		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1066	save->cs.limit = 0xffff;
1067
1068	save->gdtr.limit = 0xffff;
1069	save->idtr.limit = 0xffff;
1070
1071	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1072	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1073
1074	svm_set_efer(&svm->vcpu, 0);
1075	save->dr6 = 0xffff0ff0;
1076	kvm_set_rflags(&svm->vcpu, 2);
1077	save->rip = 0x0000fff0;
1078	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1079
1080	/*
1081	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1082	 * It also updates the guest-visible cr0 value.
1083	 */
1084	svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1085	kvm_mmu_reset_context(&svm->vcpu);
1086
1087	save->cr4 = X86_CR4_PAE;
1088	/* rdx = ?? */
1089
1090	if (npt_enabled) {
1091		/* Setup VMCB for Nested Paging */
1092		control->nested_ctl = 1;
1093		clr_intercept(svm, INTERCEPT_INVLPG);
1094		clr_exception_intercept(svm, PF_VECTOR);
1095		clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1096		clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1097		save->g_pat = svm->vcpu.arch.pat;
1098		save->cr3 = 0;
1099		save->cr4 = 0;
1100	}
1101	svm->asid_generation = 0;
1102
1103	svm->nested.vmcb = 0;
1104	svm->vcpu.arch.hflags = 0;
1105
1106	if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1107		control->pause_filter_count = 3000;
1108		set_intercept(svm, INTERCEPT_PAUSE);
1109	}
1110
1111	mark_all_dirty(svm->vmcb);
1112
1113	enable_gif(svm);
1114}
1115
1116static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1117{
1118	struct vcpu_svm *svm = to_svm(vcpu);
1119	u32 dummy;
1120	u32 eax = 1;
1121
1122	if (!init_event) {
1123		svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1124					   MSR_IA32_APICBASE_ENABLE;
1125		if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1126			svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1127	}
1128	init_vmcb(svm);
1129
1130	kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1131	kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1132}
1133
1134static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1135{
1136	struct vcpu_svm *svm;
1137	struct page *page;
1138	struct page *msrpm_pages;
1139	struct page *hsave_page;
1140	struct page *nested_msrpm_pages;
1141	int err;
1142
1143	svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1144	if (!svm) {
1145		err = -ENOMEM;
1146		goto out;
1147	}
1148
1149	err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1150	if (err)
1151		goto free_svm;
1152
1153	err = -ENOMEM;
1154	page = alloc_page(GFP_KERNEL);
1155	if (!page)
1156		goto uninit;
1157
1158	msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1159	if (!msrpm_pages)
1160		goto free_page1;
1161
1162	nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1163	if (!nested_msrpm_pages)
1164		goto free_page2;
1165
1166	hsave_page = alloc_page(GFP_KERNEL);
1167	if (!hsave_page)
1168		goto free_page3;
1169
1170	svm->nested.hsave = page_address(hsave_page);
1171
1172	svm->msrpm = page_address(msrpm_pages);
1173	svm_vcpu_init_msrpm(svm->msrpm);
1174
1175	svm->nested.msrpm = page_address(nested_msrpm_pages);
1176	svm_vcpu_init_msrpm(svm->nested.msrpm);
1177
1178	svm->vmcb = page_address(page);
1179	clear_page(svm->vmcb);
1180	svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1181	svm->asid_generation = 0;
1182	init_vmcb(svm);
1183
1184	svm_init_osvw(&svm->vcpu);
1185
1186	return &svm->vcpu;
1187
1188free_page3:
1189	__free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1190free_page2:
1191	__free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1192free_page1:
1193	__free_page(page);
1194uninit:
1195	kvm_vcpu_uninit(&svm->vcpu);
1196free_svm:
1197	kmem_cache_free(kvm_vcpu_cache, svm);
1198out:
1199	return ERR_PTR(err);
1200}
1201
1202static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1203{
1204	struct vcpu_svm *svm = to_svm(vcpu);
1205
1206	__free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1207	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1208	__free_page(virt_to_page(svm->nested.hsave));
1209	__free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1210	kvm_vcpu_uninit(vcpu);
1211	kmem_cache_free(kvm_vcpu_cache, svm);
1212}
1213
1214static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1215{
1216	struct vcpu_svm *svm = to_svm(vcpu);
1217	int i;
1218
1219	if (unlikely(cpu != vcpu->cpu)) {
1220		svm->asid_generation = 0;
1221		mark_all_dirty(svm->vmcb);
1222	}
1223
1224#ifdef CONFIG_X86_64
1225	rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1226#endif
1227	savesegment(fs, svm->host.fs);
1228	savesegment(gs, svm->host.gs);
1229	svm->host.ldt = kvm_read_ldt();
1230
1231	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1232		rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1233
1234	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1235		u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio;
1236		if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1237			__this_cpu_write(current_tsc_ratio, tsc_ratio);
1238			wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio);
1239		}
1240	}
1241}
1242
1243static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1244{
1245	struct vcpu_svm *svm = to_svm(vcpu);
1246	int i;
1247
1248	++vcpu->stat.host_state_reload;
1249	kvm_load_ldt(svm->host.ldt);
1250#ifdef CONFIG_X86_64
1251	loadsegment(fs, svm->host.fs);
1252	wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1253	load_gs_index(svm->host.gs);
1254#else
1255#ifdef CONFIG_X86_32_LAZY_GS
1256	loadsegment(gs, svm->host.gs);
1257#endif
1258#endif
1259	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1260		wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1261}
1262
1263static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1264{
1265	return to_svm(vcpu)->vmcb->save.rflags;
1266}
1267
1268static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1269{
1270       /*
1271        * Any change of EFLAGS.VM is accompained by a reload of SS
1272        * (caused by either a task switch or an inter-privilege IRET),
1273        * so we do not need to update the CPL here.
1274        */
1275	to_svm(vcpu)->vmcb->save.rflags = rflags;
1276}
1277
1278static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1279{
1280	switch (reg) {
1281	case VCPU_EXREG_PDPTR:
1282		BUG_ON(!npt_enabled);
1283		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1284		break;
1285	default:
1286		BUG();
1287	}
1288}
1289
1290static void svm_set_vintr(struct vcpu_svm *svm)
1291{
1292	set_intercept(svm, INTERCEPT_VINTR);
1293}
1294
1295static void svm_clear_vintr(struct vcpu_svm *svm)
1296{
1297	clr_intercept(svm, INTERCEPT_VINTR);
1298}
1299
1300static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1301{
1302	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1303
1304	switch (seg) {
1305	case VCPU_SREG_CS: return &save->cs;
1306	case VCPU_SREG_DS: return &save->ds;
1307	case VCPU_SREG_ES: return &save->es;
1308	case VCPU_SREG_FS: return &save->fs;
1309	case VCPU_SREG_GS: return &save->gs;
1310	case VCPU_SREG_SS: return &save->ss;
1311	case VCPU_SREG_TR: return &save->tr;
1312	case VCPU_SREG_LDTR: return &save->ldtr;
1313	}
1314	BUG();
1315	return NULL;
1316}
1317
1318static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1319{
1320	struct vmcb_seg *s = svm_seg(vcpu, seg);
1321
1322	return s->base;
1323}
1324
1325static void svm_get_segment(struct kvm_vcpu *vcpu,
1326			    struct kvm_segment *var, int seg)
1327{
1328	struct vmcb_seg *s = svm_seg(vcpu, seg);
1329
1330	var->base = s->base;
1331	var->limit = s->limit;
1332	var->selector = s->selector;
1333	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1334	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1335	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1336	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1337	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1338	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1339	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1340
1341	/*
1342	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1343	 * However, the SVM spec states that the G bit is not observed by the
1344	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1345	 * So let's synthesize a legal G bit for all segments, this helps
1346	 * running KVM nested. It also helps cross-vendor migration, because
1347	 * Intel's vmentry has a check on the 'G' bit.
1348	 */
1349	var->g = s->limit > 0xfffff;
1350
1351	/*
1352	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1353	 * for cross vendor migration purposes by "not present"
1354	 */
1355	var->unusable = !var->present || (var->type == 0);
1356
1357	switch (seg) {
1358	case VCPU_SREG_TR:
1359		/*
1360		 * Work around a bug where the busy flag in the tr selector
1361		 * isn't exposed
1362		 */
1363		var->type |= 0x2;
1364		break;
1365	case VCPU_SREG_DS:
1366	case VCPU_SREG_ES:
1367	case VCPU_SREG_FS:
1368	case VCPU_SREG_GS:
1369		/*
1370		 * The accessed bit must always be set in the segment
1371		 * descriptor cache, although it can be cleared in the
1372		 * descriptor, the cached bit always remains at 1. Since
1373		 * Intel has a check on this, set it here to support
1374		 * cross-vendor migration.
1375		 */
1376		if (!var->unusable)
1377			var->type |= 0x1;
1378		break;
1379	case VCPU_SREG_SS:
1380		/*
1381		 * On AMD CPUs sometimes the DB bit in the segment
1382		 * descriptor is left as 1, although the whole segment has
1383		 * been made unusable. Clear it here to pass an Intel VMX
1384		 * entry check when cross vendor migrating.
1385		 */
1386		if (var->unusable)
1387			var->db = 0;
1388		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1389		break;
1390	}
1391}
1392
1393static int svm_get_cpl(struct kvm_vcpu *vcpu)
1394{
1395	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1396
1397	return save->cpl;
1398}
1399
1400static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1401{
1402	struct vcpu_svm *svm = to_svm(vcpu);
1403
1404	dt->size = svm->vmcb->save.idtr.limit;
1405	dt->address = svm->vmcb->save.idtr.base;
1406}
1407
1408static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1409{
1410	struct vcpu_svm *svm = to_svm(vcpu);
1411
1412	svm->vmcb->save.idtr.limit = dt->size;
1413	svm->vmcb->save.idtr.base = dt->address ;
1414	mark_dirty(svm->vmcb, VMCB_DT);
1415}
1416
1417static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1418{
1419	struct vcpu_svm *svm = to_svm(vcpu);
1420
1421	dt->size = svm->vmcb->save.gdtr.limit;
1422	dt->address = svm->vmcb->save.gdtr.base;
1423}
1424
1425static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1426{
1427	struct vcpu_svm *svm = to_svm(vcpu);
1428
1429	svm->vmcb->save.gdtr.limit = dt->size;
1430	svm->vmcb->save.gdtr.base = dt->address ;
1431	mark_dirty(svm->vmcb, VMCB_DT);
1432}
1433
1434static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1435{
1436}
1437
1438static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1439{
1440}
1441
1442static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1443{
1444}
1445
1446static void update_cr0_intercept(struct vcpu_svm *svm)
1447{
1448	ulong gcr0 = svm->vcpu.arch.cr0;
1449	u64 *hcr0 = &svm->vmcb->save.cr0;
1450
1451	if (!svm->vcpu.fpu_active)
1452		*hcr0 |= SVM_CR0_SELECTIVE_MASK;
1453	else
1454		*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1455			| (gcr0 & SVM_CR0_SELECTIVE_MASK);
1456
1457	mark_dirty(svm->vmcb, VMCB_CR);
1458
1459	if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1460		clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1461		clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1462	} else {
1463		set_cr_intercept(svm, INTERCEPT_CR0_READ);
1464		set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1465	}
1466}
1467
1468static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1469{
1470	struct vcpu_svm *svm = to_svm(vcpu);
1471
1472#ifdef CONFIG_X86_64
1473	if (vcpu->arch.efer & EFER_LME) {
1474		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1475			vcpu->arch.efer |= EFER_LMA;
1476			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1477		}
1478
1479		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1480			vcpu->arch.efer &= ~EFER_LMA;
1481			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1482		}
1483	}
1484#endif
1485	vcpu->arch.cr0 = cr0;
1486
1487	if (!npt_enabled)
1488		cr0 |= X86_CR0_PG | X86_CR0_WP;
1489
1490	if (!vcpu->fpu_active)
1491		cr0 |= X86_CR0_TS;
1492	/*
1493	 * re-enable caching here because the QEMU bios
1494	 * does not do it - this results in some delay at
1495	 * reboot
1496	 */
1497	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1498		cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1499	svm->vmcb->save.cr0 = cr0;
1500	mark_dirty(svm->vmcb, VMCB_CR);
1501	update_cr0_intercept(svm);
1502}
1503
1504static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1505{
1506	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1507	unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1508
1509	if (cr4 & X86_CR4_VMXE)
1510		return 1;
1511
1512	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1513		svm_flush_tlb(vcpu);
1514
1515	vcpu->arch.cr4 = cr4;
1516	if (!npt_enabled)
1517		cr4 |= X86_CR4_PAE;
1518	cr4 |= host_cr4_mce;
1519	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1520	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1521	return 0;
1522}
1523
1524static void svm_set_segment(struct kvm_vcpu *vcpu,
1525			    struct kvm_segment *var, int seg)
1526{
1527	struct vcpu_svm *svm = to_svm(vcpu);
1528	struct vmcb_seg *s = svm_seg(vcpu, seg);
1529
1530	s->base = var->base;
1531	s->limit = var->limit;
1532	s->selector = var->selector;
1533	if (var->unusable)
1534		s->attrib = 0;
1535	else {
1536		s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1537		s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1538		s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1539		s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1540		s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1541		s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1542		s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1543		s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1544	}
1545
1546	/*
1547	 * This is always accurate, except if SYSRET returned to a segment
1548	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1549	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1550	 * would entail passing the CPL to userspace and back.
1551	 */
1552	if (seg == VCPU_SREG_SS)
1553		svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1554
1555	mark_dirty(svm->vmcb, VMCB_SEG);
1556}
1557
1558static void update_bp_intercept(struct kvm_vcpu *vcpu)
1559{
1560	struct vcpu_svm *svm = to_svm(vcpu);
1561
1562	clr_exception_intercept(svm, BP_VECTOR);
1563
1564	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1565		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1566			set_exception_intercept(svm, BP_VECTOR);
1567	} else
1568		vcpu->guest_debug = 0;
1569}
1570
1571static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1572{
1573	if (sd->next_asid > sd->max_asid) {
1574		++sd->asid_generation;
1575		sd->next_asid = 1;
1576		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1577	}
1578
1579	svm->asid_generation = sd->asid_generation;
1580	svm->vmcb->control.asid = sd->next_asid++;
1581
1582	mark_dirty(svm->vmcb, VMCB_ASID);
1583}
1584
1585static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1586{
1587	return to_svm(vcpu)->vmcb->save.dr6;
1588}
1589
1590static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1591{
1592	struct vcpu_svm *svm = to_svm(vcpu);
1593
1594	svm->vmcb->save.dr6 = value;
1595	mark_dirty(svm->vmcb, VMCB_DR);
1596}
1597
1598static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1599{
1600	struct vcpu_svm *svm = to_svm(vcpu);
1601
1602	get_debugreg(vcpu->arch.db[0], 0);
1603	get_debugreg(vcpu->arch.db[1], 1);
1604	get_debugreg(vcpu->arch.db[2], 2);
1605	get_debugreg(vcpu->arch.db[3], 3);
1606	vcpu->arch.dr6 = svm_get_dr6(vcpu);
1607	vcpu->arch.dr7 = svm->vmcb->save.dr7;
1608
1609	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1610	set_dr_intercepts(svm);
1611}
1612
1613static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1614{
1615	struct vcpu_svm *svm = to_svm(vcpu);
1616
1617	svm->vmcb->save.dr7 = value;
1618	mark_dirty(svm->vmcb, VMCB_DR);
1619}
1620
1621static int pf_interception(struct vcpu_svm *svm)
1622{
1623	u64 fault_address = svm->vmcb->control.exit_info_2;
1624	u32 error_code;
1625	int r = 1;
1626
1627	switch (svm->apf_reason) {
1628	default:
1629		error_code = svm->vmcb->control.exit_info_1;
1630
1631		trace_kvm_page_fault(fault_address, error_code);
1632		if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1633			kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1634		r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1635			svm->vmcb->control.insn_bytes,
1636			svm->vmcb->control.insn_len);
1637		break;
1638	case KVM_PV_REASON_PAGE_NOT_PRESENT:
1639		svm->apf_reason = 0;
1640		local_irq_disable();
1641		kvm_async_pf_task_wait(fault_address);
1642		local_irq_enable();
1643		break;
1644	case KVM_PV_REASON_PAGE_READY:
1645		svm->apf_reason = 0;
1646		local_irq_disable();
1647		kvm_async_pf_task_wake(fault_address);
1648		local_irq_enable();
1649		break;
1650	}
1651	return r;
1652}
1653
1654static int db_interception(struct vcpu_svm *svm)
1655{
1656	struct kvm_run *kvm_run = svm->vcpu.run;
1657
1658	if (!(svm->vcpu.guest_debug &
1659	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1660		!svm->nmi_singlestep) {
1661		kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1662		return 1;
1663	}
1664
1665	if (svm->nmi_singlestep) {
1666		svm->nmi_singlestep = false;
1667		if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1668			svm->vmcb->save.rflags &=
1669				~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1670	}
1671
1672	if (svm->vcpu.guest_debug &
1673	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1674		kvm_run->exit_reason = KVM_EXIT_DEBUG;
1675		kvm_run->debug.arch.pc =
1676			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1677		kvm_run->debug.arch.exception = DB_VECTOR;
1678		return 0;
1679	}
1680
1681	return 1;
1682}
1683
1684static int bp_interception(struct vcpu_svm *svm)
1685{
1686	struct kvm_run *kvm_run = svm->vcpu.run;
1687
1688	kvm_run->exit_reason = KVM_EXIT_DEBUG;
1689	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1690	kvm_run->debug.arch.exception = BP_VECTOR;
1691	return 0;
1692}
1693
1694static int ud_interception(struct vcpu_svm *svm)
1695{
1696	int er;
1697
1698	er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1699	if (er != EMULATE_DONE)
1700		kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1701	return 1;
1702}
1703
1704static int ac_interception(struct vcpu_svm *svm)
1705{
1706	kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0);
1707	return 1;
1708}
1709
1710static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1711{
1712	struct vcpu_svm *svm = to_svm(vcpu);
1713
1714	clr_exception_intercept(svm, NM_VECTOR);
1715
1716	svm->vcpu.fpu_active = 1;
1717	update_cr0_intercept(svm);
1718}
1719
1720static int nm_interception(struct vcpu_svm *svm)
1721{
1722	svm_fpu_activate(&svm->vcpu);
1723	return 1;
1724}
1725
1726static bool is_erratum_383(void)
1727{
1728	int err, i;
1729	u64 value;
1730
1731	if (!erratum_383_found)
1732		return false;
1733
1734	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1735	if (err)
1736		return false;
1737
1738	/* Bit 62 may or may not be set for this mce */
1739	value &= ~(1ULL << 62);
1740
1741	if (value != 0xb600000000010015ULL)
1742		return false;
1743
1744	/* Clear MCi_STATUS registers */
1745	for (i = 0; i < 6; ++i)
1746		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1747
1748	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1749	if (!err) {
1750		u32 low, high;
1751
1752		value &= ~(1ULL << 2);
1753		low    = lower_32_bits(value);
1754		high   = upper_32_bits(value);
1755
1756		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1757	}
1758
1759	/* Flush tlb to evict multi-match entries */
1760	__flush_tlb_all();
1761
1762	return true;
1763}
1764
1765static void svm_handle_mce(struct vcpu_svm *svm)
1766{
1767	if (is_erratum_383()) {
1768		/*
1769		 * Erratum 383 triggered. Guest state is corrupt so kill the
1770		 * guest.
1771		 */
1772		pr_err("KVM: Guest triggered AMD Erratum 383\n");
1773
1774		kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1775
1776		return;
1777	}
1778
1779	/*
1780	 * On an #MC intercept the MCE handler is not called automatically in
1781	 * the host. So do it by hand here.
1782	 */
1783	asm volatile (
1784		"int $0x12\n");
1785	/* not sure if we ever come back to this point */
1786
1787	return;
1788}
1789
1790static int mc_interception(struct vcpu_svm *svm)
1791{
1792	return 1;
1793}
1794
1795static int shutdown_interception(struct vcpu_svm *svm)
1796{
1797	struct kvm_run *kvm_run = svm->vcpu.run;
1798
1799	/*
1800	 * VMCB is undefined after a SHUTDOWN intercept
1801	 * so reinitialize it.
1802	 */
1803	clear_page(svm->vmcb);
1804	init_vmcb(svm);
1805
1806	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1807	return 0;
1808}
1809
1810static int io_interception(struct vcpu_svm *svm)
1811{
1812	struct kvm_vcpu *vcpu = &svm->vcpu;
1813	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1814	int size, in, string;
1815	unsigned port;
1816
1817	++svm->vcpu.stat.io_exits;
1818	string = (io_info & SVM_IOIO_STR_MASK) != 0;
1819	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1820	if (string || in)
1821		return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1822
1823	port = io_info >> 16;
1824	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1825	svm->next_rip = svm->vmcb->control.exit_info_2;
1826	skip_emulated_instruction(&svm->vcpu);
1827
1828	return kvm_fast_pio_out(vcpu, size, port);
1829}
1830
1831static int nmi_interception(struct vcpu_svm *svm)
1832{
1833	return 1;
1834}
1835
1836static int intr_interception(struct vcpu_svm *svm)
1837{
1838	++svm->vcpu.stat.irq_exits;
1839	return 1;
1840}
1841
1842static int nop_on_interception(struct vcpu_svm *svm)
1843{
1844	return 1;
1845}
1846
1847static int halt_interception(struct vcpu_svm *svm)
1848{
1849	svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1850	return kvm_emulate_halt(&svm->vcpu);
1851}
1852
1853static int vmmcall_interception(struct vcpu_svm *svm)
1854{
1855	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1856	kvm_emulate_hypercall(&svm->vcpu);
1857	return 1;
1858}
1859
1860static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1861{
1862	struct vcpu_svm *svm = to_svm(vcpu);
1863
1864	return svm->nested.nested_cr3;
1865}
1866
1867static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1868{
1869	struct vcpu_svm *svm = to_svm(vcpu);
1870	u64 cr3 = svm->nested.nested_cr3;
1871	u64 pdpte;
1872	int ret;
1873
1874	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
1875				       offset_in_page(cr3) + index * 8, 8);
1876	if (ret)
1877		return 0;
1878	return pdpte;
1879}
1880
1881static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1882				   unsigned long root)
1883{
1884	struct vcpu_svm *svm = to_svm(vcpu);
1885
1886	svm->vmcb->control.nested_cr3 = root;
1887	mark_dirty(svm->vmcb, VMCB_NPT);
1888	svm_flush_tlb(vcpu);
1889}
1890
1891static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1892				       struct x86_exception *fault)
1893{
1894	struct vcpu_svm *svm = to_svm(vcpu);
1895
1896	if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
1897		/*
1898		 * TODO: track the cause of the nested page fault, and
1899		 * correctly fill in the high bits of exit_info_1.
1900		 */
1901		svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1902		svm->vmcb->control.exit_code_hi = 0;
1903		svm->vmcb->control.exit_info_1 = (1ULL << 32);
1904		svm->vmcb->control.exit_info_2 = fault->address;
1905	}
1906
1907	svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
1908	svm->vmcb->control.exit_info_1 |= fault->error_code;
1909
1910	/*
1911	 * The present bit is always zero for page structure faults on real
1912	 * hardware.
1913	 */
1914	if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
1915		svm->vmcb->control.exit_info_1 &= ~1;
1916
1917	nested_svm_vmexit(svm);
1918}
1919
1920static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1921{
1922	WARN_ON(mmu_is_nested(vcpu));
1923	kvm_init_shadow_mmu(vcpu);
1924	vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
1925	vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1926	vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
1927	vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1928	vcpu->arch.mmu.shadow_root_level = get_npt_level();
1929	reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu);
1930	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
1931}
1932
1933static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1934{
1935	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1936}
1937
1938static int nested_svm_check_permissions(struct vcpu_svm *svm)
1939{
1940	if (!(svm->vcpu.arch.efer & EFER_SVME)
1941	    || !is_paging(&svm->vcpu)) {
1942		kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1943		return 1;
1944	}
1945
1946	if (svm->vmcb->save.cpl) {
1947		kvm_inject_gp(&svm->vcpu, 0);
1948		return 1;
1949	}
1950
1951       return 0;
1952}
1953
1954static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1955				      bool has_error_code, u32 error_code)
1956{
1957	int vmexit;
1958
1959	if (!is_guest_mode(&svm->vcpu))
1960		return 0;
1961
1962	svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1963	svm->vmcb->control.exit_code_hi = 0;
1964	svm->vmcb->control.exit_info_1 = error_code;
1965	svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1966
1967	vmexit = nested_svm_intercept(svm);
1968	if (vmexit == NESTED_EXIT_DONE)
1969		svm->nested.exit_required = true;
1970
1971	return vmexit;
1972}
1973
1974/* This function returns true if it is save to enable the irq window */
1975static inline bool nested_svm_intr(struct vcpu_svm *svm)
1976{
1977	if (!is_guest_mode(&svm->vcpu))
1978		return true;
1979
1980	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1981		return true;
1982
1983	if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1984		return false;
1985
1986	/*
1987	 * if vmexit was already requested (by intercepted exception
1988	 * for instance) do not overwrite it with "external interrupt"
1989	 * vmexit.
1990	 */
1991	if (svm->nested.exit_required)
1992		return false;
1993
1994	svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
1995	svm->vmcb->control.exit_info_1 = 0;
1996	svm->vmcb->control.exit_info_2 = 0;
1997
1998	if (svm->nested.intercept & 1ULL) {
1999		/*
2000		 * The #vmexit can't be emulated here directly because this
2001		 * code path runs with irqs and preemption disabled. A
2002		 * #vmexit emulation might sleep. Only signal request for
2003		 * the #vmexit here.
2004		 */
2005		svm->nested.exit_required = true;
2006		trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2007		return false;
2008	}
2009
2010	return true;
2011}
2012
2013/* This function returns true if it is save to enable the nmi window */
2014static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2015{
2016	if (!is_guest_mode(&svm->vcpu))
2017		return true;
2018
2019	if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2020		return true;
2021
2022	svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2023	svm->nested.exit_required = true;
2024
2025	return false;
2026}
2027
2028static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2029{
2030	struct page *page;
2031
2032	might_sleep();
2033
2034	page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2035	if (is_error_page(page))
2036		goto error;
2037
2038	*_page = page;
2039
2040	return kmap(page);
2041
2042error:
2043	kvm_inject_gp(&svm->vcpu, 0);
2044
2045	return NULL;
2046}
2047
2048static void nested_svm_unmap(struct page *page)
2049{
2050	kunmap(page);
2051	kvm_release_page_dirty(page);
2052}
2053
2054static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2055{
2056	unsigned port, size, iopm_len;
2057	u16 val, mask;
2058	u8 start_bit;
2059	u64 gpa;
2060
2061	if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2062		return NESTED_EXIT_HOST;
2063
2064	port = svm->vmcb->control.exit_info_1 >> 16;
2065	size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2066		SVM_IOIO_SIZE_SHIFT;
2067	gpa  = svm->nested.vmcb_iopm + (port / 8);
2068	start_bit = port % 8;
2069	iopm_len = (start_bit + size > 8) ? 2 : 1;
2070	mask = (0xf >> (4 - size)) << start_bit;
2071	val = 0;
2072
2073	if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2074		return NESTED_EXIT_DONE;
2075
2076	return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2077}
2078
2079static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2080{
2081	u32 offset, msr, value;
2082	int write, mask;
2083
2084	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2085		return NESTED_EXIT_HOST;
2086
2087	msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2088	offset = svm_msrpm_offset(msr);
2089	write  = svm->vmcb->control.exit_info_1 & 1;
2090	mask   = 1 << ((2 * (msr & 0xf)) + write);
2091
2092	if (offset == MSR_INVALID)
2093		return NESTED_EXIT_DONE;
2094
2095	/* Offset is in 32 bit units but need in 8 bit units */
2096	offset *= 4;
2097
2098	if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2099		return NESTED_EXIT_DONE;
2100
2101	return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2102}
2103
2104static int nested_svm_exit_special(struct vcpu_svm *svm)
2105{
2106	u32 exit_code = svm->vmcb->control.exit_code;
2107
2108	switch (exit_code) {
2109	case SVM_EXIT_INTR:
2110	case SVM_EXIT_NMI:
2111	case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2112		return NESTED_EXIT_HOST;
2113	case SVM_EXIT_NPF:
2114		/* For now we are always handling NPFs when using them */
2115		if (npt_enabled)
2116			return NESTED_EXIT_HOST;
2117		break;
2118	case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2119		/* When we're shadowing, trap PFs, but not async PF */
2120		if (!npt_enabled && svm->apf_reason == 0)
2121			return NESTED_EXIT_HOST;
2122		break;
2123	case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2124		nm_interception(svm);
2125		break;
2126	default:
2127		break;
2128	}
2129
2130	return NESTED_EXIT_CONTINUE;
2131}
2132
2133/*
2134 * If this function returns true, this #vmexit was already handled
2135 */
2136static int nested_svm_intercept(struct vcpu_svm *svm)
2137{
2138	u32 exit_code = svm->vmcb->control.exit_code;
2139	int vmexit = NESTED_EXIT_HOST;
2140
2141	switch (exit_code) {
2142	case SVM_EXIT_MSR:
2143		vmexit = nested_svm_exit_handled_msr(svm);
2144		break;
2145	case SVM_EXIT_IOIO:
2146		vmexit = nested_svm_intercept_ioio(svm);
2147		break;
2148	case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2149		u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2150		if (svm->nested.intercept_cr & bit)
2151			vmexit = NESTED_EXIT_DONE;
2152		break;
2153	}
2154	case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2155		u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2156		if (svm->nested.intercept_dr & bit)
2157			vmexit = NESTED_EXIT_DONE;
2158		break;
2159	}
2160	case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2161		u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2162		if (svm->nested.intercept_exceptions & excp_bits)
2163			vmexit = NESTED_EXIT_DONE;
2164		/* async page fault always cause vmexit */
2165		else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2166			 svm->apf_reason != 0)
2167			vmexit = NESTED_EXIT_DONE;
2168		break;
2169	}
2170	case SVM_EXIT_ERR: {
2171		vmexit = NESTED_EXIT_DONE;
2172		break;
2173	}
2174	default: {
2175		u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2176		if (svm->nested.intercept & exit_bits)
2177			vmexit = NESTED_EXIT_DONE;
2178	}
2179	}
2180
2181	return vmexit;
2182}
2183
2184static int nested_svm_exit_handled(struct vcpu_svm *svm)
2185{
2186	int vmexit;
2187
2188	vmexit = nested_svm_intercept(svm);
2189
2190	if (vmexit == NESTED_EXIT_DONE)
2191		nested_svm_vmexit(svm);
2192
2193	return vmexit;
2194}
2195
2196static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2197{
2198	struct vmcb_control_area *dst  = &dst_vmcb->control;
2199	struct vmcb_control_area *from = &from_vmcb->control;
2200
2201	dst->intercept_cr         = from->intercept_cr;
2202	dst->intercept_dr         = from->intercept_dr;
2203	dst->intercept_exceptions = from->intercept_exceptions;
2204	dst->intercept            = from->intercept;
2205	dst->iopm_base_pa         = from->iopm_base_pa;
2206	dst->msrpm_base_pa        = from->msrpm_base_pa;
2207	dst->tsc_offset           = from->tsc_offset;
2208	dst->asid                 = from->asid;
2209	dst->tlb_ctl              = from->tlb_ctl;
2210	dst->int_ctl              = from->int_ctl;
2211	dst->int_vector           = from->int_vector;
2212	dst->int_state            = from->int_state;
2213	dst->exit_code            = from->exit_code;
2214	dst->exit_code_hi         = from->exit_code_hi;
2215	dst->exit_info_1          = from->exit_info_1;
2216	dst->exit_info_2          = from->exit_info_2;
2217	dst->exit_int_info        = from->exit_int_info;
2218	dst->exit_int_info_err    = from->exit_int_info_err;
2219	dst->nested_ctl           = from->nested_ctl;
2220	dst->event_inj            = from->event_inj;
2221	dst->event_inj_err        = from->event_inj_err;
2222	dst->nested_cr3           = from->nested_cr3;
2223	dst->lbr_ctl              = from->lbr_ctl;
2224}
2225
2226static int nested_svm_vmexit(struct vcpu_svm *svm)
2227{
2228	struct vmcb *nested_vmcb;
2229	struct vmcb *hsave = svm->nested.hsave;
2230	struct vmcb *vmcb = svm->vmcb;
2231	struct page *page;
2232
2233	trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2234				       vmcb->control.exit_info_1,
2235				       vmcb->control.exit_info_2,
2236				       vmcb->control.exit_int_info,
2237				       vmcb->control.exit_int_info_err,
2238				       KVM_ISA_SVM);
2239
2240	nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2241	if (!nested_vmcb)
2242		return 1;
2243
2244	/* Exit Guest-Mode */
2245	leave_guest_mode(&svm->vcpu);
2246	svm->nested.vmcb = 0;
2247
2248	/* Give the current vmcb to the guest */
2249	disable_gif(svm);
2250
2251	nested_vmcb->save.es     = vmcb->save.es;
2252	nested_vmcb->save.cs     = vmcb->save.cs;
2253	nested_vmcb->save.ss     = vmcb->save.ss;
2254	nested_vmcb->save.ds     = vmcb->save.ds;
2255	nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2256	nested_vmcb->save.idtr   = vmcb->save.idtr;
2257	nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2258	nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2259	nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2260	nested_vmcb->save.cr2    = vmcb->save.cr2;
2261	nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2262	nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2263	nested_vmcb->save.rip    = vmcb->save.rip;
2264	nested_vmcb->save.rsp    = vmcb->save.rsp;
2265	nested_vmcb->save.rax    = vmcb->save.rax;
2266	nested_vmcb->save.dr7    = vmcb->save.dr7;
2267	nested_vmcb->save.dr6    = vmcb->save.dr6;
2268	nested_vmcb->save.cpl    = vmcb->save.cpl;
2269
2270	nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2271	nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2272	nested_vmcb->control.int_state         = vmcb->control.int_state;
2273	nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2274	nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2275	nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2276	nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2277	nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2278	nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2279
2280	if (svm->nrips_enabled)
2281		nested_vmcb->control.next_rip  = vmcb->control.next_rip;
2282
2283	/*
2284	 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2285	 * to make sure that we do not lose injected events. So check event_inj
2286	 * here and copy it to exit_int_info if it is valid.
2287	 * Exit_int_info and event_inj can't be both valid because the case
2288	 * below only happens on a VMRUN instruction intercept which has
2289	 * no valid exit_int_info set.
2290	 */
2291	if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2292		struct vmcb_control_area *nc = &nested_vmcb->control;
2293
2294		nc->exit_int_info     = vmcb->control.event_inj;
2295		nc->exit_int_info_err = vmcb->control.event_inj_err;
2296	}
2297
2298	nested_vmcb->control.tlb_ctl           = 0;
2299	nested_vmcb->control.event_inj         = 0;
2300	nested_vmcb->control.event_inj_err     = 0;
2301
2302	/* We always set V_INTR_MASKING and remember the old value in hflags */
2303	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2304		nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2305
2306	/* Restore the original control entries */
2307	copy_vmcb_control_area(vmcb, hsave);
2308
2309	kvm_clear_exception_queue(&svm->vcpu);
2310	kvm_clear_interrupt_queue(&svm->vcpu);
2311
2312	svm->nested.nested_cr3 = 0;
2313
2314	/* Restore selected save entries */
2315	svm->vmcb->save.es = hsave->save.es;
2316	svm->vmcb->save.cs = hsave->save.cs;
2317	svm->vmcb->save.ss = hsave->save.ss;
2318	svm->vmcb->save.ds = hsave->save.ds;
2319	svm->vmcb->save.gdtr = hsave->save.gdtr;
2320	svm->vmcb->save.idtr = hsave->save.idtr;
2321	kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2322	svm_set_efer(&svm->vcpu, hsave->save.efer);
2323	svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2324	svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2325	if (npt_enabled) {
2326		svm->vmcb->save.cr3 = hsave->save.cr3;
2327		svm->vcpu.arch.cr3 = hsave->save.cr3;
2328	} else {
2329		(void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2330	}
2331	kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2332	kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2333	kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2334	svm->vmcb->save.dr7 = 0;
2335	svm->vmcb->save.cpl = 0;
2336	svm->vmcb->control.exit_int_info = 0;
2337
2338	mark_all_dirty(svm->vmcb);
2339
2340	nested_svm_unmap(page);
2341
2342	nested_svm_uninit_mmu_context(&svm->vcpu);
2343	kvm_mmu_reset_context(&svm->vcpu);
2344	kvm_mmu_load(&svm->vcpu);
2345
2346	return 0;
2347}
2348
2349static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2350{
2351	/*
2352	 * This function merges the msr permission bitmaps of kvm and the
2353	 * nested vmcb. It is optimized in that it only merges the parts where
2354	 * the kvm msr permission bitmap may contain zero bits
2355	 */
2356	int i;
2357
2358	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2359		return true;
2360
2361	for (i = 0; i < MSRPM_OFFSETS; i++) {
2362		u32 value, p;
2363		u64 offset;
2364
2365		if (msrpm_offsets[i] == 0xffffffff)
2366			break;
2367
2368		p      = msrpm_offsets[i];
2369		offset = svm->nested.vmcb_msrpm + (p * 4);
2370
2371		if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2372			return false;
2373
2374		svm->nested.msrpm[p] = svm->msrpm[p] | value;
2375	}
2376
2377	svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2378
2379	return true;
2380}
2381
2382static bool nested_vmcb_checks(struct vmcb *vmcb)
2383{
2384	if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2385		return false;
2386
2387	if (vmcb->control.asid == 0)
2388		return false;
2389
2390	if (vmcb->control.nested_ctl && !npt_enabled)
2391		return false;
2392
2393	return true;
2394}
2395
2396static bool nested_svm_vmrun(struct vcpu_svm *svm)
2397{
2398	struct vmcb *nested_vmcb;
2399	struct vmcb *hsave = svm->nested.hsave;
2400	struct vmcb *vmcb = svm->vmcb;
2401	struct page *page;
2402	u64 vmcb_gpa;
2403
2404	vmcb_gpa = svm->vmcb->save.rax;
2405
2406	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2407	if (!nested_vmcb)
2408		return false;
2409
2410	if (!nested_vmcb_checks(nested_vmcb)) {
2411		nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2412		nested_vmcb->control.exit_code_hi = 0;
2413		nested_vmcb->control.exit_info_1  = 0;
2414		nested_vmcb->control.exit_info_2  = 0;
2415
2416		nested_svm_unmap(page);
2417
2418		return false;
2419	}
2420
2421	trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2422			       nested_vmcb->save.rip,
2423			       nested_vmcb->control.int_ctl,
2424			       nested_vmcb->control.event_inj,
2425			       nested_vmcb->control.nested_ctl);
2426
2427	trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2428				    nested_vmcb->control.intercept_cr >> 16,
2429				    nested_vmcb->control.intercept_exceptions,
2430				    nested_vmcb->control.intercept);
2431
2432	/* Clear internal status */
2433	kvm_clear_exception_queue(&svm->vcpu);
2434	kvm_clear_interrupt_queue(&svm->vcpu);
2435
2436	/*
2437	 * Save the old vmcb, so we don't need to pick what we save, but can
2438	 * restore everything when a VMEXIT occurs
2439	 */
2440	hsave->save.es     = vmcb->save.es;
2441	hsave->save.cs     = vmcb->save.cs;
2442	hsave->save.ss     = vmcb->save.ss;
2443	hsave->save.ds     = vmcb->save.ds;
2444	hsave->save.gdtr   = vmcb->save.gdtr;
2445	hsave->save.idtr   = vmcb->save.idtr;
2446	hsave->save.efer   = svm->vcpu.arch.efer;
2447	hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2448	hsave->save.cr4    = svm->vcpu.arch.cr4;
2449	hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2450	hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2451	hsave->save.rsp    = vmcb->save.rsp;
2452	hsave->save.rax    = vmcb->save.rax;
2453	if (npt_enabled)
2454		hsave->save.cr3    = vmcb->save.cr3;
2455	else
2456		hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2457
2458	copy_vmcb_control_area(hsave, vmcb);
2459
2460	if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2461		svm->vcpu.arch.hflags |= HF_HIF_MASK;
2462	else
2463		svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2464
2465	if (nested_vmcb->control.nested_ctl) {
2466		kvm_mmu_unload(&svm->vcpu);
2467		svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2468		nested_svm_init_mmu_context(&svm->vcpu);
2469	}
2470
2471	/* Load the nested guest state */
2472	svm->vmcb->save.es = nested_vmcb->save.es;
2473	svm->vmcb->save.cs = nested_vmcb->save.cs;
2474	svm->vmcb->save.ss = nested_vmcb->save.ss;
2475	svm->vmcb->save.ds = nested_vmcb->save.ds;
2476	svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2477	svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2478	kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2479	svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2480	svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2481	svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2482	if (npt_enabled) {
2483		svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2484		svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2485	} else
2486		(void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2487
2488	/* Guest paging mode is active - reset mmu */
2489	kvm_mmu_reset_context(&svm->vcpu);
2490
2491	svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2492	kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2493	kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2494	kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2495
2496	/* In case we don't even reach vcpu_run, the fields are not updated */
2497	svm->vmcb->save.rax = nested_vmcb->save.rax;
2498	svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2499	svm->vmcb->save.rip = nested_vmcb->save.rip;
2500	svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2501	svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2502	svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2503
2504	svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2505	svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2506
2507	/* cache intercepts */
2508	svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2509	svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2510	svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2511	svm->nested.intercept            = nested_vmcb->control.intercept;
2512
2513	svm_flush_tlb(&svm->vcpu);
2514	svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2515	if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2516		svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2517	else
2518		svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2519
2520	if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2521		/* We only want the cr8 intercept bits of the guest */
2522		clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2523		clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2524	}
2525
2526	/* We don't want to see VMMCALLs from a nested guest */
2527	clr_intercept(svm, INTERCEPT_VMMCALL);
2528
2529	svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2530	svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2531	svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2532	svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2533	svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2534	svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2535
2536	nested_svm_unmap(page);
2537
2538	/* Enter Guest-Mode */
2539	enter_guest_mode(&svm->vcpu);
2540
2541	/*
2542	 * Merge guest and host intercepts - must be called  with vcpu in
2543	 * guest-mode to take affect here
2544	 */
2545	recalc_intercepts(svm);
2546
2547	svm->nested.vmcb = vmcb_gpa;
2548
2549	enable_gif(svm);
2550
2551	mark_all_dirty(svm->vmcb);
2552
2553	return true;
2554}
2555
2556static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2557{
2558	to_vmcb->save.fs = from_vmcb->save.fs;
2559	to_vmcb->save.gs = from_vmcb->save.gs;
2560	to_vmcb->save.tr = from_vmcb->save.tr;
2561	to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2562	to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2563	to_vmcb->save.star = from_vmcb->save.star;
2564	to_vmcb->save.lstar = from_vmcb->save.lstar;
2565	to_vmcb->save.cstar = from_vmcb->save.cstar;
2566	to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2567	to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2568	to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2569	to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2570}
2571
2572static int vmload_interception(struct vcpu_svm *svm)
2573{
2574	struct vmcb *nested_vmcb;
2575	struct page *page;
2576
2577	if (nested_svm_check_permissions(svm))
2578		return 1;
2579
2580	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2581	if (!nested_vmcb)
2582		return 1;
2583
2584	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2585	skip_emulated_instruction(&svm->vcpu);
2586
2587	nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2588	nested_svm_unmap(page);
2589
2590	return 1;
2591}
2592
2593static int vmsave_interception(struct vcpu_svm *svm)
2594{
2595	struct vmcb *nested_vmcb;
2596	struct page *page;
2597
2598	if (nested_svm_check_permissions(svm))
2599		return 1;
2600
2601	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2602	if (!nested_vmcb)
2603		return 1;
2604
2605	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2606	skip_emulated_instruction(&svm->vcpu);
2607
2608	nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2609	nested_svm_unmap(page);
2610
2611	return 1;
2612}
2613
2614static int vmrun_interception(struct vcpu_svm *svm)
2615{
2616	if (nested_svm_check_permissions(svm))
2617		return 1;
2618
2619	/* Save rip after vmrun instruction */
2620	kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2621
2622	if (!nested_svm_vmrun(svm))
2623		return 1;
2624
2625	if (!nested_svm_vmrun_msrpm(svm))
2626		goto failed;
2627
2628	return 1;
2629
2630failed:
2631
2632	svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2633	svm->vmcb->control.exit_code_hi = 0;
2634	svm->vmcb->control.exit_info_1  = 0;
2635	svm->vmcb->control.exit_info_2  = 0;
2636
2637	nested_svm_vmexit(svm);
2638
2639	return 1;
2640}
2641
2642static int stgi_interception(struct vcpu_svm *svm)
2643{
2644	if (nested_svm_check_permissions(svm))
2645		return 1;
2646
2647	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2648	skip_emulated_instruction(&svm->vcpu);
2649	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2650
2651	enable_gif(svm);
2652
2653	return 1;
2654}
2655
2656static int clgi_interception(struct vcpu_svm *svm)
2657{
2658	if (nested_svm_check_permissions(svm))
2659		return 1;
2660
2661	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2662	skip_emulated_instruction(&svm->vcpu);
2663
2664	disable_gif(svm);
2665
2666	/* After a CLGI no interrupts should come */
2667	svm_clear_vintr(svm);
2668	svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2669
2670	mark_dirty(svm->vmcb, VMCB_INTR);
2671
2672	return 1;
2673}
2674
2675static int invlpga_interception(struct vcpu_svm *svm)
2676{
2677	struct kvm_vcpu *vcpu = &svm->vcpu;
2678
2679	trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
2680			  kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2681
2682	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2683	kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2684
2685	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2686	skip_emulated_instruction(&svm->vcpu);
2687	return 1;
2688}
2689
2690static int skinit_interception(struct vcpu_svm *svm)
2691{
2692	trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2693
2694	kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2695	return 1;
2696}
2697
2698static int wbinvd_interception(struct vcpu_svm *svm)
2699{
2700	kvm_emulate_wbinvd(&svm->vcpu);
2701	return 1;
2702}
2703
2704static int xsetbv_interception(struct vcpu_svm *svm)
2705{
2706	u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2707	u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2708
2709	if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2710		svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2711		skip_emulated_instruction(&svm->vcpu);
2712	}
2713
2714	return 1;
2715}
2716
2717static int task_switch_interception(struct vcpu_svm *svm)
2718{
2719	u16 tss_selector;
2720	int reason;
2721	int int_type = svm->vmcb->control.exit_int_info &
2722		SVM_EXITINTINFO_TYPE_MASK;
2723	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2724	uint32_t type =
2725		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2726	uint32_t idt_v =
2727		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2728	bool has_error_code = false;
2729	u32 error_code = 0;
2730
2731	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2732
2733	if (svm->vmcb->control.exit_info_2 &
2734	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2735		reason = TASK_SWITCH_IRET;
2736	else if (svm->vmcb->control.exit_info_2 &
2737		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2738		reason = TASK_SWITCH_JMP;
2739	else if (idt_v)
2740		reason = TASK_SWITCH_GATE;
2741	else
2742		reason = TASK_SWITCH_CALL;
2743
2744	if (reason == TASK_SWITCH_GATE) {
2745		switch (type) {
2746		case SVM_EXITINTINFO_TYPE_NMI:
2747			svm->vcpu.arch.nmi_injected = false;
2748			break;
2749		case SVM_EXITINTINFO_TYPE_EXEPT:
2750			if (svm->vmcb->control.exit_info_2 &
2751			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2752				has_error_code = true;
2753				error_code =
2754					(u32)svm->vmcb->control.exit_info_2;
2755			}
2756			kvm_clear_exception_queue(&svm->vcpu);
2757			break;
2758		case SVM_EXITINTINFO_TYPE_INTR:
2759			kvm_clear_interrupt_queue(&svm->vcpu);
2760			break;
2761		default:
2762			break;
2763		}
2764	}
2765
2766	if (reason != TASK_SWITCH_GATE ||
2767	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2768	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2769	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2770		skip_emulated_instruction(&svm->vcpu);
2771
2772	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2773		int_vec = -1;
2774
2775	if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2776				has_error_code, error_code) == EMULATE_FAIL) {
2777		svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2778		svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2779		svm->vcpu.run->internal.ndata = 0;
2780		return 0;
2781	}
2782	return 1;
2783}
2784
2785static int cpuid_interception(struct vcpu_svm *svm)
2786{
2787	svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2788	kvm_emulate_cpuid(&svm->vcpu);
2789	return 1;
2790}
2791
2792static int iret_interception(struct vcpu_svm *svm)
2793{
2794	++svm->vcpu.stat.nmi_window_exits;
2795	clr_intercept(svm, INTERCEPT_IRET);
2796	svm->vcpu.arch.hflags |= HF_IRET_MASK;
2797	svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2798	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2799	return 1;
2800}
2801
2802static int invlpg_interception(struct vcpu_svm *svm)
2803{
2804	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2805		return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2806
2807	kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2808	skip_emulated_instruction(&svm->vcpu);
2809	return 1;
2810}
2811
2812static int emulate_on_interception(struct vcpu_svm *svm)
2813{
2814	return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2815}
2816
2817static int rdpmc_interception(struct vcpu_svm *svm)
2818{
2819	int err;
2820
2821	if (!static_cpu_has(X86_FEATURE_NRIPS))
2822		return emulate_on_interception(svm);
2823
2824	err = kvm_rdpmc(&svm->vcpu);
2825	kvm_complete_insn_gp(&svm->vcpu, err);
2826
2827	return 1;
2828}
2829
2830static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2831					    unsigned long val)
2832{
2833	unsigned long cr0 = svm->vcpu.arch.cr0;
2834	bool ret = false;
2835	u64 intercept;
2836
2837	intercept = svm->nested.intercept;
2838
2839	if (!is_guest_mode(&svm->vcpu) ||
2840	    (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2841		return false;
2842
2843	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2844	val &= ~SVM_CR0_SELECTIVE_MASK;
2845
2846	if (cr0 ^ val) {
2847		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2848		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2849	}
2850
2851	return ret;
2852}
2853
2854#define CR_VALID (1ULL << 63)
2855
2856static int cr_interception(struct vcpu_svm *svm)
2857{
2858	int reg, cr;
2859	unsigned long val;
2860	int err;
2861
2862	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2863		return emulate_on_interception(svm);
2864
2865	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2866		return emulate_on_interception(svm);
2867
2868	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2869	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2870		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2871	else
2872		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2873
2874	err = 0;
2875	if (cr >= 16) { /* mov to cr */
2876		cr -= 16;
2877		val = kvm_register_read(&svm->vcpu, reg);
2878		switch (cr) {
2879		case 0:
2880			if (!check_selective_cr0_intercepted(svm, val))
2881				err = kvm_set_cr0(&svm->vcpu, val);
2882			else
2883				return 1;
2884
2885			break;
2886		case 3:
2887			err = kvm_set_cr3(&svm->vcpu, val);
2888			break;
2889		case 4:
2890			err = kvm_set_cr4(&svm->vcpu, val);
2891			break;
2892		case 8:
2893			err = kvm_set_cr8(&svm->vcpu, val);
2894			break;
2895		default:
2896			WARN(1, "unhandled write to CR%d", cr);
2897			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2898			return 1;
2899		}
2900	} else { /* mov from cr */
2901		switch (cr) {
2902		case 0:
2903			val = kvm_read_cr0(&svm->vcpu);
2904			break;
2905		case 2:
2906			val = svm->vcpu.arch.cr2;
2907			break;
2908		case 3:
2909			val = kvm_read_cr3(&svm->vcpu);
2910			break;
2911		case 4:
2912			val = kvm_read_cr4(&svm->vcpu);
2913			break;
2914		case 8:
2915			val = kvm_get_cr8(&svm->vcpu);
2916			break;
2917		default:
2918			WARN(1, "unhandled read from CR%d", cr);
2919			kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2920			return 1;
2921		}
2922		kvm_register_write(&svm->vcpu, reg, val);
2923	}
2924	kvm_complete_insn_gp(&svm->vcpu, err);
2925
2926	return 1;
2927}
2928
2929static int dr_interception(struct vcpu_svm *svm)
2930{
2931	int reg, dr;
2932	unsigned long val;
2933
2934	if (svm->vcpu.guest_debug == 0) {
2935		/*
2936		 * No more DR vmexits; force a reload of the debug registers
2937		 * and reenter on this instruction.  The next vmexit will
2938		 * retrieve the full state of the debug registers.
2939		 */
2940		clr_dr_intercepts(svm);
2941		svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2942		return 1;
2943	}
2944
2945	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2946		return emulate_on_interception(svm);
2947
2948	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2949	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2950
2951	if (dr >= 16) { /* mov to DRn */
2952		if (!kvm_require_dr(&svm->vcpu, dr - 16))
2953			return 1;
2954		val = kvm_register_read(&svm->vcpu, reg);
2955		kvm_set_dr(&svm->vcpu, dr - 16, val);
2956	} else {
2957		if (!kvm_require_dr(&svm->vcpu, dr))
2958			return 1;
2959		kvm_get_dr(&svm->vcpu, dr, &val);
2960		kvm_register_write(&svm->vcpu, reg, val);
2961	}
2962
2963	skip_emulated_instruction(&svm->vcpu);
2964
2965	return 1;
2966}
2967
2968static int cr8_write_interception(struct vcpu_svm *svm)
2969{
2970	struct kvm_run *kvm_run = svm->vcpu.run;
2971	int r;
2972
2973	u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2974	/* instruction emulation calls kvm_set_cr8() */
2975	r = cr_interception(svm);
2976	if (lapic_in_kernel(&svm->vcpu))
2977		return r;
2978	if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2979		return r;
2980	kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2981	return 0;
2982}
2983
2984static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2985{
2986	struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
2987	return vmcb->control.tsc_offset + host_tsc;
2988}
2989
2990static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2991{
2992	struct vcpu_svm *svm = to_svm(vcpu);
2993
2994	switch (msr_info->index) {
2995	case MSR_IA32_TSC: {
2996		msr_info->data = svm->vmcb->control.tsc_offset +
2997			kvm_scale_tsc(vcpu, rdtsc());
2998
2999		break;
3000	}
3001	case MSR_STAR:
3002		msr_info->data = svm->vmcb->save.star;
3003		break;
3004#ifdef CONFIG_X86_64
3005	case MSR_LSTAR:
3006		msr_info->data = svm->vmcb->save.lstar;
3007		break;
3008	case MSR_CSTAR:
3009		msr_info->data = svm->vmcb->save.cstar;
3010		break;
3011	case MSR_KERNEL_GS_BASE:
3012		msr_info->data = svm->vmcb->save.kernel_gs_base;
3013		break;
3014	case MSR_SYSCALL_MASK:
3015		msr_info->data = svm->vmcb->save.sfmask;
3016		break;
3017#endif
3018	case MSR_IA32_SYSENTER_CS:
3019		msr_info->data = svm->vmcb->save.sysenter_cs;
3020		break;
3021	case MSR_IA32_SYSENTER_EIP:
3022		msr_info->data = svm->sysenter_eip;
3023		break;
3024	case MSR_IA32_SYSENTER_ESP:
3025		msr_info->data = svm->sysenter_esp;
3026		break;
3027	/*
3028	 * Nobody will change the following 5 values in the VMCB so we can
3029	 * safely return them on rdmsr. They will always be 0 until LBRV is
3030	 * implemented.
3031	 */
3032	case MSR_IA32_DEBUGCTLMSR:
3033		msr_info->data = svm->vmcb->save.dbgctl;
3034		break;
3035	case MSR_IA32_LASTBRANCHFROMIP:
3036		msr_info->data = svm->vmcb->save.br_from;
3037		break;
3038	case MSR_IA32_LASTBRANCHTOIP:
3039		msr_info->data = svm->vmcb->save.br_to;
3040		break;
3041	case MSR_IA32_LASTINTFROMIP:
3042		msr_info->data = svm->vmcb->save.last_excp_from;
3043		break;
3044	case MSR_IA32_LASTINTTOIP:
3045		msr_info->data = svm->vmcb->save.last_excp_to;
3046		break;
3047	case MSR_VM_HSAVE_PA:
3048		msr_info->data = svm->nested.hsave_msr;
3049		break;
3050	case MSR_VM_CR:
3051		msr_info->data = svm->nested.vm_cr_msr;
3052		break;
3053	case MSR_IA32_UCODE_REV:
3054		msr_info->data = 0x01000065;
3055		break;
3056	default:
3057		return kvm_get_msr_common(vcpu, msr_info);
3058	}
3059	return 0;
3060}
3061
3062static int rdmsr_interception(struct vcpu_svm *svm)
3063{
3064	u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3065	struct msr_data msr_info;
3066
3067	msr_info.index = ecx;
3068	msr_info.host_initiated = false;
3069	if (svm_get_msr(&svm->vcpu, &msr_info)) {
3070		trace_kvm_msr_read_ex(ecx);
3071		kvm_inject_gp(&svm->vcpu, 0);
3072	} else {
3073		trace_kvm_msr_read(ecx, msr_info.data);
3074
3075		kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3076				   msr_info.data & 0xffffffff);
3077		kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3078				   msr_info.data >> 32);
3079		svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3080		skip_emulated_instruction(&svm->vcpu);
3081	}
3082	return 1;
3083}
3084
3085static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3086{
3087	struct vcpu_svm *svm = to_svm(vcpu);
3088	int svm_dis, chg_mask;
3089
3090	if (data & ~SVM_VM_CR_VALID_MASK)
3091		return 1;
3092
3093	chg_mask = SVM_VM_CR_VALID_MASK;
3094
3095	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3096		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3097
3098	svm->nested.vm_cr_msr &= ~chg_mask;
3099	svm->nested.vm_cr_msr |= (data & chg_mask);
3100
3101	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3102
3103	/* check for svm_disable while efer.svme is set */
3104	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3105		return 1;
3106
3107	return 0;
3108}
3109
3110static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3111{
3112	struct vcpu_svm *svm = to_svm(vcpu);
3113
3114	u32 ecx = msr->index;
3115	u64 data = msr->data;
3116	switch (ecx) {
3117	case MSR_IA32_TSC:
3118		kvm_write_tsc(vcpu, msr);
3119		break;
3120	case MSR_STAR:
3121		svm->vmcb->save.star = data;
3122		break;
3123#ifdef CONFIG_X86_64
3124	case MSR_LSTAR:
3125		svm->vmcb->save.lstar = data;
3126		break;
3127	case MSR_CSTAR:
3128		svm->vmcb->save.cstar = data;
3129		break;
3130	case MSR_KERNEL_GS_BASE:
3131		svm->vmcb->save.kernel_gs_base = data;
3132		break;
3133	case MSR_SYSCALL_MASK:
3134		svm->vmcb->save.sfmask = data;
3135		break;
3136#endif
3137	case MSR_IA32_SYSENTER_CS:
3138		svm->vmcb->save.sysenter_cs = data;
3139		break;
3140	case MSR_IA32_SYSENTER_EIP:
3141		svm->sysenter_eip = data;
3142		svm->vmcb->save.sysenter_eip = data;
3143		break;
3144	case MSR_IA32_SYSENTER_ESP:
3145		svm->sysenter_esp = data;
3146		svm->vmcb->save.sysenter_esp = data;
3147		break;
3148	case MSR_IA32_DEBUGCTLMSR:
3149		if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3150			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3151				    __func__, data);
3152			break;
3153		}
3154		if (data & DEBUGCTL_RESERVED_BITS)
3155			return 1;
3156
3157		svm->vmcb->save.dbgctl = data;
3158		mark_dirty(svm->vmcb, VMCB_LBR);
3159		if (data & (1ULL<<0))
3160			svm_enable_lbrv(svm);
3161		else
3162			svm_disable_lbrv(svm);
3163		break;
3164	case MSR_VM_HSAVE_PA:
3165		svm->nested.hsave_msr = data;
3166		break;
3167	case MSR_VM_CR:
3168		return svm_set_vm_cr(vcpu, data);
3169	case MSR_VM_IGNNE:
3170		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3171		break;
3172	default:
3173		return kvm_set_msr_common(vcpu, msr);
3174	}
3175	return 0;
3176}
3177
3178static int wrmsr_interception(struct vcpu_svm *svm)
3179{
3180	struct msr_data msr;
3181	u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3182	u64 data = kvm_read_edx_eax(&svm->vcpu);
3183
3184	msr.data = data;
3185	msr.index = ecx;
3186	msr.host_initiated = false;
3187
3188	svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3189	if (kvm_set_msr(&svm->vcpu, &msr)) {
3190		trace_kvm_msr_write_ex(ecx, data);
3191		kvm_inject_gp(&svm->vcpu, 0);
3192	} else {
3193		trace_kvm_msr_write(ecx, data);
3194		skip_emulated_instruction(&svm->vcpu);
3195	}
3196	return 1;
3197}
3198
3199static int msr_interception(struct vcpu_svm *svm)
3200{
3201	if (svm->vmcb->control.exit_info_1)
3202		return wrmsr_interception(svm);
3203	else
3204		return rdmsr_interception(svm);
3205}
3206
3207static int interrupt_window_interception(struct vcpu_svm *svm)
3208{
3209	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3210	svm_clear_vintr(svm);
3211	svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3212	mark_dirty(svm->vmcb, VMCB_INTR);
3213	++svm->vcpu.stat.irq_window_exits;
3214	return 1;
3215}
3216
3217static int pause_interception(struct vcpu_svm *svm)
3218{
3219	kvm_vcpu_on_spin(&(svm->vcpu));
3220	return 1;
3221}
3222
3223static int nop_interception(struct vcpu_svm *svm)
3224{
3225	skip_emulated_instruction(&(svm->vcpu));
3226	return 1;
3227}
3228
3229static int monitor_interception(struct vcpu_svm *svm)
3230{
3231	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3232	return nop_interception(svm);
3233}
3234
3235static int mwait_interception(struct vcpu_svm *svm)
3236{
3237	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3238	return nop_interception(svm);
3239}
3240
3241static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3242	[SVM_EXIT_READ_CR0]			= cr_interception,
3243	[SVM_EXIT_READ_CR3]			= cr_interception,
3244	[SVM_EXIT_READ_CR4]			= cr_interception,
3245	[SVM_EXIT_READ_CR8]			= cr_interception,
3246	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3247	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3248	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3249	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3250	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3251	[SVM_EXIT_READ_DR0]			= dr_interception,
3252	[SVM_EXIT_READ_DR1]			= dr_interception,
3253	[SVM_EXIT_READ_DR2]			= dr_interception,
3254	[SVM_EXIT_READ_DR3]			= dr_interception,
3255	[SVM_EXIT_READ_DR4]			= dr_interception,
3256	[SVM_EXIT_READ_DR5]			= dr_interception,
3257	[SVM_EXIT_READ_DR6]			= dr_interception,
3258	[SVM_EXIT_READ_DR7]			= dr_interception,
3259	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3260	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3261	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3262	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3263	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3264	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3265	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3266	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3267	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3268	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3269	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3270	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3271	[SVM_EXIT_EXCP_BASE + NM_VECTOR]	= nm_interception,
3272	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3273	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3274	[SVM_EXIT_INTR]				= intr_interception,
3275	[SVM_EXIT_NMI]				= nmi_interception,
3276	[SVM_EXIT_SMI]				= nop_on_interception,
3277	[SVM_EXIT_INIT]				= nop_on_interception,
3278	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3279	[SVM_EXIT_RDPMC]			= rdpmc_interception,
3280	[SVM_EXIT_CPUID]			= cpuid_interception,
3281	[SVM_EXIT_IRET]                         = iret_interception,
3282	[SVM_EXIT_INVD]                         = emulate_on_interception,
3283	[SVM_EXIT_PAUSE]			= pause_interception,
3284	[SVM_EXIT_HLT]				= halt_interception,
3285	[SVM_EXIT_INVLPG]			= invlpg_interception,
3286	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3287	[SVM_EXIT_IOIO]				= io_interception,
3288	[SVM_EXIT_MSR]				= msr_interception,
3289	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3290	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3291	[SVM_EXIT_VMRUN]			= vmrun_interception,
3292	[SVM_EXIT_VMMCALL]			= vmmcall_interception,
3293	[SVM_EXIT_VMLOAD]			= vmload_interception,
3294	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3295	[SVM_EXIT_STGI]				= stgi_interception,
3296	[SVM_EXIT_CLGI]				= clgi_interception,
3297	[SVM_EXIT_SKINIT]			= skinit_interception,
3298	[SVM_EXIT_WBINVD]                       = wbinvd_interception,
3299	[SVM_EXIT_MONITOR]			= monitor_interception,
3300	[SVM_EXIT_MWAIT]			= mwait_interception,
3301	[SVM_EXIT_XSETBV]			= xsetbv_interception,
3302	[SVM_EXIT_NPF]				= pf_interception,
3303	[SVM_EXIT_RSM]                          = emulate_on_interception,
3304};
3305
3306static void dump_vmcb(struct kvm_vcpu *vcpu)
3307{
3308	struct vcpu_svm *svm = to_svm(vcpu);
3309	struct vmcb_control_area *control = &svm->vmcb->control;
3310	struct vmcb_save_area *save = &svm->vmcb->save;
3311
3312	pr_err("VMCB Control Area:\n");
3313	pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3314	pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3315	pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3316	pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3317	pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3318	pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3319	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3320	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3321	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3322	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3323	pr_err("%-20s%d\n", "asid:", control->asid);
3324	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3325	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3326	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3327	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3328	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3329	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3330	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3331	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3332	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3333	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3334	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3335	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3336	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3337	pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3338	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3339	pr_err("VMCB State Save Area:\n");
3340	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3341	       "es:",
3342	       save->es.selector, save->es.attrib,
3343	       save->es.limit, save->es.base);
3344	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3345	       "cs:",
3346	       save->cs.selector, save->cs.attrib,
3347	       save->cs.limit, save->cs.base);
3348	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3349	       "ss:",
3350	       save->ss.selector, save->ss.attrib,
3351	       save->ss.limit, save->ss.base);
3352	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3353	       "ds:",
3354	       save->ds.selector, save->ds.attrib,
3355	       save->ds.limit, save->ds.base);
3356	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3357	       "fs:",
3358	       save->fs.selector, save->fs.attrib,
3359	       save->fs.limit, save->fs.base);
3360	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3361	       "gs:",
3362	       save->gs.selector, save->gs.attrib,
3363	       save->gs.limit, save->gs.base);
3364	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3365	       "gdtr:",
3366	       save->gdtr.selector, save->gdtr.attrib,
3367	       save->gdtr.limit, save->gdtr.base);
3368	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3369	       "ldtr:",
3370	       save->ldtr.selector, save->ldtr.attrib,
3371	       save->ldtr.limit, save->ldtr.base);
3372	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3373	       "idtr:",
3374	       save->idtr.selector, save->idtr.attrib,
3375	       save->idtr.limit, save->idtr.base);
3376	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3377	       "tr:",
3378	       save->tr.selector, save->tr.attrib,
3379	       save->tr.limit, save->tr.base);
3380	pr_err("cpl:            %d                efer:         %016llx\n",
3381		save->cpl, save->efer);
3382	pr_err("%-15s %016llx %-13s %016llx\n",
3383	       "cr0:", save->cr0, "cr2:", save->cr2);
3384	pr_err("%-15s %016llx %-13s %016llx\n",
3385	       "cr3:", save->cr3, "cr4:", save->cr4);
3386	pr_err("%-15s %016llx %-13s %016llx\n",
3387	       "dr6:", save->dr6, "dr7:", save->dr7);
3388	pr_err("%-15s %016llx %-13s %016llx\n",
3389	       "rip:", save->rip, "rflags:", save->rflags);
3390	pr_err("%-15s %016llx %-13s %016llx\n",
3391	       "rsp:", save->rsp, "rax:", save->rax);
3392	pr_err("%-15s %016llx %-13s %016llx\n",
3393	       "star:", save->star, "lstar:", save->lstar);
3394	pr_err("%-15s %016llx %-13s %016llx\n",
3395	       "cstar:", save->cstar, "sfmask:", save->sfmask);
3396	pr_err("%-15s %016llx %-13s %016llx\n",
3397	       "kernel_gs_base:", save->kernel_gs_base,
3398	       "sysenter_cs:", save->sysenter_cs);
3399	pr_err("%-15s %016llx %-13s %016llx\n",
3400	       "sysenter_esp:", save->sysenter_esp,
3401	       "sysenter_eip:", save->sysenter_eip);
3402	pr_err("%-15s %016llx %-13s %016llx\n",
3403	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3404	pr_err("%-15s %016llx %-13s %016llx\n",
3405	       "br_from:", save->br_from, "br_to:", save->br_to);
3406	pr_err("%-15s %016llx %-13s %016llx\n",
3407	       "excp_from:", save->last_excp_from,
3408	       "excp_to:", save->last_excp_to);
3409}
3410
3411static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3412{
3413	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3414
3415	*info1 = control->exit_info_1;
3416	*info2 = control->exit_info_2;
3417}
3418
3419static int handle_exit(struct kvm_vcpu *vcpu)
3420{
3421	struct vcpu_svm *svm = to_svm(vcpu);
3422	struct kvm_run *kvm_run = vcpu->run;
3423	u32 exit_code = svm->vmcb->control.exit_code;
3424
3425	trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM);
3426
3427	if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3428		vcpu->arch.cr0 = svm->vmcb->save.cr0;
3429	if (npt_enabled)
3430		vcpu->arch.cr3 = svm->vmcb->save.cr3;
3431
3432	if (unlikely(svm->nested.exit_required)) {
3433		nested_svm_vmexit(svm);
3434		svm->nested.exit_required = false;
3435
3436		return 1;
3437	}
3438
3439	if (is_guest_mode(vcpu)) {
3440		int vmexit;
3441
3442		trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3443					svm->vmcb->control.exit_info_1,
3444					svm->vmcb->control.exit_info_2,
3445					svm->vmcb->control.exit_int_info,
3446					svm->vmcb->control.exit_int_info_err,
3447					KVM_ISA_SVM);
3448
3449		vmexit = nested_svm_exit_special(svm);
3450
3451		if (vmexit == NESTED_EXIT_CONTINUE)
3452			vmexit = nested_svm_exit_handled(svm);
3453
3454		if (vmexit == NESTED_EXIT_DONE)
3455			return 1;
3456	}
3457
3458	svm_complete_interrupts(svm);
3459
3460	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3461		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3462		kvm_run->fail_entry.hardware_entry_failure_reason
3463			= svm->vmcb->control.exit_code;
3464		pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3465		dump_vmcb(vcpu);
3466		return 0;
3467	}
3468
3469	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3470	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3471	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3472	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3473		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3474		       "exit_code 0x%x\n",
3475		       __func__, svm->vmcb->control.exit_int_info,
3476		       exit_code);
3477
3478	if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3479	    || !svm_exit_handlers[exit_code]) {
3480		WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
3481		kvm_queue_exception(vcpu, UD_VECTOR);
3482		return 1;
3483	}
3484
3485	return svm_exit_handlers[exit_code](svm);
3486}
3487
3488static void reload_tss(struct kvm_vcpu *vcpu)
3489{
3490	int cpu = raw_smp_processor_id();
3491
3492	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3493	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3494	load_TR_desc();
3495}
3496
3497static void pre_svm_run(struct vcpu_svm *svm)
3498{
3499	int cpu = raw_smp_processor_id();
3500
3501	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3502
3503	/* FIXME: handle wraparound of asid_generation */
3504	if (svm->asid_generation != sd->asid_generation)
3505		new_asid(svm, sd);
3506}
3507
3508static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3509{
3510	struct vcpu_svm *svm = to_svm(vcpu);
3511
3512	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3513	vcpu->arch.hflags |= HF_NMI_MASK;
3514	set_intercept(svm, INTERCEPT_IRET);
3515	++vcpu->stat.nmi_injections;
3516}
3517
3518static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3519{
3520	struct vmcb_control_area *control;
3521
3522	control = &svm->vmcb->control;
3523	control->int_vector = irq;
3524	control->int_ctl &= ~V_INTR_PRIO_MASK;
3525	control->int_ctl |= V_IRQ_MASK |
3526		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3527	mark_dirty(svm->vmcb, VMCB_INTR);
3528}
3529
3530static void svm_set_irq(struct kvm_vcpu *vcpu)
3531{
3532	struct vcpu_svm *svm = to_svm(vcpu);
3533
3534	BUG_ON(!(gif_set(svm)));
3535
3536	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3537	++vcpu->stat.irq_injections;
3538
3539	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3540		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3541}
3542
3543static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3544{
3545	struct vcpu_svm *svm = to_svm(vcpu);
3546
3547	if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3548		return;
3549
3550	clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3551
3552	if (irr == -1)
3553		return;
3554
3555	if (tpr >= irr)
3556		set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3557}
3558
3559static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3560{
3561	return;
3562}
3563
3564static int svm_cpu_uses_apicv(struct kvm_vcpu *vcpu)
3565{
3566	return 0;
3567}
3568
3569static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu)
3570{
3571	return;
3572}
3573
3574static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3575{
3576	return;
3577}
3578
3579static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3580{
3581	struct vcpu_svm *svm = to_svm(vcpu);
3582	struct vmcb *vmcb = svm->vmcb;
3583	int ret;
3584	ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3585	      !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3586	ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3587
3588	return ret;
3589}
3590
3591static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3592{
3593	struct vcpu_svm *svm = to_svm(vcpu);
3594
3595	return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3596}
3597
3598static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3599{
3600	struct vcpu_svm *svm = to_svm(vcpu);
3601
3602	if (masked) {
3603		svm->vcpu.arch.hflags |= HF_NMI_MASK;
3604		set_intercept(svm, INTERCEPT_IRET);
3605	} else {
3606		svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3607		clr_intercept(svm, INTERCEPT_IRET);
3608	}
3609}
3610
3611static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3612{
3613	struct vcpu_svm *svm = to_svm(vcpu);
3614	struct vmcb *vmcb = svm->vmcb;
3615	int ret;
3616
3617	if (!gif_set(svm) ||
3618	     (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3619		return 0;
3620
3621	ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3622
3623	if (is_guest_mode(vcpu))
3624		return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3625
3626	return ret;
3627}
3628
3629static void enable_irq_window(struct kvm_vcpu *vcpu)
3630{
3631	struct vcpu_svm *svm = to_svm(vcpu);
3632
3633	/*
3634	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3635	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3636	 * get that intercept, this function will be called again though and
3637	 * we'll get the vintr intercept.
3638	 */
3639	if (gif_set(svm) && nested_svm_intr(svm)) {
3640		svm_set_vintr(svm);
3641		svm_inject_irq(svm, 0x0);
3642	}
3643}
3644
3645static void enable_nmi_window(struct kvm_vcpu *vcpu)
3646{
3647	struct vcpu_svm *svm = to_svm(vcpu);
3648
3649	if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3650	    == HF_NMI_MASK)
3651		return; /* IRET will cause a vm exit */
3652
3653	/*
3654	 * Something prevents NMI from been injected. Single step over possible
3655	 * problem (IRET or exception injection or interrupt shadow)
3656	 */
3657	svm->nmi_singlestep = true;
3658	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3659}
3660
3661static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3662{
3663	return 0;
3664}
3665
3666static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3667{
3668	struct vcpu_svm *svm = to_svm(vcpu);
3669
3670	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3671		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3672	else
3673		svm->asid_generation--;
3674}
3675
3676static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3677{
3678}
3679
3680static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3681{
3682	struct vcpu_svm *svm = to_svm(vcpu);
3683
3684	if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3685		return;
3686
3687	if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3688		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3689		kvm_set_cr8(vcpu, cr8);
3690	}
3691}
3692
3693static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3694{
3695	struct vcpu_svm *svm = to_svm(vcpu);
3696	u64 cr8;
3697
3698	if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3699		return;
3700
3701	cr8 = kvm_get_cr8(vcpu);
3702	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3703	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3704}
3705
3706static void svm_complete_interrupts(struct vcpu_svm *svm)
3707{
3708	u8 vector;
3709	int type;
3710	u32 exitintinfo = svm->vmcb->control.exit_int_info;
3711	unsigned int3_injected = svm->int3_injected;
3712
3713	svm->int3_injected = 0;
3714
3715	/*
3716	 * If we've made progress since setting HF_IRET_MASK, we've
3717	 * executed an IRET and can allow NMI injection.
3718	 */
3719	if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3720	    && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3721		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3722		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3723	}
3724
3725	svm->vcpu.arch.nmi_injected = false;
3726	kvm_clear_exception_queue(&svm->vcpu);
3727	kvm_clear_interrupt_queue(&svm->vcpu);
3728
3729	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3730		return;
3731
3732	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3733
3734	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3735	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3736
3737	switch (type) {
3738	case SVM_EXITINTINFO_TYPE_NMI:
3739		svm->vcpu.arch.nmi_injected = true;
3740		break;
3741	case SVM_EXITINTINFO_TYPE_EXEPT:
3742		/*
3743		 * In case of software exceptions, do not reinject the vector,
3744		 * but re-execute the instruction instead. Rewind RIP first
3745		 * if we emulated INT3 before.
3746		 */
3747		if (kvm_exception_is_soft(vector)) {
3748			if (vector == BP_VECTOR && int3_injected &&
3749			    kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3750				kvm_rip_write(&svm->vcpu,
3751					      kvm_rip_read(&svm->vcpu) -
3752					      int3_injected);
3753			break;
3754		}
3755		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3756			u32 err = svm->vmcb->control.exit_int_info_err;
3757			kvm_requeue_exception_e(&svm->vcpu, vector, err);
3758
3759		} else
3760			kvm_requeue_exception(&svm->vcpu, vector);
3761		break;
3762	case SVM_EXITINTINFO_TYPE_INTR:
3763		kvm_queue_interrupt(&svm->vcpu, vector, false);
3764		break;
3765	default:
3766		break;
3767	}
3768}
3769
3770static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3771{
3772	struct vcpu_svm *svm = to_svm(vcpu);
3773	struct vmcb_control_area *control = &svm->vmcb->control;
3774
3775	control->exit_int_info = control->event_inj;
3776	control->exit_int_info_err = control->event_inj_err;
3777	control->event_inj = 0;
3778	svm_complete_interrupts(svm);
3779}
3780
3781static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3782{
3783	struct vcpu_svm *svm = to_svm(vcpu);
3784
3785	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3786	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3787	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3788
3789	/*
3790	 * A vmexit emulation is required before the vcpu can be executed
3791	 * again.
3792	 */
3793	if (unlikely(svm->nested.exit_required))
3794		return;
3795
3796	pre_svm_run(svm);
3797
3798	sync_lapic_to_cr8(vcpu);
3799
3800	svm->vmcb->save.cr2 = vcpu->arch.cr2;
3801
3802	clgi();
3803
3804	local_irq_enable();
3805
3806	asm volatile (
3807		"push %%" _ASM_BP "; \n\t"
3808		"mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3809		"mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3810		"mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3811		"mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3812		"mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3813		"mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3814#ifdef CONFIG_X86_64
3815		"mov %c[r8](%[svm]),  %%r8  \n\t"
3816		"mov %c[r9](%[svm]),  %%r9  \n\t"
3817		"mov %c[r10](%[svm]), %%r10 \n\t"
3818		"mov %c[r11](%[svm]), %%r11 \n\t"
3819		"mov %c[r12](%[svm]), %%r12 \n\t"
3820		"mov %c[r13](%[svm]), %%r13 \n\t"
3821		"mov %c[r14](%[svm]), %%r14 \n\t"
3822		"mov %c[r15](%[svm]), %%r15 \n\t"
3823#endif
3824
3825		/* Enter guest mode */
3826		"push %%" _ASM_AX " \n\t"
3827		"mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3828		__ex(SVM_VMLOAD) "\n\t"
3829		__ex(SVM_VMRUN) "\n\t"
3830		__ex(SVM_VMSAVE) "\n\t"
3831		"pop %%" _ASM_AX " \n\t"
3832
3833		/* Save guest registers, load host registers */
3834		"mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3835		"mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3836		"mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3837		"mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3838		"mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3839		"mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3840#ifdef CONFIG_X86_64
3841		"mov %%r8,  %c[r8](%[svm]) \n\t"
3842		"mov %%r9,  %c[r9](%[svm]) \n\t"
3843		"mov %%r10, %c[r10](%[svm]) \n\t"
3844		"mov %%r11, %c[r11](%[svm]) \n\t"
3845		"mov %%r12, %c[r12](%[svm]) \n\t"
3846		"mov %%r13, %c[r13](%[svm]) \n\t"
3847		"mov %%r14, %c[r14](%[svm]) \n\t"
3848		"mov %%r15, %c[r15](%[svm]) \n\t"
3849#endif
3850		"pop %%" _ASM_BP
3851		:
3852		: [svm]"a"(svm),
3853		  [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3854		  [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3855		  [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3856		  [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3857		  [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3858		  [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3859		  [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3860#ifdef CONFIG_X86_64
3861		  , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3862		  [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3863		  [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3864		  [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3865		  [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3866		  [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3867		  [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3868		  [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3869#endif
3870		: "cc", "memory"
3871#ifdef CONFIG_X86_64
3872		, "rbx", "rcx", "rdx", "rsi", "rdi"
3873		, "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3874#else
3875		, "ebx", "ecx", "edx", "esi", "edi"
3876#endif
3877		);
3878
3879#ifdef CONFIG_X86_64
3880	wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3881#else
3882	loadsegment(fs, svm->host.fs);
3883#ifndef CONFIG_X86_32_LAZY_GS
3884	loadsegment(gs, svm->host.gs);
3885#endif
3886#endif
3887
3888	reload_tss(vcpu);
3889
3890	local_irq_disable();
3891
3892	vcpu->arch.cr2 = svm->vmcb->save.cr2;
3893	vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3894	vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3895	vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3896
3897	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3898		kvm_before_handle_nmi(&svm->vcpu);
3899
3900	stgi();
3901
3902	/* Any pending NMI will happen here */
3903
3904	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3905		kvm_after_handle_nmi(&svm->vcpu);
3906
3907	sync_cr8_to_lapic(vcpu);
3908
3909	svm->next_rip = 0;
3910
3911	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3912
3913	/* if exit due to PF check for async PF */
3914	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3915		svm->apf_reason = kvm_read_and_reset_pf_reason();
3916
3917	if (npt_enabled) {
3918		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3919		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3920	}
3921
3922	/*
3923	 * We need to handle MC intercepts here before the vcpu has a chance to
3924	 * change the physical cpu
3925	 */
3926	if (unlikely(svm->vmcb->control.exit_code ==
3927		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
3928		svm_handle_mce(svm);
3929
3930	mark_all_clean(svm->vmcb);
3931}
3932
3933static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3934{
3935	struct vcpu_svm *svm = to_svm(vcpu);
3936
3937	svm->vmcb->save.cr3 = root;
3938	mark_dirty(svm->vmcb, VMCB_CR);
3939	svm_flush_tlb(vcpu);
3940}
3941
3942static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3943{
3944	struct vcpu_svm *svm = to_svm(vcpu);
3945
3946	svm->vmcb->control.nested_cr3 = root;
3947	mark_dirty(svm->vmcb, VMCB_NPT);
3948
3949	/* Also sync guest cr3 here in case we live migrate */
3950	svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
3951	mark_dirty(svm->vmcb, VMCB_CR);
3952
3953	svm_flush_tlb(vcpu);
3954}
3955
3956static int is_disabled(void)
3957{
3958	u64 vm_cr;
3959
3960	rdmsrl(MSR_VM_CR, vm_cr);
3961	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3962		return 1;
3963
3964	return 0;
3965}
3966
3967static void
3968svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3969{
3970	/*
3971	 * Patch in the VMMCALL instruction:
3972	 */
3973	hypercall[0] = 0x0f;
3974	hypercall[1] = 0x01;
3975	hypercall[2] = 0xd9;
3976}
3977
3978static void svm_check_processor_compat(void *rtn)
3979{
3980	*(int *)rtn = 0;
3981}
3982
3983static bool svm_cpu_has_accelerated_tpr(void)
3984{
3985	return false;
3986}
3987
3988static bool svm_has_high_real_mode_segbase(void)
3989{
3990	return true;
3991}
3992
3993static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3994{
3995	return 0;
3996}
3997
3998static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3999{
4000	struct vcpu_svm *svm = to_svm(vcpu);
4001
4002	/* Update nrips enabled cache */
4003	svm->nrips_enabled = !!guest_cpuid_has_nrips(&svm->vcpu);
4004}
4005
4006static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4007{
4008	switch (func) {
4009	case 0x80000001:
4010		if (nested)
4011			entry->ecx |= (1 << 2); /* Set SVM bit */
4012		break;
4013	case 0x8000000A:
4014		entry->eax = 1; /* SVM revision 1 */
4015		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4016				   ASID emulation to nested SVM */
4017		entry->ecx = 0; /* Reserved */
4018		entry->edx = 0; /* Per default do not support any
4019				   additional features */
4020
4021		/* Support next_rip if host supports it */
4022		if (boot_cpu_has(X86_FEATURE_NRIPS))
4023			entry->edx |= SVM_FEATURE_NRIP;
4024
4025		/* Support NPT for the guest if enabled */
4026		if (npt_enabled)
4027			entry->edx |= SVM_FEATURE_NPT;
4028
4029		break;
4030	}
4031}
4032
4033static int svm_get_lpage_level(void)
4034{
4035	return PT_PDPE_LEVEL;
4036}
4037
4038static bool svm_rdtscp_supported(void)
4039{
4040	return false;
4041}
4042
4043static bool svm_invpcid_supported(void)
4044{
4045	return false;
4046}
4047
4048static bool svm_mpx_supported(void)
4049{
4050	return false;
4051}
4052
4053static bool svm_xsaves_supported(void)
4054{
4055	return false;
4056}
4057
4058static bool svm_has_wbinvd_exit(void)
4059{
4060	return true;
4061}
4062
4063static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4064{
4065	struct vcpu_svm *svm = to_svm(vcpu);
4066
4067	set_exception_intercept(svm, NM_VECTOR);
4068	update_cr0_intercept(svm);
4069}
4070
4071#define PRE_EX(exit)  { .exit_code = (exit), \
4072			.stage = X86_ICPT_PRE_EXCEPT, }
4073#define POST_EX(exit) { .exit_code = (exit), \
4074			.stage = X86_ICPT_POST_EXCEPT, }
4075#define POST_MEM(exit) { .exit_code = (exit), \
4076			.stage = X86_ICPT_POST_MEMACCESS, }
4077
4078static const struct __x86_intercept {
4079	u32 exit_code;
4080	enum x86_intercept_stage stage;
4081} x86_intercept_map[] = {
4082	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4083	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4084	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4085	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4086	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4087	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4088	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4089	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4090	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4091	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4092	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4093	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4094	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4095	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4096	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4097	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4098	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4099	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4100	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4101	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4102	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4103	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4104	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4105	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4106	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4107	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4108	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4109	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4110	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4111	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4112	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4113	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4114	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4115	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4116	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4117	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4118	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4119	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4120	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4121	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4122	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4123	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4124	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4125	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4126	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4127	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4128};
4129
4130#undef PRE_EX
4131#undef POST_EX
4132#undef POST_MEM
4133
4134static int svm_check_intercept(struct kvm_vcpu *vcpu,
4135			       struct x86_instruction_info *info,
4136			       enum x86_intercept_stage stage)
4137{
4138	struct vcpu_svm *svm = to_svm(vcpu);
4139	int vmexit, ret = X86EMUL_CONTINUE;
4140	struct __x86_intercept icpt_info;
4141	struct vmcb *vmcb = svm->vmcb;
4142
4143	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4144		goto out;
4145
4146	icpt_info = x86_intercept_map[info->intercept];
4147
4148	if (stage != icpt_info.stage)
4149		goto out;
4150
4151	switch (icpt_info.exit_code) {
4152	case SVM_EXIT_READ_CR0:
4153		if (info->intercept == x86_intercept_cr_read)
4154			icpt_info.exit_code += info->modrm_reg;
4155		break;
4156	case SVM_EXIT_WRITE_CR0: {
4157		unsigned long cr0, val;
4158		u64 intercept;
4159
4160		if (info->intercept == x86_intercept_cr_write)
4161			icpt_info.exit_code += info->modrm_reg;
4162
4163		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4164		    info->intercept == x86_intercept_clts)
4165			break;
4166
4167		intercept = svm->nested.intercept;
4168
4169		if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4170			break;
4171
4172		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4173		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4174
4175		if (info->intercept == x86_intercept_lmsw) {
4176			cr0 &= 0xfUL;
4177			val &= 0xfUL;
4178			/* lmsw can't clear PE - catch this here */
4179			if (cr0 & X86_CR0_PE)
4180				val |= X86_CR0_PE;
4181		}
4182
4183		if (cr0 ^ val)
4184			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4185
4186		break;
4187	}
4188	case SVM_EXIT_READ_DR0:
4189	case SVM_EXIT_WRITE_DR0:
4190		icpt_info.exit_code += info->modrm_reg;
4191		break;
4192	case SVM_EXIT_MSR:
4193		if (info->intercept == x86_intercept_wrmsr)
4194			vmcb->control.exit_info_1 = 1;
4195		else
4196			vmcb->control.exit_info_1 = 0;
4197		break;
4198	case SVM_EXIT_PAUSE:
4199		/*
4200		 * We get this for NOP only, but pause
4201		 * is rep not, check this here
4202		 */
4203		if (info->rep_prefix != REPE_PREFIX)
4204			goto out;
4205	case SVM_EXIT_IOIO: {
4206		u64 exit_info;
4207		u32 bytes;
4208
4209		if (info->intercept == x86_intercept_in ||
4210		    info->intercept == x86_intercept_ins) {
4211			exit_info = ((info->src_val & 0xffff) << 16) |
4212				SVM_IOIO_TYPE_MASK;
4213			bytes = info->dst_bytes;
4214		} else {
4215			exit_info = (info->dst_val & 0xffff) << 16;
4216			bytes = info->src_bytes;
4217		}
4218
4219		if (info->intercept == x86_intercept_outs ||
4220		    info->intercept == x86_intercept_ins)
4221			exit_info |= SVM_IOIO_STR_MASK;
4222
4223		if (info->rep_prefix)
4224			exit_info |= SVM_IOIO_REP_MASK;
4225
4226		bytes = min(bytes, 4u);
4227
4228		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4229
4230		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4231
4232		vmcb->control.exit_info_1 = exit_info;
4233		vmcb->control.exit_info_2 = info->next_rip;
4234
4235		break;
4236	}
4237	default:
4238		break;
4239	}
4240
4241	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4242	if (static_cpu_has(X86_FEATURE_NRIPS))
4243		vmcb->control.next_rip  = info->next_rip;
4244	vmcb->control.exit_code = icpt_info.exit_code;
4245	vmexit = nested_svm_exit_handled(svm);
4246
4247	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4248					   : X86EMUL_CONTINUE;
4249
4250out:
4251	return ret;
4252}
4253
4254static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4255{
4256	local_irq_enable();
4257}
4258
4259static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4260{
4261}
4262
4263static struct kvm_x86_ops svm_x86_ops = {
4264	.cpu_has_kvm_support = has_svm,
4265	.disabled_by_bios = is_disabled,
4266	.hardware_setup = svm_hardware_setup,
4267	.hardware_unsetup = svm_hardware_unsetup,
4268	.check_processor_compatibility = svm_check_processor_compat,
4269	.hardware_enable = svm_hardware_enable,
4270	.hardware_disable = svm_hardware_disable,
4271	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4272	.cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
4273
4274	.vcpu_create = svm_create_vcpu,
4275	.vcpu_free = svm_free_vcpu,
4276	.vcpu_reset = svm_vcpu_reset,
4277
4278	.prepare_guest_switch = svm_prepare_guest_switch,
4279	.vcpu_load = svm_vcpu_load,
4280	.vcpu_put = svm_vcpu_put,
4281
4282	.update_bp_intercept = update_bp_intercept,
4283	.get_msr = svm_get_msr,
4284	.set_msr = svm_set_msr,
4285	.get_segment_base = svm_get_segment_base,
4286	.get_segment = svm_get_segment,
4287	.set_segment = svm_set_segment,
4288	.get_cpl = svm_get_cpl,
4289	.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4290	.decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4291	.decache_cr3 = svm_decache_cr3,
4292	.decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4293	.set_cr0 = svm_set_cr0,
4294	.set_cr3 = svm_set_cr3,
4295	.set_cr4 = svm_set_cr4,
4296	.set_efer = svm_set_efer,
4297	.get_idt = svm_get_idt,
4298	.set_idt = svm_set_idt,
4299	.get_gdt = svm_get_gdt,
4300	.set_gdt = svm_set_gdt,
4301	.get_dr6 = svm_get_dr6,
4302	.set_dr6 = svm_set_dr6,
4303	.set_dr7 = svm_set_dr7,
4304	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4305	.cache_reg = svm_cache_reg,
4306	.get_rflags = svm_get_rflags,
4307	.set_rflags = svm_set_rflags,
4308	.fpu_activate = svm_fpu_activate,
4309	.fpu_deactivate = svm_fpu_deactivate,
4310
4311	.tlb_flush = svm_flush_tlb,
4312
4313	.run = svm_vcpu_run,
4314	.handle_exit = handle_exit,
4315	.skip_emulated_instruction = skip_emulated_instruction,
4316	.set_interrupt_shadow = svm_set_interrupt_shadow,
4317	.get_interrupt_shadow = svm_get_interrupt_shadow,
4318	.patch_hypercall = svm_patch_hypercall,
4319	.set_irq = svm_set_irq,
4320	.set_nmi = svm_inject_nmi,
4321	.queue_exception = svm_queue_exception,
4322	.cancel_injection = svm_cancel_injection,
4323	.interrupt_allowed = svm_interrupt_allowed,
4324	.nmi_allowed = svm_nmi_allowed,
4325	.get_nmi_mask = svm_get_nmi_mask,
4326	.set_nmi_mask = svm_set_nmi_mask,
4327	.enable_nmi_window = enable_nmi_window,
4328	.enable_irq_window = enable_irq_window,
4329	.update_cr8_intercept = update_cr8_intercept,
4330	.set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4331	.cpu_uses_apicv = svm_cpu_uses_apicv,
4332	.load_eoi_exitmap = svm_load_eoi_exitmap,
4333	.sync_pir_to_irr = svm_sync_pir_to_irr,
4334
4335	.set_tss_addr = svm_set_tss_addr,
4336	.get_tdp_level = get_npt_level,
4337	.get_mt_mask = svm_get_mt_mask,
4338
4339	.get_exit_info = svm_get_exit_info,
4340
4341	.get_lpage_level = svm_get_lpage_level,
4342
4343	.cpuid_update = svm_cpuid_update,
4344
4345	.rdtscp_supported = svm_rdtscp_supported,
4346	.invpcid_supported = svm_invpcid_supported,
4347	.mpx_supported = svm_mpx_supported,
4348	.xsaves_supported = svm_xsaves_supported,
4349
4350	.set_supported_cpuid = svm_set_supported_cpuid,
4351
4352	.has_wbinvd_exit = svm_has_wbinvd_exit,
4353
4354	.read_tsc_offset = svm_read_tsc_offset,
4355	.write_tsc_offset = svm_write_tsc_offset,
4356	.adjust_tsc_offset_guest = svm_adjust_tsc_offset_guest,
4357	.read_l1_tsc = svm_read_l1_tsc,
4358
4359	.set_tdp_cr3 = set_tdp_cr3,
4360
4361	.check_intercept = svm_check_intercept,
4362	.handle_external_intr = svm_handle_external_intr,
4363
4364	.sched_in = svm_sched_in,
4365
4366	.pmu_ops = &amd_pmu_ops,
4367};
4368
4369static int __init svm_init(void)
4370{
4371	return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4372			__alignof__(struct vcpu_svm), THIS_MODULE);
4373}
4374
4375static void __exit svm_exit(void)
4376{
4377	kvm_exit();
4378}
4379
4380module_init(svm_init)
4381module_exit(svm_exit)
4382