1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 *   Yaniv Kamay  <yaniv@qumranet.com>
14 *   Avi Kivity   <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2.  See
17 * the COPYING file in the top-level directory.
18 *
19 */
20
21#include "irq.h"
22#include "mmu.h"
23#include "x86.h"
24#include "kvm_cache_regs.h"
25#include "cpuid.h"
26
27#include <linux/kvm_host.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
33#include <linux/swap.h>
34#include <linux/hugetlb.h>
35#include <linux/compiler.h>
36#include <linux/srcu.h>
37#include <linux/slab.h>
38#include <linux/uaccess.h>
39
40#include <asm/page.h>
41#include <asm/cmpxchg.h>
42#include <asm/io.h>
43#include <asm/vmx.h>
44
45/*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
52bool tdp_enabled = false;
53
54enum {
55	AUDIT_PRE_PAGE_FAULT,
56	AUDIT_POST_PAGE_FAULT,
57	AUDIT_PRE_PTE_WRITE,
58	AUDIT_POST_PTE_WRITE,
59	AUDIT_PRE_SYNC,
60	AUDIT_POST_SYNC
61};
62
63#undef MMU_DEBUG
64
65#ifdef MMU_DEBUG
66static bool dbg = 0;
67module_param(dbg, bool, 0644);
68
69#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71#define MMU_WARN_ON(x) WARN_ON(x)
72#else
73#define pgprintk(x...) do { } while (0)
74#define rmap_printk(x...) do { } while (0)
75#define MMU_WARN_ON(x) do { } while (0)
76#endif
77
78#define PTE_PREFETCH_NUM		8
79
80#define PT_FIRST_AVAIL_BITS_SHIFT 10
81#define PT64_SECOND_AVAIL_BITS_SHIFT 52
82
83#define PT64_LEVEL_BITS 9
84
85#define PT64_LEVEL_SHIFT(level) \
86		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
87
88#define PT64_INDEX(address, level)\
89	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90
91
92#define PT32_LEVEL_BITS 10
93
94#define PT32_LEVEL_SHIFT(level) \
95		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
96
97#define PT32_LVL_OFFSET_MASK(level) \
98	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99						* PT32_LEVEL_BITS))) - 1))
100
101#define PT32_INDEX(address, level)\
102	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103
104
105#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
106#define PT64_DIR_BASE_ADDR_MASK \
107	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108#define PT64_LVL_ADDR_MASK(level) \
109	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110						* PT64_LEVEL_BITS))) - 1))
111#define PT64_LVL_OFFSET_MASK(level) \
112	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113						* PT64_LEVEL_BITS))) - 1))
114
115#define PT32_BASE_ADDR_MASK PAGE_MASK
116#define PT32_DIR_BASE_ADDR_MASK \
117	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118#define PT32_LVL_ADDR_MASK(level) \
119	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120					    * PT32_LEVEL_BITS))) - 1))
121
122#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123			| shadow_x_mask | shadow_nx_mask)
124
125#define ACC_EXEC_MASK    1
126#define ACC_WRITE_MASK   PT_WRITABLE_MASK
127#define ACC_USER_MASK    PT_USER_MASK
128#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129
130#include <trace/events/kvm.h>
131
132#define CREATE_TRACE_POINTS
133#include "mmutrace.h"
134
135#define SPTE_HOST_WRITEABLE	(1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136#define SPTE_MMU_WRITEABLE	(1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
137
138#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
140/* make pte_list_desc fit well in cache line */
141#define PTE_LIST_EXT 3
142
143struct pte_list_desc {
144	u64 *sptes[PTE_LIST_EXT];
145	struct pte_list_desc *more;
146};
147
148struct kvm_shadow_walk_iterator {
149	u64 addr;
150	hpa_t shadow_addr;
151	u64 *sptep;
152	int level;
153	unsigned index;
154};
155
156#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
157	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
158	     shadow_walk_okay(&(_walker));			\
159	     shadow_walk_next(&(_walker)))
160
161#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
162	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
163	     shadow_walk_okay(&(_walker)) &&				\
164		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
165	     __shadow_walk_next(&(_walker), spte))
166
167static struct kmem_cache *pte_list_desc_cache;
168static struct kmem_cache *mmu_page_header_cache;
169static struct percpu_counter kvm_total_used_mmu_pages;
170
171static u64 __read_mostly shadow_nx_mask;
172static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
173static u64 __read_mostly shadow_user_mask;
174static u64 __read_mostly shadow_accessed_mask;
175static u64 __read_mostly shadow_dirty_mask;
176static u64 __read_mostly shadow_mmio_mask;
177
178static void mmu_spte_set(u64 *sptep, u64 spte);
179static void mmu_free_roots(struct kvm_vcpu *vcpu);
180
181void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182{
183	shadow_mmio_mask = mmio_mask;
184}
185EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186
187/*
188 * the low bit of the generation number is always presumed to be zero.
189 * This disables mmio caching during memslot updates.  The concept is
190 * similar to a seqcount but instead of retrying the access we just punt
191 * and ignore the cache.
192 *
193 * spte bits 3-11 are used as bits 1-9 of the generation number,
194 * the bits 52-61 are used as bits 10-19 of the generation number.
195 */
196#define MMIO_SPTE_GEN_LOW_SHIFT		2
197#define MMIO_SPTE_GEN_HIGH_SHIFT	52
198
199#define MMIO_GEN_SHIFT			20
200#define MMIO_GEN_LOW_SHIFT		10
201#define MMIO_GEN_LOW_MASK		((1 << MMIO_GEN_LOW_SHIFT) - 2)
202#define MMIO_GEN_MASK			((1 << MMIO_GEN_SHIFT) - 1)
203
204static u64 generation_mmio_spte_mask(unsigned int gen)
205{
206	u64 mask;
207
208	WARN_ON(gen & ~MMIO_GEN_MASK);
209
210	mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211	mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212	return mask;
213}
214
215static unsigned int get_mmio_spte_generation(u64 spte)
216{
217	unsigned int gen;
218
219	spte &= ~shadow_mmio_mask;
220
221	gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222	gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223	return gen;
224}
225
226static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
227{
228	return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
229}
230
231static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
232			   unsigned access)
233{
234	unsigned int gen = kvm_current_mmio_generation(vcpu);
235	u64 mask = generation_mmio_spte_mask(gen);
236
237	access &= ACC_WRITE_MASK | ACC_USER_MASK;
238	mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
239
240	trace_mark_mmio_spte(sptep, gfn, access, gen);
241	mmu_spte_set(sptep, mask);
242}
243
244static bool is_mmio_spte(u64 spte)
245{
246	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247}
248
249static gfn_t get_mmio_spte_gfn(u64 spte)
250{
251	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
252	return (spte & ~mask) >> PAGE_SHIFT;
253}
254
255static unsigned get_mmio_spte_access(u64 spte)
256{
257	u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
258	return (spte & ~mask) & ~PAGE_MASK;
259}
260
261static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
262			  pfn_t pfn, unsigned access)
263{
264	if (unlikely(is_noslot_pfn(pfn))) {
265		mark_mmio_spte(vcpu, sptep, gfn, access);
266		return true;
267	}
268
269	return false;
270}
271
272static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
273{
274	unsigned int kvm_gen, spte_gen;
275
276	kvm_gen = kvm_current_mmio_generation(vcpu);
277	spte_gen = get_mmio_spte_generation(spte);
278
279	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280	return likely(kvm_gen == spte_gen);
281}
282
283void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
284		u64 dirty_mask, u64 nx_mask, u64 x_mask)
285{
286	shadow_user_mask = user_mask;
287	shadow_accessed_mask = accessed_mask;
288	shadow_dirty_mask = dirty_mask;
289	shadow_nx_mask = nx_mask;
290	shadow_x_mask = x_mask;
291}
292EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293
294static int is_cpuid_PSE36(void)
295{
296	return 1;
297}
298
299static int is_nx(struct kvm_vcpu *vcpu)
300{
301	return vcpu->arch.efer & EFER_NX;
302}
303
304static int is_shadow_present_pte(u64 pte)
305{
306	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
307}
308
309static int is_large_pte(u64 pte)
310{
311	return pte & PT_PAGE_SIZE_MASK;
312}
313
314static int is_rmap_spte(u64 pte)
315{
316	return is_shadow_present_pte(pte);
317}
318
319static int is_last_spte(u64 pte, int level)
320{
321	if (level == PT_PAGE_TABLE_LEVEL)
322		return 1;
323	if (is_large_pte(pte))
324		return 1;
325	return 0;
326}
327
328static pfn_t spte_to_pfn(u64 pte)
329{
330	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
331}
332
333static gfn_t pse36_gfn_delta(u32 gpte)
334{
335	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336
337	return (gpte & PT32_DIR_PSE36_MASK) << shift;
338}
339
340#ifdef CONFIG_X86_64
341static void __set_spte(u64 *sptep, u64 spte)
342{
343	*sptep = spte;
344}
345
346static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347{
348	*sptep = spte;
349}
350
351static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352{
353	return xchg(sptep, spte);
354}
355
356static u64 __get_spte_lockless(u64 *sptep)
357{
358	return ACCESS_ONCE(*sptep);
359}
360#else
361union split_spte {
362	struct {
363		u32 spte_low;
364		u32 spte_high;
365	};
366	u64 spte;
367};
368
369static void count_spte_clear(u64 *sptep, u64 spte)
370{
371	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
372
373	if (is_shadow_present_pte(spte))
374		return;
375
376	/* Ensure the spte is completely set before we increase the count */
377	smp_wmb();
378	sp->clear_spte_count++;
379}
380
381static void __set_spte(u64 *sptep, u64 spte)
382{
383	union split_spte *ssptep, sspte;
384
385	ssptep = (union split_spte *)sptep;
386	sspte = (union split_spte)spte;
387
388	ssptep->spte_high = sspte.spte_high;
389
390	/*
391	 * If we map the spte from nonpresent to present, We should store
392	 * the high bits firstly, then set present bit, so cpu can not
393	 * fetch this spte while we are setting the spte.
394	 */
395	smp_wmb();
396
397	ssptep->spte_low = sspte.spte_low;
398}
399
400static void __update_clear_spte_fast(u64 *sptep, u64 spte)
401{
402	union split_spte *ssptep, sspte;
403
404	ssptep = (union split_spte *)sptep;
405	sspte = (union split_spte)spte;
406
407	ssptep->spte_low = sspte.spte_low;
408
409	/*
410	 * If we map the spte from present to nonpresent, we should clear
411	 * present bit firstly to avoid vcpu fetch the old high bits.
412	 */
413	smp_wmb();
414
415	ssptep->spte_high = sspte.spte_high;
416	count_spte_clear(sptep, spte);
417}
418
419static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
420{
421	union split_spte *ssptep, sspte, orig;
422
423	ssptep = (union split_spte *)sptep;
424	sspte = (union split_spte)spte;
425
426	/* xchg acts as a barrier before the setting of the high bits */
427	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
428	orig.spte_high = ssptep->spte_high;
429	ssptep->spte_high = sspte.spte_high;
430	count_spte_clear(sptep, spte);
431
432	return orig.spte;
433}
434
435/*
436 * The idea using the light way get the spte on x86_32 guest is from
437 * gup_get_pte(arch/x86/mm/gup.c).
438 *
439 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
440 * coalesces them and we are running out of the MMU lock.  Therefore
441 * we need to protect against in-progress updates of the spte.
442 *
443 * Reading the spte while an update is in progress may get the old value
444 * for the high part of the spte.  The race is fine for a present->non-present
445 * change (because the high part of the spte is ignored for non-present spte),
446 * but for a present->present change we must reread the spte.
447 *
448 * All such changes are done in two steps (present->non-present and
449 * non-present->present), hence it is enough to count the number of
450 * present->non-present updates: if it changed while reading the spte,
451 * we might have hit the race.  This is done using clear_spte_count.
452 */
453static u64 __get_spte_lockless(u64 *sptep)
454{
455	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
456	union split_spte spte, *orig = (union split_spte *)sptep;
457	int count;
458
459retry:
460	count = sp->clear_spte_count;
461	smp_rmb();
462
463	spte.spte_low = orig->spte_low;
464	smp_rmb();
465
466	spte.spte_high = orig->spte_high;
467	smp_rmb();
468
469	if (unlikely(spte.spte_low != orig->spte_low ||
470	      count != sp->clear_spte_count))
471		goto retry;
472
473	return spte.spte;
474}
475#endif
476
477static bool spte_is_locklessly_modifiable(u64 spte)
478{
479	return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
480		(SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
481}
482
483static bool spte_has_volatile_bits(u64 spte)
484{
485	/*
486	 * Always atomicly update spte if it can be updated
487	 * out of mmu-lock, it can ensure dirty bit is not lost,
488	 * also, it can help us to get a stable is_writable_pte()
489	 * to ensure tlb flush is not missed.
490	 */
491	if (spte_is_locklessly_modifiable(spte))
492		return true;
493
494	if (!shadow_accessed_mask)
495		return false;
496
497	if (!is_shadow_present_pte(spte))
498		return false;
499
500	if ((spte & shadow_accessed_mask) &&
501	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
502		return false;
503
504	return true;
505}
506
507static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
508{
509	return (old_spte & bit_mask) && !(new_spte & bit_mask);
510}
511
512static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
513{
514	return (old_spte & bit_mask) != (new_spte & bit_mask);
515}
516
517/* Rules for using mmu_spte_set:
518 * Set the sptep from nonpresent to present.
519 * Note: the sptep being assigned *must* be either not present
520 * or in a state where the hardware will not attempt to update
521 * the spte.
522 */
523static void mmu_spte_set(u64 *sptep, u64 new_spte)
524{
525	WARN_ON(is_shadow_present_pte(*sptep));
526	__set_spte(sptep, new_spte);
527}
528
529/* Rules for using mmu_spte_update:
530 * Update the state bits, it means the mapped pfn is not changged.
531 *
532 * Whenever we overwrite a writable spte with a read-only one we
533 * should flush remote TLBs. Otherwise rmap_write_protect
534 * will find a read-only spte, even though the writable spte
535 * might be cached on a CPU's TLB, the return value indicates this
536 * case.
537 */
538static bool mmu_spte_update(u64 *sptep, u64 new_spte)
539{
540	u64 old_spte = *sptep;
541	bool ret = false;
542
543	WARN_ON(!is_rmap_spte(new_spte));
544
545	if (!is_shadow_present_pte(old_spte)) {
546		mmu_spte_set(sptep, new_spte);
547		return ret;
548	}
549
550	if (!spte_has_volatile_bits(old_spte))
551		__update_clear_spte_fast(sptep, new_spte);
552	else
553		old_spte = __update_clear_spte_slow(sptep, new_spte);
554
555	/*
556	 * For the spte updated out of mmu-lock is safe, since
557	 * we always atomicly update it, see the comments in
558	 * spte_has_volatile_bits().
559	 */
560	if (spte_is_locklessly_modifiable(old_spte) &&
561	      !is_writable_pte(new_spte))
562		ret = true;
563
564	if (!shadow_accessed_mask)
565		return ret;
566
567	/*
568	 * Flush TLB when accessed/dirty bits are changed in the page tables,
569	 * to guarantee consistency between TLB and page tables.
570	 */
571	if (spte_is_bit_changed(old_spte, new_spte,
572                                shadow_accessed_mask | shadow_dirty_mask))
573		ret = true;
574
575	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
576		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
577	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
578		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
579
580	return ret;
581}
582
583/*
584 * Rules for using mmu_spte_clear_track_bits:
585 * It sets the sptep from present to nonpresent, and track the
586 * state bits, it is used to clear the last level sptep.
587 */
588static int mmu_spte_clear_track_bits(u64 *sptep)
589{
590	pfn_t pfn;
591	u64 old_spte = *sptep;
592
593	if (!spte_has_volatile_bits(old_spte))
594		__update_clear_spte_fast(sptep, 0ull);
595	else
596		old_spte = __update_clear_spte_slow(sptep, 0ull);
597
598	if (!is_rmap_spte(old_spte))
599		return 0;
600
601	pfn = spte_to_pfn(old_spte);
602
603	/*
604	 * KVM does not hold the refcount of the page used by
605	 * kvm mmu, before reclaiming the page, we should
606	 * unmap it from mmu first.
607	 */
608	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
609
610	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
611		kvm_set_pfn_accessed(pfn);
612	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
613		kvm_set_pfn_dirty(pfn);
614	return 1;
615}
616
617/*
618 * Rules for using mmu_spte_clear_no_track:
619 * Directly clear spte without caring the state bits of sptep,
620 * it is used to set the upper level spte.
621 */
622static void mmu_spte_clear_no_track(u64 *sptep)
623{
624	__update_clear_spte_fast(sptep, 0ull);
625}
626
627static u64 mmu_spte_get_lockless(u64 *sptep)
628{
629	return __get_spte_lockless(sptep);
630}
631
632static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
633{
634	/*
635	 * Prevent page table teardown by making any free-er wait during
636	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
637	 */
638	local_irq_disable();
639	vcpu->mode = READING_SHADOW_PAGE_TABLES;
640	/*
641	 * Make sure a following spte read is not reordered ahead of the write
642	 * to vcpu->mode.
643	 */
644	smp_mb();
645}
646
647static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
648{
649	/*
650	 * Make sure the write to vcpu->mode is not reordered in front of
651	 * reads to sptes.  If it does, kvm_commit_zap_page() can see us
652	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
653	 */
654	smp_mb();
655	vcpu->mode = OUTSIDE_GUEST_MODE;
656	local_irq_enable();
657}
658
659static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
660				  struct kmem_cache *base_cache, int min)
661{
662	void *obj;
663
664	if (cache->nobjs >= min)
665		return 0;
666	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
667		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
668		if (!obj)
669			return -ENOMEM;
670		cache->objects[cache->nobjs++] = obj;
671	}
672	return 0;
673}
674
675static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
676{
677	return cache->nobjs;
678}
679
680static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
681				  struct kmem_cache *cache)
682{
683	while (mc->nobjs)
684		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
685}
686
687static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
688				       int min)
689{
690	void *page;
691
692	if (cache->nobjs >= min)
693		return 0;
694	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
695		page = (void *)__get_free_page(GFP_KERNEL);
696		if (!page)
697			return -ENOMEM;
698		cache->objects[cache->nobjs++] = page;
699	}
700	return 0;
701}
702
703static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
704{
705	while (mc->nobjs)
706		free_page((unsigned long)mc->objects[--mc->nobjs]);
707}
708
709static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
710{
711	int r;
712
713	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
714				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
715	if (r)
716		goto out;
717	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
718	if (r)
719		goto out;
720	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
721				   mmu_page_header_cache, 4);
722out:
723	return r;
724}
725
726static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
727{
728	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
729				pte_list_desc_cache);
730	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
731	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
732				mmu_page_header_cache);
733}
734
735static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
736{
737	void *p;
738
739	BUG_ON(!mc->nobjs);
740	p = mc->objects[--mc->nobjs];
741	return p;
742}
743
744static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
745{
746	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
747}
748
749static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
750{
751	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
752}
753
754static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
755{
756	if (!sp->role.direct)
757		return sp->gfns[index];
758
759	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
760}
761
762static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
763{
764	if (sp->role.direct)
765		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
766	else
767		sp->gfns[index] = gfn;
768}
769
770/*
771 * Return the pointer to the large page information for a given gfn,
772 * handling slots that are not large page aligned.
773 */
774static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
775					      struct kvm_memory_slot *slot,
776					      int level)
777{
778	unsigned long idx;
779
780	idx = gfn_to_index(gfn, slot->base_gfn, level);
781	return &slot->arch.lpage_info[level - 2][idx];
782}
783
784static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
785{
786	struct kvm_memslots *slots;
787	struct kvm_memory_slot *slot;
788	struct kvm_lpage_info *linfo;
789	gfn_t gfn;
790	int i;
791
792	gfn = sp->gfn;
793	slots = kvm_memslots_for_spte_role(kvm, sp->role);
794	slot = __gfn_to_memslot(slots, gfn);
795	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
796		linfo = lpage_info_slot(gfn, slot, i);
797		linfo->write_count += 1;
798	}
799	kvm->arch.indirect_shadow_pages++;
800}
801
802static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
803{
804	struct kvm_memslots *slots;
805	struct kvm_memory_slot *slot;
806	struct kvm_lpage_info *linfo;
807	gfn_t gfn;
808	int i;
809
810	gfn = sp->gfn;
811	slots = kvm_memslots_for_spte_role(kvm, sp->role);
812	slot = __gfn_to_memslot(slots, gfn);
813	for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
814		linfo = lpage_info_slot(gfn, slot, i);
815		linfo->write_count -= 1;
816		WARN_ON(linfo->write_count < 0);
817	}
818	kvm->arch.indirect_shadow_pages--;
819}
820
821static int __has_wrprotected_page(gfn_t gfn, int level,
822				  struct kvm_memory_slot *slot)
823{
824	struct kvm_lpage_info *linfo;
825
826	if (slot) {
827		linfo = lpage_info_slot(gfn, slot, level);
828		return linfo->write_count;
829	}
830
831	return 1;
832}
833
834static int has_wrprotected_page(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
835{
836	struct kvm_memory_slot *slot;
837
838	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
839	return __has_wrprotected_page(gfn, level, slot);
840}
841
842static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
843{
844	unsigned long page_size;
845	int i, ret = 0;
846
847	page_size = kvm_host_page_size(kvm, gfn);
848
849	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
850		if (page_size >= KVM_HPAGE_SIZE(i))
851			ret = i;
852		else
853			break;
854	}
855
856	return ret;
857}
858
859static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
860					  bool no_dirty_log)
861{
862	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
863		return false;
864	if (no_dirty_log && slot->dirty_bitmap)
865		return false;
866
867	return true;
868}
869
870static struct kvm_memory_slot *
871gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
872			    bool no_dirty_log)
873{
874	struct kvm_memory_slot *slot;
875
876	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
877	if (!memslot_valid_for_gpte(slot, no_dirty_log))
878		slot = NULL;
879
880	return slot;
881}
882
883static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
884			 bool *force_pt_level)
885{
886	int host_level, level, max_level;
887	struct kvm_memory_slot *slot;
888
889	if (unlikely(*force_pt_level))
890		return PT_PAGE_TABLE_LEVEL;
891
892	slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
893	*force_pt_level = !memslot_valid_for_gpte(slot, true);
894	if (unlikely(*force_pt_level))
895		return PT_PAGE_TABLE_LEVEL;
896
897	host_level = host_mapping_level(vcpu->kvm, large_gfn);
898
899	if (host_level == PT_PAGE_TABLE_LEVEL)
900		return host_level;
901
902	max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
903
904	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
905		if (__has_wrprotected_page(large_gfn, level, slot))
906			break;
907
908	return level - 1;
909}
910
911/*
912 * Pte mapping structures:
913 *
914 * If pte_list bit zero is zero, then pte_list point to the spte.
915 *
916 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
917 * pte_list_desc containing more mappings.
918 *
919 * Returns the number of pte entries before the spte was added or zero if
920 * the spte was not added.
921 *
922 */
923static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
924			unsigned long *pte_list)
925{
926	struct pte_list_desc *desc;
927	int i, count = 0;
928
929	if (!*pte_list) {
930		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
931		*pte_list = (unsigned long)spte;
932	} else if (!(*pte_list & 1)) {
933		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
934		desc = mmu_alloc_pte_list_desc(vcpu);
935		desc->sptes[0] = (u64 *)*pte_list;
936		desc->sptes[1] = spte;
937		*pte_list = (unsigned long)desc | 1;
938		++count;
939	} else {
940		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
941		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
942		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
943			desc = desc->more;
944			count += PTE_LIST_EXT;
945		}
946		if (desc->sptes[PTE_LIST_EXT-1]) {
947			desc->more = mmu_alloc_pte_list_desc(vcpu);
948			desc = desc->more;
949		}
950		for (i = 0; desc->sptes[i]; ++i)
951			++count;
952		desc->sptes[i] = spte;
953	}
954	return count;
955}
956
957static void
958pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
959			   int i, struct pte_list_desc *prev_desc)
960{
961	int j;
962
963	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
964		;
965	desc->sptes[i] = desc->sptes[j];
966	desc->sptes[j] = NULL;
967	if (j != 0)
968		return;
969	if (!prev_desc && !desc->more)
970		*pte_list = (unsigned long)desc->sptes[0];
971	else
972		if (prev_desc)
973			prev_desc->more = desc->more;
974		else
975			*pte_list = (unsigned long)desc->more | 1;
976	mmu_free_pte_list_desc(desc);
977}
978
979static void pte_list_remove(u64 *spte, unsigned long *pte_list)
980{
981	struct pte_list_desc *desc;
982	struct pte_list_desc *prev_desc;
983	int i;
984
985	if (!*pte_list) {
986		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
987		BUG();
988	} else if (!(*pte_list & 1)) {
989		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
990		if ((u64 *)*pte_list != spte) {
991			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
992			BUG();
993		}
994		*pte_list = 0;
995	} else {
996		rmap_printk("pte_list_remove:  %p many->many\n", spte);
997		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
998		prev_desc = NULL;
999		while (desc) {
1000			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1001				if (desc->sptes[i] == spte) {
1002					pte_list_desc_remove_entry(pte_list,
1003							       desc, i,
1004							       prev_desc);
1005					return;
1006				}
1007			prev_desc = desc;
1008			desc = desc->more;
1009		}
1010		pr_err("pte_list_remove: %p many->many\n", spte);
1011		BUG();
1012	}
1013}
1014
1015typedef void (*pte_list_walk_fn) (u64 *spte);
1016static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1017{
1018	struct pte_list_desc *desc;
1019	int i;
1020
1021	if (!*pte_list)
1022		return;
1023
1024	if (!(*pte_list & 1))
1025		return fn((u64 *)*pte_list);
1026
1027	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1028	while (desc) {
1029		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1030			fn(desc->sptes[i]);
1031		desc = desc->more;
1032	}
1033}
1034
1035static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1036				    struct kvm_memory_slot *slot)
1037{
1038	unsigned long idx;
1039
1040	idx = gfn_to_index(gfn, slot->base_gfn, level);
1041	return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1042}
1043
1044/*
1045 * Take gfn and return the reverse mapping to it.
1046 */
1047static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, struct kvm_mmu_page *sp)
1048{
1049	struct kvm_memslots *slots;
1050	struct kvm_memory_slot *slot;
1051
1052	slots = kvm_memslots_for_spte_role(kvm, sp->role);
1053	slot = __gfn_to_memslot(slots, gfn);
1054	return __gfn_to_rmap(gfn, sp->role.level, slot);
1055}
1056
1057static bool rmap_can_add(struct kvm_vcpu *vcpu)
1058{
1059	struct kvm_mmu_memory_cache *cache;
1060
1061	cache = &vcpu->arch.mmu_pte_list_desc_cache;
1062	return mmu_memory_cache_free_objects(cache);
1063}
1064
1065static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1066{
1067	struct kvm_mmu_page *sp;
1068	unsigned long *rmapp;
1069
1070	sp = page_header(__pa(spte));
1071	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1072	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
1073	return pte_list_add(vcpu, spte, rmapp);
1074}
1075
1076static void rmap_remove(struct kvm *kvm, u64 *spte)
1077{
1078	struct kvm_mmu_page *sp;
1079	gfn_t gfn;
1080	unsigned long *rmapp;
1081
1082	sp = page_header(__pa(spte));
1083	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1084	rmapp = gfn_to_rmap(kvm, gfn, sp);
1085	pte_list_remove(spte, rmapp);
1086}
1087
1088/*
1089 * Used by the following functions to iterate through the sptes linked by a
1090 * rmap.  All fields are private and not assumed to be used outside.
1091 */
1092struct rmap_iterator {
1093	/* private fields */
1094	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
1095	int pos;			/* index of the sptep */
1096};
1097
1098/*
1099 * Iteration must be started by this function.  This should also be used after
1100 * removing/dropping sptes from the rmap link because in such cases the
1101 * information in the itererator may not be valid.
1102 *
1103 * Returns sptep if found, NULL otherwise.
1104 */
1105static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1106{
1107	if (!rmap)
1108		return NULL;
1109
1110	if (!(rmap & 1)) {
1111		iter->desc = NULL;
1112		return (u64 *)rmap;
1113	}
1114
1115	iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1116	iter->pos = 0;
1117	return iter->desc->sptes[iter->pos];
1118}
1119
1120/*
1121 * Must be used with a valid iterator: e.g. after rmap_get_first().
1122 *
1123 * Returns sptep if found, NULL otherwise.
1124 */
1125static u64 *rmap_get_next(struct rmap_iterator *iter)
1126{
1127	if (iter->desc) {
1128		if (iter->pos < PTE_LIST_EXT - 1) {
1129			u64 *sptep;
1130
1131			++iter->pos;
1132			sptep = iter->desc->sptes[iter->pos];
1133			if (sptep)
1134				return sptep;
1135		}
1136
1137		iter->desc = iter->desc->more;
1138
1139		if (iter->desc) {
1140			iter->pos = 0;
1141			/* desc->sptes[0] cannot be NULL */
1142			return iter->desc->sptes[iter->pos];
1143		}
1144	}
1145
1146	return NULL;
1147}
1148
1149#define for_each_rmap_spte(_rmap_, _iter_, _spte_)			    \
1150	   for (_spte_ = rmap_get_first(*_rmap_, _iter_);		    \
1151		_spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;});  \
1152			_spte_ = rmap_get_next(_iter_))
1153
1154static void drop_spte(struct kvm *kvm, u64 *sptep)
1155{
1156	if (mmu_spte_clear_track_bits(sptep))
1157		rmap_remove(kvm, sptep);
1158}
1159
1160
1161static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1162{
1163	if (is_large_pte(*sptep)) {
1164		WARN_ON(page_header(__pa(sptep))->role.level ==
1165			PT_PAGE_TABLE_LEVEL);
1166		drop_spte(kvm, sptep);
1167		--kvm->stat.lpages;
1168		return true;
1169	}
1170
1171	return false;
1172}
1173
1174static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1175{
1176	if (__drop_large_spte(vcpu->kvm, sptep))
1177		kvm_flush_remote_tlbs(vcpu->kvm);
1178}
1179
1180/*
1181 * Write-protect on the specified @sptep, @pt_protect indicates whether
1182 * spte write-protection is caused by protecting shadow page table.
1183 *
1184 * Note: write protection is difference between dirty logging and spte
1185 * protection:
1186 * - for dirty logging, the spte can be set to writable at anytime if
1187 *   its dirty bitmap is properly set.
1188 * - for spte protection, the spte can be writable only after unsync-ing
1189 *   shadow page.
1190 *
1191 * Return true if tlb need be flushed.
1192 */
1193static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1194{
1195	u64 spte = *sptep;
1196
1197	if (!is_writable_pte(spte) &&
1198	      !(pt_protect && spte_is_locklessly_modifiable(spte)))
1199		return false;
1200
1201	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1202
1203	if (pt_protect)
1204		spte &= ~SPTE_MMU_WRITEABLE;
1205	spte = spte & ~PT_WRITABLE_MASK;
1206
1207	return mmu_spte_update(sptep, spte);
1208}
1209
1210static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1211				 bool pt_protect)
1212{
1213	u64 *sptep;
1214	struct rmap_iterator iter;
1215	bool flush = false;
1216
1217	for_each_rmap_spte(rmapp, &iter, sptep)
1218		flush |= spte_write_protect(kvm, sptep, pt_protect);
1219
1220	return flush;
1221}
1222
1223static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1224{
1225	u64 spte = *sptep;
1226
1227	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1228
1229	spte &= ~shadow_dirty_mask;
1230
1231	return mmu_spte_update(sptep, spte);
1232}
1233
1234static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1235{
1236	u64 *sptep;
1237	struct rmap_iterator iter;
1238	bool flush = false;
1239
1240	for_each_rmap_spte(rmapp, &iter, sptep)
1241		flush |= spte_clear_dirty(kvm, sptep);
1242
1243	return flush;
1244}
1245
1246static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1247{
1248	u64 spte = *sptep;
1249
1250	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1251
1252	spte |= shadow_dirty_mask;
1253
1254	return mmu_spte_update(sptep, spte);
1255}
1256
1257static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
1258{
1259	u64 *sptep;
1260	struct rmap_iterator iter;
1261	bool flush = false;
1262
1263	for_each_rmap_spte(rmapp, &iter, sptep)
1264		flush |= spte_set_dirty(kvm, sptep);
1265
1266	return flush;
1267}
1268
1269/**
1270 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1271 * @kvm: kvm instance
1272 * @slot: slot to protect
1273 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1274 * @mask: indicates which pages we should protect
1275 *
1276 * Used when we do not need to care about huge page mappings: e.g. during dirty
1277 * logging we do not have any such mappings.
1278 */
1279static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1280				     struct kvm_memory_slot *slot,
1281				     gfn_t gfn_offset, unsigned long mask)
1282{
1283	unsigned long *rmapp;
1284
1285	while (mask) {
1286		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1287				      PT_PAGE_TABLE_LEVEL, slot);
1288		__rmap_write_protect(kvm, rmapp, false);
1289
1290		/* clear the first set bit */
1291		mask &= mask - 1;
1292	}
1293}
1294
1295/**
1296 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1297 * @kvm: kvm instance
1298 * @slot: slot to clear D-bit
1299 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1300 * @mask: indicates which pages we should clear D-bit
1301 *
1302 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1303 */
1304void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1305				     struct kvm_memory_slot *slot,
1306				     gfn_t gfn_offset, unsigned long mask)
1307{
1308	unsigned long *rmapp;
1309
1310	while (mask) {
1311		rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1312				      PT_PAGE_TABLE_LEVEL, slot);
1313		__rmap_clear_dirty(kvm, rmapp);
1314
1315		/* clear the first set bit */
1316		mask &= mask - 1;
1317	}
1318}
1319EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1320
1321/**
1322 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1323 * PT level pages.
1324 *
1325 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1326 * enable dirty logging for them.
1327 *
1328 * Used when we do not need to care about huge page mappings: e.g. during dirty
1329 * logging we do not have any such mappings.
1330 */
1331void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1332				struct kvm_memory_slot *slot,
1333				gfn_t gfn_offset, unsigned long mask)
1334{
1335	if (kvm_x86_ops->enable_log_dirty_pt_masked)
1336		kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1337				mask);
1338	else
1339		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1340}
1341
1342static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1343{
1344	struct kvm_memory_slot *slot;
1345	unsigned long *rmapp;
1346	int i;
1347	bool write_protected = false;
1348
1349	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1350
1351	for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1352		rmapp = __gfn_to_rmap(gfn, i, slot);
1353		write_protected |= __rmap_write_protect(vcpu->kvm, rmapp, true);
1354	}
1355
1356	return write_protected;
1357}
1358
1359static bool kvm_zap_rmapp(struct kvm *kvm, unsigned long *rmapp)
1360{
1361	u64 *sptep;
1362	struct rmap_iterator iter;
1363	bool flush = false;
1364
1365	while ((sptep = rmap_get_first(*rmapp, &iter))) {
1366		BUG_ON(!(*sptep & PT_PRESENT_MASK));
1367		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1368
1369		drop_spte(kvm, sptep);
1370		flush = true;
1371	}
1372
1373	return flush;
1374}
1375
1376static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1377			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
1378			   unsigned long data)
1379{
1380	return kvm_zap_rmapp(kvm, rmapp);
1381}
1382
1383static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1384			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
1385			     unsigned long data)
1386{
1387	u64 *sptep;
1388	struct rmap_iterator iter;
1389	int need_flush = 0;
1390	u64 new_spte;
1391	pte_t *ptep = (pte_t *)data;
1392	pfn_t new_pfn;
1393
1394	WARN_ON(pte_huge(*ptep));
1395	new_pfn = pte_pfn(*ptep);
1396
1397restart:
1398	for_each_rmap_spte(rmapp, &iter, sptep) {
1399		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1400			     sptep, *sptep, gfn, level);
1401
1402		need_flush = 1;
1403
1404		if (pte_write(*ptep)) {
1405			drop_spte(kvm, sptep);
1406			goto restart;
1407		} else {
1408			new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1409			new_spte |= (u64)new_pfn << PAGE_SHIFT;
1410
1411			new_spte &= ~PT_WRITABLE_MASK;
1412			new_spte &= ~SPTE_HOST_WRITEABLE;
1413			new_spte &= ~shadow_accessed_mask;
1414
1415			mmu_spte_clear_track_bits(sptep);
1416			mmu_spte_set(sptep, new_spte);
1417		}
1418	}
1419
1420	if (need_flush)
1421		kvm_flush_remote_tlbs(kvm);
1422
1423	return 0;
1424}
1425
1426struct slot_rmap_walk_iterator {
1427	/* input fields. */
1428	struct kvm_memory_slot *slot;
1429	gfn_t start_gfn;
1430	gfn_t end_gfn;
1431	int start_level;
1432	int end_level;
1433
1434	/* output fields. */
1435	gfn_t gfn;
1436	unsigned long *rmap;
1437	int level;
1438
1439	/* private field. */
1440	unsigned long *end_rmap;
1441};
1442
1443static void
1444rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1445{
1446	iterator->level = level;
1447	iterator->gfn = iterator->start_gfn;
1448	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1449	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1450					   iterator->slot);
1451}
1452
1453static void
1454slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1455		    struct kvm_memory_slot *slot, int start_level,
1456		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1457{
1458	iterator->slot = slot;
1459	iterator->start_level = start_level;
1460	iterator->end_level = end_level;
1461	iterator->start_gfn = start_gfn;
1462	iterator->end_gfn = end_gfn;
1463
1464	rmap_walk_init_level(iterator, iterator->start_level);
1465}
1466
1467static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1468{
1469	return !!iterator->rmap;
1470}
1471
1472static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1473{
1474	if (++iterator->rmap <= iterator->end_rmap) {
1475		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1476		return;
1477	}
1478
1479	if (++iterator->level > iterator->end_level) {
1480		iterator->rmap = NULL;
1481		return;
1482	}
1483
1484	rmap_walk_init_level(iterator, iterator->level);
1485}
1486
1487#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1488	   _start_gfn, _end_gfn, _iter_)				\
1489	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1490				 _end_level_, _start_gfn, _end_gfn);	\
1491	     slot_rmap_walk_okay(_iter_);				\
1492	     slot_rmap_walk_next(_iter_))
1493
1494static int kvm_handle_hva_range(struct kvm *kvm,
1495				unsigned long start,
1496				unsigned long end,
1497				unsigned long data,
1498				int (*handler)(struct kvm *kvm,
1499					       unsigned long *rmapp,
1500					       struct kvm_memory_slot *slot,
1501					       gfn_t gfn,
1502					       int level,
1503					       unsigned long data))
1504{
1505	struct kvm_memslots *slots;
1506	struct kvm_memory_slot *memslot;
1507	struct slot_rmap_walk_iterator iterator;
1508	int ret = 0;
1509	int i;
1510
1511	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1512		slots = __kvm_memslots(kvm, i);
1513		kvm_for_each_memslot(memslot, slots) {
1514			unsigned long hva_start, hva_end;
1515			gfn_t gfn_start, gfn_end;
1516
1517			hva_start = max(start, memslot->userspace_addr);
1518			hva_end = min(end, memslot->userspace_addr +
1519				      (memslot->npages << PAGE_SHIFT));
1520			if (hva_start >= hva_end)
1521				continue;
1522			/*
1523			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1524			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1525			 */
1526			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1527			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1528
1529			for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1530						 PT_MAX_HUGEPAGE_LEVEL,
1531						 gfn_start, gfn_end - 1,
1532						 &iterator)
1533				ret |= handler(kvm, iterator.rmap, memslot,
1534					       iterator.gfn, iterator.level, data);
1535		}
1536	}
1537
1538	return ret;
1539}
1540
1541static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1542			  unsigned long data,
1543			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1544					 struct kvm_memory_slot *slot,
1545					 gfn_t gfn, int level,
1546					 unsigned long data))
1547{
1548	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1549}
1550
1551int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1552{
1553	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1554}
1555
1556int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1557{
1558	return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1559}
1560
1561void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1562{
1563	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1564}
1565
1566static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1567			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1568			 unsigned long data)
1569{
1570	u64 *sptep;
1571	struct rmap_iterator uninitialized_var(iter);
1572	int young = 0;
1573
1574	BUG_ON(!shadow_accessed_mask);
1575
1576	for_each_rmap_spte(rmapp, &iter, sptep)
1577		if (*sptep & shadow_accessed_mask) {
1578			young = 1;
1579			clear_bit((ffs(shadow_accessed_mask) - 1),
1580				 (unsigned long *)sptep);
1581		}
1582
1583	trace_kvm_age_page(gfn, level, slot, young);
1584	return young;
1585}
1586
1587static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1588			      struct kvm_memory_slot *slot, gfn_t gfn,
1589			      int level, unsigned long data)
1590{
1591	u64 *sptep;
1592	struct rmap_iterator iter;
1593	int young = 0;
1594
1595	/*
1596	 * If there's no access bit in the secondary pte set by the
1597	 * hardware it's up to gup-fast/gup to set the access bit in
1598	 * the primary pte or in the page structure.
1599	 */
1600	if (!shadow_accessed_mask)
1601		goto out;
1602
1603	for_each_rmap_spte(rmapp, &iter, sptep)
1604		if (*sptep & shadow_accessed_mask) {
1605			young = 1;
1606			break;
1607		}
1608out:
1609	return young;
1610}
1611
1612#define RMAP_RECYCLE_THRESHOLD 1000
1613
1614static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1615{
1616	unsigned long *rmapp;
1617	struct kvm_mmu_page *sp;
1618
1619	sp = page_header(__pa(spte));
1620
1621	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
1622
1623	kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1624	kvm_flush_remote_tlbs(vcpu->kvm);
1625}
1626
1627int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1628{
1629	/*
1630	 * In case of absence of EPT Access and Dirty Bits supports,
1631	 * emulate the accessed bit for EPT, by checking if this page has
1632	 * an EPT mapping, and clearing it if it does. On the next access,
1633	 * a new EPT mapping will be established.
1634	 * This has some overhead, but not as much as the cost of swapping
1635	 * out actively used pages or breaking up actively used hugepages.
1636	 */
1637	if (!shadow_accessed_mask) {
1638		/*
1639		 * We are holding the kvm->mmu_lock, and we are blowing up
1640		 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1641		 * This is correct as long as we don't decouple the mmu_lock
1642		 * protected regions (like invalidate_range_start|end does).
1643		 */
1644		kvm->mmu_notifier_seq++;
1645		return kvm_handle_hva_range(kvm, start, end, 0,
1646					    kvm_unmap_rmapp);
1647	}
1648
1649	return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1650}
1651
1652int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1653{
1654	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1655}
1656
1657#ifdef MMU_DEBUG
1658static int is_empty_shadow_page(u64 *spt)
1659{
1660	u64 *pos;
1661	u64 *end;
1662
1663	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1664		if (is_shadow_present_pte(*pos)) {
1665			printk(KERN_ERR "%s: %p %llx\n", __func__,
1666			       pos, *pos);
1667			return 0;
1668		}
1669	return 1;
1670}
1671#endif
1672
1673/*
1674 * This value is the sum of all of the kvm instances's
1675 * kvm->arch.n_used_mmu_pages values.  We need a global,
1676 * aggregate version in order to make the slab shrinker
1677 * faster
1678 */
1679static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1680{
1681	kvm->arch.n_used_mmu_pages += nr;
1682	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1683}
1684
1685static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1686{
1687	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1688	hlist_del(&sp->hash_link);
1689	list_del(&sp->link);
1690	free_page((unsigned long)sp->spt);
1691	if (!sp->role.direct)
1692		free_page((unsigned long)sp->gfns);
1693	kmem_cache_free(mmu_page_header_cache, sp);
1694}
1695
1696static unsigned kvm_page_table_hashfn(gfn_t gfn)
1697{
1698	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1699}
1700
1701static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1702				    struct kvm_mmu_page *sp, u64 *parent_pte)
1703{
1704	if (!parent_pte)
1705		return;
1706
1707	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1708}
1709
1710static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1711				       u64 *parent_pte)
1712{
1713	pte_list_remove(parent_pte, &sp->parent_ptes);
1714}
1715
1716static void drop_parent_pte(struct kvm_mmu_page *sp,
1717			    u64 *parent_pte)
1718{
1719	mmu_page_remove_parent_pte(sp, parent_pte);
1720	mmu_spte_clear_no_track(parent_pte);
1721}
1722
1723static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1724					       u64 *parent_pte, int direct)
1725{
1726	struct kvm_mmu_page *sp;
1727
1728	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1729	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1730	if (!direct)
1731		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1732	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1733
1734	/*
1735	 * The active_mmu_pages list is the FIFO list, do not move the
1736	 * page until it is zapped. kvm_zap_obsolete_pages depends on
1737	 * this feature. See the comments in kvm_zap_obsolete_pages().
1738	 */
1739	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1740	sp->parent_ptes = 0;
1741	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1742	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1743	return sp;
1744}
1745
1746static void mark_unsync(u64 *spte);
1747static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1748{
1749	pte_list_walk(&sp->parent_ptes, mark_unsync);
1750}
1751
1752static void mark_unsync(u64 *spte)
1753{
1754	struct kvm_mmu_page *sp;
1755	unsigned int index;
1756
1757	sp = page_header(__pa(spte));
1758	index = spte - sp->spt;
1759	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1760		return;
1761	if (sp->unsync_children++)
1762		return;
1763	kvm_mmu_mark_parents_unsync(sp);
1764}
1765
1766static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1767			       struct kvm_mmu_page *sp)
1768{
1769	return 1;
1770}
1771
1772static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1773{
1774}
1775
1776static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1777				 struct kvm_mmu_page *sp, u64 *spte,
1778				 const void *pte)
1779{
1780	WARN_ON(1);
1781}
1782
1783#define KVM_PAGE_ARRAY_NR 16
1784
1785struct kvm_mmu_pages {
1786	struct mmu_page_and_offset {
1787		struct kvm_mmu_page *sp;
1788		unsigned int idx;
1789	} page[KVM_PAGE_ARRAY_NR];
1790	unsigned int nr;
1791};
1792
1793static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1794			 int idx)
1795{
1796	int i;
1797
1798	if (sp->unsync)
1799		for (i=0; i < pvec->nr; i++)
1800			if (pvec->page[i].sp == sp)
1801				return 0;
1802
1803	pvec->page[pvec->nr].sp = sp;
1804	pvec->page[pvec->nr].idx = idx;
1805	pvec->nr++;
1806	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1807}
1808
1809static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1810			   struct kvm_mmu_pages *pvec)
1811{
1812	int i, ret, nr_unsync_leaf = 0;
1813
1814	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1815		struct kvm_mmu_page *child;
1816		u64 ent = sp->spt[i];
1817
1818		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1819			goto clear_child_bitmap;
1820
1821		child = page_header(ent & PT64_BASE_ADDR_MASK);
1822
1823		if (child->unsync_children) {
1824			if (mmu_pages_add(pvec, child, i))
1825				return -ENOSPC;
1826
1827			ret = __mmu_unsync_walk(child, pvec);
1828			if (!ret)
1829				goto clear_child_bitmap;
1830			else if (ret > 0)
1831				nr_unsync_leaf += ret;
1832			else
1833				return ret;
1834		} else if (child->unsync) {
1835			nr_unsync_leaf++;
1836			if (mmu_pages_add(pvec, child, i))
1837				return -ENOSPC;
1838		} else
1839			 goto clear_child_bitmap;
1840
1841		continue;
1842
1843clear_child_bitmap:
1844		__clear_bit(i, sp->unsync_child_bitmap);
1845		sp->unsync_children--;
1846		WARN_ON((int)sp->unsync_children < 0);
1847	}
1848
1849
1850	return nr_unsync_leaf;
1851}
1852
1853static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1854			   struct kvm_mmu_pages *pvec)
1855{
1856	if (!sp->unsync_children)
1857		return 0;
1858
1859	mmu_pages_add(pvec, sp, 0);
1860	return __mmu_unsync_walk(sp, pvec);
1861}
1862
1863static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1864{
1865	WARN_ON(!sp->unsync);
1866	trace_kvm_mmu_sync_page(sp);
1867	sp->unsync = 0;
1868	--kvm->stat.mmu_unsync;
1869}
1870
1871static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1872				    struct list_head *invalid_list);
1873static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1874				    struct list_head *invalid_list);
1875
1876/*
1877 * NOTE: we should pay more attention on the zapped-obsolete page
1878 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1879 * since it has been deleted from active_mmu_pages but still can be found
1880 * at hast list.
1881 *
1882 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1883 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1884 * all the obsolete pages.
1885 */
1886#define for_each_gfn_sp(_kvm, _sp, _gfn)				\
1887	hlist_for_each_entry(_sp,					\
1888	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1889		if ((_sp)->gfn != (_gfn)) {} else
1890
1891#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1892	for_each_gfn_sp(_kvm, _sp, _gfn)				\
1893		if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1894
1895/* @sp->gfn should be write-protected at the call site */
1896static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1897			   struct list_head *invalid_list, bool clear_unsync)
1898{
1899	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1900		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1901		return 1;
1902	}
1903
1904	if (clear_unsync)
1905		kvm_unlink_unsync_page(vcpu->kvm, sp);
1906
1907	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1908		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1909		return 1;
1910	}
1911
1912	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1913	return 0;
1914}
1915
1916static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1917				   struct kvm_mmu_page *sp)
1918{
1919	LIST_HEAD(invalid_list);
1920	int ret;
1921
1922	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1923	if (ret)
1924		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1925
1926	return ret;
1927}
1928
1929#ifdef CONFIG_KVM_MMU_AUDIT
1930#include "mmu_audit.c"
1931#else
1932static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1933static void mmu_audit_disable(void) { }
1934#endif
1935
1936static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1937			 struct list_head *invalid_list)
1938{
1939	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1940}
1941
1942/* @gfn should be write-protected at the call site */
1943static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1944{
1945	struct kvm_mmu_page *s;
1946	LIST_HEAD(invalid_list);
1947	bool flush = false;
1948
1949	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1950		if (!s->unsync)
1951			continue;
1952
1953		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1954		kvm_unlink_unsync_page(vcpu->kvm, s);
1955		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1956			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1957			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1958			continue;
1959		}
1960		flush = true;
1961	}
1962
1963	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1964	if (flush)
1965		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1966}
1967
1968struct mmu_page_path {
1969	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1970	unsigned int idx[PT64_ROOT_LEVEL-1];
1971};
1972
1973#define for_each_sp(pvec, sp, parents, i)			\
1974		for (i = mmu_pages_next(&pvec, &parents, -1),	\
1975			sp = pvec.page[i].sp;			\
1976			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1977			i = mmu_pages_next(&pvec, &parents, i))
1978
1979static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1980			  struct mmu_page_path *parents,
1981			  int i)
1982{
1983	int n;
1984
1985	for (n = i+1; n < pvec->nr; n++) {
1986		struct kvm_mmu_page *sp = pvec->page[n].sp;
1987
1988		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1989			parents->idx[0] = pvec->page[n].idx;
1990			return n;
1991		}
1992
1993		parents->parent[sp->role.level-2] = sp;
1994		parents->idx[sp->role.level-1] = pvec->page[n].idx;
1995	}
1996
1997	return n;
1998}
1999
2000static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2001{
2002	struct kvm_mmu_page *sp;
2003	unsigned int level = 0;
2004
2005	do {
2006		unsigned int idx = parents->idx[level];
2007
2008		sp = parents->parent[level];
2009		if (!sp)
2010			return;
2011
2012		--sp->unsync_children;
2013		WARN_ON((int)sp->unsync_children < 0);
2014		__clear_bit(idx, sp->unsync_child_bitmap);
2015		level++;
2016	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
2017}
2018
2019static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2020			       struct mmu_page_path *parents,
2021			       struct kvm_mmu_pages *pvec)
2022{
2023	parents->parent[parent->role.level-1] = NULL;
2024	pvec->nr = 0;
2025}
2026
2027static void mmu_sync_children(struct kvm_vcpu *vcpu,
2028			      struct kvm_mmu_page *parent)
2029{
2030	int i;
2031	struct kvm_mmu_page *sp;
2032	struct mmu_page_path parents;
2033	struct kvm_mmu_pages pages;
2034	LIST_HEAD(invalid_list);
2035
2036	kvm_mmu_pages_init(parent, &parents, &pages);
2037	while (mmu_unsync_walk(parent, &pages)) {
2038		bool protected = false;
2039
2040		for_each_sp(pages, sp, parents, i)
2041			protected |= rmap_write_protect(vcpu, sp->gfn);
2042
2043		if (protected)
2044			kvm_flush_remote_tlbs(vcpu->kvm);
2045
2046		for_each_sp(pages, sp, parents, i) {
2047			kvm_sync_page(vcpu, sp, &invalid_list);
2048			mmu_pages_clear_parents(&parents);
2049		}
2050		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2051		cond_resched_lock(&vcpu->kvm->mmu_lock);
2052		kvm_mmu_pages_init(parent, &parents, &pages);
2053	}
2054}
2055
2056static void init_shadow_page_table(struct kvm_mmu_page *sp)
2057{
2058	int i;
2059
2060	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2061		sp->spt[i] = 0ull;
2062}
2063
2064static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2065{
2066	sp->write_flooding_count = 0;
2067}
2068
2069static void clear_sp_write_flooding_count(u64 *spte)
2070{
2071	struct kvm_mmu_page *sp =  page_header(__pa(spte));
2072
2073	__clear_sp_write_flooding_count(sp);
2074}
2075
2076static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2077{
2078	return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2079}
2080
2081static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2082					     gfn_t gfn,
2083					     gva_t gaddr,
2084					     unsigned level,
2085					     int direct,
2086					     unsigned access,
2087					     u64 *parent_pte)
2088{
2089	union kvm_mmu_page_role role;
2090	unsigned quadrant;
2091	struct kvm_mmu_page *sp;
2092	bool need_sync = false;
2093
2094	role = vcpu->arch.mmu.base_role;
2095	role.level = level;
2096	role.direct = direct;
2097	if (role.direct)
2098		role.cr4_pae = 0;
2099	role.access = access;
2100	if (!vcpu->arch.mmu.direct_map
2101	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2102		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2103		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2104		role.quadrant = quadrant;
2105	}
2106	for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2107		if (is_obsolete_sp(vcpu->kvm, sp))
2108			continue;
2109
2110		if (!need_sync && sp->unsync)
2111			need_sync = true;
2112
2113		if (sp->role.word != role.word)
2114			continue;
2115
2116		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2117			break;
2118
2119		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2120		if (sp->unsync_children) {
2121			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2122			kvm_mmu_mark_parents_unsync(sp);
2123		} else if (sp->unsync)
2124			kvm_mmu_mark_parents_unsync(sp);
2125
2126		__clear_sp_write_flooding_count(sp);
2127		trace_kvm_mmu_get_page(sp, false);
2128		return sp;
2129	}
2130	++vcpu->kvm->stat.mmu_cache_miss;
2131	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
2132	if (!sp)
2133		return sp;
2134	sp->gfn = gfn;
2135	sp->role = role;
2136	hlist_add_head(&sp->hash_link,
2137		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2138	if (!direct) {
2139		if (rmap_write_protect(vcpu, gfn))
2140			kvm_flush_remote_tlbs(vcpu->kvm);
2141		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2142			kvm_sync_pages(vcpu, gfn);
2143
2144		account_shadowed(vcpu->kvm, sp);
2145	}
2146	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2147	init_shadow_page_table(sp);
2148	trace_kvm_mmu_get_page(sp, true);
2149	return sp;
2150}
2151
2152static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2153			     struct kvm_vcpu *vcpu, u64 addr)
2154{
2155	iterator->addr = addr;
2156	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2157	iterator->level = vcpu->arch.mmu.shadow_root_level;
2158
2159	if (iterator->level == PT64_ROOT_LEVEL &&
2160	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2161	    !vcpu->arch.mmu.direct_map)
2162		--iterator->level;
2163
2164	if (iterator->level == PT32E_ROOT_LEVEL) {
2165		iterator->shadow_addr
2166			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2167		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2168		--iterator->level;
2169		if (!iterator->shadow_addr)
2170			iterator->level = 0;
2171	}
2172}
2173
2174static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2175{
2176	if (iterator->level < PT_PAGE_TABLE_LEVEL)
2177		return false;
2178
2179	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2180	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2181	return true;
2182}
2183
2184static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2185			       u64 spte)
2186{
2187	if (is_last_spte(spte, iterator->level)) {
2188		iterator->level = 0;
2189		return;
2190	}
2191
2192	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2193	--iterator->level;
2194}
2195
2196static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2197{
2198	return __shadow_walk_next(iterator, *iterator->sptep);
2199}
2200
2201static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2202{
2203	u64 spte;
2204
2205	BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2206			VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2207
2208	spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2209	       shadow_user_mask | shadow_x_mask;
2210
2211	if (accessed)
2212		spte |= shadow_accessed_mask;
2213
2214	mmu_spte_set(sptep, spte);
2215}
2216
2217static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2218				   unsigned direct_access)
2219{
2220	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2221		struct kvm_mmu_page *child;
2222
2223		/*
2224		 * For the direct sp, if the guest pte's dirty bit
2225		 * changed form clean to dirty, it will corrupt the
2226		 * sp's access: allow writable in the read-only sp,
2227		 * so we should update the spte at this point to get
2228		 * a new sp with the correct access.
2229		 */
2230		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2231		if (child->role.access == direct_access)
2232			return;
2233
2234		drop_parent_pte(child, sptep);
2235		kvm_flush_remote_tlbs(vcpu->kvm);
2236	}
2237}
2238
2239static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2240			     u64 *spte)
2241{
2242	u64 pte;
2243	struct kvm_mmu_page *child;
2244
2245	pte = *spte;
2246	if (is_shadow_present_pte(pte)) {
2247		if (is_last_spte(pte, sp->role.level)) {
2248			drop_spte(kvm, spte);
2249			if (is_large_pte(pte))
2250				--kvm->stat.lpages;
2251		} else {
2252			child = page_header(pte & PT64_BASE_ADDR_MASK);
2253			drop_parent_pte(child, spte);
2254		}
2255		return true;
2256	}
2257
2258	if (is_mmio_spte(pte))
2259		mmu_spte_clear_no_track(spte);
2260
2261	return false;
2262}
2263
2264static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2265					 struct kvm_mmu_page *sp)
2266{
2267	unsigned i;
2268
2269	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2270		mmu_page_zap_pte(kvm, sp, sp->spt + i);
2271}
2272
2273static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2274{
2275	mmu_page_remove_parent_pte(sp, parent_pte);
2276}
2277
2278static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2279{
2280	u64 *sptep;
2281	struct rmap_iterator iter;
2282
2283	while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2284		drop_parent_pte(sp, sptep);
2285}
2286
2287static int mmu_zap_unsync_children(struct kvm *kvm,
2288				   struct kvm_mmu_page *parent,
2289				   struct list_head *invalid_list)
2290{
2291	int i, zapped = 0;
2292	struct mmu_page_path parents;
2293	struct kvm_mmu_pages pages;
2294
2295	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2296		return 0;
2297
2298	kvm_mmu_pages_init(parent, &parents, &pages);
2299	while (mmu_unsync_walk(parent, &pages)) {
2300		struct kvm_mmu_page *sp;
2301
2302		for_each_sp(pages, sp, parents, i) {
2303			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2304			mmu_pages_clear_parents(&parents);
2305			zapped++;
2306		}
2307		kvm_mmu_pages_init(parent, &parents, &pages);
2308	}
2309
2310	return zapped;
2311}
2312
2313static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2314				    struct list_head *invalid_list)
2315{
2316	int ret;
2317
2318	trace_kvm_mmu_prepare_zap_page(sp);
2319	++kvm->stat.mmu_shadow_zapped;
2320	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2321	kvm_mmu_page_unlink_children(kvm, sp);
2322	kvm_mmu_unlink_parents(kvm, sp);
2323
2324	if (!sp->role.invalid && !sp->role.direct)
2325		unaccount_shadowed(kvm, sp);
2326
2327	if (sp->unsync)
2328		kvm_unlink_unsync_page(kvm, sp);
2329	if (!sp->root_count) {
2330		/* Count self */
2331		ret++;
2332		list_move(&sp->link, invalid_list);
2333		kvm_mod_used_mmu_pages(kvm, -1);
2334	} else {
2335		list_move(&sp->link, &kvm->arch.active_mmu_pages);
2336
2337		/*
2338		 * The obsolete pages can not be used on any vcpus.
2339		 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2340		 */
2341		if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2342			kvm_reload_remote_mmus(kvm);
2343	}
2344
2345	sp->role.invalid = 1;
2346	return ret;
2347}
2348
2349static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2350				    struct list_head *invalid_list)
2351{
2352	struct kvm_mmu_page *sp, *nsp;
2353
2354	if (list_empty(invalid_list))
2355		return;
2356
2357	/*
2358	 * wmb: make sure everyone sees our modifications to the page tables
2359	 * rmb: make sure we see changes to vcpu->mode
2360	 */
2361	smp_mb();
2362
2363	/*
2364	 * Wait for all vcpus to exit guest mode and/or lockless shadow
2365	 * page table walks.
2366	 */
2367	kvm_flush_remote_tlbs(kvm);
2368
2369	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2370		WARN_ON(!sp->role.invalid || sp->root_count);
2371		kvm_mmu_free_page(sp);
2372	}
2373}
2374
2375static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2376					struct list_head *invalid_list)
2377{
2378	struct kvm_mmu_page *sp;
2379
2380	if (list_empty(&kvm->arch.active_mmu_pages))
2381		return false;
2382
2383	sp = list_entry(kvm->arch.active_mmu_pages.prev,
2384			struct kvm_mmu_page, link);
2385	kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2386
2387	return true;
2388}
2389
2390/*
2391 * Changing the number of mmu pages allocated to the vm
2392 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2393 */
2394void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2395{
2396	LIST_HEAD(invalid_list);
2397
2398	spin_lock(&kvm->mmu_lock);
2399
2400	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2401		/* Need to free some mmu pages to achieve the goal. */
2402		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2403			if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2404				break;
2405
2406		kvm_mmu_commit_zap_page(kvm, &invalid_list);
2407		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2408	}
2409
2410	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2411
2412	spin_unlock(&kvm->mmu_lock);
2413}
2414
2415int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2416{
2417	struct kvm_mmu_page *sp;
2418	LIST_HEAD(invalid_list);
2419	int r;
2420
2421	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2422	r = 0;
2423	spin_lock(&kvm->mmu_lock);
2424	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2425		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2426			 sp->role.word);
2427		r = 1;
2428		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2429	}
2430	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2431	spin_unlock(&kvm->mmu_lock);
2432
2433	return r;
2434}
2435EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2436
2437static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2438{
2439	trace_kvm_mmu_unsync_page(sp);
2440	++vcpu->kvm->stat.mmu_unsync;
2441	sp->unsync = 1;
2442
2443	kvm_mmu_mark_parents_unsync(sp);
2444}
2445
2446static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2447{
2448	struct kvm_mmu_page *s;
2449
2450	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2451		if (s->unsync)
2452			continue;
2453		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2454		__kvm_unsync_page(vcpu, s);
2455	}
2456}
2457
2458static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2459				  bool can_unsync)
2460{
2461	struct kvm_mmu_page *s;
2462	bool need_unsync = false;
2463
2464	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2465		if (!can_unsync)
2466			return 1;
2467
2468		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2469			return 1;
2470
2471		if (!s->unsync)
2472			need_unsync = true;
2473	}
2474	if (need_unsync)
2475		kvm_unsync_pages(vcpu, gfn);
2476	return 0;
2477}
2478
2479static bool kvm_is_mmio_pfn(pfn_t pfn)
2480{
2481	if (pfn_valid(pfn))
2482		return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2483
2484	return true;
2485}
2486
2487static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2488		    unsigned pte_access, int level,
2489		    gfn_t gfn, pfn_t pfn, bool speculative,
2490		    bool can_unsync, bool host_writable)
2491{
2492	u64 spte;
2493	int ret = 0;
2494
2495	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2496		return 0;
2497
2498	spte = PT_PRESENT_MASK;
2499	if (!speculative)
2500		spte |= shadow_accessed_mask;
2501
2502	if (pte_access & ACC_EXEC_MASK)
2503		spte |= shadow_x_mask;
2504	else
2505		spte |= shadow_nx_mask;
2506
2507	if (pte_access & ACC_USER_MASK)
2508		spte |= shadow_user_mask;
2509
2510	if (level > PT_PAGE_TABLE_LEVEL)
2511		spte |= PT_PAGE_SIZE_MASK;
2512	if (tdp_enabled)
2513		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2514			kvm_is_mmio_pfn(pfn));
2515
2516	if (host_writable)
2517		spte |= SPTE_HOST_WRITEABLE;
2518	else
2519		pte_access &= ~ACC_WRITE_MASK;
2520
2521	spte |= (u64)pfn << PAGE_SHIFT;
2522
2523	if (pte_access & ACC_WRITE_MASK) {
2524
2525		/*
2526		 * Other vcpu creates new sp in the window between
2527		 * mapping_level() and acquiring mmu-lock. We can
2528		 * allow guest to retry the access, the mapping can
2529		 * be fixed if guest refault.
2530		 */
2531		if (level > PT_PAGE_TABLE_LEVEL &&
2532		    has_wrprotected_page(vcpu, gfn, level))
2533			goto done;
2534
2535		spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2536
2537		/*
2538		 * Optimization: for pte sync, if spte was writable the hash
2539		 * lookup is unnecessary (and expensive). Write protection
2540		 * is responsibility of mmu_get_page / kvm_sync_page.
2541		 * Same reasoning can be applied to dirty page accounting.
2542		 */
2543		if (!can_unsync && is_writable_pte(*sptep))
2544			goto set_pte;
2545
2546		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2547			pgprintk("%s: found shadow page for %llx, marking ro\n",
2548				 __func__, gfn);
2549			ret = 1;
2550			pte_access &= ~ACC_WRITE_MASK;
2551			spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2552		}
2553	}
2554
2555	if (pte_access & ACC_WRITE_MASK) {
2556		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2557		spte |= shadow_dirty_mask;
2558	}
2559
2560set_pte:
2561	if (mmu_spte_update(sptep, spte))
2562		kvm_flush_remote_tlbs(vcpu->kvm);
2563done:
2564	return ret;
2565}
2566
2567static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2568			 unsigned pte_access, int write_fault, int *emulate,
2569			 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2570			 bool host_writable)
2571{
2572	int was_rmapped = 0;
2573	int rmap_count;
2574
2575	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2576		 *sptep, write_fault, gfn);
2577
2578	if (is_rmap_spte(*sptep)) {
2579		/*
2580		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2581		 * the parent of the now unreachable PTE.
2582		 */
2583		if (level > PT_PAGE_TABLE_LEVEL &&
2584		    !is_large_pte(*sptep)) {
2585			struct kvm_mmu_page *child;
2586			u64 pte = *sptep;
2587
2588			child = page_header(pte & PT64_BASE_ADDR_MASK);
2589			drop_parent_pte(child, sptep);
2590			kvm_flush_remote_tlbs(vcpu->kvm);
2591		} else if (pfn != spte_to_pfn(*sptep)) {
2592			pgprintk("hfn old %llx new %llx\n",
2593				 spte_to_pfn(*sptep), pfn);
2594			drop_spte(vcpu->kvm, sptep);
2595			kvm_flush_remote_tlbs(vcpu->kvm);
2596		} else
2597			was_rmapped = 1;
2598	}
2599
2600	if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2601	      true, host_writable)) {
2602		if (write_fault)
2603			*emulate = 1;
2604		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2605	}
2606
2607	if (unlikely(is_mmio_spte(*sptep) && emulate))
2608		*emulate = 1;
2609
2610	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2611	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2612		 is_large_pte(*sptep)? "2MB" : "4kB",
2613		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2614		 *sptep, sptep);
2615	if (!was_rmapped && is_large_pte(*sptep))
2616		++vcpu->kvm->stat.lpages;
2617
2618	if (is_shadow_present_pte(*sptep)) {
2619		if (!was_rmapped) {
2620			rmap_count = rmap_add(vcpu, sptep, gfn);
2621			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2622				rmap_recycle(vcpu, sptep, gfn);
2623		}
2624	}
2625
2626	kvm_release_pfn_clean(pfn);
2627}
2628
2629static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2630				     bool no_dirty_log)
2631{
2632	struct kvm_memory_slot *slot;
2633
2634	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2635	if (!slot)
2636		return KVM_PFN_ERR_FAULT;
2637
2638	return gfn_to_pfn_memslot_atomic(slot, gfn);
2639}
2640
2641static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2642				    struct kvm_mmu_page *sp,
2643				    u64 *start, u64 *end)
2644{
2645	struct page *pages[PTE_PREFETCH_NUM];
2646	struct kvm_memory_slot *slot;
2647	unsigned access = sp->role.access;
2648	int i, ret;
2649	gfn_t gfn;
2650
2651	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2652	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2653	if (!slot)
2654		return -1;
2655
2656	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2657	if (ret <= 0)
2658		return -1;
2659
2660	for (i = 0; i < ret; i++, gfn++, start++)
2661		mmu_set_spte(vcpu, start, access, 0, NULL,
2662			     sp->role.level, gfn, page_to_pfn(pages[i]),
2663			     true, true);
2664
2665	return 0;
2666}
2667
2668static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2669				  struct kvm_mmu_page *sp, u64 *sptep)
2670{
2671	u64 *spte, *start = NULL;
2672	int i;
2673
2674	WARN_ON(!sp->role.direct);
2675
2676	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2677	spte = sp->spt + i;
2678
2679	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2680		if (is_shadow_present_pte(*spte) || spte == sptep) {
2681			if (!start)
2682				continue;
2683			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2684				break;
2685			start = NULL;
2686		} else if (!start)
2687			start = spte;
2688	}
2689}
2690
2691static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2692{
2693	struct kvm_mmu_page *sp;
2694
2695	/*
2696	 * Since it's no accessed bit on EPT, it's no way to
2697	 * distinguish between actually accessed translations
2698	 * and prefetched, so disable pte prefetch if EPT is
2699	 * enabled.
2700	 */
2701	if (!shadow_accessed_mask)
2702		return;
2703
2704	sp = page_header(__pa(sptep));
2705	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2706		return;
2707
2708	__direct_pte_prefetch(vcpu, sp, sptep);
2709}
2710
2711static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2712			int map_writable, int level, gfn_t gfn, pfn_t pfn,
2713			bool prefault)
2714{
2715	struct kvm_shadow_walk_iterator iterator;
2716	struct kvm_mmu_page *sp;
2717	int emulate = 0;
2718	gfn_t pseudo_gfn;
2719
2720	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2721		return 0;
2722
2723	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2724		if (iterator.level == level) {
2725			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2726				     write, &emulate, level, gfn, pfn,
2727				     prefault, map_writable);
2728			direct_pte_prefetch(vcpu, iterator.sptep);
2729			++vcpu->stat.pf_fixed;
2730			break;
2731		}
2732
2733		drop_large_spte(vcpu, iterator.sptep);
2734		if (!is_shadow_present_pte(*iterator.sptep)) {
2735			u64 base_addr = iterator.addr;
2736
2737			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2738			pseudo_gfn = base_addr >> PAGE_SHIFT;
2739			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2740					      iterator.level - 1,
2741					      1, ACC_ALL, iterator.sptep);
2742
2743			link_shadow_page(iterator.sptep, sp, true);
2744		}
2745	}
2746	return emulate;
2747}
2748
2749static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2750{
2751	siginfo_t info;
2752
2753	info.si_signo	= SIGBUS;
2754	info.si_errno	= 0;
2755	info.si_code	= BUS_MCEERR_AR;
2756	info.si_addr	= (void __user *)address;
2757	info.si_addr_lsb = PAGE_SHIFT;
2758
2759	send_sig_info(SIGBUS, &info, tsk);
2760}
2761
2762static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2763{
2764	/*
2765	 * Do not cache the mmio info caused by writing the readonly gfn
2766	 * into the spte otherwise read access on readonly gfn also can
2767	 * caused mmio page fault and treat it as mmio access.
2768	 * Return 1 to tell kvm to emulate it.
2769	 */
2770	if (pfn == KVM_PFN_ERR_RO_FAULT)
2771		return 1;
2772
2773	if (pfn == KVM_PFN_ERR_HWPOISON) {
2774		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2775		return 0;
2776	}
2777
2778	return -EFAULT;
2779}
2780
2781static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2782					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2783{
2784	pfn_t pfn = *pfnp;
2785	gfn_t gfn = *gfnp;
2786	int level = *levelp;
2787
2788	/*
2789	 * Check if it's a transparent hugepage. If this would be an
2790	 * hugetlbfs page, level wouldn't be set to
2791	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2792	 * here.
2793	 */
2794	if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2795	    level == PT_PAGE_TABLE_LEVEL &&
2796	    PageTransCompound(pfn_to_page(pfn)) &&
2797	    !has_wrprotected_page(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2798		unsigned long mask;
2799		/*
2800		 * mmu_notifier_retry was successful and we hold the
2801		 * mmu_lock here, so the pmd can't become splitting
2802		 * from under us, and in turn
2803		 * __split_huge_page_refcount() can't run from under
2804		 * us and we can safely transfer the refcount from
2805		 * PG_tail to PG_head as we switch the pfn to tail to
2806		 * head.
2807		 */
2808		*levelp = level = PT_DIRECTORY_LEVEL;
2809		mask = KVM_PAGES_PER_HPAGE(level) - 1;
2810		VM_BUG_ON((gfn & mask) != (pfn & mask));
2811		if (pfn & mask) {
2812			gfn &= ~mask;
2813			*gfnp = gfn;
2814			kvm_release_pfn_clean(pfn);
2815			pfn &= ~mask;
2816			kvm_get_pfn(pfn);
2817			*pfnp = pfn;
2818		}
2819	}
2820}
2821
2822static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2823				pfn_t pfn, unsigned access, int *ret_val)
2824{
2825	bool ret = true;
2826
2827	/* The pfn is invalid, report the error! */
2828	if (unlikely(is_error_pfn(pfn))) {
2829		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2830		goto exit;
2831	}
2832
2833	if (unlikely(is_noslot_pfn(pfn)))
2834		vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2835
2836	ret = false;
2837exit:
2838	return ret;
2839}
2840
2841static bool page_fault_can_be_fast(u32 error_code)
2842{
2843	/*
2844	 * Do not fix the mmio spte with invalid generation number which
2845	 * need to be updated by slow page fault path.
2846	 */
2847	if (unlikely(error_code & PFERR_RSVD_MASK))
2848		return false;
2849
2850	/*
2851	 * #PF can be fast only if the shadow page table is present and it
2852	 * is caused by write-protect, that means we just need change the
2853	 * W bit of the spte which can be done out of mmu-lock.
2854	 */
2855	if (!(error_code & PFERR_PRESENT_MASK) ||
2856	      !(error_code & PFERR_WRITE_MASK))
2857		return false;
2858
2859	return true;
2860}
2861
2862static bool
2863fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2864			u64 *sptep, u64 spte)
2865{
2866	gfn_t gfn;
2867
2868	WARN_ON(!sp->role.direct);
2869
2870	/*
2871	 * The gfn of direct spte is stable since it is calculated
2872	 * by sp->gfn.
2873	 */
2874	gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2875
2876	/*
2877	 * Theoretically we could also set dirty bit (and flush TLB) here in
2878	 * order to eliminate unnecessary PML logging. See comments in
2879	 * set_spte. But fast_page_fault is very unlikely to happen with PML
2880	 * enabled, so we do not do this. This might result in the same GPA
2881	 * to be logged in PML buffer again when the write really happens, and
2882	 * eventually to be called by mark_page_dirty twice. But it's also no
2883	 * harm. This also avoids the TLB flush needed after setting dirty bit
2884	 * so non-PML cases won't be impacted.
2885	 *
2886	 * Compare with set_spte where instead shadow_dirty_mask is set.
2887	 */
2888	if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2889		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2890
2891	return true;
2892}
2893
2894/*
2895 * Return value:
2896 * - true: let the vcpu to access on the same address again.
2897 * - false: let the real page fault path to fix it.
2898 */
2899static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2900			    u32 error_code)
2901{
2902	struct kvm_shadow_walk_iterator iterator;
2903	struct kvm_mmu_page *sp;
2904	bool ret = false;
2905	u64 spte = 0ull;
2906
2907	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2908		return false;
2909
2910	if (!page_fault_can_be_fast(error_code))
2911		return false;
2912
2913	walk_shadow_page_lockless_begin(vcpu);
2914	for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2915		if (!is_shadow_present_pte(spte) || iterator.level < level)
2916			break;
2917
2918	/*
2919	 * If the mapping has been changed, let the vcpu fault on the
2920	 * same address again.
2921	 */
2922	if (!is_rmap_spte(spte)) {
2923		ret = true;
2924		goto exit;
2925	}
2926
2927	sp = page_header(__pa(iterator.sptep));
2928	if (!is_last_spte(spte, sp->role.level))
2929		goto exit;
2930
2931	/*
2932	 * Check if it is a spurious fault caused by TLB lazily flushed.
2933	 *
2934	 * Need not check the access of upper level table entries since
2935	 * they are always ACC_ALL.
2936	 */
2937	 if (is_writable_pte(spte)) {
2938		ret = true;
2939		goto exit;
2940	}
2941
2942	/*
2943	 * Currently, to simplify the code, only the spte write-protected
2944	 * by dirty-log can be fast fixed.
2945	 */
2946	if (!spte_is_locklessly_modifiable(spte))
2947		goto exit;
2948
2949	/*
2950	 * Do not fix write-permission on the large spte since we only dirty
2951	 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2952	 * that means other pages are missed if its slot is dirty-logged.
2953	 *
2954	 * Instead, we let the slow page fault path create a normal spte to
2955	 * fix the access.
2956	 *
2957	 * See the comments in kvm_arch_commit_memory_region().
2958	 */
2959	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2960		goto exit;
2961
2962	/*
2963	 * Currently, fast page fault only works for direct mapping since
2964	 * the gfn is not stable for indirect shadow page.
2965	 * See Documentation/virtual/kvm/locking.txt to get more detail.
2966	 */
2967	ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2968exit:
2969	trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2970			      spte, ret);
2971	walk_shadow_page_lockless_end(vcpu);
2972
2973	return ret;
2974}
2975
2976static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2977			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2978static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2979
2980static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2981			 gfn_t gfn, bool prefault)
2982{
2983	int r;
2984	int level;
2985	bool force_pt_level = false;
2986	pfn_t pfn;
2987	unsigned long mmu_seq;
2988	bool map_writable, write = error_code & PFERR_WRITE_MASK;
2989
2990	level = mapping_level(vcpu, gfn, &force_pt_level);
2991	if (likely(!force_pt_level)) {
2992		/*
2993		 * This path builds a PAE pagetable - so we can map
2994		 * 2mb pages at maximum. Therefore check if the level
2995		 * is larger than that.
2996		 */
2997		if (level > PT_DIRECTORY_LEVEL)
2998			level = PT_DIRECTORY_LEVEL;
2999
3000		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3001	}
3002
3003	if (fast_page_fault(vcpu, v, level, error_code))
3004		return 0;
3005
3006	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3007	smp_rmb();
3008
3009	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3010		return 0;
3011
3012	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3013		return r;
3014
3015	spin_lock(&vcpu->kvm->mmu_lock);
3016	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3017		goto out_unlock;
3018	make_mmu_pages_available(vcpu);
3019	if (likely(!force_pt_level))
3020		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3021	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3022			 prefault);
3023	spin_unlock(&vcpu->kvm->mmu_lock);
3024
3025
3026	return r;
3027
3028out_unlock:
3029	spin_unlock(&vcpu->kvm->mmu_lock);
3030	kvm_release_pfn_clean(pfn);
3031	return 0;
3032}
3033
3034
3035static void mmu_free_roots(struct kvm_vcpu *vcpu)
3036{
3037	int i;
3038	struct kvm_mmu_page *sp;
3039	LIST_HEAD(invalid_list);
3040
3041	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3042		return;
3043
3044	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3045	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3046	     vcpu->arch.mmu.direct_map)) {
3047		hpa_t root = vcpu->arch.mmu.root_hpa;
3048
3049		spin_lock(&vcpu->kvm->mmu_lock);
3050		sp = page_header(root);
3051		--sp->root_count;
3052		if (!sp->root_count && sp->role.invalid) {
3053			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3054			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3055		}
3056		spin_unlock(&vcpu->kvm->mmu_lock);
3057		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3058		return;
3059	}
3060
3061	spin_lock(&vcpu->kvm->mmu_lock);
3062	for (i = 0; i < 4; ++i) {
3063		hpa_t root = vcpu->arch.mmu.pae_root[i];
3064
3065		if (root) {
3066			root &= PT64_BASE_ADDR_MASK;
3067			sp = page_header(root);
3068			--sp->root_count;
3069			if (!sp->root_count && sp->role.invalid)
3070				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3071							 &invalid_list);
3072		}
3073		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3074	}
3075	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3076	spin_unlock(&vcpu->kvm->mmu_lock);
3077	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3078}
3079
3080static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3081{
3082	int ret = 0;
3083
3084	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3085		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3086		ret = 1;
3087	}
3088
3089	return ret;
3090}
3091
3092static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3093{
3094	struct kvm_mmu_page *sp;
3095	unsigned i;
3096
3097	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3098		spin_lock(&vcpu->kvm->mmu_lock);
3099		make_mmu_pages_available(vcpu);
3100		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3101				      1, ACC_ALL, NULL);
3102		++sp->root_count;
3103		spin_unlock(&vcpu->kvm->mmu_lock);
3104		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3105	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3106		for (i = 0; i < 4; ++i) {
3107			hpa_t root = vcpu->arch.mmu.pae_root[i];
3108
3109			MMU_WARN_ON(VALID_PAGE(root));
3110			spin_lock(&vcpu->kvm->mmu_lock);
3111			make_mmu_pages_available(vcpu);
3112			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3113					      i << 30,
3114					      PT32_ROOT_LEVEL, 1, ACC_ALL,
3115					      NULL);
3116			root = __pa(sp->spt);
3117			++sp->root_count;
3118			spin_unlock(&vcpu->kvm->mmu_lock);
3119			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3120		}
3121		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3122	} else
3123		BUG();
3124
3125	return 0;
3126}
3127
3128static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3129{
3130	struct kvm_mmu_page *sp;
3131	u64 pdptr, pm_mask;
3132	gfn_t root_gfn;
3133	int i;
3134
3135	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3136
3137	if (mmu_check_root(vcpu, root_gfn))
3138		return 1;
3139
3140	/*
3141	 * Do we shadow a long mode page table? If so we need to
3142	 * write-protect the guests page table root.
3143	 */
3144	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3145		hpa_t root = vcpu->arch.mmu.root_hpa;
3146
3147		MMU_WARN_ON(VALID_PAGE(root));
3148
3149		spin_lock(&vcpu->kvm->mmu_lock);
3150		make_mmu_pages_available(vcpu);
3151		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3152				      0, ACC_ALL, NULL);
3153		root = __pa(sp->spt);
3154		++sp->root_count;
3155		spin_unlock(&vcpu->kvm->mmu_lock);
3156		vcpu->arch.mmu.root_hpa = root;
3157		return 0;
3158	}
3159
3160	/*
3161	 * We shadow a 32 bit page table. This may be a legacy 2-level
3162	 * or a PAE 3-level page table. In either case we need to be aware that
3163	 * the shadow page table may be a PAE or a long mode page table.
3164	 */
3165	pm_mask = PT_PRESENT_MASK;
3166	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3167		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3168
3169	for (i = 0; i < 4; ++i) {
3170		hpa_t root = vcpu->arch.mmu.pae_root[i];
3171
3172		MMU_WARN_ON(VALID_PAGE(root));
3173		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3174			pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3175			if (!is_present_gpte(pdptr)) {
3176				vcpu->arch.mmu.pae_root[i] = 0;
3177				continue;
3178			}
3179			root_gfn = pdptr >> PAGE_SHIFT;
3180			if (mmu_check_root(vcpu, root_gfn))
3181				return 1;
3182		}
3183		spin_lock(&vcpu->kvm->mmu_lock);
3184		make_mmu_pages_available(vcpu);
3185		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3186				      PT32_ROOT_LEVEL, 0,
3187				      ACC_ALL, NULL);
3188		root = __pa(sp->spt);
3189		++sp->root_count;
3190		spin_unlock(&vcpu->kvm->mmu_lock);
3191
3192		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3193	}
3194	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3195
3196	/*
3197	 * If we shadow a 32 bit page table with a long mode page
3198	 * table we enter this path.
3199	 */
3200	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3201		if (vcpu->arch.mmu.lm_root == NULL) {
3202			/*
3203			 * The additional page necessary for this is only
3204			 * allocated on demand.
3205			 */
3206
3207			u64 *lm_root;
3208
3209			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3210			if (lm_root == NULL)
3211				return 1;
3212
3213			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3214
3215			vcpu->arch.mmu.lm_root = lm_root;
3216		}
3217
3218		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3219	}
3220
3221	return 0;
3222}
3223
3224static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3225{
3226	if (vcpu->arch.mmu.direct_map)
3227		return mmu_alloc_direct_roots(vcpu);
3228	else
3229		return mmu_alloc_shadow_roots(vcpu);
3230}
3231
3232static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3233{
3234	int i;
3235	struct kvm_mmu_page *sp;
3236
3237	if (vcpu->arch.mmu.direct_map)
3238		return;
3239
3240	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3241		return;
3242
3243	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3244	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3245	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3246		hpa_t root = vcpu->arch.mmu.root_hpa;
3247		sp = page_header(root);
3248		mmu_sync_children(vcpu, sp);
3249		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3250		return;
3251	}
3252	for (i = 0; i < 4; ++i) {
3253		hpa_t root = vcpu->arch.mmu.pae_root[i];
3254
3255		if (root && VALID_PAGE(root)) {
3256			root &= PT64_BASE_ADDR_MASK;
3257			sp = page_header(root);
3258			mmu_sync_children(vcpu, sp);
3259		}
3260	}
3261	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3262}
3263
3264void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3265{
3266	spin_lock(&vcpu->kvm->mmu_lock);
3267	mmu_sync_roots(vcpu);
3268	spin_unlock(&vcpu->kvm->mmu_lock);
3269}
3270EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3271
3272static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3273				  u32 access, struct x86_exception *exception)
3274{
3275	if (exception)
3276		exception->error_code = 0;
3277	return vaddr;
3278}
3279
3280static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3281					 u32 access,
3282					 struct x86_exception *exception)
3283{
3284	if (exception)
3285		exception->error_code = 0;
3286	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3287}
3288
3289static bool
3290__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3291{
3292	int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3293
3294	return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3295		((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3296}
3297
3298static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3299{
3300	return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3301}
3302
3303static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3304{
3305	return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3306}
3307
3308static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3309{
3310	if (direct)
3311		return vcpu_match_mmio_gpa(vcpu, addr);
3312
3313	return vcpu_match_mmio_gva(vcpu, addr);
3314}
3315
3316/* return true if reserved bit is detected on spte. */
3317static bool
3318walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3319{
3320	struct kvm_shadow_walk_iterator iterator;
3321	u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3322	int root, leaf;
3323	bool reserved = false;
3324
3325	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3326		goto exit;
3327
3328	walk_shadow_page_lockless_begin(vcpu);
3329
3330	for (shadow_walk_init(&iterator, vcpu, addr),
3331		 leaf = root = iterator.level;
3332	     shadow_walk_okay(&iterator);
3333	     __shadow_walk_next(&iterator, spte)) {
3334		spte = mmu_spte_get_lockless(iterator.sptep);
3335
3336		sptes[leaf - 1] = spte;
3337		leaf--;
3338
3339		if (!is_shadow_present_pte(spte))
3340			break;
3341
3342		reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3343						    iterator.level);
3344	}
3345
3346	walk_shadow_page_lockless_end(vcpu);
3347
3348	if (reserved) {
3349		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3350		       __func__, addr);
3351		while (root > leaf) {
3352			pr_err("------ spte 0x%llx level %d.\n",
3353			       sptes[root - 1], root);
3354			root--;
3355		}
3356	}
3357exit:
3358	*sptep = spte;
3359	return reserved;
3360}
3361
3362int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3363{
3364	u64 spte;
3365	bool reserved;
3366
3367	if (quickly_check_mmio_pf(vcpu, addr, direct))
3368		return RET_MMIO_PF_EMULATE;
3369
3370	reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3371	if (WARN_ON(reserved))
3372		return RET_MMIO_PF_BUG;
3373
3374	if (is_mmio_spte(spte)) {
3375		gfn_t gfn = get_mmio_spte_gfn(spte);
3376		unsigned access = get_mmio_spte_access(spte);
3377
3378		if (!check_mmio_spte(vcpu, spte))
3379			return RET_MMIO_PF_INVALID;
3380
3381		if (direct)
3382			addr = 0;
3383
3384		trace_handle_mmio_page_fault(addr, gfn, access);
3385		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3386		return RET_MMIO_PF_EMULATE;
3387	}
3388
3389	/*
3390	 * If the page table is zapped by other cpus, let CPU fault again on
3391	 * the address.
3392	 */
3393	return RET_MMIO_PF_RETRY;
3394}
3395EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3396
3397static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3398				u32 error_code, bool prefault)
3399{
3400	gfn_t gfn;
3401	int r;
3402
3403	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3404
3405	if (unlikely(error_code & PFERR_RSVD_MASK)) {
3406		r = handle_mmio_page_fault(vcpu, gva, true);
3407
3408		if (likely(r != RET_MMIO_PF_INVALID))
3409			return r;
3410	}
3411
3412	r = mmu_topup_memory_caches(vcpu);
3413	if (r)
3414		return r;
3415
3416	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3417
3418	gfn = gva >> PAGE_SHIFT;
3419
3420	return nonpaging_map(vcpu, gva & PAGE_MASK,
3421			     error_code, gfn, prefault);
3422}
3423
3424static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3425{
3426	struct kvm_arch_async_pf arch;
3427
3428	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3429	arch.gfn = gfn;
3430	arch.direct_map = vcpu->arch.mmu.direct_map;
3431	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3432
3433	return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3434}
3435
3436static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3437{
3438	if (unlikely(!lapic_in_kernel(vcpu) ||
3439		     kvm_event_needs_reinjection(vcpu)))
3440		return false;
3441
3442	return kvm_x86_ops->interrupt_allowed(vcpu);
3443}
3444
3445static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3446			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3447{
3448	struct kvm_memory_slot *slot;
3449	bool async;
3450
3451	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3452	async = false;
3453	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3454	if (!async)
3455		return false; /* *pfn has correct page already */
3456
3457	if (!prefault && can_do_async_pf(vcpu)) {
3458		trace_kvm_try_async_get_page(gva, gfn);
3459		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3460			trace_kvm_async_pf_doublefault(gva, gfn);
3461			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3462			return true;
3463		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3464			return true;
3465	}
3466
3467	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3468	return false;
3469}
3470
3471static bool
3472check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3473{
3474	int page_num = KVM_PAGES_PER_HPAGE(level);
3475
3476	gfn &= ~(page_num - 1);
3477
3478	return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3479}
3480
3481static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3482			  bool prefault)
3483{
3484	pfn_t pfn;
3485	int r;
3486	int level;
3487	bool force_pt_level;
3488	gfn_t gfn = gpa >> PAGE_SHIFT;
3489	unsigned long mmu_seq;
3490	int write = error_code & PFERR_WRITE_MASK;
3491	bool map_writable;
3492
3493	MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3494
3495	if (unlikely(error_code & PFERR_RSVD_MASK)) {
3496		r = handle_mmio_page_fault(vcpu, gpa, true);
3497
3498		if (likely(r != RET_MMIO_PF_INVALID))
3499			return r;
3500	}
3501
3502	r = mmu_topup_memory_caches(vcpu);
3503	if (r)
3504		return r;
3505
3506	force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3507							   PT_DIRECTORY_LEVEL);
3508	level = mapping_level(vcpu, gfn, &force_pt_level);
3509	if (likely(!force_pt_level)) {
3510		if (level > PT_DIRECTORY_LEVEL &&
3511		    !check_hugepage_cache_consistency(vcpu, gfn, level))
3512			level = PT_DIRECTORY_LEVEL;
3513		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3514	}
3515
3516	if (fast_page_fault(vcpu, gpa, level, error_code))
3517		return 0;
3518
3519	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3520	smp_rmb();
3521
3522	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3523		return 0;
3524
3525	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3526		return r;
3527
3528	spin_lock(&vcpu->kvm->mmu_lock);
3529	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3530		goto out_unlock;
3531	make_mmu_pages_available(vcpu);
3532	if (likely(!force_pt_level))
3533		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3534	r = __direct_map(vcpu, gpa, write, map_writable,
3535			 level, gfn, pfn, prefault);
3536	spin_unlock(&vcpu->kvm->mmu_lock);
3537
3538	return r;
3539
3540out_unlock:
3541	spin_unlock(&vcpu->kvm->mmu_lock);
3542	kvm_release_pfn_clean(pfn);
3543	return 0;
3544}
3545
3546static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3547				   struct kvm_mmu *context)
3548{
3549	context->page_fault = nonpaging_page_fault;
3550	context->gva_to_gpa = nonpaging_gva_to_gpa;
3551	context->sync_page = nonpaging_sync_page;
3552	context->invlpg = nonpaging_invlpg;
3553	context->update_pte = nonpaging_update_pte;
3554	context->root_level = 0;
3555	context->shadow_root_level = PT32E_ROOT_LEVEL;
3556	context->root_hpa = INVALID_PAGE;
3557	context->direct_map = true;
3558	context->nx = false;
3559}
3560
3561void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3562{
3563	mmu_free_roots(vcpu);
3564}
3565
3566static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3567{
3568	return kvm_read_cr3(vcpu);
3569}
3570
3571static void inject_page_fault(struct kvm_vcpu *vcpu,
3572			      struct x86_exception *fault)
3573{
3574	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3575}
3576
3577static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3578			   unsigned access, int *nr_present)
3579{
3580	if (unlikely(is_mmio_spte(*sptep))) {
3581		if (gfn != get_mmio_spte_gfn(*sptep)) {
3582			mmu_spte_clear_no_track(sptep);
3583			return true;
3584		}
3585
3586		(*nr_present)++;
3587		mark_mmio_spte(vcpu, sptep, gfn, access);
3588		return true;
3589	}
3590
3591	return false;
3592}
3593
3594static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3595{
3596	unsigned index;
3597
3598	index = level - 1;
3599	index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3600	return mmu->last_pte_bitmap & (1 << index);
3601}
3602
3603#define PTTYPE_EPT 18 /* arbitrary */
3604#define PTTYPE PTTYPE_EPT
3605#include "paging_tmpl.h"
3606#undef PTTYPE
3607
3608#define PTTYPE 64
3609#include "paging_tmpl.h"
3610#undef PTTYPE
3611
3612#define PTTYPE 32
3613#include "paging_tmpl.h"
3614#undef PTTYPE
3615
3616static void
3617__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3618			struct rsvd_bits_validate *rsvd_check,
3619			int maxphyaddr, int level, bool nx, bool gbpages,
3620			bool pse, bool amd)
3621{
3622	u64 exb_bit_rsvd = 0;
3623	u64 gbpages_bit_rsvd = 0;
3624	u64 nonleaf_bit8_rsvd = 0;
3625
3626	rsvd_check->bad_mt_xwr = 0;
3627
3628	if (!nx)
3629		exb_bit_rsvd = rsvd_bits(63, 63);
3630	if (!gbpages)
3631		gbpages_bit_rsvd = rsvd_bits(7, 7);
3632
3633	/*
3634	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3635	 * leaf entries) on AMD CPUs only.
3636	 */
3637	if (amd)
3638		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3639
3640	switch (level) {
3641	case PT32_ROOT_LEVEL:
3642		/* no rsvd bits for 2 level 4K page table entries */
3643		rsvd_check->rsvd_bits_mask[0][1] = 0;
3644		rsvd_check->rsvd_bits_mask[0][0] = 0;
3645		rsvd_check->rsvd_bits_mask[1][0] =
3646			rsvd_check->rsvd_bits_mask[0][0];
3647
3648		if (!pse) {
3649			rsvd_check->rsvd_bits_mask[1][1] = 0;
3650			break;
3651		}
3652
3653		if (is_cpuid_PSE36())
3654			/* 36bits PSE 4MB page */
3655			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3656		else
3657			/* 32 bits PSE 4MB page */
3658			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3659		break;
3660	case PT32E_ROOT_LEVEL:
3661		rsvd_check->rsvd_bits_mask[0][2] =
3662			rsvd_bits(maxphyaddr, 63) |
3663			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
3664		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3665			rsvd_bits(maxphyaddr, 62);	/* PDE */
3666		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3667			rsvd_bits(maxphyaddr, 62); 	/* PTE */
3668		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3669			rsvd_bits(maxphyaddr, 62) |
3670			rsvd_bits(13, 20);		/* large page */
3671		rsvd_check->rsvd_bits_mask[1][0] =
3672			rsvd_check->rsvd_bits_mask[0][0];
3673		break;
3674	case PT64_ROOT_LEVEL:
3675		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3676			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3677			rsvd_bits(maxphyaddr, 51);
3678		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3679			nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3680			rsvd_bits(maxphyaddr, 51);
3681		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3682			rsvd_bits(maxphyaddr, 51);
3683		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3684			rsvd_bits(maxphyaddr, 51);
3685		rsvd_check->rsvd_bits_mask[1][3] =
3686			rsvd_check->rsvd_bits_mask[0][3];
3687		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3688			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3689			rsvd_bits(13, 29);
3690		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3691			rsvd_bits(maxphyaddr, 51) |
3692			rsvd_bits(13, 20);		/* large page */
3693		rsvd_check->rsvd_bits_mask[1][0] =
3694			rsvd_check->rsvd_bits_mask[0][0];
3695		break;
3696	}
3697}
3698
3699static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3700				  struct kvm_mmu *context)
3701{
3702	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3703				cpuid_maxphyaddr(vcpu), context->root_level,
3704				context->nx, guest_cpuid_has_gbpages(vcpu),
3705				is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3706}
3707
3708static void
3709__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3710			    int maxphyaddr, bool execonly)
3711{
3712	u64 bad_mt_xwr;
3713
3714	rsvd_check->rsvd_bits_mask[0][3] =
3715		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3716	rsvd_check->rsvd_bits_mask[0][2] =
3717		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3718	rsvd_check->rsvd_bits_mask[0][1] =
3719		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3720	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3721
3722	/* large page */
3723	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3724	rsvd_check->rsvd_bits_mask[1][2] =
3725		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3726	rsvd_check->rsvd_bits_mask[1][1] =
3727		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3728	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3729
3730	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
3731	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
3732	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
3733	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
3734	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
3735	if (!execonly) {
3736		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
3737		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3738	}
3739	rsvd_check->bad_mt_xwr = bad_mt_xwr;
3740}
3741
3742static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3743		struct kvm_mmu *context, bool execonly)
3744{
3745	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3746				    cpuid_maxphyaddr(vcpu), execonly);
3747}
3748
3749/*
3750 * the page table on host is the shadow page table for the page
3751 * table in guest or amd nested guest, its mmu features completely
3752 * follow the features in guest.
3753 */
3754void
3755reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3756{
3757	bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
3758
3759	/*
3760	 * Passing "true" to the last argument is okay; it adds a check
3761	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
3762	 */
3763	__reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3764				boot_cpu_data.x86_phys_bits,
3765				context->shadow_root_level, uses_nx,
3766				guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3767				true);
3768}
3769EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3770
3771static inline bool boot_cpu_is_amd(void)
3772{
3773	WARN_ON_ONCE(!tdp_enabled);
3774	return shadow_x_mask == 0;
3775}
3776
3777/*
3778 * the direct page table on host, use as much mmu features as
3779 * possible, however, kvm currently does not do execution-protection.
3780 */
3781static void
3782reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3783				struct kvm_mmu *context)
3784{
3785	if (boot_cpu_is_amd())
3786		__reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3787					boot_cpu_data.x86_phys_bits,
3788					context->shadow_root_level, false,
3789					cpu_has_gbpages, true, true);
3790	else
3791		__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3792					    boot_cpu_data.x86_phys_bits,
3793					    false);
3794
3795}
3796
3797/*
3798 * as the comments in reset_shadow_zero_bits_mask() except it
3799 * is the shadow page table for intel nested guest.
3800 */
3801static void
3802reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3803				struct kvm_mmu *context, bool execonly)
3804{
3805	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3806				    boot_cpu_data.x86_phys_bits, execonly);
3807}
3808
3809static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3810				      struct kvm_mmu *mmu, bool ept)
3811{
3812	unsigned bit, byte, pfec;
3813	u8 map;
3814	bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3815
3816	cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3817	cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3818	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3819		pfec = byte << 1;
3820		map = 0;
3821		wf = pfec & PFERR_WRITE_MASK;
3822		uf = pfec & PFERR_USER_MASK;
3823		ff = pfec & PFERR_FETCH_MASK;
3824		/*
3825		 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3826		 * subject to SMAP restrictions, and cleared otherwise. The
3827		 * bit is only meaningful if the SMAP bit is set in CR4.
3828		 */
3829		smapf = !(pfec & PFERR_RSVD_MASK);
3830		for (bit = 0; bit < 8; ++bit) {
3831			x = bit & ACC_EXEC_MASK;
3832			w = bit & ACC_WRITE_MASK;
3833			u = bit & ACC_USER_MASK;
3834
3835			if (!ept) {
3836				/* Not really needed: !nx will cause pte.nx to fault */
3837				x |= !mmu->nx;
3838				/* Allow supervisor writes if !cr0.wp */
3839				w |= !is_write_protection(vcpu) && !uf;
3840				/* Disallow supervisor fetches of user code if cr4.smep */
3841				x &= !(cr4_smep && u && !uf);
3842
3843				/*
3844				 * SMAP:kernel-mode data accesses from user-mode
3845				 * mappings should fault. A fault is considered
3846				 * as a SMAP violation if all of the following
3847				 * conditions are ture:
3848				 *   - X86_CR4_SMAP is set in CR4
3849				 *   - An user page is accessed
3850				 *   - Page fault in kernel mode
3851				 *   - if CPL = 3 or X86_EFLAGS_AC is clear
3852				 *
3853				 *   Here, we cover the first three conditions.
3854				 *   The fourth is computed dynamically in
3855				 *   permission_fault() and is in smapf.
3856				 *
3857				 *   Also, SMAP does not affect instruction
3858				 *   fetches, add the !ff check here to make it
3859				 *   clearer.
3860				 */
3861				smap = cr4_smap && u && !uf && !ff;
3862			} else
3863				/* Not really needed: no U/S accesses on ept  */
3864				u = 1;
3865
3866			fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3867				(smapf && smap);
3868			map |= fault << bit;
3869		}
3870		mmu->permissions[byte] = map;
3871	}
3872}
3873
3874static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3875{
3876	u8 map;
3877	unsigned level, root_level = mmu->root_level;
3878	const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3879
3880	if (root_level == PT32E_ROOT_LEVEL)
3881		--root_level;
3882	/* PT_PAGE_TABLE_LEVEL always terminates */
3883	map = 1 | (1 << ps_set_index);
3884	for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3885		if (level <= PT_PDPE_LEVEL
3886		    && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3887			map |= 1 << (ps_set_index | (level - 1));
3888	}
3889	mmu->last_pte_bitmap = map;
3890}
3891
3892static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3893					 struct kvm_mmu *context,
3894					 int level)
3895{
3896	context->nx = is_nx(vcpu);
3897	context->root_level = level;
3898
3899	reset_rsvds_bits_mask(vcpu, context);
3900	update_permission_bitmask(vcpu, context, false);
3901	update_last_pte_bitmap(vcpu, context);
3902
3903	MMU_WARN_ON(!is_pae(vcpu));
3904	context->page_fault = paging64_page_fault;
3905	context->gva_to_gpa = paging64_gva_to_gpa;
3906	context->sync_page = paging64_sync_page;
3907	context->invlpg = paging64_invlpg;
3908	context->update_pte = paging64_update_pte;
3909	context->shadow_root_level = level;
3910	context->root_hpa = INVALID_PAGE;
3911	context->direct_map = false;
3912}
3913
3914static void paging64_init_context(struct kvm_vcpu *vcpu,
3915				  struct kvm_mmu *context)
3916{
3917	paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3918}
3919
3920static void paging32_init_context(struct kvm_vcpu *vcpu,
3921				  struct kvm_mmu *context)
3922{
3923	context->nx = false;
3924	context->root_level = PT32_ROOT_LEVEL;
3925
3926	reset_rsvds_bits_mask(vcpu, context);
3927	update_permission_bitmask(vcpu, context, false);
3928	update_last_pte_bitmap(vcpu, context);
3929
3930	context->page_fault = paging32_page_fault;
3931	context->gva_to_gpa = paging32_gva_to_gpa;
3932	context->sync_page = paging32_sync_page;
3933	context->invlpg = paging32_invlpg;
3934	context->update_pte = paging32_update_pte;
3935	context->shadow_root_level = PT32E_ROOT_LEVEL;
3936	context->root_hpa = INVALID_PAGE;
3937	context->direct_map = false;
3938}
3939
3940static void paging32E_init_context(struct kvm_vcpu *vcpu,
3941				   struct kvm_mmu *context)
3942{
3943	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3944}
3945
3946static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3947{
3948	struct kvm_mmu *context = &vcpu->arch.mmu;
3949
3950	context->base_role.word = 0;
3951	context->base_role.smm = is_smm(vcpu);
3952	context->page_fault = tdp_page_fault;
3953	context->sync_page = nonpaging_sync_page;
3954	context->invlpg = nonpaging_invlpg;
3955	context->update_pte = nonpaging_update_pte;
3956	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3957	context->root_hpa = INVALID_PAGE;
3958	context->direct_map = true;
3959	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3960	context->get_cr3 = get_cr3;
3961	context->get_pdptr = kvm_pdptr_read;
3962	context->inject_page_fault = kvm_inject_page_fault;
3963
3964	if (!is_paging(vcpu)) {
3965		context->nx = false;
3966		context->gva_to_gpa = nonpaging_gva_to_gpa;
3967		context->root_level = 0;
3968	} else if (is_long_mode(vcpu)) {
3969		context->nx = is_nx(vcpu);
3970		context->root_level = PT64_ROOT_LEVEL;
3971		reset_rsvds_bits_mask(vcpu, context);
3972		context->gva_to_gpa = paging64_gva_to_gpa;
3973	} else if (is_pae(vcpu)) {
3974		context->nx = is_nx(vcpu);
3975		context->root_level = PT32E_ROOT_LEVEL;
3976		reset_rsvds_bits_mask(vcpu, context);
3977		context->gva_to_gpa = paging64_gva_to_gpa;
3978	} else {
3979		context->nx = false;
3980		context->root_level = PT32_ROOT_LEVEL;
3981		reset_rsvds_bits_mask(vcpu, context);
3982		context->gva_to_gpa = paging32_gva_to_gpa;
3983	}
3984
3985	update_permission_bitmask(vcpu, context, false);
3986	update_last_pte_bitmap(vcpu, context);
3987	reset_tdp_shadow_zero_bits_mask(vcpu, context);
3988}
3989
3990void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
3991{
3992	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3993	bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3994	struct kvm_mmu *context = &vcpu->arch.mmu;
3995
3996	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
3997
3998	if (!is_paging(vcpu))
3999		nonpaging_init_context(vcpu, context);
4000	else if (is_long_mode(vcpu))
4001		paging64_init_context(vcpu, context);
4002	else if (is_pae(vcpu))
4003		paging32E_init_context(vcpu, context);
4004	else
4005		paging32_init_context(vcpu, context);
4006
4007	context->base_role.nxe = is_nx(vcpu);
4008	context->base_role.cr4_pae = !!is_pae(vcpu);
4009	context->base_role.cr0_wp  = is_write_protection(vcpu);
4010	context->base_role.smep_andnot_wp
4011		= smep && !is_write_protection(vcpu);
4012	context->base_role.smap_andnot_wp
4013		= smap && !is_write_protection(vcpu);
4014	context->base_role.smm = is_smm(vcpu);
4015	reset_shadow_zero_bits_mask(vcpu, context);
4016}
4017EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4018
4019void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4020{
4021	struct kvm_mmu *context = &vcpu->arch.mmu;
4022
4023	MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4024
4025	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4026
4027	context->nx = true;
4028	context->page_fault = ept_page_fault;
4029	context->gva_to_gpa = ept_gva_to_gpa;
4030	context->sync_page = ept_sync_page;
4031	context->invlpg = ept_invlpg;
4032	context->update_pte = ept_update_pte;
4033	context->root_level = context->shadow_root_level;
4034	context->root_hpa = INVALID_PAGE;
4035	context->direct_map = false;
4036
4037	update_permission_bitmask(vcpu, context, true);
4038	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4039	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4040}
4041EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4042
4043static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4044{
4045	struct kvm_mmu *context = &vcpu->arch.mmu;
4046
4047	kvm_init_shadow_mmu(vcpu);
4048	context->set_cr3           = kvm_x86_ops->set_cr3;
4049	context->get_cr3           = get_cr3;
4050	context->get_pdptr         = kvm_pdptr_read;
4051	context->inject_page_fault = kvm_inject_page_fault;
4052}
4053
4054static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4055{
4056	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4057
4058	g_context->get_cr3           = get_cr3;
4059	g_context->get_pdptr         = kvm_pdptr_read;
4060	g_context->inject_page_fault = kvm_inject_page_fault;
4061
4062	/*
4063	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
4064	 * translation of l2_gpa to l1_gpa addresses is done using the
4065	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
4066	 * functions between mmu and nested_mmu are swapped.
4067	 */
4068	if (!is_paging(vcpu)) {
4069		g_context->nx = false;
4070		g_context->root_level = 0;
4071		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4072	} else if (is_long_mode(vcpu)) {
4073		g_context->nx = is_nx(vcpu);
4074		g_context->root_level = PT64_ROOT_LEVEL;
4075		reset_rsvds_bits_mask(vcpu, g_context);
4076		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4077	} else if (is_pae(vcpu)) {
4078		g_context->nx = is_nx(vcpu);
4079		g_context->root_level = PT32E_ROOT_LEVEL;
4080		reset_rsvds_bits_mask(vcpu, g_context);
4081		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4082	} else {
4083		g_context->nx = false;
4084		g_context->root_level = PT32_ROOT_LEVEL;
4085		reset_rsvds_bits_mask(vcpu, g_context);
4086		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4087	}
4088
4089	update_permission_bitmask(vcpu, g_context, false);
4090	update_last_pte_bitmap(vcpu, g_context);
4091}
4092
4093static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4094{
4095	if (mmu_is_nested(vcpu))
4096		init_kvm_nested_mmu(vcpu);
4097	else if (tdp_enabled)
4098		init_kvm_tdp_mmu(vcpu);
4099	else
4100		init_kvm_softmmu(vcpu);
4101}
4102
4103void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4104{
4105	kvm_mmu_unload(vcpu);
4106	init_kvm_mmu(vcpu);
4107}
4108EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4109
4110int kvm_mmu_load(struct kvm_vcpu *vcpu)
4111{
4112	int r;
4113
4114	r = mmu_topup_memory_caches(vcpu);
4115	if (r)
4116		goto out;
4117	r = mmu_alloc_roots(vcpu);
4118	kvm_mmu_sync_roots(vcpu);
4119	if (r)
4120		goto out;
4121	/* set_cr3() should ensure TLB has been flushed */
4122	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4123out:
4124	return r;
4125}
4126EXPORT_SYMBOL_GPL(kvm_mmu_load);
4127
4128void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4129{
4130	mmu_free_roots(vcpu);
4131	WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4132}
4133EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4134
4135static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4136				  struct kvm_mmu_page *sp, u64 *spte,
4137				  const void *new)
4138{
4139	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4140		++vcpu->kvm->stat.mmu_pde_zapped;
4141		return;
4142        }
4143
4144	++vcpu->kvm->stat.mmu_pte_updated;
4145	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4146}
4147
4148static bool need_remote_flush(u64 old, u64 new)
4149{
4150	if (!is_shadow_present_pte(old))
4151		return false;
4152	if (!is_shadow_present_pte(new))
4153		return true;
4154	if ((old ^ new) & PT64_BASE_ADDR_MASK)
4155		return true;
4156	old ^= shadow_nx_mask;
4157	new ^= shadow_nx_mask;
4158	return (old & ~new & PT64_PERM_MASK) != 0;
4159}
4160
4161static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4162				    bool remote_flush, bool local_flush)
4163{
4164	if (zap_page)
4165		return;
4166
4167	if (remote_flush)
4168		kvm_flush_remote_tlbs(vcpu->kvm);
4169	else if (local_flush)
4170		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4171}
4172
4173static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4174				    const u8 *new, int *bytes)
4175{
4176	u64 gentry;
4177	int r;
4178
4179	/*
4180	 * Assume that the pte write on a page table of the same type
4181	 * as the current vcpu paging mode since we update the sptes only
4182	 * when they have the same mode.
4183	 */
4184	if (is_pae(vcpu) && *bytes == 4) {
4185		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4186		*gpa &= ~(gpa_t)7;
4187		*bytes = 8;
4188		r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4189		if (r)
4190			gentry = 0;
4191		new = (const u8 *)&gentry;
4192	}
4193
4194	switch (*bytes) {
4195	case 4:
4196		gentry = *(const u32 *)new;
4197		break;
4198	case 8:
4199		gentry = *(const u64 *)new;
4200		break;
4201	default:
4202		gentry = 0;
4203		break;
4204	}
4205
4206	return gentry;
4207}
4208
4209/*
4210 * If we're seeing too many writes to a page, it may no longer be a page table,
4211 * or we may be forking, in which case it is better to unmap the page.
4212 */
4213static bool detect_write_flooding(struct kvm_mmu_page *sp)
4214{
4215	/*
4216	 * Skip write-flooding detected for the sp whose level is 1, because
4217	 * it can become unsync, then the guest page is not write-protected.
4218	 */
4219	if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4220		return false;
4221
4222	return ++sp->write_flooding_count >= 3;
4223}
4224
4225/*
4226 * Misaligned accesses are too much trouble to fix up; also, they usually
4227 * indicate a page is not used as a page table.
4228 */
4229static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4230				    int bytes)
4231{
4232	unsigned offset, pte_size, misaligned;
4233
4234	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4235		 gpa, bytes, sp->role.word);
4236
4237	offset = offset_in_page(gpa);
4238	pte_size = sp->role.cr4_pae ? 8 : 4;
4239
4240	/*
4241	 * Sometimes, the OS only writes the last one bytes to update status
4242	 * bits, for example, in linux, andb instruction is used in clear_bit().
4243	 */
4244	if (!(offset & (pte_size - 1)) && bytes == 1)
4245		return false;
4246
4247	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4248	misaligned |= bytes < 4;
4249
4250	return misaligned;
4251}
4252
4253static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4254{
4255	unsigned page_offset, quadrant;
4256	u64 *spte;
4257	int level;
4258
4259	page_offset = offset_in_page(gpa);
4260	level = sp->role.level;
4261	*nspte = 1;
4262	if (!sp->role.cr4_pae) {
4263		page_offset <<= 1;	/* 32->64 */
4264		/*
4265		 * A 32-bit pde maps 4MB while the shadow pdes map
4266		 * only 2MB.  So we need to double the offset again
4267		 * and zap two pdes instead of one.
4268		 */
4269		if (level == PT32_ROOT_LEVEL) {
4270			page_offset &= ~7; /* kill rounding error */
4271			page_offset <<= 1;
4272			*nspte = 2;
4273		}
4274		quadrant = page_offset >> PAGE_SHIFT;
4275		page_offset &= ~PAGE_MASK;
4276		if (quadrant != sp->role.quadrant)
4277			return NULL;
4278	}
4279
4280	spte = &sp->spt[page_offset / sizeof(*spte)];
4281	return spte;
4282}
4283
4284void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4285		       const u8 *new, int bytes)
4286{
4287	gfn_t gfn = gpa >> PAGE_SHIFT;
4288	struct kvm_mmu_page *sp;
4289	LIST_HEAD(invalid_list);
4290	u64 entry, gentry, *spte;
4291	int npte;
4292	bool remote_flush, local_flush, zap_page;
4293	union kvm_mmu_page_role mask = { };
4294
4295	mask.cr0_wp = 1;
4296	mask.cr4_pae = 1;
4297	mask.nxe = 1;
4298	mask.smep_andnot_wp = 1;
4299	mask.smap_andnot_wp = 1;
4300	mask.smm = 1;
4301
4302	/*
4303	 * If we don't have indirect shadow pages, it means no page is
4304	 * write-protected, so we can exit simply.
4305	 */
4306	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4307		return;
4308
4309	zap_page = remote_flush = local_flush = false;
4310
4311	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4312
4313	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4314
4315	/*
4316	 * No need to care whether allocation memory is successful
4317	 * or not since pte prefetch is skiped if it does not have
4318	 * enough objects in the cache.
4319	 */
4320	mmu_topup_memory_caches(vcpu);
4321
4322	spin_lock(&vcpu->kvm->mmu_lock);
4323	++vcpu->kvm->stat.mmu_pte_write;
4324	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4325
4326	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4327		if (detect_write_misaligned(sp, gpa, bytes) ||
4328		      detect_write_flooding(sp)) {
4329			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4330						     &invalid_list);
4331			++vcpu->kvm->stat.mmu_flooded;
4332			continue;
4333		}
4334
4335		spte = get_written_sptes(sp, gpa, &npte);
4336		if (!spte)
4337			continue;
4338
4339		local_flush = true;
4340		while (npte--) {
4341			entry = *spte;
4342			mmu_page_zap_pte(vcpu->kvm, sp, spte);
4343			if (gentry &&
4344			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4345			      & mask.word) && rmap_can_add(vcpu))
4346				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4347			if (need_remote_flush(entry, *spte))
4348				remote_flush = true;
4349			++spte;
4350		}
4351	}
4352	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4353	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4354	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4355	spin_unlock(&vcpu->kvm->mmu_lock);
4356}
4357
4358int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4359{
4360	gpa_t gpa;
4361	int r;
4362
4363	if (vcpu->arch.mmu.direct_map)
4364		return 0;
4365
4366	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4367
4368	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4369
4370	return r;
4371}
4372EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4373
4374static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4375{
4376	LIST_HEAD(invalid_list);
4377
4378	if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4379		return;
4380
4381	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4382		if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4383			break;
4384
4385		++vcpu->kvm->stat.mmu_recycled;
4386	}
4387	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4388}
4389
4390static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4391{
4392	if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4393		return vcpu_match_mmio_gpa(vcpu, addr);
4394
4395	return vcpu_match_mmio_gva(vcpu, addr);
4396}
4397
4398int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4399		       void *insn, int insn_len)
4400{
4401	int r, emulation_type = EMULTYPE_RETRY;
4402	enum emulation_result er;
4403
4404	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4405	if (r < 0)
4406		goto out;
4407
4408	if (!r) {
4409		r = 1;
4410		goto out;
4411	}
4412
4413	if (is_mmio_page_fault(vcpu, cr2))
4414		emulation_type = 0;
4415
4416	er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4417
4418	switch (er) {
4419	case EMULATE_DONE:
4420		return 1;
4421	case EMULATE_USER_EXIT:
4422		++vcpu->stat.mmio_exits;
4423		/* fall through */
4424	case EMULATE_FAIL:
4425		return 0;
4426	default:
4427		BUG();
4428	}
4429out:
4430	return r;
4431}
4432EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4433
4434void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4435{
4436	vcpu->arch.mmu.invlpg(vcpu, gva);
4437	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4438	++vcpu->stat.invlpg;
4439}
4440EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4441
4442void kvm_enable_tdp(void)
4443{
4444	tdp_enabled = true;
4445}
4446EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4447
4448void kvm_disable_tdp(void)
4449{
4450	tdp_enabled = false;
4451}
4452EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4453
4454static void free_mmu_pages(struct kvm_vcpu *vcpu)
4455{
4456	free_page((unsigned long)vcpu->arch.mmu.pae_root);
4457	if (vcpu->arch.mmu.lm_root != NULL)
4458		free_page((unsigned long)vcpu->arch.mmu.lm_root);
4459}
4460
4461static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4462{
4463	struct page *page;
4464	int i;
4465
4466	/*
4467	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4468	 * Therefore we need to allocate shadow page tables in the first
4469	 * 4GB of memory, which happens to fit the DMA32 zone.
4470	 */
4471	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4472	if (!page)
4473		return -ENOMEM;
4474
4475	vcpu->arch.mmu.pae_root = page_address(page);
4476	for (i = 0; i < 4; ++i)
4477		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4478
4479	return 0;
4480}
4481
4482int kvm_mmu_create(struct kvm_vcpu *vcpu)
4483{
4484	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4485	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4486	vcpu->arch.mmu.translate_gpa = translate_gpa;
4487	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4488
4489	return alloc_mmu_pages(vcpu);
4490}
4491
4492void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4493{
4494	MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4495
4496	init_kvm_mmu(vcpu);
4497}
4498
4499/* The return value indicates if tlb flush on all vcpus is needed. */
4500typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);
4501
4502/* The caller should hold mmu-lock before calling this function. */
4503static bool
4504slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4505			slot_level_handler fn, int start_level, int end_level,
4506			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4507{
4508	struct slot_rmap_walk_iterator iterator;
4509	bool flush = false;
4510
4511	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4512			end_gfn, &iterator) {
4513		if (iterator.rmap)
4514			flush |= fn(kvm, iterator.rmap);
4515
4516		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4517			if (flush && lock_flush_tlb) {
4518				kvm_flush_remote_tlbs(kvm);
4519				flush = false;
4520			}
4521			cond_resched_lock(&kvm->mmu_lock);
4522		}
4523	}
4524
4525	if (flush && lock_flush_tlb) {
4526		kvm_flush_remote_tlbs(kvm);
4527		flush = false;
4528	}
4529
4530	return flush;
4531}
4532
4533static bool
4534slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4535		  slot_level_handler fn, int start_level, int end_level,
4536		  bool lock_flush_tlb)
4537{
4538	return slot_handle_level_range(kvm, memslot, fn, start_level,
4539			end_level, memslot->base_gfn,
4540			memslot->base_gfn + memslot->npages - 1,
4541			lock_flush_tlb);
4542}
4543
4544static bool
4545slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4546		      slot_level_handler fn, bool lock_flush_tlb)
4547{
4548	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4549				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4550}
4551
4552static bool
4553slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4554			slot_level_handler fn, bool lock_flush_tlb)
4555{
4556	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4557				 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4558}
4559
4560static bool
4561slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4562		 slot_level_handler fn, bool lock_flush_tlb)
4563{
4564	return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4565				 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4566}
4567
4568void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4569{
4570	struct kvm_memslots *slots;
4571	struct kvm_memory_slot *memslot;
4572	int i;
4573
4574	spin_lock(&kvm->mmu_lock);
4575	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4576		slots = __kvm_memslots(kvm, i);
4577		kvm_for_each_memslot(memslot, slots) {
4578			gfn_t start, end;
4579
4580			start = max(gfn_start, memslot->base_gfn);
4581			end = min(gfn_end, memslot->base_gfn + memslot->npages);
4582			if (start >= end)
4583				continue;
4584
4585			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4586						PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4587						start, end - 1, true);
4588		}
4589	}
4590
4591	spin_unlock(&kvm->mmu_lock);
4592}
4593
4594static bool slot_rmap_write_protect(struct kvm *kvm, unsigned long *rmapp)
4595{
4596	return __rmap_write_protect(kvm, rmapp, false);
4597}
4598
4599void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4600				      struct kvm_memory_slot *memslot)
4601{
4602	bool flush;
4603
4604	spin_lock(&kvm->mmu_lock);
4605	flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4606				      false);
4607	spin_unlock(&kvm->mmu_lock);
4608
4609	/*
4610	 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4611	 * which do tlb flush out of mmu-lock should be serialized by
4612	 * kvm->slots_lock otherwise tlb flush would be missed.
4613	 */
4614	lockdep_assert_held(&kvm->slots_lock);
4615
4616	/*
4617	 * We can flush all the TLBs out of the mmu lock without TLB
4618	 * corruption since we just change the spte from writable to
4619	 * readonly so that we only need to care the case of changing
4620	 * spte from present to present (changing the spte from present
4621	 * to nonpresent will flush all the TLBs immediately), in other
4622	 * words, the only case we care is mmu_spte_update() where we
4623	 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4624	 * instead of PT_WRITABLE_MASK, that means it does not depend
4625	 * on PT_WRITABLE_MASK anymore.
4626	 */
4627	if (flush)
4628		kvm_flush_remote_tlbs(kvm);
4629}
4630
4631static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4632		unsigned long *rmapp)
4633{
4634	u64 *sptep;
4635	struct rmap_iterator iter;
4636	int need_tlb_flush = 0;
4637	pfn_t pfn;
4638	struct kvm_mmu_page *sp;
4639
4640restart:
4641	for_each_rmap_spte(rmapp, &iter, sptep) {
4642		sp = page_header(__pa(sptep));
4643		pfn = spte_to_pfn(*sptep);
4644
4645		/*
4646		 * We cannot do huge page mapping for indirect shadow pages,
4647		 * which are found on the last rmap (level = 1) when not using
4648		 * tdp; such shadow pages are synced with the page table in
4649		 * the guest, and the guest page table is using 4K page size
4650		 * mapping if the indirect sp has level = 1.
4651		 */
4652		if (sp->role.direct &&
4653			!kvm_is_reserved_pfn(pfn) &&
4654			PageTransCompound(pfn_to_page(pfn))) {
4655			drop_spte(kvm, sptep);
4656			need_tlb_flush = 1;
4657			goto restart;
4658		}
4659	}
4660
4661	return need_tlb_flush;
4662}
4663
4664void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4665				   const struct kvm_memory_slot *memslot)
4666{
4667	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4668	spin_lock(&kvm->mmu_lock);
4669	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4670			 kvm_mmu_zap_collapsible_spte, true);
4671	spin_unlock(&kvm->mmu_lock);
4672}
4673
4674void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4675				   struct kvm_memory_slot *memslot)
4676{
4677	bool flush;
4678
4679	spin_lock(&kvm->mmu_lock);
4680	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4681	spin_unlock(&kvm->mmu_lock);
4682
4683	lockdep_assert_held(&kvm->slots_lock);
4684
4685	/*
4686	 * It's also safe to flush TLBs out of mmu lock here as currently this
4687	 * function is only used for dirty logging, in which case flushing TLB
4688	 * out of mmu lock also guarantees no dirty pages will be lost in
4689	 * dirty_bitmap.
4690	 */
4691	if (flush)
4692		kvm_flush_remote_tlbs(kvm);
4693}
4694EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4695
4696void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4697					struct kvm_memory_slot *memslot)
4698{
4699	bool flush;
4700
4701	spin_lock(&kvm->mmu_lock);
4702	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4703					false);
4704	spin_unlock(&kvm->mmu_lock);
4705
4706	/* see kvm_mmu_slot_remove_write_access */
4707	lockdep_assert_held(&kvm->slots_lock);
4708
4709	if (flush)
4710		kvm_flush_remote_tlbs(kvm);
4711}
4712EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4713
4714void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4715			    struct kvm_memory_slot *memslot)
4716{
4717	bool flush;
4718
4719	spin_lock(&kvm->mmu_lock);
4720	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4721	spin_unlock(&kvm->mmu_lock);
4722
4723	lockdep_assert_held(&kvm->slots_lock);
4724
4725	/* see kvm_mmu_slot_leaf_clear_dirty */
4726	if (flush)
4727		kvm_flush_remote_tlbs(kvm);
4728}
4729EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4730
4731#define BATCH_ZAP_PAGES	10
4732static void kvm_zap_obsolete_pages(struct kvm *kvm)
4733{
4734	struct kvm_mmu_page *sp, *node;
4735	int batch = 0;
4736
4737restart:
4738	list_for_each_entry_safe_reverse(sp, node,
4739	      &kvm->arch.active_mmu_pages, link) {
4740		int ret;
4741
4742		/*
4743		 * No obsolete page exists before new created page since
4744		 * active_mmu_pages is the FIFO list.
4745		 */
4746		if (!is_obsolete_sp(kvm, sp))
4747			break;
4748
4749		/*
4750		 * Since we are reversely walking the list and the invalid
4751		 * list will be moved to the head, skip the invalid page
4752		 * can help us to avoid the infinity list walking.
4753		 */
4754		if (sp->role.invalid)
4755			continue;
4756
4757		/*
4758		 * Need not flush tlb since we only zap the sp with invalid
4759		 * generation number.
4760		 */
4761		if (batch >= BATCH_ZAP_PAGES &&
4762		      cond_resched_lock(&kvm->mmu_lock)) {
4763			batch = 0;
4764			goto restart;
4765		}
4766
4767		ret = kvm_mmu_prepare_zap_page(kvm, sp,
4768				&kvm->arch.zapped_obsolete_pages);
4769		batch += ret;
4770
4771		if (ret)
4772			goto restart;
4773	}
4774
4775	/*
4776	 * Should flush tlb before free page tables since lockless-walking
4777	 * may use the pages.
4778	 */
4779	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4780}
4781
4782/*
4783 * Fast invalidate all shadow pages and use lock-break technique
4784 * to zap obsolete pages.
4785 *
4786 * It's required when memslot is being deleted or VM is being
4787 * destroyed, in these cases, we should ensure that KVM MMU does
4788 * not use any resource of the being-deleted slot or all slots
4789 * after calling the function.
4790 */
4791void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4792{
4793	spin_lock(&kvm->mmu_lock);
4794	trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4795	kvm->arch.mmu_valid_gen++;
4796
4797	/*
4798	 * Notify all vcpus to reload its shadow page table
4799	 * and flush TLB. Then all vcpus will switch to new
4800	 * shadow page table with the new mmu_valid_gen.
4801	 *
4802	 * Note: we should do this under the protection of
4803	 * mmu-lock, otherwise, vcpu would purge shadow page
4804	 * but miss tlb flush.
4805	 */
4806	kvm_reload_remote_mmus(kvm);
4807
4808	kvm_zap_obsolete_pages(kvm);
4809	spin_unlock(&kvm->mmu_lock);
4810}
4811
4812static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4813{
4814	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4815}
4816
4817void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4818{
4819	/*
4820	 * The very rare case: if the generation-number is round,
4821	 * zap all shadow pages.
4822	 */
4823	if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4824		printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4825		kvm_mmu_invalidate_zap_all_pages(kvm);
4826	}
4827}
4828
4829static unsigned long
4830mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4831{
4832	struct kvm *kvm;
4833	int nr_to_scan = sc->nr_to_scan;
4834	unsigned long freed = 0;
4835
4836	spin_lock(&kvm_lock);
4837
4838	list_for_each_entry(kvm, &vm_list, vm_list) {
4839		int idx;
4840		LIST_HEAD(invalid_list);
4841
4842		/*
4843		 * Never scan more than sc->nr_to_scan VM instances.
4844		 * Will not hit this condition practically since we do not try
4845		 * to shrink more than one VM and it is very unlikely to see
4846		 * !n_used_mmu_pages so many times.
4847		 */
4848		if (!nr_to_scan--)
4849			break;
4850		/*
4851		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4852		 * here. We may skip a VM instance errorneosly, but we do not
4853		 * want to shrink a VM that only started to populate its MMU
4854		 * anyway.
4855		 */
4856		if (!kvm->arch.n_used_mmu_pages &&
4857		      !kvm_has_zapped_obsolete_pages(kvm))
4858			continue;
4859
4860		idx = srcu_read_lock(&kvm->srcu);
4861		spin_lock(&kvm->mmu_lock);
4862
4863		if (kvm_has_zapped_obsolete_pages(kvm)) {
4864			kvm_mmu_commit_zap_page(kvm,
4865			      &kvm->arch.zapped_obsolete_pages);
4866			goto unlock;
4867		}
4868
4869		if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4870			freed++;
4871		kvm_mmu_commit_zap_page(kvm, &invalid_list);
4872
4873unlock:
4874		spin_unlock(&kvm->mmu_lock);
4875		srcu_read_unlock(&kvm->srcu, idx);
4876
4877		/*
4878		 * unfair on small ones
4879		 * per-vm shrinkers cry out
4880		 * sadness comes quickly
4881		 */
4882		list_move_tail(&kvm->vm_list, &vm_list);
4883		break;
4884	}
4885
4886	spin_unlock(&kvm_lock);
4887	return freed;
4888}
4889
4890static unsigned long
4891mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4892{
4893	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4894}
4895
4896static struct shrinker mmu_shrinker = {
4897	.count_objects = mmu_shrink_count,
4898	.scan_objects = mmu_shrink_scan,
4899	.seeks = DEFAULT_SEEKS * 10,
4900};
4901
4902static void mmu_destroy_caches(void)
4903{
4904	if (pte_list_desc_cache)
4905		kmem_cache_destroy(pte_list_desc_cache);
4906	if (mmu_page_header_cache)
4907		kmem_cache_destroy(mmu_page_header_cache);
4908}
4909
4910int kvm_mmu_module_init(void)
4911{
4912	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4913					    sizeof(struct pte_list_desc),
4914					    0, 0, NULL);
4915	if (!pte_list_desc_cache)
4916		goto nomem;
4917
4918	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4919						  sizeof(struct kvm_mmu_page),
4920						  0, 0, NULL);
4921	if (!mmu_page_header_cache)
4922		goto nomem;
4923
4924	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4925		goto nomem;
4926
4927	register_shrinker(&mmu_shrinker);
4928
4929	return 0;
4930
4931nomem:
4932	mmu_destroy_caches();
4933	return -ENOMEM;
4934}
4935
4936/*
4937 * Caculate mmu pages needed for kvm.
4938 */
4939unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4940{
4941	unsigned int nr_mmu_pages;
4942	unsigned int  nr_pages = 0;
4943	struct kvm_memslots *slots;
4944	struct kvm_memory_slot *memslot;
4945	int i;
4946
4947	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4948		slots = __kvm_memslots(kvm, i);
4949
4950		kvm_for_each_memslot(memslot, slots)
4951			nr_pages += memslot->npages;
4952	}
4953
4954	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4955	nr_mmu_pages = max(nr_mmu_pages,
4956			   (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4957
4958	return nr_mmu_pages;
4959}
4960
4961void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4962{
4963	kvm_mmu_unload(vcpu);
4964	free_mmu_pages(vcpu);
4965	mmu_free_memory_caches(vcpu);
4966}
4967
4968void kvm_mmu_module_exit(void)
4969{
4970	mmu_destroy_caches();
4971	percpu_counter_destroy(&kvm_total_used_mmu_pages);
4972	unregister_shrinker(&mmu_shrinker);
4973	mmu_audit_disable();
4974}
4975