1/*
2 *  Copyright (C) 1994  Linus Torvalds
3 *
4 *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
5 *                stack - Manfred Spraul <manfred@colorfullife.com>
6 *
7 *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
8 *                them correctly. Now the emulation will be in a
9 *                consistent state after stackfaults - Kasper Dupont
10 *                <kasperd@daimi.au.dk>
11 *
12 *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
13 *                <kasperd@daimi.au.dk>
14 *
15 *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
16 *                caused by Kasper Dupont's changes - Stas Sergeev
17 *
18 *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
19 *                Kasper Dupont <kasperd@daimi.au.dk>
20 *
21 *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
22 *                Kasper Dupont <kasperd@daimi.au.dk>
23 *
24 *   9 apr 2002 - Changed stack access macros to jump to a label
25 *                instead of returning to userspace. This simplifies
26 *                do_int, and is needed by handle_vm6_fault. Kasper
27 *                Dupont <kasperd@daimi.au.dk>
28 *
29 */
30
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33#include <linux/capability.h>
34#include <linux/errno.h>
35#include <linux/interrupt.h>
36#include <linux/syscalls.h>
37#include <linux/sched.h>
38#include <linux/kernel.h>
39#include <linux/signal.h>
40#include <linux/string.h>
41#include <linux/mm.h>
42#include <linux/smp.h>
43#include <linux/highmem.h>
44#include <linux/ptrace.h>
45#include <linux/audit.h>
46#include <linux/stddef.h>
47#include <linux/slab.h>
48#include <linux/security.h>
49
50#include <asm/uaccess.h>
51#include <asm/io.h>
52#include <asm/tlbflush.h>
53#include <asm/irq.h>
54#include <asm/traps.h>
55#include <asm/vm86.h>
56
57/*
58 * Known problems:
59 *
60 * Interrupt handling is not guaranteed:
61 * - a real x86 will disable all interrupts for one instruction
62 *   after a "mov ss,xx" to make stack handling atomic even without
63 *   the 'lss' instruction. We can't guarantee this in v86 mode,
64 *   as the next instruction might result in a page fault or similar.
65 * - a real x86 will have interrupts disabled for one instruction
66 *   past the 'sti' that enables them. We don't bother with all the
67 *   details yet.
68 *
69 * Let's hope these problems do not actually matter for anything.
70 */
71
72
73/*
74 * 8- and 16-bit register defines..
75 */
76#define AL(regs)	(((unsigned char *)&((regs)->pt.ax))[0])
77#define AH(regs)	(((unsigned char *)&((regs)->pt.ax))[1])
78#define IP(regs)	(*(unsigned short *)&((regs)->pt.ip))
79#define SP(regs)	(*(unsigned short *)&((regs)->pt.sp))
80
81/*
82 * virtual flags (16 and 32-bit versions)
83 */
84#define VFLAGS	(*(unsigned short *)&(current->thread.vm86->veflags))
85#define VEFLAGS	(current->thread.vm86->veflags)
86
87#define set_flags(X, new, mask) \
88((X) = ((X) & ~(mask)) | ((new) & (mask)))
89
90#define SAFE_MASK	(0xDD5)
91#define RETURN_MASK	(0xDFF)
92
93void save_v86_state(struct kernel_vm86_regs *regs, int retval)
94{
95	struct tss_struct *tss;
96	struct task_struct *tsk = current;
97	struct vm86plus_struct __user *user;
98	struct vm86 *vm86 = current->thread.vm86;
99	long err = 0;
100
101	/*
102	 * This gets called from entry.S with interrupts disabled, but
103	 * from process context. Enable interrupts here, before trying
104	 * to access user space.
105	 */
106	local_irq_enable();
107
108	if (!vm86 || !vm86->user_vm86) {
109		pr_alert("no user_vm86: BAD\n");
110		do_exit(SIGSEGV);
111	}
112	set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | vm86->veflags_mask);
113	user = vm86->user_vm86;
114
115	if (!access_ok(VERIFY_WRITE, user, vm86->vm86plus.is_vm86pus ?
116		       sizeof(struct vm86plus_struct) :
117		       sizeof(struct vm86_struct))) {
118		pr_alert("could not access userspace vm86 info\n");
119		do_exit(SIGSEGV);
120	}
121
122	put_user_try {
123		put_user_ex(regs->pt.bx, &user->regs.ebx);
124		put_user_ex(regs->pt.cx, &user->regs.ecx);
125		put_user_ex(regs->pt.dx, &user->regs.edx);
126		put_user_ex(regs->pt.si, &user->regs.esi);
127		put_user_ex(regs->pt.di, &user->regs.edi);
128		put_user_ex(regs->pt.bp, &user->regs.ebp);
129		put_user_ex(regs->pt.ax, &user->regs.eax);
130		put_user_ex(regs->pt.ip, &user->regs.eip);
131		put_user_ex(regs->pt.cs, &user->regs.cs);
132		put_user_ex(regs->pt.flags, &user->regs.eflags);
133		put_user_ex(regs->pt.sp, &user->regs.esp);
134		put_user_ex(regs->pt.ss, &user->regs.ss);
135		put_user_ex(regs->es, &user->regs.es);
136		put_user_ex(regs->ds, &user->regs.ds);
137		put_user_ex(regs->fs, &user->regs.fs);
138		put_user_ex(regs->gs, &user->regs.gs);
139
140		put_user_ex(vm86->screen_bitmap, &user->screen_bitmap);
141	} put_user_catch(err);
142	if (err) {
143		pr_alert("could not access userspace vm86 info\n");
144		do_exit(SIGSEGV);
145	}
146
147	tss = &per_cpu(cpu_tss, get_cpu());
148	tsk->thread.sp0 = vm86->saved_sp0;
149	tsk->thread.sysenter_cs = __KERNEL_CS;
150	load_sp0(tss, &tsk->thread);
151	vm86->saved_sp0 = 0;
152	put_cpu();
153
154	memcpy(&regs->pt, &vm86->regs32, sizeof(struct pt_regs));
155
156	lazy_load_gs(vm86->regs32.gs);
157
158	regs->pt.ax = retval;
159}
160
161static void mark_screen_rdonly(struct mm_struct *mm)
162{
163	pgd_t *pgd;
164	pud_t *pud;
165	pmd_t *pmd;
166	pte_t *pte;
167	spinlock_t *ptl;
168	int i;
169
170	down_write(&mm->mmap_sem);
171	pgd = pgd_offset(mm, 0xA0000);
172	if (pgd_none_or_clear_bad(pgd))
173		goto out;
174	pud = pud_offset(pgd, 0xA0000);
175	if (pud_none_or_clear_bad(pud))
176		goto out;
177	pmd = pmd_offset(pud, 0xA0000);
178	split_huge_page_pmd_mm(mm, 0xA0000, pmd);
179	if (pmd_none_or_clear_bad(pmd))
180		goto out;
181	pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
182	for (i = 0; i < 32; i++) {
183		if (pte_present(*pte))
184			set_pte(pte, pte_wrprotect(*pte));
185		pte++;
186	}
187	pte_unmap_unlock(pte, ptl);
188out:
189	up_write(&mm->mmap_sem);
190	flush_tlb();
191}
192
193
194
195static int do_vm86_irq_handling(int subfunction, int irqnumber);
196static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus);
197
198SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, user_vm86)
199{
200	return do_sys_vm86((struct vm86plus_struct __user *) user_vm86, false);
201}
202
203
204SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
205{
206	switch (cmd) {
207	case VM86_REQUEST_IRQ:
208	case VM86_FREE_IRQ:
209	case VM86_GET_IRQ_BITS:
210	case VM86_GET_AND_RESET_IRQ:
211		return do_vm86_irq_handling(cmd, (int)arg);
212	case VM86_PLUS_INSTALL_CHECK:
213		/*
214		 * NOTE: on old vm86 stuff this will return the error
215		 *  from access_ok(), because the subfunction is
216		 *  interpreted as (invalid) address to vm86_struct.
217		 *  So the installation check works.
218		 */
219		return 0;
220	}
221
222	/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
223	return do_sys_vm86((struct vm86plus_struct __user *) arg, true);
224}
225
226
227static long do_sys_vm86(struct vm86plus_struct __user *user_vm86, bool plus)
228{
229	struct tss_struct *tss;
230	struct task_struct *tsk = current;
231	struct vm86 *vm86 = tsk->thread.vm86;
232	struct kernel_vm86_regs vm86regs;
233	struct pt_regs *regs = current_pt_regs();
234	unsigned long err = 0;
235
236	err = security_mmap_addr(0);
237	if (err) {
238		/*
239		 * vm86 cannot virtualize the address space, so vm86 users
240		 * need to manage the low 1MB themselves using mmap.  Given
241		 * that BIOS places important data in the first page, vm86
242		 * is essentially useless if mmap_min_addr != 0.  DOSEMU,
243		 * for example, won't even bother trying to use vm86 if it
244		 * can't map a page at virtual address 0.
245		 *
246		 * To reduce the available kernel attack surface, simply
247		 * disallow vm86(old) for users who cannot mmap at va 0.
248		 *
249		 * The implementation of security_mmap_addr will allow
250		 * suitably privileged users to map va 0 even if
251		 * vm.mmap_min_addr is set above 0, and we want this
252		 * behavior for vm86 as well, as it ensures that legacy
253		 * tools like vbetool will not fail just because of
254		 * vm.mmap_min_addr.
255		 */
256		pr_info_once("Denied a call to vm86(old) from %s[%d] (uid: %d).  Set the vm.mmap_min_addr sysctl to 0 and/or adjust LSM mmap_min_addr policy to enable vm86 if you are using a vm86-based DOS emulator.\n",
257			     current->comm, task_pid_nr(current),
258			     from_kuid_munged(&init_user_ns, current_uid()));
259		return -EPERM;
260	}
261
262	if (!vm86) {
263		if (!(vm86 = kzalloc(sizeof(*vm86), GFP_KERNEL)))
264			return -ENOMEM;
265		tsk->thread.vm86 = vm86;
266	}
267	if (vm86->saved_sp0)
268		return -EPERM;
269
270	if (!access_ok(VERIFY_READ, user_vm86, plus ?
271		       sizeof(struct vm86_struct) :
272		       sizeof(struct vm86plus_struct)))
273		return -EFAULT;
274
275	memset(&vm86regs, 0, sizeof(vm86regs));
276	get_user_try {
277		unsigned short seg;
278		get_user_ex(vm86regs.pt.bx, &user_vm86->regs.ebx);
279		get_user_ex(vm86regs.pt.cx, &user_vm86->regs.ecx);
280		get_user_ex(vm86regs.pt.dx, &user_vm86->regs.edx);
281		get_user_ex(vm86regs.pt.si, &user_vm86->regs.esi);
282		get_user_ex(vm86regs.pt.di, &user_vm86->regs.edi);
283		get_user_ex(vm86regs.pt.bp, &user_vm86->regs.ebp);
284		get_user_ex(vm86regs.pt.ax, &user_vm86->regs.eax);
285		get_user_ex(vm86regs.pt.ip, &user_vm86->regs.eip);
286		get_user_ex(seg, &user_vm86->regs.cs);
287		vm86regs.pt.cs = seg;
288		get_user_ex(vm86regs.pt.flags, &user_vm86->regs.eflags);
289		get_user_ex(vm86regs.pt.sp, &user_vm86->regs.esp);
290		get_user_ex(seg, &user_vm86->regs.ss);
291		vm86regs.pt.ss = seg;
292		get_user_ex(vm86regs.es, &user_vm86->regs.es);
293		get_user_ex(vm86regs.ds, &user_vm86->regs.ds);
294		get_user_ex(vm86regs.fs, &user_vm86->regs.fs);
295		get_user_ex(vm86regs.gs, &user_vm86->regs.gs);
296
297		get_user_ex(vm86->flags, &user_vm86->flags);
298		get_user_ex(vm86->screen_bitmap, &user_vm86->screen_bitmap);
299		get_user_ex(vm86->cpu_type, &user_vm86->cpu_type);
300	} get_user_catch(err);
301	if (err)
302		return err;
303
304	if (copy_from_user(&vm86->int_revectored,
305			   &user_vm86->int_revectored,
306			   sizeof(struct revectored_struct)))
307		return -EFAULT;
308	if (copy_from_user(&vm86->int21_revectored,
309			   &user_vm86->int21_revectored,
310			   sizeof(struct revectored_struct)))
311		return -EFAULT;
312	if (plus) {
313		if (copy_from_user(&vm86->vm86plus, &user_vm86->vm86plus,
314				   sizeof(struct vm86plus_info_struct)))
315			return -EFAULT;
316		vm86->vm86plus.is_vm86pus = 1;
317	} else
318		memset(&vm86->vm86plus, 0,
319		       sizeof(struct vm86plus_info_struct));
320
321	memcpy(&vm86->regs32, regs, sizeof(struct pt_regs));
322	vm86->user_vm86 = user_vm86;
323
324/*
325 * The flags register is also special: we cannot trust that the user
326 * has set it up safely, so this makes sure interrupt etc flags are
327 * inherited from protected mode.
328 */
329	VEFLAGS = vm86regs.pt.flags;
330	vm86regs.pt.flags &= SAFE_MASK;
331	vm86regs.pt.flags |= regs->flags & ~SAFE_MASK;
332	vm86regs.pt.flags |= X86_VM_MASK;
333
334	vm86regs.pt.orig_ax = regs->orig_ax;
335
336	switch (vm86->cpu_type) {
337	case CPU_286:
338		vm86->veflags_mask = 0;
339		break;
340	case CPU_386:
341		vm86->veflags_mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
342		break;
343	case CPU_486:
344		vm86->veflags_mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
345		break;
346	default:
347		vm86->veflags_mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
348		break;
349	}
350
351/*
352 * Save old state
353 */
354	vm86->saved_sp0 = tsk->thread.sp0;
355	lazy_save_gs(vm86->regs32.gs);
356
357	tss = &per_cpu(cpu_tss, get_cpu());
358	/* make room for real-mode segments */
359	tsk->thread.sp0 += 16;
360	if (cpu_has_sep)
361		tsk->thread.sysenter_cs = 0;
362	load_sp0(tss, &tsk->thread);
363	put_cpu();
364
365	if (vm86->flags & VM86_SCREEN_BITMAP)
366		mark_screen_rdonly(tsk->mm);
367
368	memcpy((struct kernel_vm86_regs *)regs, &vm86regs, sizeof(vm86regs));
369	force_iret();
370	return regs->ax;
371}
372
373static inline void set_IF(struct kernel_vm86_regs *regs)
374{
375	VEFLAGS |= X86_EFLAGS_VIF;
376}
377
378static inline void clear_IF(struct kernel_vm86_regs *regs)
379{
380	VEFLAGS &= ~X86_EFLAGS_VIF;
381}
382
383static inline void clear_TF(struct kernel_vm86_regs *regs)
384{
385	regs->pt.flags &= ~X86_EFLAGS_TF;
386}
387
388static inline void clear_AC(struct kernel_vm86_regs *regs)
389{
390	regs->pt.flags &= ~X86_EFLAGS_AC;
391}
392
393/*
394 * It is correct to call set_IF(regs) from the set_vflags_*
395 * functions. However someone forgot to call clear_IF(regs)
396 * in the opposite case.
397 * After the command sequence CLI PUSHF STI POPF you should
398 * end up with interrupts disabled, but you ended up with
399 * interrupts enabled.
400 *  ( I was testing my own changes, but the only bug I
401 *    could find was in a function I had not changed. )
402 * [KD]
403 */
404
405static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
406{
407	set_flags(VEFLAGS, flags, current->thread.vm86->veflags_mask);
408	set_flags(regs->pt.flags, flags, SAFE_MASK);
409	if (flags & X86_EFLAGS_IF)
410		set_IF(regs);
411	else
412		clear_IF(regs);
413}
414
415static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
416{
417	set_flags(VFLAGS, flags, current->thread.vm86->veflags_mask);
418	set_flags(regs->pt.flags, flags, SAFE_MASK);
419	if (flags & X86_EFLAGS_IF)
420		set_IF(regs);
421	else
422		clear_IF(regs);
423}
424
425static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
426{
427	unsigned long flags = regs->pt.flags & RETURN_MASK;
428
429	if (VEFLAGS & X86_EFLAGS_VIF)
430		flags |= X86_EFLAGS_IF;
431	flags |= X86_EFLAGS_IOPL;
432	return flags | (VEFLAGS & current->thread.vm86->veflags_mask);
433}
434
435static inline int is_revectored(int nr, struct revectored_struct *bitmap)
436{
437	__asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
438		:"=r" (nr)
439		:"m" (*bitmap), "r" (nr));
440	return nr;
441}
442
443#define val_byte(val, n) (((__u8 *)&val)[n])
444
445#define pushb(base, ptr, val, err_label) \
446	do { \
447		__u8 __val = val; \
448		ptr--; \
449		if (put_user(__val, base + ptr) < 0) \
450			goto err_label; \
451	} while (0)
452
453#define pushw(base, ptr, val, err_label) \
454	do { \
455		__u16 __val = val; \
456		ptr--; \
457		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
458			goto err_label; \
459		ptr--; \
460		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
461			goto err_label; \
462	} while (0)
463
464#define pushl(base, ptr, val, err_label) \
465	do { \
466		__u32 __val = val; \
467		ptr--; \
468		if (put_user(val_byte(__val, 3), base + ptr) < 0) \
469			goto err_label; \
470		ptr--; \
471		if (put_user(val_byte(__val, 2), base + ptr) < 0) \
472			goto err_label; \
473		ptr--; \
474		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
475			goto err_label; \
476		ptr--; \
477		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
478			goto err_label; \
479	} while (0)
480
481#define popb(base, ptr, err_label) \
482	({ \
483		__u8 __res; \
484		if (get_user(__res, base + ptr) < 0) \
485			goto err_label; \
486		ptr++; \
487		__res; \
488	})
489
490#define popw(base, ptr, err_label) \
491	({ \
492		__u16 __res; \
493		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
494			goto err_label; \
495		ptr++; \
496		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
497			goto err_label; \
498		ptr++; \
499		__res; \
500	})
501
502#define popl(base, ptr, err_label) \
503	({ \
504		__u32 __res; \
505		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
506			goto err_label; \
507		ptr++; \
508		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
509			goto err_label; \
510		ptr++; \
511		if (get_user(val_byte(__res, 2), base + ptr) < 0) \
512			goto err_label; \
513		ptr++; \
514		if (get_user(val_byte(__res, 3), base + ptr) < 0) \
515			goto err_label; \
516		ptr++; \
517		__res; \
518	})
519
520/* There are so many possible reasons for this function to return
521 * VM86_INTx, so adding another doesn't bother me. We can expect
522 * userspace programs to be able to handle it. (Getting a problem
523 * in userspace is always better than an Oops anyway.) [KD]
524 */
525static void do_int(struct kernel_vm86_regs *regs, int i,
526    unsigned char __user *ssp, unsigned short sp)
527{
528	unsigned long __user *intr_ptr;
529	unsigned long segoffs;
530	struct vm86 *vm86 = current->thread.vm86;
531
532	if (regs->pt.cs == BIOSSEG)
533		goto cannot_handle;
534	if (is_revectored(i, &vm86->int_revectored))
535		goto cannot_handle;
536	if (i == 0x21 && is_revectored(AH(regs), &vm86->int21_revectored))
537		goto cannot_handle;
538	intr_ptr = (unsigned long __user *) (i << 2);
539	if (get_user(segoffs, intr_ptr))
540		goto cannot_handle;
541	if ((segoffs >> 16) == BIOSSEG)
542		goto cannot_handle;
543	pushw(ssp, sp, get_vflags(regs), cannot_handle);
544	pushw(ssp, sp, regs->pt.cs, cannot_handle);
545	pushw(ssp, sp, IP(regs), cannot_handle);
546	regs->pt.cs = segoffs >> 16;
547	SP(regs) -= 6;
548	IP(regs) = segoffs & 0xffff;
549	clear_TF(regs);
550	clear_IF(regs);
551	clear_AC(regs);
552	return;
553
554cannot_handle:
555	save_v86_state(regs, VM86_INTx + (i << 8));
556}
557
558int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
559{
560	struct vm86 *vm86 = current->thread.vm86;
561
562	if (vm86->vm86plus.is_vm86pus) {
563		if ((trapno == 3) || (trapno == 1)) {
564			save_v86_state(regs, VM86_TRAP + (trapno << 8));
565			return 0;
566		}
567		do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
568		return 0;
569	}
570	if (trapno != 1)
571		return 1; /* we let this handle by the calling routine */
572	current->thread.trap_nr = trapno;
573	current->thread.error_code = error_code;
574	force_sig(SIGTRAP, current);
575	return 0;
576}
577
578void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
579{
580	unsigned char opcode;
581	unsigned char __user *csp;
582	unsigned char __user *ssp;
583	unsigned short ip, sp, orig_flags;
584	int data32, pref_done;
585	struct vm86plus_info_struct *vmpi = &current->thread.vm86->vm86plus;
586
587#define CHECK_IF_IN_TRAP \
588	if (vmpi->vm86dbg_active && vmpi->vm86dbg_TFpendig) \
589		newflags |= X86_EFLAGS_TF
590
591	orig_flags = *(unsigned short *)&regs->pt.flags;
592
593	csp = (unsigned char __user *) (regs->pt.cs << 4);
594	ssp = (unsigned char __user *) (regs->pt.ss << 4);
595	sp = SP(regs);
596	ip = IP(regs);
597
598	data32 = 0;
599	pref_done = 0;
600	do {
601		switch (opcode = popb(csp, ip, simulate_sigsegv)) {
602		case 0x66:      /* 32-bit data */     data32 = 1; break;
603		case 0x67:      /* 32-bit address */  break;
604		case 0x2e:      /* CS */              break;
605		case 0x3e:      /* DS */              break;
606		case 0x26:      /* ES */              break;
607		case 0x36:      /* SS */              break;
608		case 0x65:      /* GS */              break;
609		case 0x64:      /* FS */              break;
610		case 0xf2:      /* repnz */       break;
611		case 0xf3:      /* rep */             break;
612		default: pref_done = 1;
613		}
614	} while (!pref_done);
615
616	switch (opcode) {
617
618	/* pushf */
619	case 0x9c:
620		if (data32) {
621			pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
622			SP(regs) -= 4;
623		} else {
624			pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
625			SP(regs) -= 2;
626		}
627		IP(regs) = ip;
628		goto vm86_fault_return;
629
630	/* popf */
631	case 0x9d:
632		{
633		unsigned long newflags;
634		if (data32) {
635			newflags = popl(ssp, sp, simulate_sigsegv);
636			SP(regs) += 4;
637		} else {
638			newflags = popw(ssp, sp, simulate_sigsegv);
639			SP(regs) += 2;
640		}
641		IP(regs) = ip;
642		CHECK_IF_IN_TRAP;
643		if (data32)
644			set_vflags_long(newflags, regs);
645		else
646			set_vflags_short(newflags, regs);
647
648		goto check_vip;
649		}
650
651	/* int xx */
652	case 0xcd: {
653		int intno = popb(csp, ip, simulate_sigsegv);
654		IP(regs) = ip;
655		if (vmpi->vm86dbg_active) {
656			if ((1 << (intno & 7)) & vmpi->vm86dbg_intxxtab[intno >> 3]) {
657				save_v86_state(regs, VM86_INTx + (intno << 8));
658				return;
659			}
660		}
661		do_int(regs, intno, ssp, sp);
662		return;
663	}
664
665	/* iret */
666	case 0xcf:
667		{
668		unsigned long newip;
669		unsigned long newcs;
670		unsigned long newflags;
671		if (data32) {
672			newip = popl(ssp, sp, simulate_sigsegv);
673			newcs = popl(ssp, sp, simulate_sigsegv);
674			newflags = popl(ssp, sp, simulate_sigsegv);
675			SP(regs) += 12;
676		} else {
677			newip = popw(ssp, sp, simulate_sigsegv);
678			newcs = popw(ssp, sp, simulate_sigsegv);
679			newflags = popw(ssp, sp, simulate_sigsegv);
680			SP(regs) += 6;
681		}
682		IP(regs) = newip;
683		regs->pt.cs = newcs;
684		CHECK_IF_IN_TRAP;
685		if (data32) {
686			set_vflags_long(newflags, regs);
687		} else {
688			set_vflags_short(newflags, regs);
689		}
690		goto check_vip;
691		}
692
693	/* cli */
694	case 0xfa:
695		IP(regs) = ip;
696		clear_IF(regs);
697		goto vm86_fault_return;
698
699	/* sti */
700	/*
701	 * Damn. This is incorrect: the 'sti' instruction should actually
702	 * enable interrupts after the /next/ instruction. Not good.
703	 *
704	 * Probably needs some horsing around with the TF flag. Aiee..
705	 */
706	case 0xfb:
707		IP(regs) = ip;
708		set_IF(regs);
709		goto check_vip;
710
711	default:
712		save_v86_state(regs, VM86_UNKNOWN);
713	}
714
715	return;
716
717check_vip:
718	if (VEFLAGS & X86_EFLAGS_VIP) {
719		save_v86_state(regs, VM86_STI);
720		return;
721	}
722
723vm86_fault_return:
724	if (vmpi->force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) {
725		save_v86_state(regs, VM86_PICRETURN);
726		return;
727	}
728	if (orig_flags & X86_EFLAGS_TF)
729		handle_vm86_trap(regs, 0, X86_TRAP_DB);
730	return;
731
732simulate_sigsegv:
733	/* FIXME: After a long discussion with Stas we finally
734	 *        agreed, that this is wrong. Here we should
735	 *        really send a SIGSEGV to the user program.
736	 *        But how do we create the correct context? We
737	 *        are inside a general protection fault handler
738	 *        and has just returned from a page fault handler.
739	 *        The correct context for the signal handler
740	 *        should be a mixture of the two, but how do we
741	 *        get the information? [KD]
742	 */
743	save_v86_state(regs, VM86_UNKNOWN);
744}
745
746/* ---------------- vm86 special IRQ passing stuff ----------------- */
747
748#define VM86_IRQNAME		"vm86irq"
749
750static struct vm86_irqs {
751	struct task_struct *tsk;
752	int sig;
753} vm86_irqs[16];
754
755static DEFINE_SPINLOCK(irqbits_lock);
756static int irqbits;
757
758#define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
759	| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
760	| (1 << SIGUNUSED))
761
762static irqreturn_t irq_handler(int intno, void *dev_id)
763{
764	int irq_bit;
765	unsigned long flags;
766
767	spin_lock_irqsave(&irqbits_lock, flags);
768	irq_bit = 1 << intno;
769	if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
770		goto out;
771	irqbits |= irq_bit;
772	if (vm86_irqs[intno].sig)
773		send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
774	/*
775	 * IRQ will be re-enabled when user asks for the irq (whether
776	 * polling or as a result of the signal)
777	 */
778	disable_irq_nosync(intno);
779	spin_unlock_irqrestore(&irqbits_lock, flags);
780	return IRQ_HANDLED;
781
782out:
783	spin_unlock_irqrestore(&irqbits_lock, flags);
784	return IRQ_NONE;
785}
786
787static inline void free_vm86_irq(int irqnumber)
788{
789	unsigned long flags;
790
791	free_irq(irqnumber, NULL);
792	vm86_irqs[irqnumber].tsk = NULL;
793
794	spin_lock_irqsave(&irqbits_lock, flags);
795	irqbits &= ~(1 << irqnumber);
796	spin_unlock_irqrestore(&irqbits_lock, flags);
797}
798
799void release_vm86_irqs(struct task_struct *task)
800{
801	int i;
802	for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
803	    if (vm86_irqs[i].tsk == task)
804		free_vm86_irq(i);
805}
806
807static inline int get_and_reset_irq(int irqnumber)
808{
809	int bit;
810	unsigned long flags;
811	int ret = 0;
812
813	if (invalid_vm86_irq(irqnumber)) return 0;
814	if (vm86_irqs[irqnumber].tsk != current) return 0;
815	spin_lock_irqsave(&irqbits_lock, flags);
816	bit = irqbits & (1 << irqnumber);
817	irqbits &= ~bit;
818	if (bit) {
819		enable_irq(irqnumber);
820		ret = 1;
821	}
822
823	spin_unlock_irqrestore(&irqbits_lock, flags);
824	return ret;
825}
826
827
828static int do_vm86_irq_handling(int subfunction, int irqnumber)
829{
830	int ret;
831	switch (subfunction) {
832		case VM86_GET_AND_RESET_IRQ: {
833			return get_and_reset_irq(irqnumber);
834		}
835		case VM86_GET_IRQ_BITS: {
836			return irqbits;
837		}
838		case VM86_REQUEST_IRQ: {
839			int sig = irqnumber >> 8;
840			int irq = irqnumber & 255;
841			if (!capable(CAP_SYS_ADMIN)) return -EPERM;
842			if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
843			if (invalid_vm86_irq(irq)) return -EPERM;
844			if (vm86_irqs[irq].tsk) return -EPERM;
845			ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
846			if (ret) return ret;
847			vm86_irqs[irq].sig = sig;
848			vm86_irqs[irq].tsk = current;
849			return irq;
850		}
851		case  VM86_FREE_IRQ: {
852			if (invalid_vm86_irq(irqnumber)) return -EPERM;
853			if (!vm86_irqs[irqnumber].tsk) return 0;
854			if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
855			free_vm86_irq(irqnumber);
856			return 0;
857		}
858	}
859	return -EINVAL;
860}
861
862