1/* 2 * Common interrupt code for 32 and 64 bit 3 */ 4#include <linux/cpu.h> 5#include <linux/interrupt.h> 6#include <linux/kernel_stat.h> 7#include <linux/of.h> 8#include <linux/seq_file.h> 9#include <linux/smp.h> 10#include <linux/ftrace.h> 11#include <linux/delay.h> 12#include <linux/export.h> 13 14#include <asm/apic.h> 15#include <asm/io_apic.h> 16#include <asm/irq.h> 17#include <asm/idle.h> 18#include <asm/mce.h> 19#include <asm/hw_irq.h> 20#include <asm/desc.h> 21 22#define CREATE_TRACE_POINTS 23#include <asm/trace/irq_vectors.h> 24 25DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat); 26EXPORT_PER_CPU_SYMBOL(irq_stat); 27 28DEFINE_PER_CPU(struct pt_regs *, irq_regs); 29EXPORT_PER_CPU_SYMBOL(irq_regs); 30 31atomic_t irq_err_count; 32 33/* Function pointer for generic interrupt vector handling */ 34void (*x86_platform_ipi_callback)(void) = NULL; 35 36/* 37 * 'what should we do if we get a hw irq event on an illegal vector'. 38 * each architecture has to answer this themselves. 39 */ 40void ack_bad_irq(unsigned int irq) 41{ 42 if (printk_ratelimit()) 43 pr_err("unexpected IRQ trap at vector %02x\n", irq); 44 45 /* 46 * Currently unexpected vectors happen only on SMP and APIC. 47 * We _must_ ack these because every local APIC has only N 48 * irq slots per priority level, and a 'hanging, unacked' IRQ 49 * holds up an irq slot - in excessive cases (when multiple 50 * unexpected vectors occur) that might lock up the APIC 51 * completely. 52 * But only ack when the APIC is enabled -AK 53 */ 54 ack_APIC_irq(); 55} 56 57#define irq_stats(x) (&per_cpu(irq_stat, x)) 58/* 59 * /proc/interrupts printing for arch specific interrupts 60 */ 61int arch_show_interrupts(struct seq_file *p, int prec) 62{ 63 int j; 64 65 seq_printf(p, "%*s: ", prec, "NMI"); 66 for_each_online_cpu(j) 67 seq_printf(p, "%10u ", irq_stats(j)->__nmi_count); 68 seq_puts(p, " Non-maskable interrupts\n"); 69#ifdef CONFIG_X86_LOCAL_APIC 70 seq_printf(p, "%*s: ", prec, "LOC"); 71 for_each_online_cpu(j) 72 seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs); 73 seq_puts(p, " Local timer interrupts\n"); 74 75 seq_printf(p, "%*s: ", prec, "SPU"); 76 for_each_online_cpu(j) 77 seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count); 78 seq_puts(p, " Spurious interrupts\n"); 79 seq_printf(p, "%*s: ", prec, "PMI"); 80 for_each_online_cpu(j) 81 seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs); 82 seq_puts(p, " Performance monitoring interrupts\n"); 83 seq_printf(p, "%*s: ", prec, "IWI"); 84 for_each_online_cpu(j) 85 seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs); 86 seq_puts(p, " IRQ work interrupts\n"); 87 seq_printf(p, "%*s: ", prec, "RTR"); 88 for_each_online_cpu(j) 89 seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count); 90 seq_puts(p, " APIC ICR read retries\n"); 91#endif 92 if (x86_platform_ipi_callback) { 93 seq_printf(p, "%*s: ", prec, "PLT"); 94 for_each_online_cpu(j) 95 seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis); 96 seq_puts(p, " Platform interrupts\n"); 97 } 98#ifdef CONFIG_SMP 99 seq_printf(p, "%*s: ", prec, "RES"); 100 for_each_online_cpu(j) 101 seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count); 102 seq_puts(p, " Rescheduling interrupts\n"); 103 seq_printf(p, "%*s: ", prec, "CAL"); 104 for_each_online_cpu(j) 105 seq_printf(p, "%10u ", irq_stats(j)->irq_call_count - 106 irq_stats(j)->irq_tlb_count); 107 seq_puts(p, " Function call interrupts\n"); 108 seq_printf(p, "%*s: ", prec, "TLB"); 109 for_each_online_cpu(j) 110 seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count); 111 seq_puts(p, " TLB shootdowns\n"); 112#endif 113#ifdef CONFIG_X86_THERMAL_VECTOR 114 seq_printf(p, "%*s: ", prec, "TRM"); 115 for_each_online_cpu(j) 116 seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count); 117 seq_puts(p, " Thermal event interrupts\n"); 118#endif 119#ifdef CONFIG_X86_MCE_THRESHOLD 120 seq_printf(p, "%*s: ", prec, "THR"); 121 for_each_online_cpu(j) 122 seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count); 123 seq_puts(p, " Threshold APIC interrupts\n"); 124#endif 125#ifdef CONFIG_X86_MCE_AMD 126 seq_printf(p, "%*s: ", prec, "DFR"); 127 for_each_online_cpu(j) 128 seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count); 129 seq_puts(p, " Deferred Error APIC interrupts\n"); 130#endif 131#ifdef CONFIG_X86_MCE 132 seq_printf(p, "%*s: ", prec, "MCE"); 133 for_each_online_cpu(j) 134 seq_printf(p, "%10u ", per_cpu(mce_exception_count, j)); 135 seq_puts(p, " Machine check exceptions\n"); 136 seq_printf(p, "%*s: ", prec, "MCP"); 137 for_each_online_cpu(j) 138 seq_printf(p, "%10u ", per_cpu(mce_poll_count, j)); 139 seq_puts(p, " Machine check polls\n"); 140#endif 141#if IS_ENABLED(CONFIG_HYPERV) || defined(CONFIG_XEN) 142 if (test_bit(HYPERVISOR_CALLBACK_VECTOR, used_vectors)) { 143 seq_printf(p, "%*s: ", prec, "HYP"); 144 for_each_online_cpu(j) 145 seq_printf(p, "%10u ", 146 irq_stats(j)->irq_hv_callback_count); 147 seq_puts(p, " Hypervisor callback interrupts\n"); 148 } 149#endif 150 seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count)); 151#if defined(CONFIG_X86_IO_APIC) 152 seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count)); 153#endif 154#ifdef CONFIG_HAVE_KVM 155 seq_printf(p, "%*s: ", prec, "PIN"); 156 for_each_online_cpu(j) 157 seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis); 158 seq_puts(p, " Posted-interrupt notification event\n"); 159 160 seq_printf(p, "%*s: ", prec, "PIW"); 161 for_each_online_cpu(j) 162 seq_printf(p, "%10u ", 163 irq_stats(j)->kvm_posted_intr_wakeup_ipis); 164 seq_puts(p, " Posted-interrupt wakeup event\n"); 165#endif 166 return 0; 167} 168 169/* 170 * /proc/stat helpers 171 */ 172u64 arch_irq_stat_cpu(unsigned int cpu) 173{ 174 u64 sum = irq_stats(cpu)->__nmi_count; 175 176#ifdef CONFIG_X86_LOCAL_APIC 177 sum += irq_stats(cpu)->apic_timer_irqs; 178 sum += irq_stats(cpu)->irq_spurious_count; 179 sum += irq_stats(cpu)->apic_perf_irqs; 180 sum += irq_stats(cpu)->apic_irq_work_irqs; 181 sum += irq_stats(cpu)->icr_read_retry_count; 182#endif 183 if (x86_platform_ipi_callback) 184 sum += irq_stats(cpu)->x86_platform_ipis; 185#ifdef CONFIG_SMP 186 sum += irq_stats(cpu)->irq_resched_count; 187 sum += irq_stats(cpu)->irq_call_count; 188#endif 189#ifdef CONFIG_X86_THERMAL_VECTOR 190 sum += irq_stats(cpu)->irq_thermal_count; 191#endif 192#ifdef CONFIG_X86_MCE_THRESHOLD 193 sum += irq_stats(cpu)->irq_threshold_count; 194#endif 195#ifdef CONFIG_X86_MCE 196 sum += per_cpu(mce_exception_count, cpu); 197 sum += per_cpu(mce_poll_count, cpu); 198#endif 199 return sum; 200} 201 202u64 arch_irq_stat(void) 203{ 204 u64 sum = atomic_read(&irq_err_count); 205 return sum; 206} 207 208 209/* 210 * do_IRQ handles all normal device IRQ's (the special 211 * SMP cross-CPU interrupts have their own specific 212 * handlers). 213 */ 214__visible unsigned int __irq_entry do_IRQ(struct pt_regs *regs) 215{ 216 struct pt_regs *old_regs = set_irq_regs(regs); 217 struct irq_desc * desc; 218 /* high bit used in ret_from_ code */ 219 unsigned vector = ~regs->orig_ax; 220 221 /* 222 * NB: Unlike exception entries, IRQ entries do not reliably 223 * handle context tracking in the low-level entry code. This is 224 * because syscall entries execute briefly with IRQs on before 225 * updating context tracking state, so we can take an IRQ from 226 * kernel mode with CONTEXT_USER. The low-level entry code only 227 * updates the context if we came from user mode, so we won't 228 * switch to CONTEXT_KERNEL. We'll fix that once the syscall 229 * code is cleaned up enough that we can cleanly defer enabling 230 * IRQs. 231 */ 232 233 entering_irq(); 234 235 /* entering_irq() tells RCU that we're not quiescent. Check it. */ 236 RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU"); 237 238 desc = __this_cpu_read(vector_irq[vector]); 239 240 if (!handle_irq(desc, regs)) { 241 ack_APIC_irq(); 242 243 if (desc != VECTOR_RETRIGGERED) { 244 pr_emerg_ratelimited("%s: %d.%d No irq handler for vector\n", 245 __func__, smp_processor_id(), 246 vector); 247 } else { 248 __this_cpu_write(vector_irq[vector], VECTOR_UNUSED); 249 } 250 } 251 252 exiting_irq(); 253 254 set_irq_regs(old_regs); 255 return 1; 256} 257 258/* 259 * Handler for X86_PLATFORM_IPI_VECTOR. 260 */ 261void __smp_x86_platform_ipi(void) 262{ 263 inc_irq_stat(x86_platform_ipis); 264 265 if (x86_platform_ipi_callback) 266 x86_platform_ipi_callback(); 267} 268 269__visible void smp_x86_platform_ipi(struct pt_regs *regs) 270{ 271 struct pt_regs *old_regs = set_irq_regs(regs); 272 273 entering_ack_irq(); 274 __smp_x86_platform_ipi(); 275 exiting_irq(); 276 set_irq_regs(old_regs); 277} 278 279#ifdef CONFIG_HAVE_KVM 280static void dummy_handler(void) {} 281static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler; 282 283void kvm_set_posted_intr_wakeup_handler(void (*handler)(void)) 284{ 285 if (handler) 286 kvm_posted_intr_wakeup_handler = handler; 287 else 288 kvm_posted_intr_wakeup_handler = dummy_handler; 289} 290EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler); 291 292/* 293 * Handler for POSTED_INTERRUPT_VECTOR. 294 */ 295__visible void smp_kvm_posted_intr_ipi(struct pt_regs *regs) 296{ 297 struct pt_regs *old_regs = set_irq_regs(regs); 298 299 entering_ack_irq(); 300 inc_irq_stat(kvm_posted_intr_ipis); 301 exiting_irq(); 302 set_irq_regs(old_regs); 303} 304 305/* 306 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR. 307 */ 308__visible void smp_kvm_posted_intr_wakeup_ipi(struct pt_regs *regs) 309{ 310 struct pt_regs *old_regs = set_irq_regs(regs); 311 312 entering_ack_irq(); 313 inc_irq_stat(kvm_posted_intr_wakeup_ipis); 314 kvm_posted_intr_wakeup_handler(); 315 exiting_irq(); 316 set_irq_regs(old_regs); 317} 318#endif 319 320__visible void smp_trace_x86_platform_ipi(struct pt_regs *regs) 321{ 322 struct pt_regs *old_regs = set_irq_regs(regs); 323 324 entering_ack_irq(); 325 trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR); 326 __smp_x86_platform_ipi(); 327 trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR); 328 exiting_irq(); 329 set_irq_regs(old_regs); 330} 331 332EXPORT_SYMBOL_GPL(vector_used_by_percpu_irq); 333 334#ifdef CONFIG_HOTPLUG_CPU 335 336/* These two declarations are only used in check_irq_vectors_for_cpu_disable() 337 * below, which is protected by stop_machine(). Putting them on the stack 338 * results in a stack frame overflow. Dynamically allocating could result in a 339 * failure so declare these two cpumasks as global. 340 */ 341static struct cpumask affinity_new, online_new; 342 343/* 344 * This cpu is going to be removed and its vectors migrated to the remaining 345 * online cpus. Check to see if there are enough vectors in the remaining cpus. 346 * This function is protected by stop_machine(). 347 */ 348int check_irq_vectors_for_cpu_disable(void) 349{ 350 unsigned int this_cpu, vector, this_count, count; 351 struct irq_desc *desc; 352 struct irq_data *data; 353 int cpu; 354 355 this_cpu = smp_processor_id(); 356 cpumask_copy(&online_new, cpu_online_mask); 357 cpumask_clear_cpu(this_cpu, &online_new); 358 359 this_count = 0; 360 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { 361 desc = __this_cpu_read(vector_irq[vector]); 362 if (IS_ERR_OR_NULL(desc)) 363 continue; 364 /* 365 * Protect against concurrent action removal, affinity 366 * changes etc. 367 */ 368 raw_spin_lock(&desc->lock); 369 data = irq_desc_get_irq_data(desc); 370 cpumask_copy(&affinity_new, 371 irq_data_get_affinity_mask(data)); 372 cpumask_clear_cpu(this_cpu, &affinity_new); 373 374 /* Do not count inactive or per-cpu irqs. */ 375 if (!irq_desc_has_action(desc) || irqd_is_per_cpu(data)) { 376 raw_spin_unlock(&desc->lock); 377 continue; 378 } 379 380 raw_spin_unlock(&desc->lock); 381 /* 382 * A single irq may be mapped to multiple cpu's 383 * vector_irq[] (for example IOAPIC cluster mode). In 384 * this case we have two possibilities: 385 * 386 * 1) the resulting affinity mask is empty; that is 387 * this the down'd cpu is the last cpu in the irq's 388 * affinity mask, or 389 * 390 * 2) the resulting affinity mask is no longer a 391 * subset of the online cpus but the affinity mask is 392 * not zero; that is the down'd cpu is the last online 393 * cpu in a user set affinity mask. 394 */ 395 if (cpumask_empty(&affinity_new) || 396 !cpumask_subset(&affinity_new, &online_new)) 397 this_count++; 398 } 399 400 count = 0; 401 for_each_online_cpu(cpu) { 402 if (cpu == this_cpu) 403 continue; 404 /* 405 * We scan from FIRST_EXTERNAL_VECTOR to first system 406 * vector. If the vector is marked in the used vectors 407 * bitmap or an irq is assigned to it, we don't count 408 * it as available. 409 * 410 * As this is an inaccurate snapshot anyway, we can do 411 * this w/o holding vector_lock. 412 */ 413 for (vector = FIRST_EXTERNAL_VECTOR; 414 vector < first_system_vector; vector++) { 415 if (!test_bit(vector, used_vectors) && 416 IS_ERR_OR_NULL(per_cpu(vector_irq, cpu)[vector])) 417 count++; 418 } 419 } 420 421 if (count < this_count) { 422 pr_warn("CPU %d disable failed: CPU has %u vectors assigned and there are only %u available.\n", 423 this_cpu, this_count, count); 424 return -ERANGE; 425 } 426 return 0; 427} 428 429/* A cpu has been removed from cpu_online_mask. Reset irq affinities. */ 430void fixup_irqs(void) 431{ 432 unsigned int irq, vector; 433 static int warned; 434 struct irq_desc *desc; 435 struct irq_data *data; 436 struct irq_chip *chip; 437 int ret; 438 439 for_each_irq_desc(irq, desc) { 440 int break_affinity = 0; 441 int set_affinity = 1; 442 const struct cpumask *affinity; 443 444 if (!desc) 445 continue; 446 if (irq == 2) 447 continue; 448 449 /* interrupt's are disabled at this point */ 450 raw_spin_lock(&desc->lock); 451 452 data = irq_desc_get_irq_data(desc); 453 affinity = irq_data_get_affinity_mask(data); 454 if (!irq_has_action(irq) || irqd_is_per_cpu(data) || 455 cpumask_subset(affinity, cpu_online_mask)) { 456 raw_spin_unlock(&desc->lock); 457 continue; 458 } 459 460 /* 461 * Complete the irq move. This cpu is going down and for 462 * non intr-remapping case, we can't wait till this interrupt 463 * arrives at this cpu before completing the irq move. 464 */ 465 irq_force_complete_move(desc); 466 467 if (cpumask_any_and(affinity, cpu_online_mask) >= nr_cpu_ids) { 468 break_affinity = 1; 469 affinity = cpu_online_mask; 470 } 471 472 chip = irq_data_get_irq_chip(data); 473 /* 474 * The interrupt descriptor might have been cleaned up 475 * already, but it is not yet removed from the radix tree 476 */ 477 if (!chip) { 478 raw_spin_unlock(&desc->lock); 479 continue; 480 } 481 482 if (!irqd_can_move_in_process_context(data) && chip->irq_mask) 483 chip->irq_mask(data); 484 485 if (chip->irq_set_affinity) { 486 ret = chip->irq_set_affinity(data, affinity, true); 487 if (ret == -ENOSPC) 488 pr_crit("IRQ %d set affinity failed because there are no available vectors. The device assigned to this IRQ is unstable.\n", irq); 489 } else { 490 if (!(warned++)) 491 set_affinity = 0; 492 } 493 494 /* 495 * We unmask if the irq was not marked masked by the 496 * core code. That respects the lazy irq disable 497 * behaviour. 498 */ 499 if (!irqd_can_move_in_process_context(data) && 500 !irqd_irq_masked(data) && chip->irq_unmask) 501 chip->irq_unmask(data); 502 503 raw_spin_unlock(&desc->lock); 504 505 if (break_affinity && set_affinity) 506 pr_notice("Broke affinity for irq %i\n", irq); 507 else if (!set_affinity) 508 pr_notice("Cannot set affinity for irq %i\n", irq); 509 } 510 511 /* 512 * We can remove mdelay() and then send spuriuous interrupts to 513 * new cpu targets for all the irqs that were handled previously by 514 * this cpu. While it works, I have seen spurious interrupt messages 515 * (nothing wrong but still...). 516 * 517 * So for now, retain mdelay(1) and check the IRR and then send those 518 * interrupts to new targets as this cpu is already offlined... 519 */ 520 mdelay(1); 521 522 /* 523 * We can walk the vector array of this cpu without holding 524 * vector_lock because the cpu is already marked !online, so 525 * nothing else will touch it. 526 */ 527 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) { 528 unsigned int irr; 529 530 if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector]))) 531 continue; 532 533 irr = apic_read(APIC_IRR + (vector / 32 * 0x10)); 534 if (irr & (1 << (vector % 32))) { 535 desc = __this_cpu_read(vector_irq[vector]); 536 537 raw_spin_lock(&desc->lock); 538 data = irq_desc_get_irq_data(desc); 539 chip = irq_data_get_irq_chip(data); 540 if (chip->irq_retrigger) { 541 chip->irq_retrigger(data); 542 __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED); 543 } 544 raw_spin_unlock(&desc->lock); 545 } 546 if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED) 547 __this_cpu_write(vector_irq[vector], VECTOR_UNUSED); 548 } 549} 550#endif 551