1#include <linux/perf_event.h>
2#include <linux/export.h>
3#include <linux/types.h>
4#include <linux/init.h>
5#include <linux/slab.h>
6#include <asm/apicdef.h>
7
8#include "perf_event.h"
9
10static __initconst const u64 amd_hw_cache_event_ids
11				[PERF_COUNT_HW_CACHE_MAX]
12				[PERF_COUNT_HW_CACHE_OP_MAX]
13				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
14{
15 [ C(L1D) ] = {
16	[ C(OP_READ) ] = {
17		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
18		[ C(RESULT_MISS)   ] = 0x0141, /* Data Cache Misses          */
19	},
20	[ C(OP_WRITE) ] = {
21		[ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */
22		[ C(RESULT_MISS)   ] = 0,
23	},
24	[ C(OP_PREFETCH) ] = {
25		[ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts  */
26		[ C(RESULT_MISS)   ] = 0x0167, /* Data Prefetcher :cancelled */
27	},
28 },
29 [ C(L1I ) ] = {
30	[ C(OP_READ) ] = {
31		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches  */
32		[ C(RESULT_MISS)   ] = 0x0081, /* Instruction cache misses   */
33	},
34	[ C(OP_WRITE) ] = {
35		[ C(RESULT_ACCESS) ] = -1,
36		[ C(RESULT_MISS)   ] = -1,
37	},
38	[ C(OP_PREFETCH) ] = {
39		[ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
40		[ C(RESULT_MISS)   ] = 0,
41	},
42 },
43 [ C(LL  ) ] = {
44	[ C(OP_READ) ] = {
45		[ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
46		[ C(RESULT_MISS)   ] = 0x037E, /* L2 Cache Misses : IC+DC     */
47	},
48	[ C(OP_WRITE) ] = {
49		[ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback           */
50		[ C(RESULT_MISS)   ] = 0,
51	},
52	[ C(OP_PREFETCH) ] = {
53		[ C(RESULT_ACCESS) ] = 0,
54		[ C(RESULT_MISS)   ] = 0,
55	},
56 },
57 [ C(DTLB) ] = {
58	[ C(OP_READ) ] = {
59		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
60		[ C(RESULT_MISS)   ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
61	},
62	[ C(OP_WRITE) ] = {
63		[ C(RESULT_ACCESS) ] = 0,
64		[ C(RESULT_MISS)   ] = 0,
65	},
66	[ C(OP_PREFETCH) ] = {
67		[ C(RESULT_ACCESS) ] = 0,
68		[ C(RESULT_MISS)   ] = 0,
69	},
70 },
71 [ C(ITLB) ] = {
72	[ C(OP_READ) ] = {
73		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes        */
74		[ C(RESULT_MISS)   ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
75	},
76	[ C(OP_WRITE) ] = {
77		[ C(RESULT_ACCESS) ] = -1,
78		[ C(RESULT_MISS)   ] = -1,
79	},
80	[ C(OP_PREFETCH) ] = {
81		[ C(RESULT_ACCESS) ] = -1,
82		[ C(RESULT_MISS)   ] = -1,
83	},
84 },
85 [ C(BPU ) ] = {
86	[ C(OP_READ) ] = {
87		[ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr.      */
88		[ C(RESULT_MISS)   ] = 0x00c3, /* Retired Mispredicted BI    */
89	},
90	[ C(OP_WRITE) ] = {
91		[ C(RESULT_ACCESS) ] = -1,
92		[ C(RESULT_MISS)   ] = -1,
93	},
94	[ C(OP_PREFETCH) ] = {
95		[ C(RESULT_ACCESS) ] = -1,
96		[ C(RESULT_MISS)   ] = -1,
97	},
98 },
99 [ C(NODE) ] = {
100	[ C(OP_READ) ] = {
101		[ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
102		[ C(RESULT_MISS)   ] = 0x98e9, /* CPU Request to Memory, r   */
103	},
104	[ C(OP_WRITE) ] = {
105		[ C(RESULT_ACCESS) ] = -1,
106		[ C(RESULT_MISS)   ] = -1,
107	},
108	[ C(OP_PREFETCH) ] = {
109		[ C(RESULT_ACCESS) ] = -1,
110		[ C(RESULT_MISS)   ] = -1,
111	},
112 },
113};
114
115/*
116 * AMD Performance Monitor K7 and later.
117 */
118static const u64 amd_perfmon_event_map[] =
119{
120  [PERF_COUNT_HW_CPU_CYCLES]			= 0x0076,
121  [PERF_COUNT_HW_INSTRUCTIONS]			= 0x00c0,
122  [PERF_COUNT_HW_CACHE_REFERENCES]		= 0x0080,
123  [PERF_COUNT_HW_CACHE_MISSES]			= 0x0081,
124  [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]		= 0x00c2,
125  [PERF_COUNT_HW_BRANCH_MISSES]			= 0x00c3,
126  [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= 0x00d0, /* "Decoder empty" event */
127  [PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= 0x00d1, /* "Dispatch stalls" event */
128};
129
130static u64 amd_pmu_event_map(int hw_event)
131{
132	return amd_perfmon_event_map[hw_event];
133}
134
135/*
136 * Previously calculated offsets
137 */
138static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
139static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;
140
141/*
142 * Legacy CPUs:
143 *   4 counters starting at 0xc0010000 each offset by 1
144 *
145 * CPUs with core performance counter extensions:
146 *   6 counters starting at 0xc0010200 each offset by 2
147 */
148static inline int amd_pmu_addr_offset(int index, bool eventsel)
149{
150	int offset;
151
152	if (!index)
153		return index;
154
155	if (eventsel)
156		offset = event_offsets[index];
157	else
158		offset = count_offsets[index];
159
160	if (offset)
161		return offset;
162
163	if (!cpu_has_perfctr_core)
164		offset = index;
165	else
166		offset = index << 1;
167
168	if (eventsel)
169		event_offsets[index] = offset;
170	else
171		count_offsets[index] = offset;
172
173	return offset;
174}
175
176static int amd_core_hw_config(struct perf_event *event)
177{
178	if (event->attr.exclude_host && event->attr.exclude_guest)
179		/*
180		 * When HO == GO == 1 the hardware treats that as GO == HO == 0
181		 * and will count in both modes. We don't want to count in that
182		 * case so we emulate no-counting by setting US = OS = 0.
183		 */
184		event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
185				      ARCH_PERFMON_EVENTSEL_OS);
186	else if (event->attr.exclude_host)
187		event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
188	else if (event->attr.exclude_guest)
189		event->hw.config |= AMD64_EVENTSEL_HOSTONLY;
190
191	return 0;
192}
193
194/*
195 * AMD64 events are detected based on their event codes.
196 */
197static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
198{
199	return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
200}
201
202static inline int amd_is_nb_event(struct hw_perf_event *hwc)
203{
204	return (hwc->config & 0xe0) == 0xe0;
205}
206
207static inline int amd_has_nb(struct cpu_hw_events *cpuc)
208{
209	struct amd_nb *nb = cpuc->amd_nb;
210
211	return nb && nb->nb_id != -1;
212}
213
214static int amd_pmu_hw_config(struct perf_event *event)
215{
216	int ret;
217
218	/* pass precise event sampling to ibs: */
219	if (event->attr.precise_ip && get_ibs_caps())
220		return -ENOENT;
221
222	if (has_branch_stack(event))
223		return -EOPNOTSUPP;
224
225	ret = x86_pmu_hw_config(event);
226	if (ret)
227		return ret;
228
229	if (event->attr.type == PERF_TYPE_RAW)
230		event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
231
232	return amd_core_hw_config(event);
233}
234
235static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
236					   struct perf_event *event)
237{
238	struct amd_nb *nb = cpuc->amd_nb;
239	int i;
240
241	/*
242	 * need to scan whole list because event may not have
243	 * been assigned during scheduling
244	 *
245	 * no race condition possible because event can only
246	 * be removed on one CPU at a time AND PMU is disabled
247	 * when we come here
248	 */
249	for (i = 0; i < x86_pmu.num_counters; i++) {
250		if (cmpxchg(nb->owners + i, event, NULL) == event)
251			break;
252	}
253}
254
255 /*
256  * AMD64 NorthBridge events need special treatment because
257  * counter access needs to be synchronized across all cores
258  * of a package. Refer to BKDG section 3.12
259  *
260  * NB events are events measuring L3 cache, Hypertransport
261  * traffic. They are identified by an event code >= 0xe00.
262  * They measure events on the NorthBride which is shared
263  * by all cores on a package. NB events are counted on a
264  * shared set of counters. When a NB event is programmed
265  * in a counter, the data actually comes from a shared
266  * counter. Thus, access to those counters needs to be
267  * synchronized.
268  *
269  * We implement the synchronization such that no two cores
270  * can be measuring NB events using the same counters. Thus,
271  * we maintain a per-NB allocation table. The available slot
272  * is propagated using the event_constraint structure.
273  *
274  * We provide only one choice for each NB event based on
275  * the fact that only NB events have restrictions. Consequently,
276  * if a counter is available, there is a guarantee the NB event
277  * will be assigned to it. If no slot is available, an empty
278  * constraint is returned and scheduling will eventually fail
279  * for this event.
280  *
281  * Note that all cores attached the same NB compete for the same
282  * counters to host NB events, this is why we use atomic ops. Some
283  * multi-chip CPUs may have more than one NB.
284  *
285  * Given that resources are allocated (cmpxchg), they must be
286  * eventually freed for others to use. This is accomplished by
287  * calling __amd_put_nb_event_constraints()
288  *
289  * Non NB events are not impacted by this restriction.
290  */
291static struct event_constraint *
292__amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
293			       struct event_constraint *c)
294{
295	struct hw_perf_event *hwc = &event->hw;
296	struct amd_nb *nb = cpuc->amd_nb;
297	struct perf_event *old;
298	int idx, new = -1;
299
300	if (!c)
301		c = &unconstrained;
302
303	if (cpuc->is_fake)
304		return c;
305
306	/*
307	 * detect if already present, if so reuse
308	 *
309	 * cannot merge with actual allocation
310	 * because of possible holes
311	 *
312	 * event can already be present yet not assigned (in hwc->idx)
313	 * because of successive calls to x86_schedule_events() from
314	 * hw_perf_group_sched_in() without hw_perf_enable()
315	 */
316	for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) {
317		if (new == -1 || hwc->idx == idx)
318			/* assign free slot, prefer hwc->idx */
319			old = cmpxchg(nb->owners + idx, NULL, event);
320		else if (nb->owners[idx] == event)
321			/* event already present */
322			old = event;
323		else
324			continue;
325
326		if (old && old != event)
327			continue;
328
329		/* reassign to this slot */
330		if (new != -1)
331			cmpxchg(nb->owners + new, event, NULL);
332		new = idx;
333
334		/* already present, reuse */
335		if (old == event)
336			break;
337	}
338
339	if (new == -1)
340		return &emptyconstraint;
341
342	return &nb->event_constraints[new];
343}
344
345static struct amd_nb *amd_alloc_nb(int cpu)
346{
347	struct amd_nb *nb;
348	int i;
349
350	nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
351	if (!nb)
352		return NULL;
353
354	nb->nb_id = -1;
355
356	/*
357	 * initialize all possible NB constraints
358	 */
359	for (i = 0; i < x86_pmu.num_counters; i++) {
360		__set_bit(i, nb->event_constraints[i].idxmsk);
361		nb->event_constraints[i].weight = 1;
362	}
363	return nb;
364}
365
366static int amd_pmu_cpu_prepare(int cpu)
367{
368	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
369
370	WARN_ON_ONCE(cpuc->amd_nb);
371
372	if (boot_cpu_data.x86_max_cores < 2)
373		return NOTIFY_OK;
374
375	cpuc->amd_nb = amd_alloc_nb(cpu);
376	if (!cpuc->amd_nb)
377		return NOTIFY_BAD;
378
379	return NOTIFY_OK;
380}
381
382static void amd_pmu_cpu_starting(int cpu)
383{
384	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
385	void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
386	struct amd_nb *nb;
387	int i, nb_id;
388
389	cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
390
391	if (boot_cpu_data.x86_max_cores < 2)
392		return;
393
394	nb_id = amd_get_nb_id(cpu);
395	WARN_ON_ONCE(nb_id == BAD_APICID);
396
397	for_each_online_cpu(i) {
398		nb = per_cpu(cpu_hw_events, i).amd_nb;
399		if (WARN_ON_ONCE(!nb))
400			continue;
401
402		if (nb->nb_id == nb_id) {
403			*onln = cpuc->amd_nb;
404			cpuc->amd_nb = nb;
405			break;
406		}
407	}
408
409	cpuc->amd_nb->nb_id = nb_id;
410	cpuc->amd_nb->refcnt++;
411}
412
413static void amd_pmu_cpu_dead(int cpu)
414{
415	struct cpu_hw_events *cpuhw;
416
417	if (boot_cpu_data.x86_max_cores < 2)
418		return;
419
420	cpuhw = &per_cpu(cpu_hw_events, cpu);
421
422	if (cpuhw->amd_nb) {
423		struct amd_nb *nb = cpuhw->amd_nb;
424
425		if (nb->nb_id == -1 || --nb->refcnt == 0)
426			kfree(nb);
427
428		cpuhw->amd_nb = NULL;
429	}
430}
431
432static struct event_constraint *
433amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
434			  struct perf_event *event)
435{
436	/*
437	 * if not NB event or no NB, then no constraints
438	 */
439	if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
440		return &unconstrained;
441
442	return __amd_get_nb_event_constraints(cpuc, event, NULL);
443}
444
445static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
446				      struct perf_event *event)
447{
448	if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
449		__amd_put_nb_event_constraints(cpuc, event);
450}
451
452PMU_FORMAT_ATTR(event,	"config:0-7,32-35");
453PMU_FORMAT_ATTR(umask,	"config:8-15"	);
454PMU_FORMAT_ATTR(edge,	"config:18"	);
455PMU_FORMAT_ATTR(inv,	"config:23"	);
456PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
457
458static struct attribute *amd_format_attr[] = {
459	&format_attr_event.attr,
460	&format_attr_umask.attr,
461	&format_attr_edge.attr,
462	&format_attr_inv.attr,
463	&format_attr_cmask.attr,
464	NULL,
465};
466
467/* AMD Family 15h */
468
469#define AMD_EVENT_TYPE_MASK	0x000000F0ULL
470
471#define AMD_EVENT_FP		0x00000000ULL ... 0x00000010ULL
472#define AMD_EVENT_LS		0x00000020ULL ... 0x00000030ULL
473#define AMD_EVENT_DC		0x00000040ULL ... 0x00000050ULL
474#define AMD_EVENT_CU		0x00000060ULL ... 0x00000070ULL
475#define AMD_EVENT_IC_DE		0x00000080ULL ... 0x00000090ULL
476#define AMD_EVENT_EX_LS		0x000000C0ULL
477#define AMD_EVENT_DE		0x000000D0ULL
478#define AMD_EVENT_NB		0x000000E0ULL ... 0x000000F0ULL
479
480/*
481 * AMD family 15h event code/PMC mappings:
482 *
483 * type = event_code & 0x0F0:
484 *
485 * 0x000	FP	PERF_CTL[5:3]
486 * 0x010	FP	PERF_CTL[5:3]
487 * 0x020	LS	PERF_CTL[5:0]
488 * 0x030	LS	PERF_CTL[5:0]
489 * 0x040	DC	PERF_CTL[5:0]
490 * 0x050	DC	PERF_CTL[5:0]
491 * 0x060	CU	PERF_CTL[2:0]
492 * 0x070	CU	PERF_CTL[2:0]
493 * 0x080	IC/DE	PERF_CTL[2:0]
494 * 0x090	IC/DE	PERF_CTL[2:0]
495 * 0x0A0	---
496 * 0x0B0	---
497 * 0x0C0	EX/LS	PERF_CTL[5:0]
498 * 0x0D0	DE	PERF_CTL[2:0]
499 * 0x0E0	NB	NB_PERF_CTL[3:0]
500 * 0x0F0	NB	NB_PERF_CTL[3:0]
501 *
502 * Exceptions:
503 *
504 * 0x000	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
505 * 0x003	FP	PERF_CTL[3]
506 * 0x004	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
507 * 0x00B	FP	PERF_CTL[3]
508 * 0x00D	FP	PERF_CTL[3]
509 * 0x023	DE	PERF_CTL[2:0]
510 * 0x02D	LS	PERF_CTL[3]
511 * 0x02E	LS	PERF_CTL[3,0]
512 * 0x031	LS	PERF_CTL[2:0] (**)
513 * 0x043	CU	PERF_CTL[2:0]
514 * 0x045	CU	PERF_CTL[2:0]
515 * 0x046	CU	PERF_CTL[2:0]
516 * 0x054	CU	PERF_CTL[2:0]
517 * 0x055	CU	PERF_CTL[2:0]
518 * 0x08F	IC	PERF_CTL[0]
519 * 0x187	DE	PERF_CTL[0]
520 * 0x188	DE	PERF_CTL[0]
521 * 0x0DB	EX	PERF_CTL[5:0]
522 * 0x0DC	LS	PERF_CTL[5:0]
523 * 0x0DD	LS	PERF_CTL[5:0]
524 * 0x0DE	LS	PERF_CTL[5:0]
525 * 0x0DF	LS	PERF_CTL[5:0]
526 * 0x1C0	EX	PERF_CTL[5:3]
527 * 0x1D6	EX	PERF_CTL[5:0]
528 * 0x1D8	EX	PERF_CTL[5:0]
529 *
530 * (*)  depending on the umask all FPU counters may be used
531 * (**) only one unitmask enabled at a time
532 */
533
534static struct event_constraint amd_f15_PMC0  = EVENT_CONSTRAINT(0, 0x01, 0);
535static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
536static struct event_constraint amd_f15_PMC3  = EVENT_CONSTRAINT(0, 0x08, 0);
537static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
538static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
539static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
540
541static struct event_constraint *
542amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
543			       struct perf_event *event)
544{
545	struct hw_perf_event *hwc = &event->hw;
546	unsigned int event_code = amd_get_event_code(hwc);
547
548	switch (event_code & AMD_EVENT_TYPE_MASK) {
549	case AMD_EVENT_FP:
550		switch (event_code) {
551		case 0x000:
552			if (!(hwc->config & 0x0000F000ULL))
553				break;
554			if (!(hwc->config & 0x00000F00ULL))
555				break;
556			return &amd_f15_PMC3;
557		case 0x004:
558			if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
559				break;
560			return &amd_f15_PMC3;
561		case 0x003:
562		case 0x00B:
563		case 0x00D:
564			return &amd_f15_PMC3;
565		}
566		return &amd_f15_PMC53;
567	case AMD_EVENT_LS:
568	case AMD_EVENT_DC:
569	case AMD_EVENT_EX_LS:
570		switch (event_code) {
571		case 0x023:
572		case 0x043:
573		case 0x045:
574		case 0x046:
575		case 0x054:
576		case 0x055:
577			return &amd_f15_PMC20;
578		case 0x02D:
579			return &amd_f15_PMC3;
580		case 0x02E:
581			return &amd_f15_PMC30;
582		case 0x031:
583			if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
584				return &amd_f15_PMC20;
585			return &emptyconstraint;
586		case 0x1C0:
587			return &amd_f15_PMC53;
588		default:
589			return &amd_f15_PMC50;
590		}
591	case AMD_EVENT_CU:
592	case AMD_EVENT_IC_DE:
593	case AMD_EVENT_DE:
594		switch (event_code) {
595		case 0x08F:
596		case 0x187:
597		case 0x188:
598			return &amd_f15_PMC0;
599		case 0x0DB ... 0x0DF:
600		case 0x1D6:
601		case 0x1D8:
602			return &amd_f15_PMC50;
603		default:
604			return &amd_f15_PMC20;
605		}
606	case AMD_EVENT_NB:
607		/* moved to perf_event_amd_uncore.c */
608		return &emptyconstraint;
609	default:
610		return &emptyconstraint;
611	}
612}
613
614static ssize_t amd_event_sysfs_show(char *page, u64 config)
615{
616	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
617		    (config & AMD64_EVENTSEL_EVENT) >> 24;
618
619	return x86_event_sysfs_show(page, config, event);
620}
621
622static __initconst const struct x86_pmu amd_pmu = {
623	.name			= "AMD",
624	.handle_irq		= x86_pmu_handle_irq,
625	.disable_all		= x86_pmu_disable_all,
626	.enable_all		= x86_pmu_enable_all,
627	.enable			= x86_pmu_enable_event,
628	.disable		= x86_pmu_disable_event,
629	.hw_config		= amd_pmu_hw_config,
630	.schedule_events	= x86_schedule_events,
631	.eventsel		= MSR_K7_EVNTSEL0,
632	.perfctr		= MSR_K7_PERFCTR0,
633	.addr_offset            = amd_pmu_addr_offset,
634	.event_map		= amd_pmu_event_map,
635	.max_events		= ARRAY_SIZE(amd_perfmon_event_map),
636	.num_counters		= AMD64_NUM_COUNTERS,
637	.cntval_bits		= 48,
638	.cntval_mask		= (1ULL << 48) - 1,
639	.apic			= 1,
640	/* use highest bit to detect overflow */
641	.max_period		= (1ULL << 47) - 1,
642	.get_event_constraints	= amd_get_event_constraints,
643	.put_event_constraints	= amd_put_event_constraints,
644
645	.format_attrs		= amd_format_attr,
646	.events_sysfs_show	= amd_event_sysfs_show,
647
648	.cpu_prepare		= amd_pmu_cpu_prepare,
649	.cpu_starting		= amd_pmu_cpu_starting,
650	.cpu_dead		= amd_pmu_cpu_dead,
651};
652
653static int __init amd_core_pmu_init(void)
654{
655	if (!cpu_has_perfctr_core)
656		return 0;
657
658	switch (boot_cpu_data.x86) {
659	case 0x15:
660		pr_cont("Fam15h ");
661		x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
662		break;
663
664	default:
665		pr_err("core perfctr but no constraints; unknown hardware!\n");
666		return -ENODEV;
667	}
668
669	/*
670	 * If core performance counter extensions exists, we must use
671	 * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
672	 * amd_pmu_addr_offset().
673	 */
674	x86_pmu.eventsel	= MSR_F15H_PERF_CTL;
675	x86_pmu.perfctr		= MSR_F15H_PERF_CTR;
676	x86_pmu.num_counters	= AMD64_NUM_COUNTERS_CORE;
677
678	pr_cont("core perfctr, ");
679	return 0;
680}
681
682__init int amd_pmu_init(void)
683{
684	int ret;
685
686	/* Performance-monitoring supported from K7 and later: */
687	if (boot_cpu_data.x86 < 6)
688		return -ENODEV;
689
690	x86_pmu = amd_pmu;
691
692	ret = amd_core_pmu_init();
693	if (ret)
694		return ret;
695
696	/* Events are common for all AMDs */
697	memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
698	       sizeof(hw_cache_event_ids));
699
700	return 0;
701}
702
703void amd_pmu_enable_virt(void)
704{
705	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
706
707	cpuc->perf_ctr_virt_mask = 0;
708
709	/* Reload all events */
710	x86_pmu_disable_all();
711	x86_pmu_enable_all(0);
712}
713EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
714
715void amd_pmu_disable_virt(void)
716{
717	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
718
719	/*
720	 * We only mask out the Host-only bit so that host-only counting works
721	 * when SVM is disabled. If someone sets up a guest-only counter when
722	 * SVM is disabled the Guest-only bits still gets set and the counter
723	 * will not count anything.
724	 */
725	cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
726
727	/* Reload all events */
728	x86_pmu_disable_all();
729	x86_pmu_enable_all(0);
730}
731EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);
732