1/*  Generic MTRR (Memory Type Range Register) driver.
2
3    Copyright (C) 1997-2000  Richard Gooch
4    Copyright (c) 2002	     Patrick Mochel
5
6    This library is free software; you can redistribute it and/or
7    modify it under the terms of the GNU Library General Public
8    License as published by the Free Software Foundation; either
9    version 2 of the License, or (at your option) any later version.
10
11    This library is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14    Library General Public License for more details.
15
16    You should have received a copy of the GNU Library General Public
17    License along with this library; if not, write to the Free
18    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
20    Richard Gooch may be reached by email at  rgooch@atnf.csiro.au
21    The postal address is:
22      Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
23
24    Source: "Pentium Pro Family Developer's Manual, Volume 3:
25    Operating System Writer's Guide" (Intel document number 242692),
26    section 11.11.7
27
28    This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
29    on 6-7 March 2002.
30    Source: Intel Architecture Software Developers Manual, Volume 3:
31    System Programming Guide; Section 9.11. (1997 edition - PPro).
32*/
33
34#define DEBUG
35
36#include <linux/types.h> /* FIXME: kvm_para.h needs this */
37
38#include <linux/stop_machine.h>
39#include <linux/kvm_para.h>
40#include <linux/uaccess.h>
41#include <linux/module.h>
42#include <linux/mutex.h>
43#include <linux/init.h>
44#include <linux/sort.h>
45#include <linux/cpu.h>
46#include <linux/pci.h>
47#include <linux/smp.h>
48#include <linux/syscore_ops.h>
49
50#include <asm/processor.h>
51#include <asm/e820.h>
52#include <asm/mtrr.h>
53#include <asm/msr.h>
54#include <asm/pat.h>
55
56#include "mtrr.h"
57
58/* arch_phys_wc_add returns an MTRR register index plus this offset. */
59#define MTRR_TO_PHYS_WC_OFFSET 1000
60
61u32 num_var_ranges;
62static bool __mtrr_enabled;
63
64static bool mtrr_enabled(void)
65{
66	return __mtrr_enabled;
67}
68
69unsigned int mtrr_usage_table[MTRR_MAX_VAR_RANGES];
70static DEFINE_MUTEX(mtrr_mutex);
71
72u64 size_or_mask, size_and_mask;
73static bool mtrr_aps_delayed_init;
74
75static const struct mtrr_ops *mtrr_ops[X86_VENDOR_NUM];
76
77const struct mtrr_ops *mtrr_if;
78
79static void set_mtrr(unsigned int reg, unsigned long base,
80		     unsigned long size, mtrr_type type);
81
82void set_mtrr_ops(const struct mtrr_ops *ops)
83{
84	if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
85		mtrr_ops[ops->vendor] = ops;
86}
87
88/*  Returns non-zero if we have the write-combining memory type  */
89static int have_wrcomb(void)
90{
91	struct pci_dev *dev;
92
93	dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL);
94	if (dev != NULL) {
95		/*
96		 * ServerWorks LE chipsets < rev 6 have problems with
97		 * write-combining. Don't allow it and leave room for other
98		 * chipsets to be tagged
99		 */
100		if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
101		    dev->device == PCI_DEVICE_ID_SERVERWORKS_LE &&
102		    dev->revision <= 5) {
103			pr_info("mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
104			pci_dev_put(dev);
105			return 0;
106		}
107		/*
108		 * Intel 450NX errata # 23. Non ascending cacheline evictions to
109		 * write combining memory may resulting in data corruption
110		 */
111		if (dev->vendor == PCI_VENDOR_ID_INTEL &&
112		    dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
113			pr_info("mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
114			pci_dev_put(dev);
115			return 0;
116		}
117		pci_dev_put(dev);
118	}
119	return mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0;
120}
121
122/*  This function returns the number of variable MTRRs  */
123static void __init set_num_var_ranges(void)
124{
125	unsigned long config = 0, dummy;
126
127	if (use_intel())
128		rdmsr(MSR_MTRRcap, config, dummy);
129	else if (is_cpu(AMD))
130		config = 2;
131	else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
132		config = 8;
133
134	num_var_ranges = config & 0xff;
135}
136
137static void __init init_table(void)
138{
139	int i, max;
140
141	max = num_var_ranges;
142	for (i = 0; i < max; i++)
143		mtrr_usage_table[i] = 1;
144}
145
146struct set_mtrr_data {
147	unsigned long	smp_base;
148	unsigned long	smp_size;
149	unsigned int	smp_reg;
150	mtrr_type	smp_type;
151};
152
153/**
154 * mtrr_rendezvous_handler - Work done in the synchronization handler. Executed
155 * by all the CPUs.
156 * @info: pointer to mtrr configuration data
157 *
158 * Returns nothing.
159 */
160static int mtrr_rendezvous_handler(void *info)
161{
162	struct set_mtrr_data *data = info;
163
164	/*
165	 * We use this same function to initialize the mtrrs during boot,
166	 * resume, runtime cpu online and on an explicit request to set a
167	 * specific MTRR.
168	 *
169	 * During boot or suspend, the state of the boot cpu's mtrrs has been
170	 * saved, and we want to replicate that across all the cpus that come
171	 * online (either at the end of boot or resume or during a runtime cpu
172	 * online). If we're doing that, @reg is set to something special and on
173	 * all the cpu's we do mtrr_if->set_all() (On the logical cpu that
174	 * started the boot/resume sequence, this might be a duplicate
175	 * set_all()).
176	 */
177	if (data->smp_reg != ~0U) {
178		mtrr_if->set(data->smp_reg, data->smp_base,
179			     data->smp_size, data->smp_type);
180	} else if (mtrr_aps_delayed_init || !cpu_online(smp_processor_id())) {
181		mtrr_if->set_all();
182	}
183	return 0;
184}
185
186static inline int types_compatible(mtrr_type type1, mtrr_type type2)
187{
188	return type1 == MTRR_TYPE_UNCACHABLE ||
189	       type2 == MTRR_TYPE_UNCACHABLE ||
190	       (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
191	       (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
192}
193
194/**
195 * set_mtrr - update mtrrs on all processors
196 * @reg:	mtrr in question
197 * @base:	mtrr base
198 * @size:	mtrr size
199 * @type:	mtrr type
200 *
201 * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
202 *
203 * 1. Queue work to do the following on all processors:
204 * 2. Disable Interrupts
205 * 3. Wait for all procs to do so
206 * 4. Enter no-fill cache mode
207 * 5. Flush caches
208 * 6. Clear PGE bit
209 * 7. Flush all TLBs
210 * 8. Disable all range registers
211 * 9. Update the MTRRs
212 * 10. Enable all range registers
213 * 11. Flush all TLBs and caches again
214 * 12. Enter normal cache mode and reenable caching
215 * 13. Set PGE
216 * 14. Wait for buddies to catch up
217 * 15. Enable interrupts.
218 *
219 * What does that mean for us? Well, stop_machine() will ensure that
220 * the rendezvous handler is started on each CPU. And in lockstep they
221 * do the state transition of disabling interrupts, updating MTRR's
222 * (the CPU vendors may each do it differently, so we call mtrr_if->set()
223 * callback and let them take care of it.) and enabling interrupts.
224 *
225 * Note that the mechanism is the same for UP systems, too; all the SMP stuff
226 * becomes nops.
227 */
228static void
229set_mtrr(unsigned int reg, unsigned long base, unsigned long size, mtrr_type type)
230{
231	struct set_mtrr_data data = { .smp_reg = reg,
232				      .smp_base = base,
233				      .smp_size = size,
234				      .smp_type = type
235				    };
236
237	stop_machine(mtrr_rendezvous_handler, &data, cpu_online_mask);
238}
239
240static void set_mtrr_from_inactive_cpu(unsigned int reg, unsigned long base,
241				      unsigned long size, mtrr_type type)
242{
243	struct set_mtrr_data data = { .smp_reg = reg,
244				      .smp_base = base,
245				      .smp_size = size,
246				      .smp_type = type
247				    };
248
249	stop_machine_from_inactive_cpu(mtrr_rendezvous_handler, &data,
250				       cpu_callout_mask);
251}
252
253/**
254 * mtrr_add_page - Add a memory type region
255 * @base: Physical base address of region in pages (in units of 4 kB!)
256 * @size: Physical size of region in pages (4 kB)
257 * @type: Type of MTRR desired
258 * @increment: If this is true do usage counting on the region
259 *
260 * Memory type region registers control the caching on newer Intel and
261 * non Intel processors. This function allows drivers to request an
262 * MTRR is added. The details and hardware specifics of each processor's
263 * implementation are hidden from the caller, but nevertheless the
264 * caller should expect to need to provide a power of two size on an
265 * equivalent power of two boundary.
266 *
267 * If the region cannot be added either because all regions are in use
268 * or the CPU cannot support it a negative value is returned. On success
269 * the register number for this entry is returned, but should be treated
270 * as a cookie only.
271 *
272 * On a multiprocessor machine the changes are made to all processors.
273 * This is required on x86 by the Intel processors.
274 *
275 * The available types are
276 *
277 * %MTRR_TYPE_UNCACHABLE - No caching
278 *
279 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
280 *
281 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
282 *
283 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
284 *
285 * BUGS: Needs a quiet flag for the cases where drivers do not mind
286 * failures and do not wish system log messages to be sent.
287 */
288int mtrr_add_page(unsigned long base, unsigned long size,
289		  unsigned int type, bool increment)
290{
291	unsigned long lbase, lsize;
292	int i, replace, error;
293	mtrr_type ltype;
294
295	if (!mtrr_enabled())
296		return -ENXIO;
297
298	error = mtrr_if->validate_add_page(base, size, type);
299	if (error)
300		return error;
301
302	if (type >= MTRR_NUM_TYPES) {
303		pr_warning("mtrr: type: %u invalid\n", type);
304		return -EINVAL;
305	}
306
307	/* If the type is WC, check that this processor supports it */
308	if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
309		pr_warning("mtrr: your processor doesn't support write-combining\n");
310		return -ENOSYS;
311	}
312
313	if (!size) {
314		pr_warning("mtrr: zero sized request\n");
315		return -EINVAL;
316	}
317
318	if ((base | (base + size - 1)) >>
319	    (boot_cpu_data.x86_phys_bits - PAGE_SHIFT)) {
320		pr_warning("mtrr: base or size exceeds the MTRR width\n");
321		return -EINVAL;
322	}
323
324	error = -EINVAL;
325	replace = -1;
326
327	/* No CPU hotplug when we change MTRR entries */
328	get_online_cpus();
329
330	/* Search for existing MTRR  */
331	mutex_lock(&mtrr_mutex);
332	for (i = 0; i < num_var_ranges; ++i) {
333		mtrr_if->get(i, &lbase, &lsize, &ltype);
334		if (!lsize || base > lbase + lsize - 1 ||
335		    base + size - 1 < lbase)
336			continue;
337		/*
338		 * At this point we know there is some kind of
339		 * overlap/enclosure
340		 */
341		if (base < lbase || base + size - 1 > lbase + lsize - 1) {
342			if (base <= lbase &&
343			    base + size - 1 >= lbase + lsize - 1) {
344				/*  New region encloses an existing region  */
345				if (type == ltype) {
346					replace = replace == -1 ? i : -2;
347					continue;
348				} else if (types_compatible(type, ltype))
349					continue;
350			}
351			pr_warning("mtrr: 0x%lx000,0x%lx000 overlaps existing"
352				" 0x%lx000,0x%lx000\n", base, size, lbase,
353				lsize);
354			goto out;
355		}
356		/* New region is enclosed by an existing region */
357		if (ltype != type) {
358			if (types_compatible(type, ltype))
359				continue;
360			pr_warning("mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
361				base, size, mtrr_attrib_to_str(ltype),
362				mtrr_attrib_to_str(type));
363			goto out;
364		}
365		if (increment)
366			++mtrr_usage_table[i];
367		error = i;
368		goto out;
369	}
370	/* Search for an empty MTRR */
371	i = mtrr_if->get_free_region(base, size, replace);
372	if (i >= 0) {
373		set_mtrr(i, base, size, type);
374		if (likely(replace < 0)) {
375			mtrr_usage_table[i] = 1;
376		} else {
377			mtrr_usage_table[i] = mtrr_usage_table[replace];
378			if (increment)
379				mtrr_usage_table[i]++;
380			if (unlikely(replace != i)) {
381				set_mtrr(replace, 0, 0, 0);
382				mtrr_usage_table[replace] = 0;
383			}
384		}
385	} else {
386		pr_info("mtrr: no more MTRRs available\n");
387	}
388	error = i;
389 out:
390	mutex_unlock(&mtrr_mutex);
391	put_online_cpus();
392	return error;
393}
394
395static int mtrr_check(unsigned long base, unsigned long size)
396{
397	if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
398		pr_warning("mtrr: size and base must be multiples of 4 kiB\n");
399		pr_debug("mtrr: size: 0x%lx  base: 0x%lx\n", size, base);
400		dump_stack();
401		return -1;
402	}
403	return 0;
404}
405
406/**
407 * mtrr_add - Add a memory type region
408 * @base: Physical base address of region
409 * @size: Physical size of region
410 * @type: Type of MTRR desired
411 * @increment: If this is true do usage counting on the region
412 *
413 * Memory type region registers control the caching on newer Intel and
414 * non Intel processors. This function allows drivers to request an
415 * MTRR is added. The details and hardware specifics of each processor's
416 * implementation are hidden from the caller, but nevertheless the
417 * caller should expect to need to provide a power of two size on an
418 * equivalent power of two boundary.
419 *
420 * If the region cannot be added either because all regions are in use
421 * or the CPU cannot support it a negative value is returned. On success
422 * the register number for this entry is returned, but should be treated
423 * as a cookie only.
424 *
425 * On a multiprocessor machine the changes are made to all processors.
426 * This is required on x86 by the Intel processors.
427 *
428 * The available types are
429 *
430 * %MTRR_TYPE_UNCACHABLE - No caching
431 *
432 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
433 *
434 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
435 *
436 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
437 *
438 * BUGS: Needs a quiet flag for the cases where drivers do not mind
439 * failures and do not wish system log messages to be sent.
440 */
441int mtrr_add(unsigned long base, unsigned long size, unsigned int type,
442	     bool increment)
443{
444	if (!mtrr_enabled())
445		return -ENODEV;
446	if (mtrr_check(base, size))
447		return -EINVAL;
448	return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
449			     increment);
450}
451
452/**
453 * mtrr_del_page - delete a memory type region
454 * @reg: Register returned by mtrr_add
455 * @base: Physical base address
456 * @size: Size of region
457 *
458 * If register is supplied then base and size are ignored. This is
459 * how drivers should call it.
460 *
461 * Releases an MTRR region. If the usage count drops to zero the
462 * register is freed and the region returns to default state.
463 * On success the register is returned, on failure a negative error
464 * code.
465 */
466int mtrr_del_page(int reg, unsigned long base, unsigned long size)
467{
468	int i, max;
469	mtrr_type ltype;
470	unsigned long lbase, lsize;
471	int error = -EINVAL;
472
473	if (!mtrr_enabled())
474		return -ENODEV;
475
476	max = num_var_ranges;
477	/* No CPU hotplug when we change MTRR entries */
478	get_online_cpus();
479	mutex_lock(&mtrr_mutex);
480	if (reg < 0) {
481		/*  Search for existing MTRR  */
482		for (i = 0; i < max; ++i) {
483			mtrr_if->get(i, &lbase, &lsize, &ltype);
484			if (lbase == base && lsize == size) {
485				reg = i;
486				break;
487			}
488		}
489		if (reg < 0) {
490			pr_debug("mtrr: no MTRR for %lx000,%lx000 found\n",
491				 base, size);
492			goto out;
493		}
494	}
495	if (reg >= max) {
496		pr_warning("mtrr: register: %d too big\n", reg);
497		goto out;
498	}
499	mtrr_if->get(reg, &lbase, &lsize, &ltype);
500	if (lsize < 1) {
501		pr_warning("mtrr: MTRR %d not used\n", reg);
502		goto out;
503	}
504	if (mtrr_usage_table[reg] < 1) {
505		pr_warning("mtrr: reg: %d has count=0\n", reg);
506		goto out;
507	}
508	if (--mtrr_usage_table[reg] < 1)
509		set_mtrr(reg, 0, 0, 0);
510	error = reg;
511 out:
512	mutex_unlock(&mtrr_mutex);
513	put_online_cpus();
514	return error;
515}
516
517/**
518 * mtrr_del - delete a memory type region
519 * @reg: Register returned by mtrr_add
520 * @base: Physical base address
521 * @size: Size of region
522 *
523 * If register is supplied then base and size are ignored. This is
524 * how drivers should call it.
525 *
526 * Releases an MTRR region. If the usage count drops to zero the
527 * register is freed and the region returns to default state.
528 * On success the register is returned, on failure a negative error
529 * code.
530 */
531int mtrr_del(int reg, unsigned long base, unsigned long size)
532{
533	if (!mtrr_enabled())
534		return -ENODEV;
535	if (mtrr_check(base, size))
536		return -EINVAL;
537	return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
538}
539
540/**
541 * arch_phys_wc_add - add a WC MTRR and handle errors if PAT is unavailable
542 * @base: Physical base address
543 * @size: Size of region
544 *
545 * If PAT is available, this does nothing.  If PAT is unavailable, it
546 * attempts to add a WC MTRR covering size bytes starting at base and
547 * logs an error if this fails.
548 *
549 * The called should provide a power of two size on an equivalent
550 * power of two boundary.
551 *
552 * Drivers must store the return value to pass to mtrr_del_wc_if_needed,
553 * but drivers should not try to interpret that return value.
554 */
555int arch_phys_wc_add(unsigned long base, unsigned long size)
556{
557	int ret;
558
559	if (pat_enabled() || !mtrr_enabled())
560		return 0;  /* Success!  (We don't need to do anything.) */
561
562	ret = mtrr_add(base, size, MTRR_TYPE_WRCOMB, true);
563	if (ret < 0) {
564		pr_warn("Failed to add WC MTRR for [%p-%p]; performance may suffer.",
565			(void *)base, (void *)(base + size - 1));
566		return ret;
567	}
568	return ret + MTRR_TO_PHYS_WC_OFFSET;
569}
570EXPORT_SYMBOL(arch_phys_wc_add);
571
572/*
573 * arch_phys_wc_del - undoes arch_phys_wc_add
574 * @handle: Return value from arch_phys_wc_add
575 *
576 * This cleans up after mtrr_add_wc_if_needed.
577 *
578 * The API guarantees that mtrr_del_wc_if_needed(error code) and
579 * mtrr_del_wc_if_needed(0) do nothing.
580 */
581void arch_phys_wc_del(int handle)
582{
583	if (handle >= 1) {
584		WARN_ON(handle < MTRR_TO_PHYS_WC_OFFSET);
585		mtrr_del(handle - MTRR_TO_PHYS_WC_OFFSET, 0, 0);
586	}
587}
588EXPORT_SYMBOL(arch_phys_wc_del);
589
590/*
591 * arch_phys_wc_index - translates arch_phys_wc_add's return value
592 * @handle: Return value from arch_phys_wc_add
593 *
594 * This will turn the return value from arch_phys_wc_add into an mtrr
595 * index suitable for debugging.
596 *
597 * Note: There is no legitimate use for this function, except possibly
598 * in printk line.  Alas there is an illegitimate use in some ancient
599 * drm ioctls.
600 */
601int arch_phys_wc_index(int handle)
602{
603	if (handle < MTRR_TO_PHYS_WC_OFFSET)
604		return -1;
605	else
606		return handle - MTRR_TO_PHYS_WC_OFFSET;
607}
608EXPORT_SYMBOL_GPL(arch_phys_wc_index);
609
610/*
611 * HACK ALERT!
612 * These should be called implicitly, but we can't yet until all the initcall
613 * stuff is done...
614 */
615static void __init init_ifs(void)
616{
617#ifndef CONFIG_X86_64
618	amd_init_mtrr();
619	cyrix_init_mtrr();
620	centaur_init_mtrr();
621#endif
622}
623
624/* The suspend/resume methods are only for CPU without MTRR. CPU using generic
625 * MTRR driver doesn't require this
626 */
627struct mtrr_value {
628	mtrr_type	ltype;
629	unsigned long	lbase;
630	unsigned long	lsize;
631};
632
633static struct mtrr_value mtrr_value[MTRR_MAX_VAR_RANGES];
634
635static int mtrr_save(void)
636{
637	int i;
638
639	for (i = 0; i < num_var_ranges; i++) {
640		mtrr_if->get(i, &mtrr_value[i].lbase,
641				&mtrr_value[i].lsize,
642				&mtrr_value[i].ltype);
643	}
644	return 0;
645}
646
647static void mtrr_restore(void)
648{
649	int i;
650
651	for (i = 0; i < num_var_ranges; i++) {
652		if (mtrr_value[i].lsize) {
653			set_mtrr(i, mtrr_value[i].lbase,
654				    mtrr_value[i].lsize,
655				    mtrr_value[i].ltype);
656		}
657	}
658}
659
660
661
662static struct syscore_ops mtrr_syscore_ops = {
663	.suspend	= mtrr_save,
664	.resume		= mtrr_restore,
665};
666
667int __initdata changed_by_mtrr_cleanup;
668
669#define SIZE_OR_MASK_BITS(n)  (~((1ULL << ((n) - PAGE_SHIFT)) - 1))
670/**
671 * mtrr_bp_init - initialize mtrrs on the boot CPU
672 *
673 * This needs to be called early; before any of the other CPUs are
674 * initialized (i.e. before smp_init()).
675 *
676 */
677void __init mtrr_bp_init(void)
678{
679	u32 phys_addr;
680
681	init_ifs();
682
683	phys_addr = 32;
684
685	if (cpu_has_mtrr) {
686		mtrr_if = &generic_mtrr_ops;
687		size_or_mask = SIZE_OR_MASK_BITS(36);
688		size_and_mask = 0x00f00000;
689		phys_addr = 36;
690
691		/*
692		 * This is an AMD specific MSR, but we assume(hope?) that
693		 * Intel will implement it too when they extend the address
694		 * bus of the Xeon.
695		 */
696		if (cpuid_eax(0x80000000) >= 0x80000008) {
697			phys_addr = cpuid_eax(0x80000008) & 0xff;
698			/* CPUID workaround for Intel 0F33/0F34 CPU */
699			if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
700			    boot_cpu_data.x86 == 0xF &&
701			    boot_cpu_data.x86_model == 0x3 &&
702			    (boot_cpu_data.x86_mask == 0x3 ||
703			     boot_cpu_data.x86_mask == 0x4))
704				phys_addr = 36;
705
706			size_or_mask = SIZE_OR_MASK_BITS(phys_addr);
707			size_and_mask = ~size_or_mask & 0xfffff00000ULL;
708		} else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
709			   boot_cpu_data.x86 == 6) {
710			/*
711			 * VIA C* family have Intel style MTRRs,
712			 * but don't support PAE
713			 */
714			size_or_mask = SIZE_OR_MASK_BITS(32);
715			size_and_mask = 0;
716			phys_addr = 32;
717		}
718	} else {
719		switch (boot_cpu_data.x86_vendor) {
720		case X86_VENDOR_AMD:
721			if (cpu_feature_enabled(X86_FEATURE_K6_MTRR)) {
722				/* Pre-Athlon (K6) AMD CPU MTRRs */
723				mtrr_if = mtrr_ops[X86_VENDOR_AMD];
724				size_or_mask = SIZE_OR_MASK_BITS(32);
725				size_and_mask = 0;
726			}
727			break;
728		case X86_VENDOR_CENTAUR:
729			if (cpu_feature_enabled(X86_FEATURE_CENTAUR_MCR)) {
730				mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
731				size_or_mask = SIZE_OR_MASK_BITS(32);
732				size_and_mask = 0;
733			}
734			break;
735		case X86_VENDOR_CYRIX:
736			if (cpu_feature_enabled(X86_FEATURE_CYRIX_ARR)) {
737				mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
738				size_or_mask = SIZE_OR_MASK_BITS(32);
739				size_and_mask = 0;
740			}
741			break;
742		default:
743			break;
744		}
745	}
746
747	if (mtrr_if) {
748		__mtrr_enabled = true;
749		set_num_var_ranges();
750		init_table();
751		if (use_intel()) {
752			/* BIOS may override */
753			__mtrr_enabled = get_mtrr_state();
754
755			if (mtrr_cleanup(phys_addr)) {
756				changed_by_mtrr_cleanup = 1;
757				mtrr_if->set_all();
758			}
759		}
760	}
761
762	if (!mtrr_enabled())
763		pr_info("MTRR: Disabled\n");
764}
765
766void mtrr_ap_init(void)
767{
768	if (!mtrr_enabled())
769		return;
770
771	if (!use_intel() || mtrr_aps_delayed_init)
772		return;
773	/*
774	 * Ideally we should hold mtrr_mutex here to avoid mtrr entries
775	 * changed, but this routine will be called in cpu boot time,
776	 * holding the lock breaks it.
777	 *
778	 * This routine is called in two cases:
779	 *
780	 *   1. very earily time of software resume, when there absolutely
781	 *      isn't mtrr entry changes;
782	 *
783	 *   2. cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug
784	 *      lock to prevent mtrr entry changes
785	 */
786	set_mtrr_from_inactive_cpu(~0U, 0, 0, 0);
787}
788
789/**
790 * Save current fixed-range MTRR state of the first cpu in cpu_online_mask.
791 */
792void mtrr_save_state(void)
793{
794	int first_cpu;
795
796	if (!mtrr_enabled())
797		return;
798
799	get_online_cpus();
800	first_cpu = cpumask_first(cpu_online_mask);
801	smp_call_function_single(first_cpu, mtrr_save_fixed_ranges, NULL, 1);
802	put_online_cpus();
803}
804
805void set_mtrr_aps_delayed_init(void)
806{
807	if (!mtrr_enabled())
808		return;
809	if (!use_intel())
810		return;
811
812	mtrr_aps_delayed_init = true;
813}
814
815/*
816 * Delayed MTRR initialization for all AP's
817 */
818void mtrr_aps_init(void)
819{
820	if (!use_intel() || !mtrr_enabled())
821		return;
822
823	/*
824	 * Check if someone has requested the delay of AP MTRR initialization,
825	 * by doing set_mtrr_aps_delayed_init(), prior to this point. If not,
826	 * then we are done.
827	 */
828	if (!mtrr_aps_delayed_init)
829		return;
830
831	set_mtrr(~0U, 0, 0, 0);
832	mtrr_aps_delayed_init = false;
833}
834
835void mtrr_bp_restore(void)
836{
837	if (!use_intel() || !mtrr_enabled())
838		return;
839
840	mtrr_if->set_all();
841}
842
843static int __init mtrr_init_finialize(void)
844{
845	if (!mtrr_enabled())
846		return 0;
847
848	if (use_intel()) {
849		if (!changed_by_mtrr_cleanup)
850			mtrr_state_warn();
851		return 0;
852	}
853
854	/*
855	 * The CPU has no MTRR and seems to not support SMP. They have
856	 * specific drivers, we use a tricky method to support
857	 * suspend/resume for them.
858	 *
859	 * TBD: is there any system with such CPU which supports
860	 * suspend/resume? If no, we should remove the code.
861	 */
862	register_syscore_ops(&mtrr_syscore_ops);
863
864	return 0;
865}
866subsys_initcall(mtrr_init_finialize);
867