1#include <linux/bootmem.h>
2#include <linux/linkage.h>
3#include <linux/bitops.h>
4#include <linux/kernel.h>
5#include <linux/module.h>
6#include <linux/percpu.h>
7#include <linux/string.h>
8#include <linux/ctype.h>
9#include <linux/delay.h>
10#include <linux/sched.h>
11#include <linux/init.h>
12#include <linux/kprobes.h>
13#include <linux/kgdb.h>
14#include <linux/smp.h>
15#include <linux/io.h>
16#include <linux/syscore_ops.h>
17
18#include <asm/stackprotector.h>
19#include <asm/perf_event.h>
20#include <asm/mmu_context.h>
21#include <asm/archrandom.h>
22#include <asm/hypervisor.h>
23#include <asm/processor.h>
24#include <asm/tlbflush.h>
25#include <asm/debugreg.h>
26#include <asm/sections.h>
27#include <asm/vsyscall.h>
28#include <linux/topology.h>
29#include <linux/cpumask.h>
30#include <asm/pgtable.h>
31#include <linux/atomic.h>
32#include <asm/proto.h>
33#include <asm/setup.h>
34#include <asm/apic.h>
35#include <asm/desc.h>
36#include <asm/fpu/internal.h>
37#include <asm/mtrr.h>
38#include <linux/numa.h>
39#include <asm/asm.h>
40#include <asm/cpu.h>
41#include <asm/mce.h>
42#include <asm/msr.h>
43#include <asm/pat.h>
44#include <asm/microcode.h>
45#include <asm/microcode_intel.h>
46
47#ifdef CONFIG_X86_LOCAL_APIC
48#include <asm/uv/uv.h>
49#endif
50
51#include "cpu.h"
52
53/* all of these masks are initialized in setup_cpu_local_masks() */
54cpumask_var_t cpu_initialized_mask;
55cpumask_var_t cpu_callout_mask;
56cpumask_var_t cpu_callin_mask;
57
58/* representing cpus for which sibling maps can be computed */
59cpumask_var_t cpu_sibling_setup_mask;
60
61/* correctly size the local cpu masks */
62void __init setup_cpu_local_masks(void)
63{
64	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
65	alloc_bootmem_cpumask_var(&cpu_callin_mask);
66	alloc_bootmem_cpumask_var(&cpu_callout_mask);
67	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
68}
69
70static void default_init(struct cpuinfo_x86 *c)
71{
72#ifdef CONFIG_X86_64
73	cpu_detect_cache_sizes(c);
74#else
75	/* Not much we can do here... */
76	/* Check if at least it has cpuid */
77	if (c->cpuid_level == -1) {
78		/* No cpuid. It must be an ancient CPU */
79		if (c->x86 == 4)
80			strcpy(c->x86_model_id, "486");
81		else if (c->x86 == 3)
82			strcpy(c->x86_model_id, "386");
83	}
84#endif
85}
86
87static const struct cpu_dev default_cpu = {
88	.c_init		= default_init,
89	.c_vendor	= "Unknown",
90	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
91};
92
93static const struct cpu_dev *this_cpu = &default_cpu;
94
95DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
96#ifdef CONFIG_X86_64
97	/*
98	 * We need valid kernel segments for data and code in long mode too
99	 * IRET will check the segment types  kkeil 2000/10/28
100	 * Also sysret mandates a special GDT layout
101	 *
102	 * TLS descriptors are currently at a different place compared to i386.
103	 * Hopefully nobody expects them at a fixed place (Wine?)
104	 */
105	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
106	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
107	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
108	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
109	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
110	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
111#else
112	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
113	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
114	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
115	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
116	/*
117	 * Segments used for calling PnP BIOS have byte granularity.
118	 * They code segments and data segments have fixed 64k limits,
119	 * the transfer segment sizes are set at run time.
120	 */
121	/* 32-bit code */
122	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
123	/* 16-bit code */
124	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
125	/* 16-bit data */
126	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
127	/* 16-bit data */
128	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
129	/* 16-bit data */
130	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
131	/*
132	 * The APM segments have byte granularity and their bases
133	 * are set at run time.  All have 64k limits.
134	 */
135	/* 32-bit code */
136	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
137	/* 16-bit code */
138	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
139	/* data */
140	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
141
142	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
143	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
144	GDT_STACK_CANARY_INIT
145#endif
146} };
147EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
148
149static int __init x86_mpx_setup(char *s)
150{
151	/* require an exact match without trailing characters */
152	if (strlen(s))
153		return 0;
154
155	/* do not emit a message if the feature is not present */
156	if (!boot_cpu_has(X86_FEATURE_MPX))
157		return 1;
158
159	setup_clear_cpu_cap(X86_FEATURE_MPX);
160	pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
161	return 1;
162}
163__setup("nompx", x86_mpx_setup);
164
165#ifdef CONFIG_X86_32
166static int cachesize_override = -1;
167static int disable_x86_serial_nr = 1;
168
169static int __init cachesize_setup(char *str)
170{
171	get_option(&str, &cachesize_override);
172	return 1;
173}
174__setup("cachesize=", cachesize_setup);
175
176static int __init x86_sep_setup(char *s)
177{
178	setup_clear_cpu_cap(X86_FEATURE_SEP);
179	return 1;
180}
181__setup("nosep", x86_sep_setup);
182
183/* Standard macro to see if a specific flag is changeable */
184static inline int flag_is_changeable_p(u32 flag)
185{
186	u32 f1, f2;
187
188	/*
189	 * Cyrix and IDT cpus allow disabling of CPUID
190	 * so the code below may return different results
191	 * when it is executed before and after enabling
192	 * the CPUID. Add "volatile" to not allow gcc to
193	 * optimize the subsequent calls to this function.
194	 */
195	asm volatile ("pushfl		\n\t"
196		      "pushfl		\n\t"
197		      "popl %0		\n\t"
198		      "movl %0, %1	\n\t"
199		      "xorl %2, %0	\n\t"
200		      "pushl %0		\n\t"
201		      "popfl		\n\t"
202		      "pushfl		\n\t"
203		      "popl %0		\n\t"
204		      "popfl		\n\t"
205
206		      : "=&r" (f1), "=&r" (f2)
207		      : "ir" (flag));
208
209	return ((f1^f2) & flag) != 0;
210}
211
212/* Probe for the CPUID instruction */
213int have_cpuid_p(void)
214{
215	return flag_is_changeable_p(X86_EFLAGS_ID);
216}
217
218static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
219{
220	unsigned long lo, hi;
221
222	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
223		return;
224
225	/* Disable processor serial number: */
226
227	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
228	lo |= 0x200000;
229	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
230
231	printk(KERN_NOTICE "CPU serial number disabled.\n");
232	clear_cpu_cap(c, X86_FEATURE_PN);
233
234	/* Disabling the serial number may affect the cpuid level */
235	c->cpuid_level = cpuid_eax(0);
236}
237
238static int __init x86_serial_nr_setup(char *s)
239{
240	disable_x86_serial_nr = 0;
241	return 1;
242}
243__setup("serialnumber", x86_serial_nr_setup);
244#else
245static inline int flag_is_changeable_p(u32 flag)
246{
247	return 1;
248}
249static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
250{
251}
252#endif
253
254static __init int setup_disable_smep(char *arg)
255{
256	setup_clear_cpu_cap(X86_FEATURE_SMEP);
257	return 1;
258}
259__setup("nosmep", setup_disable_smep);
260
261static __always_inline void setup_smep(struct cpuinfo_x86 *c)
262{
263	if (cpu_has(c, X86_FEATURE_SMEP))
264		cr4_set_bits(X86_CR4_SMEP);
265}
266
267static __init int setup_disable_smap(char *arg)
268{
269	setup_clear_cpu_cap(X86_FEATURE_SMAP);
270	return 1;
271}
272__setup("nosmap", setup_disable_smap);
273
274static __always_inline void setup_smap(struct cpuinfo_x86 *c)
275{
276	unsigned long eflags = native_save_fl();
277
278	/* This should have been cleared long ago */
279	BUG_ON(eflags & X86_EFLAGS_AC);
280
281	if (cpu_has(c, X86_FEATURE_SMAP)) {
282#ifdef CONFIG_X86_SMAP
283		cr4_set_bits(X86_CR4_SMAP);
284#else
285		cr4_clear_bits(X86_CR4_SMAP);
286#endif
287	}
288}
289
290/*
291 * Some CPU features depend on higher CPUID levels, which may not always
292 * be available due to CPUID level capping or broken virtualization
293 * software.  Add those features to this table to auto-disable them.
294 */
295struct cpuid_dependent_feature {
296	u32 feature;
297	u32 level;
298};
299
300static const struct cpuid_dependent_feature
301cpuid_dependent_features[] = {
302	{ X86_FEATURE_MWAIT,		0x00000005 },
303	{ X86_FEATURE_DCA,		0x00000009 },
304	{ X86_FEATURE_XSAVE,		0x0000000d },
305	{ 0, 0 }
306};
307
308static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
309{
310	const struct cpuid_dependent_feature *df;
311
312	for (df = cpuid_dependent_features; df->feature; df++) {
313
314		if (!cpu_has(c, df->feature))
315			continue;
316		/*
317		 * Note: cpuid_level is set to -1 if unavailable, but
318		 * extended_extended_level is set to 0 if unavailable
319		 * and the legitimate extended levels are all negative
320		 * when signed; hence the weird messing around with
321		 * signs here...
322		 */
323		if (!((s32)df->level < 0 ?
324		     (u32)df->level > (u32)c->extended_cpuid_level :
325		     (s32)df->level > (s32)c->cpuid_level))
326			continue;
327
328		clear_cpu_cap(c, df->feature);
329		if (!warn)
330			continue;
331
332		printk(KERN_WARNING
333		       "CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
334				x86_cap_flag(df->feature), df->level);
335	}
336}
337
338/*
339 * Naming convention should be: <Name> [(<Codename>)]
340 * This table only is used unless init_<vendor>() below doesn't set it;
341 * in particular, if CPUID levels 0x80000002..4 are supported, this
342 * isn't used
343 */
344
345/* Look up CPU names by table lookup. */
346static const char *table_lookup_model(struct cpuinfo_x86 *c)
347{
348#ifdef CONFIG_X86_32
349	const struct legacy_cpu_model_info *info;
350
351	if (c->x86_model >= 16)
352		return NULL;	/* Range check */
353
354	if (!this_cpu)
355		return NULL;
356
357	info = this_cpu->legacy_models;
358
359	while (info->family) {
360		if (info->family == c->x86)
361			return info->model_names[c->x86_model];
362		info++;
363	}
364#endif
365	return NULL;		/* Not found */
366}
367
368__u32 cpu_caps_cleared[NCAPINTS];
369__u32 cpu_caps_set[NCAPINTS];
370
371void load_percpu_segment(int cpu)
372{
373#ifdef CONFIG_X86_32
374	loadsegment(fs, __KERNEL_PERCPU);
375#else
376	loadsegment(gs, 0);
377	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
378#endif
379	load_stack_canary_segment();
380}
381
382/*
383 * Current gdt points %fs at the "master" per-cpu area: after this,
384 * it's on the real one.
385 */
386void switch_to_new_gdt(int cpu)
387{
388	struct desc_ptr gdt_descr;
389
390	gdt_descr.address = (long)get_cpu_gdt_table(cpu);
391	gdt_descr.size = GDT_SIZE - 1;
392	load_gdt(&gdt_descr);
393	/* Reload the per-cpu base */
394
395	load_percpu_segment(cpu);
396}
397
398static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
399
400static void get_model_name(struct cpuinfo_x86 *c)
401{
402	unsigned int *v;
403	char *p, *q, *s;
404
405	if (c->extended_cpuid_level < 0x80000004)
406		return;
407
408	v = (unsigned int *)c->x86_model_id;
409	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
410	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
411	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
412	c->x86_model_id[48] = 0;
413
414	/* Trim whitespace */
415	p = q = s = &c->x86_model_id[0];
416
417	while (*p == ' ')
418		p++;
419
420	while (*p) {
421		/* Note the last non-whitespace index */
422		if (!isspace(*p))
423			s = q;
424
425		*q++ = *p++;
426	}
427
428	*(s + 1) = '\0';
429}
430
431void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
432{
433	unsigned int n, dummy, ebx, ecx, edx, l2size;
434
435	n = c->extended_cpuid_level;
436
437	if (n >= 0x80000005) {
438		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
439		c->x86_cache_size = (ecx>>24) + (edx>>24);
440#ifdef CONFIG_X86_64
441		/* On K8 L1 TLB is inclusive, so don't count it */
442		c->x86_tlbsize = 0;
443#endif
444	}
445
446	if (n < 0x80000006)	/* Some chips just has a large L1. */
447		return;
448
449	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
450	l2size = ecx >> 16;
451
452#ifdef CONFIG_X86_64
453	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
454#else
455	/* do processor-specific cache resizing */
456	if (this_cpu->legacy_cache_size)
457		l2size = this_cpu->legacy_cache_size(c, l2size);
458
459	/* Allow user to override all this if necessary. */
460	if (cachesize_override != -1)
461		l2size = cachesize_override;
462
463	if (l2size == 0)
464		return;		/* Again, no L2 cache is possible */
465#endif
466
467	c->x86_cache_size = l2size;
468}
469
470u16 __read_mostly tlb_lli_4k[NR_INFO];
471u16 __read_mostly tlb_lli_2m[NR_INFO];
472u16 __read_mostly tlb_lli_4m[NR_INFO];
473u16 __read_mostly tlb_lld_4k[NR_INFO];
474u16 __read_mostly tlb_lld_2m[NR_INFO];
475u16 __read_mostly tlb_lld_4m[NR_INFO];
476u16 __read_mostly tlb_lld_1g[NR_INFO];
477
478static void cpu_detect_tlb(struct cpuinfo_x86 *c)
479{
480	if (this_cpu->c_detect_tlb)
481		this_cpu->c_detect_tlb(c);
482
483	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
484		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
485		tlb_lli_4m[ENTRIES]);
486
487	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
488		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
489		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
490}
491
492void detect_ht(struct cpuinfo_x86 *c)
493{
494#ifdef CONFIG_SMP
495	u32 eax, ebx, ecx, edx;
496	int index_msb, core_bits;
497	static bool printed;
498
499	if (!cpu_has(c, X86_FEATURE_HT))
500		return;
501
502	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
503		goto out;
504
505	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
506		return;
507
508	cpuid(1, &eax, &ebx, &ecx, &edx);
509
510	smp_num_siblings = (ebx & 0xff0000) >> 16;
511
512	if (smp_num_siblings == 1) {
513		printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
514		goto out;
515	}
516
517	if (smp_num_siblings <= 1)
518		goto out;
519
520	index_msb = get_count_order(smp_num_siblings);
521	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
522
523	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
524
525	index_msb = get_count_order(smp_num_siblings);
526
527	core_bits = get_count_order(c->x86_max_cores);
528
529	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
530				       ((1 << core_bits) - 1);
531
532out:
533	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
534		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
535		       c->phys_proc_id);
536		printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
537		       c->cpu_core_id);
538		printed = 1;
539	}
540#endif
541}
542
543static void get_cpu_vendor(struct cpuinfo_x86 *c)
544{
545	char *v = c->x86_vendor_id;
546	int i;
547
548	for (i = 0; i < X86_VENDOR_NUM; i++) {
549		if (!cpu_devs[i])
550			break;
551
552		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
553		    (cpu_devs[i]->c_ident[1] &&
554		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
555
556			this_cpu = cpu_devs[i];
557			c->x86_vendor = this_cpu->c_x86_vendor;
558			return;
559		}
560	}
561
562	printk_once(KERN_ERR
563			"CPU: vendor_id '%s' unknown, using generic init.\n" \
564			"CPU: Your system may be unstable.\n", v);
565
566	c->x86_vendor = X86_VENDOR_UNKNOWN;
567	this_cpu = &default_cpu;
568}
569
570void cpu_detect(struct cpuinfo_x86 *c)
571{
572	/* Get vendor name */
573	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
574	      (unsigned int *)&c->x86_vendor_id[0],
575	      (unsigned int *)&c->x86_vendor_id[8],
576	      (unsigned int *)&c->x86_vendor_id[4]);
577
578	c->x86 = 4;
579	/* Intel-defined flags: level 0x00000001 */
580	if (c->cpuid_level >= 0x00000001) {
581		u32 junk, tfms, cap0, misc;
582
583		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
584		c->x86 = (tfms >> 8) & 0xf;
585		c->x86_model = (tfms >> 4) & 0xf;
586		c->x86_mask = tfms & 0xf;
587
588		if (c->x86 == 0xf)
589			c->x86 += (tfms >> 20) & 0xff;
590		if (c->x86 >= 0x6)
591			c->x86_model += ((tfms >> 16) & 0xf) << 4;
592
593		if (cap0 & (1<<19)) {
594			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
595			c->x86_cache_alignment = c->x86_clflush_size;
596		}
597	}
598}
599
600void get_cpu_cap(struct cpuinfo_x86 *c)
601{
602	u32 tfms, xlvl;
603	u32 ebx;
604
605	/* Intel-defined flags: level 0x00000001 */
606	if (c->cpuid_level >= 0x00000001) {
607		u32 capability, excap;
608
609		cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
610		c->x86_capability[0] = capability;
611		c->x86_capability[4] = excap;
612	}
613
614	/* Additional Intel-defined flags: level 0x00000007 */
615	if (c->cpuid_level >= 0x00000007) {
616		u32 eax, ebx, ecx, edx;
617
618		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
619
620		c->x86_capability[9] = ebx;
621	}
622
623	/* Extended state features: level 0x0000000d */
624	if (c->cpuid_level >= 0x0000000d) {
625		u32 eax, ebx, ecx, edx;
626
627		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
628
629		c->x86_capability[10] = eax;
630	}
631
632	/* Additional Intel-defined flags: level 0x0000000F */
633	if (c->cpuid_level >= 0x0000000F) {
634		u32 eax, ebx, ecx, edx;
635
636		/* QoS sub-leaf, EAX=0Fh, ECX=0 */
637		cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
638		c->x86_capability[11] = edx;
639		if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
640			/* will be overridden if occupancy monitoring exists */
641			c->x86_cache_max_rmid = ebx;
642
643			/* QoS sub-leaf, EAX=0Fh, ECX=1 */
644			cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
645			c->x86_capability[12] = edx;
646			if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) {
647				c->x86_cache_max_rmid = ecx;
648				c->x86_cache_occ_scale = ebx;
649			}
650		} else {
651			c->x86_cache_max_rmid = -1;
652			c->x86_cache_occ_scale = -1;
653		}
654	}
655
656	/* AMD-defined flags: level 0x80000001 */
657	xlvl = cpuid_eax(0x80000000);
658	c->extended_cpuid_level = xlvl;
659
660	if ((xlvl & 0xffff0000) == 0x80000000) {
661		if (xlvl >= 0x80000001) {
662			c->x86_capability[1] = cpuid_edx(0x80000001);
663			c->x86_capability[6] = cpuid_ecx(0x80000001);
664		}
665	}
666
667	if (c->extended_cpuid_level >= 0x80000008) {
668		u32 eax = cpuid_eax(0x80000008);
669
670		c->x86_virt_bits = (eax >> 8) & 0xff;
671		c->x86_phys_bits = eax & 0xff;
672		c->x86_capability[13] = cpuid_ebx(0x80000008);
673	}
674#ifdef CONFIG_X86_32
675	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
676		c->x86_phys_bits = 36;
677#endif
678
679	if (c->extended_cpuid_level >= 0x80000007)
680		c->x86_power = cpuid_edx(0x80000007);
681
682	init_scattered_cpuid_features(c);
683}
684
685static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
686{
687#ifdef CONFIG_X86_32
688	int i;
689
690	/*
691	 * First of all, decide if this is a 486 or higher
692	 * It's a 486 if we can modify the AC flag
693	 */
694	if (flag_is_changeable_p(X86_EFLAGS_AC))
695		c->x86 = 4;
696	else
697		c->x86 = 3;
698
699	for (i = 0; i < X86_VENDOR_NUM; i++)
700		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
701			c->x86_vendor_id[0] = 0;
702			cpu_devs[i]->c_identify(c);
703			if (c->x86_vendor_id[0]) {
704				get_cpu_vendor(c);
705				break;
706			}
707		}
708#endif
709}
710
711/*
712 * Do minimum CPU detection early.
713 * Fields really needed: vendor, cpuid_level, family, model, mask,
714 * cache alignment.
715 * The others are not touched to avoid unwanted side effects.
716 *
717 * WARNING: this function is only called on the BP.  Don't add code here
718 * that is supposed to run on all CPUs.
719 */
720static void __init early_identify_cpu(struct cpuinfo_x86 *c)
721{
722#ifdef CONFIG_X86_64
723	c->x86_clflush_size = 64;
724	c->x86_phys_bits = 36;
725	c->x86_virt_bits = 48;
726#else
727	c->x86_clflush_size = 32;
728	c->x86_phys_bits = 32;
729	c->x86_virt_bits = 32;
730#endif
731	c->x86_cache_alignment = c->x86_clflush_size;
732
733	memset(&c->x86_capability, 0, sizeof c->x86_capability);
734	c->extended_cpuid_level = 0;
735
736	if (!have_cpuid_p())
737		identify_cpu_without_cpuid(c);
738
739	/* cyrix could have cpuid enabled via c_identify()*/
740	if (!have_cpuid_p())
741		return;
742
743	cpu_detect(c);
744	get_cpu_vendor(c);
745	get_cpu_cap(c);
746
747	if (this_cpu->c_early_init)
748		this_cpu->c_early_init(c);
749
750	c->cpu_index = 0;
751	filter_cpuid_features(c, false);
752
753	if (this_cpu->c_bsp_init)
754		this_cpu->c_bsp_init(c);
755
756	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
757	fpu__init_system(c);
758}
759
760void __init early_cpu_init(void)
761{
762	const struct cpu_dev *const *cdev;
763	int count = 0;
764
765#ifdef CONFIG_PROCESSOR_SELECT
766	printk(KERN_INFO "KERNEL supported cpus:\n");
767#endif
768
769	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
770		const struct cpu_dev *cpudev = *cdev;
771
772		if (count >= X86_VENDOR_NUM)
773			break;
774		cpu_devs[count] = cpudev;
775		count++;
776
777#ifdef CONFIG_PROCESSOR_SELECT
778		{
779			unsigned int j;
780
781			for (j = 0; j < 2; j++) {
782				if (!cpudev->c_ident[j])
783					continue;
784				printk(KERN_INFO "  %s %s\n", cpudev->c_vendor,
785					cpudev->c_ident[j]);
786			}
787		}
788#endif
789	}
790	early_identify_cpu(&boot_cpu_data);
791}
792
793/*
794 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
795 * unfortunately, that's not true in practice because of early VIA
796 * chips and (more importantly) broken virtualizers that are not easy
797 * to detect. In the latter case it doesn't even *fail* reliably, so
798 * probing for it doesn't even work. Disable it completely on 32-bit
799 * unless we can find a reliable way to detect all the broken cases.
800 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
801 */
802static void detect_nopl(struct cpuinfo_x86 *c)
803{
804#ifdef CONFIG_X86_32
805	clear_cpu_cap(c, X86_FEATURE_NOPL);
806#else
807	set_cpu_cap(c, X86_FEATURE_NOPL);
808#endif
809}
810
811static void generic_identify(struct cpuinfo_x86 *c)
812{
813	c->extended_cpuid_level = 0;
814
815	if (!have_cpuid_p())
816		identify_cpu_without_cpuid(c);
817
818	/* cyrix could have cpuid enabled via c_identify()*/
819	if (!have_cpuid_p())
820		return;
821
822	cpu_detect(c);
823
824	get_cpu_vendor(c);
825
826	get_cpu_cap(c);
827
828	if (c->cpuid_level >= 0x00000001) {
829		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
830#ifdef CONFIG_X86_32
831# ifdef CONFIG_SMP
832		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
833# else
834		c->apicid = c->initial_apicid;
835# endif
836#endif
837		c->phys_proc_id = c->initial_apicid;
838	}
839
840	get_model_name(c); /* Default name */
841
842	detect_nopl(c);
843}
844
845static void x86_init_cache_qos(struct cpuinfo_x86 *c)
846{
847	/*
848	 * The heavy lifting of max_rmid and cache_occ_scale are handled
849	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
850	 * in case CQM bits really aren't there in this CPU.
851	 */
852	if (c != &boot_cpu_data) {
853		boot_cpu_data.x86_cache_max_rmid =
854			min(boot_cpu_data.x86_cache_max_rmid,
855			    c->x86_cache_max_rmid);
856	}
857}
858
859/*
860 * This does the hard work of actually picking apart the CPU stuff...
861 */
862static void identify_cpu(struct cpuinfo_x86 *c)
863{
864	int i;
865
866	c->loops_per_jiffy = loops_per_jiffy;
867	c->x86_cache_size = -1;
868	c->x86_vendor = X86_VENDOR_UNKNOWN;
869	c->x86_model = c->x86_mask = 0;	/* So far unknown... */
870	c->x86_vendor_id[0] = '\0'; /* Unset */
871	c->x86_model_id[0] = '\0';  /* Unset */
872	c->x86_max_cores = 1;
873	c->x86_coreid_bits = 0;
874#ifdef CONFIG_X86_64
875	c->x86_clflush_size = 64;
876	c->x86_phys_bits = 36;
877	c->x86_virt_bits = 48;
878#else
879	c->cpuid_level = -1;	/* CPUID not detected */
880	c->x86_clflush_size = 32;
881	c->x86_phys_bits = 32;
882	c->x86_virt_bits = 32;
883#endif
884	c->x86_cache_alignment = c->x86_clflush_size;
885	memset(&c->x86_capability, 0, sizeof c->x86_capability);
886
887	generic_identify(c);
888
889	if (this_cpu->c_identify)
890		this_cpu->c_identify(c);
891
892	/* Clear/Set all flags overriden by options, after probe */
893	for (i = 0; i < NCAPINTS; i++) {
894		c->x86_capability[i] &= ~cpu_caps_cleared[i];
895		c->x86_capability[i] |= cpu_caps_set[i];
896	}
897
898#ifdef CONFIG_X86_64
899	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
900#endif
901
902	/*
903	 * Vendor-specific initialization.  In this section we
904	 * canonicalize the feature flags, meaning if there are
905	 * features a certain CPU supports which CPUID doesn't
906	 * tell us, CPUID claiming incorrect flags, or other bugs,
907	 * we handle them here.
908	 *
909	 * At the end of this section, c->x86_capability better
910	 * indicate the features this CPU genuinely supports!
911	 */
912	if (this_cpu->c_init)
913		this_cpu->c_init(c);
914
915	/* Disable the PN if appropriate */
916	squash_the_stupid_serial_number(c);
917
918	/* Set up SMEP/SMAP */
919	setup_smep(c);
920	setup_smap(c);
921
922	/*
923	 * The vendor-specific functions might have changed features.
924	 * Now we do "generic changes."
925	 */
926
927	/* Filter out anything that depends on CPUID levels we don't have */
928	filter_cpuid_features(c, true);
929
930	/* If the model name is still unset, do table lookup. */
931	if (!c->x86_model_id[0]) {
932		const char *p;
933		p = table_lookup_model(c);
934		if (p)
935			strcpy(c->x86_model_id, p);
936		else
937			/* Last resort... */
938			sprintf(c->x86_model_id, "%02x/%02x",
939				c->x86, c->x86_model);
940	}
941
942#ifdef CONFIG_X86_64
943	detect_ht(c);
944#endif
945
946	init_hypervisor(c);
947	x86_init_rdrand(c);
948	x86_init_cache_qos(c);
949
950	/*
951	 * Clear/Set all flags overriden by options, need do it
952	 * before following smp all cpus cap AND.
953	 */
954	for (i = 0; i < NCAPINTS; i++) {
955		c->x86_capability[i] &= ~cpu_caps_cleared[i];
956		c->x86_capability[i] |= cpu_caps_set[i];
957	}
958
959	/*
960	 * On SMP, boot_cpu_data holds the common feature set between
961	 * all CPUs; so make sure that we indicate which features are
962	 * common between the CPUs.  The first time this routine gets
963	 * executed, c == &boot_cpu_data.
964	 */
965	if (c != &boot_cpu_data) {
966		/* AND the already accumulated flags with these */
967		for (i = 0; i < NCAPINTS; i++)
968			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
969
970		/* OR, i.e. replicate the bug flags */
971		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
972			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
973	}
974
975	/* Init Machine Check Exception if available. */
976	mcheck_cpu_init(c);
977
978	select_idle_routine(c);
979
980#ifdef CONFIG_NUMA
981	numa_add_cpu(smp_processor_id());
982#endif
983}
984
985/*
986 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
987 * on 32-bit kernels:
988 */
989#ifdef CONFIG_X86_32
990void enable_sep_cpu(void)
991{
992	struct tss_struct *tss;
993	int cpu;
994
995	cpu = get_cpu();
996	tss = &per_cpu(cpu_tss, cpu);
997
998	if (!boot_cpu_has(X86_FEATURE_SEP))
999		goto out;
1000
1001	/*
1002	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1003	 * see the big comment in struct x86_hw_tss's definition.
1004	 */
1005
1006	tss->x86_tss.ss1 = __KERNEL_CS;
1007	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1008
1009	wrmsr(MSR_IA32_SYSENTER_ESP,
1010	      (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1011	      0);
1012
1013	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1014
1015out:
1016	put_cpu();
1017}
1018#endif
1019
1020void __init identify_boot_cpu(void)
1021{
1022	identify_cpu(&boot_cpu_data);
1023	init_amd_e400_c1e_mask();
1024#ifdef CONFIG_X86_32
1025	sysenter_setup();
1026	enable_sep_cpu();
1027#endif
1028	cpu_detect_tlb(&boot_cpu_data);
1029}
1030
1031void identify_secondary_cpu(struct cpuinfo_x86 *c)
1032{
1033	BUG_ON(c == &boot_cpu_data);
1034	identify_cpu(c);
1035#ifdef CONFIG_X86_32
1036	enable_sep_cpu();
1037#endif
1038	mtrr_ap_init();
1039}
1040
1041struct msr_range {
1042	unsigned	min;
1043	unsigned	max;
1044};
1045
1046static const struct msr_range msr_range_array[] = {
1047	{ 0x00000000, 0x00000418},
1048	{ 0xc0000000, 0xc000040b},
1049	{ 0xc0010000, 0xc0010142},
1050	{ 0xc0011000, 0xc001103b},
1051};
1052
1053static void __print_cpu_msr(void)
1054{
1055	unsigned index_min, index_max;
1056	unsigned index;
1057	u64 val;
1058	int i;
1059
1060	for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1061		index_min = msr_range_array[i].min;
1062		index_max = msr_range_array[i].max;
1063
1064		for (index = index_min; index < index_max; index++) {
1065			if (rdmsrl_safe(index, &val))
1066				continue;
1067			printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
1068		}
1069	}
1070}
1071
1072static int show_msr;
1073
1074static __init int setup_show_msr(char *arg)
1075{
1076	int num;
1077
1078	get_option(&arg, &num);
1079
1080	if (num > 0)
1081		show_msr = num;
1082	return 1;
1083}
1084__setup("show_msr=", setup_show_msr);
1085
1086static __init int setup_noclflush(char *arg)
1087{
1088	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1089	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1090	return 1;
1091}
1092__setup("noclflush", setup_noclflush);
1093
1094void print_cpu_info(struct cpuinfo_x86 *c)
1095{
1096	const char *vendor = NULL;
1097
1098	if (c->x86_vendor < X86_VENDOR_NUM) {
1099		vendor = this_cpu->c_vendor;
1100	} else {
1101		if (c->cpuid_level >= 0)
1102			vendor = c->x86_vendor_id;
1103	}
1104
1105	if (vendor && !strstr(c->x86_model_id, vendor))
1106		printk(KERN_CONT "%s ", vendor);
1107
1108	if (c->x86_model_id[0])
1109		printk(KERN_CONT "%s", c->x86_model_id);
1110	else
1111		printk(KERN_CONT "%d86", c->x86);
1112
1113	printk(KERN_CONT " (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1114
1115	if (c->x86_mask || c->cpuid_level >= 0)
1116		printk(KERN_CONT ", stepping: 0x%x)\n", c->x86_mask);
1117	else
1118		printk(KERN_CONT ")\n");
1119
1120	print_cpu_msr(c);
1121}
1122
1123void print_cpu_msr(struct cpuinfo_x86 *c)
1124{
1125	if (c->cpu_index < show_msr)
1126		__print_cpu_msr();
1127}
1128
1129static __init int setup_disablecpuid(char *arg)
1130{
1131	int bit;
1132
1133	if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1134		setup_clear_cpu_cap(bit);
1135	else
1136		return 0;
1137
1138	return 1;
1139}
1140__setup("clearcpuid=", setup_disablecpuid);
1141
1142#ifdef CONFIG_X86_64
1143struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1144struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1145				    (unsigned long) debug_idt_table };
1146
1147DEFINE_PER_CPU_FIRST(union irq_stack_union,
1148		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1149
1150/*
1151 * The following percpu variables are hot.  Align current_task to
1152 * cacheline size such that they fall in the same cacheline.
1153 */
1154DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1155	&init_task;
1156EXPORT_PER_CPU_SYMBOL(current_task);
1157
1158DEFINE_PER_CPU(char *, irq_stack_ptr) =
1159	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1160
1161DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1162
1163DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1164EXPORT_PER_CPU_SYMBOL(__preempt_count);
1165
1166/*
1167 * Special IST stacks which the CPU switches to when it calls
1168 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1169 * limit), all of them are 4K, except the debug stack which
1170 * is 8K.
1171 */
1172static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1173	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1174	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1175};
1176
1177static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1178	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1179
1180/* May not be marked __init: used by software suspend */
1181void syscall_init(void)
1182{
1183	/*
1184	 * LSTAR and STAR live in a bit strange symbiosis.
1185	 * They both write to the same internal register. STAR allows to
1186	 * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1187	 */
1188	wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32);
1189	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1190
1191#ifdef CONFIG_IA32_EMULATION
1192	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1193	/*
1194	 * This only works on Intel CPUs.
1195	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1196	 * This does not cause SYSENTER to jump to the wrong location, because
1197	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1198	 */
1199	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1200	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1201	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1202#else
1203	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1204	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1205	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1206	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1207#endif
1208
1209	/* Flags to clear on syscall */
1210	wrmsrl(MSR_SYSCALL_MASK,
1211	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1212	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1213}
1214
1215/*
1216 * Copies of the original ist values from the tss are only accessed during
1217 * debugging, no special alignment required.
1218 */
1219DEFINE_PER_CPU(struct orig_ist, orig_ist);
1220
1221static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1222DEFINE_PER_CPU(int, debug_stack_usage);
1223
1224int is_debug_stack(unsigned long addr)
1225{
1226	return __this_cpu_read(debug_stack_usage) ||
1227		(addr <= __this_cpu_read(debug_stack_addr) &&
1228		 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1229}
1230NOKPROBE_SYMBOL(is_debug_stack);
1231
1232DEFINE_PER_CPU(u32, debug_idt_ctr);
1233
1234void debug_stack_set_zero(void)
1235{
1236	this_cpu_inc(debug_idt_ctr);
1237	load_current_idt();
1238}
1239NOKPROBE_SYMBOL(debug_stack_set_zero);
1240
1241void debug_stack_reset(void)
1242{
1243	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1244		return;
1245	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1246		load_current_idt();
1247}
1248NOKPROBE_SYMBOL(debug_stack_reset);
1249
1250#else	/* CONFIG_X86_64 */
1251
1252DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1253EXPORT_PER_CPU_SYMBOL(current_task);
1254DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1255EXPORT_PER_CPU_SYMBOL(__preempt_count);
1256
1257/*
1258 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1259 * the top of the kernel stack.  Use an extra percpu variable to track the
1260 * top of the kernel stack directly.
1261 */
1262DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1263	(unsigned long)&init_thread_union + THREAD_SIZE;
1264EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1265
1266#ifdef CONFIG_CC_STACKPROTECTOR
1267DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1268#endif
1269
1270#endif	/* CONFIG_X86_64 */
1271
1272/*
1273 * Clear all 6 debug registers:
1274 */
1275static void clear_all_debug_regs(void)
1276{
1277	int i;
1278
1279	for (i = 0; i < 8; i++) {
1280		/* Ignore db4, db5 */
1281		if ((i == 4) || (i == 5))
1282			continue;
1283
1284		set_debugreg(0, i);
1285	}
1286}
1287
1288#ifdef CONFIG_KGDB
1289/*
1290 * Restore debug regs if using kgdbwait and you have a kernel debugger
1291 * connection established.
1292 */
1293static void dbg_restore_debug_regs(void)
1294{
1295	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1296		arch_kgdb_ops.correct_hw_break();
1297}
1298#else /* ! CONFIG_KGDB */
1299#define dbg_restore_debug_regs()
1300#endif /* ! CONFIG_KGDB */
1301
1302static void wait_for_master_cpu(int cpu)
1303{
1304#ifdef CONFIG_SMP
1305	/*
1306	 * wait for ACK from master CPU before continuing
1307	 * with AP initialization
1308	 */
1309	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1310	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1311		cpu_relax();
1312#endif
1313}
1314
1315/*
1316 * cpu_init() initializes state that is per-CPU. Some data is already
1317 * initialized (naturally) in the bootstrap process, such as the GDT
1318 * and IDT. We reload them nevertheless, this function acts as a
1319 * 'CPU state barrier', nothing should get across.
1320 * A lot of state is already set up in PDA init for 64 bit
1321 */
1322#ifdef CONFIG_X86_64
1323
1324void cpu_init(void)
1325{
1326	struct orig_ist *oist;
1327	struct task_struct *me;
1328	struct tss_struct *t;
1329	unsigned long v;
1330	int cpu = stack_smp_processor_id();
1331	int i;
1332
1333	wait_for_master_cpu(cpu);
1334
1335	/*
1336	 * Initialize the CR4 shadow before doing anything that could
1337	 * try to read it.
1338	 */
1339	cr4_init_shadow();
1340
1341	/*
1342	 * Load microcode on this cpu if a valid microcode is available.
1343	 * This is early microcode loading procedure.
1344	 */
1345	load_ucode_ap();
1346
1347	t = &per_cpu(cpu_tss, cpu);
1348	oist = &per_cpu(orig_ist, cpu);
1349
1350#ifdef CONFIG_NUMA
1351	if (this_cpu_read(numa_node) == 0 &&
1352	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1353		set_numa_node(early_cpu_to_node(cpu));
1354#endif
1355
1356	me = current;
1357
1358	pr_debug("Initializing CPU#%d\n", cpu);
1359
1360	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1361
1362	/*
1363	 * Initialize the per-CPU GDT with the boot GDT,
1364	 * and set up the GDT descriptor:
1365	 */
1366
1367	switch_to_new_gdt(cpu);
1368	loadsegment(fs, 0);
1369
1370	load_current_idt();
1371
1372	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1373	syscall_init();
1374
1375	wrmsrl(MSR_FS_BASE, 0);
1376	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1377	barrier();
1378
1379	x86_configure_nx();
1380	x2apic_setup();
1381
1382	/*
1383	 * set up and load the per-CPU TSS
1384	 */
1385	if (!oist->ist[0]) {
1386		char *estacks = per_cpu(exception_stacks, cpu);
1387
1388		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1389			estacks += exception_stack_sizes[v];
1390			oist->ist[v] = t->x86_tss.ist[v] =
1391					(unsigned long)estacks;
1392			if (v == DEBUG_STACK-1)
1393				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1394		}
1395	}
1396
1397	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1398
1399	/*
1400	 * <= is required because the CPU will access up to
1401	 * 8 bits beyond the end of the IO permission bitmap.
1402	 */
1403	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1404		t->io_bitmap[i] = ~0UL;
1405
1406	atomic_inc(&init_mm.mm_count);
1407	me->active_mm = &init_mm;
1408	BUG_ON(me->mm);
1409	enter_lazy_tlb(&init_mm, me);
1410
1411	load_sp0(t, &current->thread);
1412	set_tss_desc(cpu, t);
1413	load_TR_desc();
1414	load_mm_ldt(&init_mm);
1415
1416	clear_all_debug_regs();
1417	dbg_restore_debug_regs();
1418
1419	fpu__init_cpu();
1420
1421	if (is_uv_system())
1422		uv_cpu_init();
1423}
1424
1425#else
1426
1427void cpu_init(void)
1428{
1429	int cpu = smp_processor_id();
1430	struct task_struct *curr = current;
1431	struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1432	struct thread_struct *thread = &curr->thread;
1433
1434	wait_for_master_cpu(cpu);
1435
1436	/*
1437	 * Initialize the CR4 shadow before doing anything that could
1438	 * try to read it.
1439	 */
1440	cr4_init_shadow();
1441
1442	show_ucode_info_early();
1443
1444	printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1445
1446	if (cpu_feature_enabled(X86_FEATURE_VME) || cpu_has_tsc || cpu_has_de)
1447		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1448
1449	load_current_idt();
1450	switch_to_new_gdt(cpu);
1451
1452	/*
1453	 * Set up and load the per-CPU TSS and LDT
1454	 */
1455	atomic_inc(&init_mm.mm_count);
1456	curr->active_mm = &init_mm;
1457	BUG_ON(curr->mm);
1458	enter_lazy_tlb(&init_mm, curr);
1459
1460	load_sp0(t, thread);
1461	set_tss_desc(cpu, t);
1462	load_TR_desc();
1463	load_mm_ldt(&init_mm);
1464
1465	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1466
1467#ifdef CONFIG_DOUBLEFAULT
1468	/* Set up doublefault TSS pointer in the GDT */
1469	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1470#endif
1471
1472	clear_all_debug_regs();
1473	dbg_restore_debug_regs();
1474
1475	fpu__init_cpu();
1476}
1477#endif
1478
1479#ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
1480void warn_pre_alternatives(void)
1481{
1482	WARN(1, "You're using static_cpu_has before alternatives have run!\n");
1483}
1484EXPORT_SYMBOL_GPL(warn_pre_alternatives);
1485#endif
1486
1487inline bool __static_cpu_has_safe(u16 bit)
1488{
1489	return boot_cpu_has(bit);
1490}
1491EXPORT_SYMBOL_GPL(__static_cpu_has_safe);
1492
1493static void bsp_resume(void)
1494{
1495	if (this_cpu->c_bsp_resume)
1496		this_cpu->c_bsp_resume(&boot_cpu_data);
1497}
1498
1499static struct syscore_ops cpu_syscore_ops = {
1500	.resume		= bsp_resume,
1501};
1502
1503static int __init init_cpu_syscore(void)
1504{
1505	register_syscore_ops(&cpu_syscore_ops);
1506	return 0;
1507}
1508core_initcall(init_cpu_syscore);
1509