1/*
2 * Local APIC related interfaces to support IOAPIC, MSI, HT_IRQ etc.
3 *
4 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5 *	Moved from arch/x86/kernel/apic/io_apic.c.
6 * Jiang Liu <jiang.liu@linux.intel.com>
7 *	Enable support of hierarchical irqdomains
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13#include <linux/interrupt.h>
14#include <linux/init.h>
15#include <linux/compiler.h>
16#include <linux/slab.h>
17#include <asm/irqdomain.h>
18#include <asm/hw_irq.h>
19#include <asm/apic.h>
20#include <asm/i8259.h>
21#include <asm/desc.h>
22#include <asm/irq_remapping.h>
23
24struct apic_chip_data {
25	struct irq_cfg		cfg;
26	cpumask_var_t		domain;
27	cpumask_var_t		old_domain;
28	u8			move_in_progress : 1;
29};
30
31struct irq_domain *x86_vector_domain;
32static DEFINE_RAW_SPINLOCK(vector_lock);
33static cpumask_var_t vector_cpumask, vector_searchmask, searched_cpumask;
34static struct irq_chip lapic_controller;
35#ifdef	CONFIG_X86_IO_APIC
36static struct apic_chip_data *legacy_irq_data[NR_IRQS_LEGACY];
37#endif
38
39void lock_vector_lock(void)
40{
41	/* Used to the online set of cpus does not change
42	 * during assign_irq_vector.
43	 */
44	raw_spin_lock(&vector_lock);
45}
46
47void unlock_vector_lock(void)
48{
49	raw_spin_unlock(&vector_lock);
50}
51
52static struct apic_chip_data *apic_chip_data(struct irq_data *irq_data)
53{
54	if (!irq_data)
55		return NULL;
56
57	while (irq_data->parent_data)
58		irq_data = irq_data->parent_data;
59
60	return irq_data->chip_data;
61}
62
63struct irq_cfg *irqd_cfg(struct irq_data *irq_data)
64{
65	struct apic_chip_data *data = apic_chip_data(irq_data);
66
67	return data ? &data->cfg : NULL;
68}
69
70struct irq_cfg *irq_cfg(unsigned int irq)
71{
72	return irqd_cfg(irq_get_irq_data(irq));
73}
74
75static struct apic_chip_data *alloc_apic_chip_data(int node)
76{
77	struct apic_chip_data *data;
78
79	data = kzalloc_node(sizeof(*data), GFP_KERNEL, node);
80	if (!data)
81		return NULL;
82	if (!zalloc_cpumask_var_node(&data->domain, GFP_KERNEL, node))
83		goto out_data;
84	if (!zalloc_cpumask_var_node(&data->old_domain, GFP_KERNEL, node))
85		goto out_domain;
86	return data;
87out_domain:
88	free_cpumask_var(data->domain);
89out_data:
90	kfree(data);
91	return NULL;
92}
93
94static void free_apic_chip_data(struct apic_chip_data *data)
95{
96	if (data) {
97		free_cpumask_var(data->domain);
98		free_cpumask_var(data->old_domain);
99		kfree(data);
100	}
101}
102
103static int __assign_irq_vector(int irq, struct apic_chip_data *d,
104			       const struct cpumask *mask)
105{
106	/*
107	 * NOTE! The local APIC isn't very good at handling
108	 * multiple interrupts at the same interrupt level.
109	 * As the interrupt level is determined by taking the
110	 * vector number and shifting that right by 4, we
111	 * want to spread these out a bit so that they don't
112	 * all fall in the same interrupt level.
113	 *
114	 * Also, we've got to be careful not to trash gate
115	 * 0x80, because int 0x80 is hm, kind of importantish. ;)
116	 */
117	static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START;
118	static int current_offset = VECTOR_OFFSET_START % 16;
119	int cpu, vector;
120
121	/*
122	 * If there is still a move in progress or the previous move has not
123	 * been cleaned up completely, tell the caller to come back later.
124	 */
125	if (d->move_in_progress ||
126	    cpumask_intersects(d->old_domain, cpu_online_mask))
127		return -EBUSY;
128
129	/* Only try and allocate irqs on cpus that are present */
130	cpumask_clear(d->old_domain);
131	cpumask_clear(searched_cpumask);
132	cpu = cpumask_first_and(mask, cpu_online_mask);
133	while (cpu < nr_cpu_ids) {
134		int new_cpu, offset;
135
136		/* Get the possible target cpus for @mask/@cpu from the apic */
137		apic->vector_allocation_domain(cpu, vector_cpumask, mask);
138
139		/*
140		 * Clear the offline cpus from @vector_cpumask for searching
141		 * and verify whether the result overlaps with @mask. If true,
142		 * then the call to apic->cpu_mask_to_apicid_and() will
143		 * succeed as well. If not, no point in trying to find a
144		 * vector in this mask.
145		 */
146		cpumask_and(vector_searchmask, vector_cpumask, cpu_online_mask);
147		if (!cpumask_intersects(vector_searchmask, mask))
148			goto next_cpu;
149
150		if (cpumask_subset(vector_cpumask, d->domain)) {
151			if (cpumask_equal(vector_cpumask, d->domain))
152				goto success;
153			/*
154			 * Mark the cpus which are not longer in the mask for
155			 * cleanup.
156			 */
157			cpumask_andnot(d->old_domain, d->domain, vector_cpumask);
158			vector = d->cfg.vector;
159			goto update;
160		}
161
162		vector = current_vector;
163		offset = current_offset;
164next:
165		vector += 16;
166		if (vector >= first_system_vector) {
167			offset = (offset + 1) % 16;
168			vector = FIRST_EXTERNAL_VECTOR + offset;
169		}
170
171		/* If the search wrapped around, try the next cpu */
172		if (unlikely(current_vector == vector))
173			goto next_cpu;
174
175		if (test_bit(vector, used_vectors))
176			goto next;
177
178		for_each_cpu(new_cpu, vector_searchmask) {
179			if (!IS_ERR_OR_NULL(per_cpu(vector_irq, new_cpu)[vector]))
180				goto next;
181		}
182		/* Found one! */
183		current_vector = vector;
184		current_offset = offset;
185		/* Schedule the old vector for cleanup on all cpus */
186		if (d->cfg.vector)
187			cpumask_copy(d->old_domain, d->domain);
188		for_each_cpu(new_cpu, vector_searchmask)
189			per_cpu(vector_irq, new_cpu)[vector] = irq_to_desc(irq);
190		goto update;
191
192next_cpu:
193		/*
194		 * We exclude the current @vector_cpumask from the requested
195		 * @mask and try again with the next online cpu in the
196		 * result. We cannot modify @mask, so we use @vector_cpumask
197		 * as a temporary buffer here as it will be reassigned when
198		 * calling apic->vector_allocation_domain() above.
199		 */
200		cpumask_or(searched_cpumask, searched_cpumask, vector_cpumask);
201		cpumask_andnot(vector_cpumask, mask, searched_cpumask);
202		cpu = cpumask_first_and(vector_cpumask, cpu_online_mask);
203		continue;
204	}
205	return -ENOSPC;
206
207update:
208	/*
209	 * Exclude offline cpus from the cleanup mask and set the
210	 * move_in_progress flag when the result is not empty.
211	 */
212	cpumask_and(d->old_domain, d->old_domain, cpu_online_mask);
213	d->move_in_progress = !cpumask_empty(d->old_domain);
214	d->cfg.old_vector = d->move_in_progress ? d->cfg.vector : 0;
215	d->cfg.vector = vector;
216	cpumask_copy(d->domain, vector_cpumask);
217success:
218	/*
219	 * Cache destination APIC IDs into cfg->dest_apicid. This cannot fail
220	 * as we already established, that mask & d->domain & cpu_online_mask
221	 * is not empty.
222	 */
223	BUG_ON(apic->cpu_mask_to_apicid_and(mask, d->domain,
224					    &d->cfg.dest_apicid));
225	return 0;
226}
227
228static int assign_irq_vector(int irq, struct apic_chip_data *data,
229			     const struct cpumask *mask)
230{
231	int err;
232	unsigned long flags;
233
234	raw_spin_lock_irqsave(&vector_lock, flags);
235	err = __assign_irq_vector(irq, data, mask);
236	raw_spin_unlock_irqrestore(&vector_lock, flags);
237	return err;
238}
239
240static int assign_irq_vector_policy(int irq, int node,
241				    struct apic_chip_data *data,
242				    struct irq_alloc_info *info)
243{
244	if (info && info->mask)
245		return assign_irq_vector(irq, data, info->mask);
246	if (node != NUMA_NO_NODE &&
247	    assign_irq_vector(irq, data, cpumask_of_node(node)) == 0)
248		return 0;
249	return assign_irq_vector(irq, data, apic->target_cpus());
250}
251
252static void clear_irq_vector(int irq, struct apic_chip_data *data)
253{
254	struct irq_desc *desc;
255	int cpu, vector;
256
257	if (!data->cfg.vector)
258		return;
259
260	vector = data->cfg.vector;
261	for_each_cpu_and(cpu, data->domain, cpu_online_mask)
262		per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
263
264	data->cfg.vector = 0;
265	cpumask_clear(data->domain);
266
267	/*
268	 * If move is in progress or the old_domain mask is not empty,
269	 * i.e. the cleanup IPI has not been processed yet, we need to remove
270	 * the old references to desc from all cpus vector tables.
271	 */
272	if (!data->move_in_progress && cpumask_empty(data->old_domain))
273		return;
274
275	desc = irq_to_desc(irq);
276	for_each_cpu_and(cpu, data->old_domain, cpu_online_mask) {
277		for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
278		     vector++) {
279			if (per_cpu(vector_irq, cpu)[vector] != desc)
280				continue;
281			per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
282			break;
283		}
284	}
285	data->move_in_progress = 0;
286}
287
288void init_irq_alloc_info(struct irq_alloc_info *info,
289			 const struct cpumask *mask)
290{
291	memset(info, 0, sizeof(*info));
292	info->mask = mask;
293}
294
295void copy_irq_alloc_info(struct irq_alloc_info *dst, struct irq_alloc_info *src)
296{
297	if (src)
298		*dst = *src;
299	else
300		memset(dst, 0, sizeof(*dst));
301}
302
303static void x86_vector_free_irqs(struct irq_domain *domain,
304				 unsigned int virq, unsigned int nr_irqs)
305{
306	struct apic_chip_data *apic_data;
307	struct irq_data *irq_data;
308	unsigned long flags;
309	int i;
310
311	for (i = 0; i < nr_irqs; i++) {
312		irq_data = irq_domain_get_irq_data(x86_vector_domain, virq + i);
313		if (irq_data && irq_data->chip_data) {
314			raw_spin_lock_irqsave(&vector_lock, flags);
315			clear_irq_vector(virq + i, irq_data->chip_data);
316			apic_data = irq_data->chip_data;
317			irq_domain_reset_irq_data(irq_data);
318			raw_spin_unlock_irqrestore(&vector_lock, flags);
319			free_apic_chip_data(apic_data);
320#ifdef	CONFIG_X86_IO_APIC
321			if (virq + i < nr_legacy_irqs())
322				legacy_irq_data[virq + i] = NULL;
323#endif
324		}
325	}
326}
327
328static int x86_vector_alloc_irqs(struct irq_domain *domain, unsigned int virq,
329				 unsigned int nr_irqs, void *arg)
330{
331	struct irq_alloc_info *info = arg;
332	struct apic_chip_data *data;
333	struct irq_data *irq_data;
334	int i, err, node;
335
336	if (disable_apic)
337		return -ENXIO;
338
339	/* Currently vector allocator can't guarantee contiguous allocations */
340	if ((info->flags & X86_IRQ_ALLOC_CONTIGUOUS_VECTORS) && nr_irqs > 1)
341		return -ENOSYS;
342
343	for (i = 0; i < nr_irqs; i++) {
344		irq_data = irq_domain_get_irq_data(domain, virq + i);
345		BUG_ON(!irq_data);
346		node = irq_data_get_node(irq_data);
347#ifdef	CONFIG_X86_IO_APIC
348		if (virq + i < nr_legacy_irqs() && legacy_irq_data[virq + i])
349			data = legacy_irq_data[virq + i];
350		else
351#endif
352			data = alloc_apic_chip_data(node);
353		if (!data) {
354			err = -ENOMEM;
355			goto error;
356		}
357
358		irq_data->chip = &lapic_controller;
359		irq_data->chip_data = data;
360		irq_data->hwirq = virq + i;
361		err = assign_irq_vector_policy(virq + i, node, data, info);
362		if (err)
363			goto error;
364	}
365
366	return 0;
367
368error:
369	x86_vector_free_irqs(domain, virq, i + 1);
370	return err;
371}
372
373static const struct irq_domain_ops x86_vector_domain_ops = {
374	.alloc	= x86_vector_alloc_irqs,
375	.free	= x86_vector_free_irqs,
376};
377
378int __init arch_probe_nr_irqs(void)
379{
380	int nr;
381
382	if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
383		nr_irqs = NR_VECTORS * nr_cpu_ids;
384
385	nr = (gsi_top + nr_legacy_irqs()) + 8 * nr_cpu_ids;
386#if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
387	/*
388	 * for MSI and HT dyn irq
389	 */
390	if (gsi_top <= NR_IRQS_LEGACY)
391		nr +=  8 * nr_cpu_ids;
392	else
393		nr += gsi_top * 16;
394#endif
395	if (nr < nr_irqs)
396		nr_irqs = nr;
397
398	/*
399	 * We don't know if PIC is present at this point so we need to do
400	 * probe() to get the right number of legacy IRQs.
401	 */
402	return legacy_pic->probe();
403}
404
405#ifdef	CONFIG_X86_IO_APIC
406static void init_legacy_irqs(void)
407{
408	int i, node = cpu_to_node(0);
409	struct apic_chip_data *data;
410
411	/*
412	 * For legacy IRQ's, start with assigning irq0 to irq15 to
413	 * ISA_IRQ_VECTOR(i) for all cpu's.
414	 */
415	for (i = 0; i < nr_legacy_irqs(); i++) {
416		data = legacy_irq_data[i] = alloc_apic_chip_data(node);
417		BUG_ON(!data);
418
419		data->cfg.vector = ISA_IRQ_VECTOR(i);
420		cpumask_setall(data->domain);
421		irq_set_chip_data(i, data);
422	}
423}
424#else
425static void init_legacy_irqs(void) { }
426#endif
427
428int __init arch_early_irq_init(void)
429{
430	init_legacy_irqs();
431
432	x86_vector_domain = irq_domain_add_tree(NULL, &x86_vector_domain_ops,
433						NULL);
434	BUG_ON(x86_vector_domain == NULL);
435	irq_set_default_host(x86_vector_domain);
436
437	arch_init_msi_domain(x86_vector_domain);
438	arch_init_htirq_domain(x86_vector_domain);
439
440	BUG_ON(!alloc_cpumask_var(&vector_cpumask, GFP_KERNEL));
441	BUG_ON(!alloc_cpumask_var(&vector_searchmask, GFP_KERNEL));
442	BUG_ON(!alloc_cpumask_var(&searched_cpumask, GFP_KERNEL));
443
444	return arch_early_ioapic_init();
445}
446
447/* Initialize vector_irq on a new cpu */
448static void __setup_vector_irq(int cpu)
449{
450	struct apic_chip_data *data;
451	struct irq_desc *desc;
452	int irq, vector;
453
454	/* Mark the inuse vectors */
455	for_each_irq_desc(irq, desc) {
456		struct irq_data *idata = irq_desc_get_irq_data(desc);
457
458		data = apic_chip_data(idata);
459		if (!data || !cpumask_test_cpu(cpu, data->domain))
460			continue;
461		vector = data->cfg.vector;
462		per_cpu(vector_irq, cpu)[vector] = desc;
463	}
464	/* Mark the free vectors */
465	for (vector = 0; vector < NR_VECTORS; ++vector) {
466		desc = per_cpu(vector_irq, cpu)[vector];
467		if (IS_ERR_OR_NULL(desc))
468			continue;
469
470		data = apic_chip_data(irq_desc_get_irq_data(desc));
471		if (!cpumask_test_cpu(cpu, data->domain))
472			per_cpu(vector_irq, cpu)[vector] = VECTOR_UNUSED;
473	}
474}
475
476/*
477 * Setup the vector to irq mappings. Must be called with vector_lock held.
478 */
479void setup_vector_irq(int cpu)
480{
481	int irq;
482
483	lockdep_assert_held(&vector_lock);
484	/*
485	 * On most of the platforms, legacy PIC delivers the interrupts on the
486	 * boot cpu. But there are certain platforms where PIC interrupts are
487	 * delivered to multiple cpu's. If the legacy IRQ is handled by the
488	 * legacy PIC, for the new cpu that is coming online, setup the static
489	 * legacy vector to irq mapping:
490	 */
491	for (irq = 0; irq < nr_legacy_irqs(); irq++)
492		per_cpu(vector_irq, cpu)[ISA_IRQ_VECTOR(irq)] = irq_to_desc(irq);
493
494	__setup_vector_irq(cpu);
495}
496
497static int apic_retrigger_irq(struct irq_data *irq_data)
498{
499	struct apic_chip_data *data = apic_chip_data(irq_data);
500	unsigned long flags;
501	int cpu;
502
503	raw_spin_lock_irqsave(&vector_lock, flags);
504	cpu = cpumask_first_and(data->domain, cpu_online_mask);
505	apic->send_IPI_mask(cpumask_of(cpu), data->cfg.vector);
506	raw_spin_unlock_irqrestore(&vector_lock, flags);
507
508	return 1;
509}
510
511void apic_ack_edge(struct irq_data *data)
512{
513	irq_complete_move(irqd_cfg(data));
514	irq_move_irq(data);
515	ack_APIC_irq();
516}
517
518static int apic_set_affinity(struct irq_data *irq_data,
519			     const struct cpumask *dest, bool force)
520{
521	struct apic_chip_data *data = irq_data->chip_data;
522	int err, irq = irq_data->irq;
523
524	if (!config_enabled(CONFIG_SMP))
525		return -EPERM;
526
527	if (!cpumask_intersects(dest, cpu_online_mask))
528		return -EINVAL;
529
530	err = assign_irq_vector(irq, data, dest);
531	return err ? err : IRQ_SET_MASK_OK;
532}
533
534static struct irq_chip lapic_controller = {
535	.irq_ack		= apic_ack_edge,
536	.irq_set_affinity	= apic_set_affinity,
537	.irq_retrigger		= apic_retrigger_irq,
538};
539
540#ifdef CONFIG_SMP
541static void __send_cleanup_vector(struct apic_chip_data *data)
542{
543	raw_spin_lock(&vector_lock);
544	cpumask_and(data->old_domain, data->old_domain, cpu_online_mask);
545	data->move_in_progress = 0;
546	if (!cpumask_empty(data->old_domain))
547		apic->send_IPI_mask(data->old_domain, IRQ_MOVE_CLEANUP_VECTOR);
548	raw_spin_unlock(&vector_lock);
549}
550
551void send_cleanup_vector(struct irq_cfg *cfg)
552{
553	struct apic_chip_data *data;
554
555	data = container_of(cfg, struct apic_chip_data, cfg);
556	if (data->move_in_progress)
557		__send_cleanup_vector(data);
558}
559
560asmlinkage __visible void smp_irq_move_cleanup_interrupt(void)
561{
562	unsigned vector, me;
563
564	entering_ack_irq();
565
566	/* Prevent vectors vanishing under us */
567	raw_spin_lock(&vector_lock);
568
569	me = smp_processor_id();
570	for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
571		struct apic_chip_data *data;
572		struct irq_desc *desc;
573		unsigned int irr;
574
575	retry:
576		desc = __this_cpu_read(vector_irq[vector]);
577		if (IS_ERR_OR_NULL(desc))
578			continue;
579
580		if (!raw_spin_trylock(&desc->lock)) {
581			raw_spin_unlock(&vector_lock);
582			cpu_relax();
583			raw_spin_lock(&vector_lock);
584			goto retry;
585		}
586
587		data = apic_chip_data(irq_desc_get_irq_data(desc));
588		if (!data)
589			goto unlock;
590
591		/*
592		 * Nothing to cleanup if irq migration is in progress
593		 * or this cpu is not set in the cleanup mask.
594		 */
595		if (data->move_in_progress ||
596		    !cpumask_test_cpu(me, data->old_domain))
597			goto unlock;
598
599		/*
600		 * We have two cases to handle here:
601		 * 1) vector is unchanged but the target mask got reduced
602		 * 2) vector and the target mask has changed
603		 *
604		 * #1 is obvious, but in #2 we have two vectors with the same
605		 * irq descriptor: the old and the new vector. So we need to
606		 * make sure that we only cleanup the old vector. The new
607		 * vector has the current @vector number in the config and
608		 * this cpu is part of the target mask. We better leave that
609		 * one alone.
610		 */
611		if (vector == data->cfg.vector &&
612		    cpumask_test_cpu(me, data->domain))
613			goto unlock;
614
615		irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
616		/*
617		 * Check if the vector that needs to be cleanedup is
618		 * registered at the cpu's IRR. If so, then this is not
619		 * the best time to clean it up. Lets clean it up in the
620		 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
621		 * to myself.
622		 */
623		if (irr  & (1 << (vector % 32))) {
624			apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
625			goto unlock;
626		}
627		__this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
628		cpumask_clear_cpu(me, data->old_domain);
629unlock:
630		raw_spin_unlock(&desc->lock);
631	}
632
633	raw_spin_unlock(&vector_lock);
634
635	exiting_irq();
636}
637
638static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
639{
640	unsigned me;
641	struct apic_chip_data *data;
642
643	data = container_of(cfg, struct apic_chip_data, cfg);
644	if (likely(!data->move_in_progress))
645		return;
646
647	me = smp_processor_id();
648	if (vector == data->cfg.vector && cpumask_test_cpu(me, data->domain))
649		__send_cleanup_vector(data);
650}
651
652void irq_complete_move(struct irq_cfg *cfg)
653{
654	__irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
655}
656
657/*
658 * Called from fixup_irqs() with @desc->lock held and interrupts disabled.
659 */
660void irq_force_complete_move(struct irq_desc *desc)
661{
662	struct irq_data *irqdata = irq_desc_get_irq_data(desc);
663	struct apic_chip_data *data = apic_chip_data(irqdata);
664	struct irq_cfg *cfg = data ? &data->cfg : NULL;
665	unsigned int cpu;
666
667	if (!cfg)
668		return;
669
670	/*
671	 * This is tricky. If the cleanup of @data->old_domain has not been
672	 * done yet, then the following setaffinity call will fail with
673	 * -EBUSY. This can leave the interrupt in a stale state.
674	 *
675	 * All CPUs are stuck in stop machine with interrupts disabled so
676	 * calling __irq_complete_move() would be completely pointless.
677	 */
678	raw_spin_lock(&vector_lock);
679	/*
680	 * Clean out all offline cpus (including the outgoing one) from the
681	 * old_domain mask.
682	 */
683	cpumask_and(data->old_domain, data->old_domain, cpu_online_mask);
684
685	/*
686	 * If move_in_progress is cleared and the old_domain mask is empty,
687	 * then there is nothing to cleanup. fixup_irqs() will take care of
688	 * the stale vectors on the outgoing cpu.
689	 */
690	if (!data->move_in_progress && cpumask_empty(data->old_domain)) {
691		raw_spin_unlock(&vector_lock);
692		return;
693	}
694
695	/*
696	 * 1) The interrupt is in move_in_progress state. That means that we
697	 *    have not seen an interrupt since the io_apic was reprogrammed to
698	 *    the new vector.
699	 *
700	 * 2) The interrupt has fired on the new vector, but the cleanup IPIs
701	 *    have not been processed yet.
702	 */
703	if (data->move_in_progress) {
704		/*
705		 * In theory there is a race:
706		 *
707		 * set_ioapic(new_vector) <-- Interrupt is raised before update
708		 *			      is effective, i.e. it's raised on
709		 *			      the old vector.
710		 *
711		 * So if the target cpu cannot handle that interrupt before
712		 * the old vector is cleaned up, we get a spurious interrupt
713		 * and in the worst case the ioapic irq line becomes stale.
714		 *
715		 * But in case of cpu hotplug this should be a non issue
716		 * because if the affinity update happens right before all
717		 * cpus rendevouz in stop machine, there is no way that the
718		 * interrupt can be blocked on the target cpu because all cpus
719		 * loops first with interrupts enabled in stop machine, so the
720		 * old vector is not yet cleaned up when the interrupt fires.
721		 *
722		 * So the only way to run into this issue is if the delivery
723		 * of the interrupt on the apic/system bus would be delayed
724		 * beyond the point where the target cpu disables interrupts
725		 * in stop machine. I doubt that it can happen, but at least
726		 * there is a theroretical chance. Virtualization might be
727		 * able to expose this, but AFAICT the IOAPIC emulation is not
728		 * as stupid as the real hardware.
729		 *
730		 * Anyway, there is nothing we can do about that at this point
731		 * w/o refactoring the whole fixup_irq() business completely.
732		 * We print at least the irq number and the old vector number,
733		 * so we have the necessary information when a problem in that
734		 * area arises.
735		 */
736		pr_warn("IRQ fixup: irq %d move in progress, old vector %d\n",
737			irqdata->irq, cfg->old_vector);
738	}
739	/*
740	 * If old_domain is not empty, then other cpus still have the irq
741	 * descriptor set in their vector array. Clean it up.
742	 */
743	for_each_cpu(cpu, data->old_domain)
744		per_cpu(vector_irq, cpu)[cfg->old_vector] = VECTOR_UNUSED;
745
746	/* Cleanup the left overs of the (half finished) move */
747	cpumask_clear(data->old_domain);
748	data->move_in_progress = 0;
749	raw_spin_unlock(&vector_lock);
750}
751#endif
752
753static void __init print_APIC_field(int base)
754{
755	int i;
756
757	printk(KERN_DEBUG);
758
759	for (i = 0; i < 8; i++)
760		pr_cont("%08x", apic_read(base + i*0x10));
761
762	pr_cont("\n");
763}
764
765static void __init print_local_APIC(void *dummy)
766{
767	unsigned int i, v, ver, maxlvt;
768	u64 icr;
769
770	pr_debug("printing local APIC contents on CPU#%d/%d:\n",
771		 smp_processor_id(), hard_smp_processor_id());
772	v = apic_read(APIC_ID);
773	pr_info("... APIC ID:      %08x (%01x)\n", v, read_apic_id());
774	v = apic_read(APIC_LVR);
775	pr_info("... APIC VERSION: %08x\n", v);
776	ver = GET_APIC_VERSION(v);
777	maxlvt = lapic_get_maxlvt();
778
779	v = apic_read(APIC_TASKPRI);
780	pr_debug("... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
781
782	/* !82489DX */
783	if (APIC_INTEGRATED(ver)) {
784		if (!APIC_XAPIC(ver)) {
785			v = apic_read(APIC_ARBPRI);
786			pr_debug("... APIC ARBPRI: %08x (%02x)\n",
787				 v, v & APIC_ARBPRI_MASK);
788		}
789		v = apic_read(APIC_PROCPRI);
790		pr_debug("... APIC PROCPRI: %08x\n", v);
791	}
792
793	/*
794	 * Remote read supported only in the 82489DX and local APIC for
795	 * Pentium processors.
796	 */
797	if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
798		v = apic_read(APIC_RRR);
799		pr_debug("... APIC RRR: %08x\n", v);
800	}
801
802	v = apic_read(APIC_LDR);
803	pr_debug("... APIC LDR: %08x\n", v);
804	if (!x2apic_enabled()) {
805		v = apic_read(APIC_DFR);
806		pr_debug("... APIC DFR: %08x\n", v);
807	}
808	v = apic_read(APIC_SPIV);
809	pr_debug("... APIC SPIV: %08x\n", v);
810
811	pr_debug("... APIC ISR field:\n");
812	print_APIC_field(APIC_ISR);
813	pr_debug("... APIC TMR field:\n");
814	print_APIC_field(APIC_TMR);
815	pr_debug("... APIC IRR field:\n");
816	print_APIC_field(APIC_IRR);
817
818	/* !82489DX */
819	if (APIC_INTEGRATED(ver)) {
820		/* Due to the Pentium erratum 3AP. */
821		if (maxlvt > 3)
822			apic_write(APIC_ESR, 0);
823
824		v = apic_read(APIC_ESR);
825		pr_debug("... APIC ESR: %08x\n", v);
826	}
827
828	icr = apic_icr_read();
829	pr_debug("... APIC ICR: %08x\n", (u32)icr);
830	pr_debug("... APIC ICR2: %08x\n", (u32)(icr >> 32));
831
832	v = apic_read(APIC_LVTT);
833	pr_debug("... APIC LVTT: %08x\n", v);
834
835	if (maxlvt > 3) {
836		/* PC is LVT#4. */
837		v = apic_read(APIC_LVTPC);
838		pr_debug("... APIC LVTPC: %08x\n", v);
839	}
840	v = apic_read(APIC_LVT0);
841	pr_debug("... APIC LVT0: %08x\n", v);
842	v = apic_read(APIC_LVT1);
843	pr_debug("... APIC LVT1: %08x\n", v);
844
845	if (maxlvt > 2) {
846		/* ERR is LVT#3. */
847		v = apic_read(APIC_LVTERR);
848		pr_debug("... APIC LVTERR: %08x\n", v);
849	}
850
851	v = apic_read(APIC_TMICT);
852	pr_debug("... APIC TMICT: %08x\n", v);
853	v = apic_read(APIC_TMCCT);
854	pr_debug("... APIC TMCCT: %08x\n", v);
855	v = apic_read(APIC_TDCR);
856	pr_debug("... APIC TDCR: %08x\n", v);
857
858	if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
859		v = apic_read(APIC_EFEAT);
860		maxlvt = (v >> 16) & 0xff;
861		pr_debug("... APIC EFEAT: %08x\n", v);
862		v = apic_read(APIC_ECTRL);
863		pr_debug("... APIC ECTRL: %08x\n", v);
864		for (i = 0; i < maxlvt; i++) {
865			v = apic_read(APIC_EILVTn(i));
866			pr_debug("... APIC EILVT%d: %08x\n", i, v);
867		}
868	}
869	pr_cont("\n");
870}
871
872static void __init print_local_APICs(int maxcpu)
873{
874	int cpu;
875
876	if (!maxcpu)
877		return;
878
879	preempt_disable();
880	for_each_online_cpu(cpu) {
881		if (cpu >= maxcpu)
882			break;
883		smp_call_function_single(cpu, print_local_APIC, NULL, 1);
884	}
885	preempt_enable();
886}
887
888static void __init print_PIC(void)
889{
890	unsigned int v;
891	unsigned long flags;
892
893	if (!nr_legacy_irqs())
894		return;
895
896	pr_debug("\nprinting PIC contents\n");
897
898	raw_spin_lock_irqsave(&i8259A_lock, flags);
899
900	v = inb(0xa1) << 8 | inb(0x21);
901	pr_debug("... PIC  IMR: %04x\n", v);
902
903	v = inb(0xa0) << 8 | inb(0x20);
904	pr_debug("... PIC  IRR: %04x\n", v);
905
906	outb(0x0b, 0xa0);
907	outb(0x0b, 0x20);
908	v = inb(0xa0) << 8 | inb(0x20);
909	outb(0x0a, 0xa0);
910	outb(0x0a, 0x20);
911
912	raw_spin_unlock_irqrestore(&i8259A_lock, flags);
913
914	pr_debug("... PIC  ISR: %04x\n", v);
915
916	v = inb(0x4d1) << 8 | inb(0x4d0);
917	pr_debug("... PIC ELCR: %04x\n", v);
918}
919
920static int show_lapic __initdata = 1;
921static __init int setup_show_lapic(char *arg)
922{
923	int num = -1;
924
925	if (strcmp(arg, "all") == 0) {
926		show_lapic = CONFIG_NR_CPUS;
927	} else {
928		get_option(&arg, &num);
929		if (num >= 0)
930			show_lapic = num;
931	}
932
933	return 1;
934}
935__setup("show_lapic=", setup_show_lapic);
936
937static int __init print_ICs(void)
938{
939	if (apic_verbosity == APIC_QUIET)
940		return 0;
941
942	print_PIC();
943
944	/* don't print out if apic is not there */
945	if (!cpu_has_apic && !apic_from_smp_config())
946		return 0;
947
948	print_local_APICs(show_lapic);
949	print_IO_APICs();
950
951	return 0;
952}
953
954late_initcall(print_ICs);
955