1/* 2 * x86_64/AVX/AES-NI assembler implementation of Camellia 3 * 4 * Copyright �� 2012-2013 Jussi Kivilinna <jussi.kivilinna@iki.fi> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 */ 12 13/* 14 * Version licensed under 2-clause BSD License is available at: 15 * http://koti.mbnet.fi/axh/crypto/camellia-BSD-1.2.0-aesni1.tar.xz 16 */ 17 18#include <linux/linkage.h> 19 20#define CAMELLIA_TABLE_BYTE_LEN 272 21 22/* struct camellia_ctx: */ 23#define key_table 0 24#define key_length CAMELLIA_TABLE_BYTE_LEN 25 26/* register macros */ 27#define CTX %rdi 28 29/********************************************************************** 30 16-way camellia 31 **********************************************************************/ 32#define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \ 33 vpand x, mask4bit, tmp0; \ 34 vpandn x, mask4bit, x; \ 35 vpsrld $4, x, x; \ 36 \ 37 vpshufb tmp0, lo_t, tmp0; \ 38 vpshufb x, hi_t, x; \ 39 vpxor tmp0, x, x; 40 41/* 42 * IN: 43 * x0..x7: byte-sliced AB state 44 * mem_cd: register pointer storing CD state 45 * key: index for key material 46 * OUT: 47 * x0..x7: new byte-sliced CD state 48 */ 49#define roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \ 50 t7, mem_cd, key) \ 51 /* \ 52 * S-function with AES subbytes \ 53 */ \ 54 vmovdqa .Linv_shift_row, t4; \ 55 vbroadcastss .L0f0f0f0f, t7; \ 56 vmovdqa .Lpre_tf_lo_s1, t0; \ 57 vmovdqa .Lpre_tf_hi_s1, t1; \ 58 \ 59 /* AES inverse shift rows */ \ 60 vpshufb t4, x0, x0; \ 61 vpshufb t4, x7, x7; \ 62 vpshufb t4, x1, x1; \ 63 vpshufb t4, x4, x4; \ 64 vpshufb t4, x2, x2; \ 65 vpshufb t4, x5, x5; \ 66 vpshufb t4, x3, x3; \ 67 vpshufb t4, x6, x6; \ 68 \ 69 /* prefilter sboxes 1, 2 and 3 */ \ 70 vmovdqa .Lpre_tf_lo_s4, t2; \ 71 vmovdqa .Lpre_tf_hi_s4, t3; \ 72 filter_8bit(x0, t0, t1, t7, t6); \ 73 filter_8bit(x7, t0, t1, t7, t6); \ 74 filter_8bit(x1, t0, t1, t7, t6); \ 75 filter_8bit(x4, t0, t1, t7, t6); \ 76 filter_8bit(x2, t0, t1, t7, t6); \ 77 filter_8bit(x5, t0, t1, t7, t6); \ 78 \ 79 /* prefilter sbox 4 */ \ 80 vpxor t4, t4, t4; \ 81 filter_8bit(x3, t2, t3, t7, t6); \ 82 filter_8bit(x6, t2, t3, t7, t6); \ 83 \ 84 /* AES subbytes + AES shift rows */ \ 85 vmovdqa .Lpost_tf_lo_s1, t0; \ 86 vmovdqa .Lpost_tf_hi_s1, t1; \ 87 vaesenclast t4, x0, x0; \ 88 vaesenclast t4, x7, x7; \ 89 vaesenclast t4, x1, x1; \ 90 vaesenclast t4, x4, x4; \ 91 vaesenclast t4, x2, x2; \ 92 vaesenclast t4, x5, x5; \ 93 vaesenclast t4, x3, x3; \ 94 vaesenclast t4, x6, x6; \ 95 \ 96 /* postfilter sboxes 1 and 4 */ \ 97 vmovdqa .Lpost_tf_lo_s3, t2; \ 98 vmovdqa .Lpost_tf_hi_s3, t3; \ 99 filter_8bit(x0, t0, t1, t7, t6); \ 100 filter_8bit(x7, t0, t1, t7, t6); \ 101 filter_8bit(x3, t0, t1, t7, t6); \ 102 filter_8bit(x6, t0, t1, t7, t6); \ 103 \ 104 /* postfilter sbox 3 */ \ 105 vmovdqa .Lpost_tf_lo_s2, t4; \ 106 vmovdqa .Lpost_tf_hi_s2, t5; \ 107 filter_8bit(x2, t2, t3, t7, t6); \ 108 filter_8bit(x5, t2, t3, t7, t6); \ 109 \ 110 vpxor t6, t6, t6; \ 111 vmovq key, t0; \ 112 \ 113 /* postfilter sbox 2 */ \ 114 filter_8bit(x1, t4, t5, t7, t2); \ 115 filter_8bit(x4, t4, t5, t7, t2); \ 116 \ 117 vpsrldq $5, t0, t5; \ 118 vpsrldq $1, t0, t1; \ 119 vpsrldq $2, t0, t2; \ 120 vpsrldq $3, t0, t3; \ 121 vpsrldq $4, t0, t4; \ 122 vpshufb t6, t0, t0; \ 123 vpshufb t6, t1, t1; \ 124 vpshufb t6, t2, t2; \ 125 vpshufb t6, t3, t3; \ 126 vpshufb t6, t4, t4; \ 127 vpsrldq $2, t5, t7; \ 128 vpshufb t6, t7, t7; \ 129 \ 130 /* \ 131 * P-function \ 132 */ \ 133 vpxor x5, x0, x0; \ 134 vpxor x6, x1, x1; \ 135 vpxor x7, x2, x2; \ 136 vpxor x4, x3, x3; \ 137 \ 138 vpxor x2, x4, x4; \ 139 vpxor x3, x5, x5; \ 140 vpxor x0, x6, x6; \ 141 vpxor x1, x7, x7; \ 142 \ 143 vpxor x7, x0, x0; \ 144 vpxor x4, x1, x1; \ 145 vpxor x5, x2, x2; \ 146 vpxor x6, x3, x3; \ 147 \ 148 vpxor x3, x4, x4; \ 149 vpxor x0, x5, x5; \ 150 vpxor x1, x6, x6; \ 151 vpxor x2, x7, x7; /* note: high and low parts swapped */ \ 152 \ 153 /* \ 154 * Add key material and result to CD (x becomes new CD) \ 155 */ \ 156 \ 157 vpxor t3, x4, x4; \ 158 vpxor 0 * 16(mem_cd), x4, x4; \ 159 \ 160 vpxor t2, x5, x5; \ 161 vpxor 1 * 16(mem_cd), x5, x5; \ 162 \ 163 vpsrldq $1, t5, t3; \ 164 vpshufb t6, t5, t5; \ 165 vpshufb t6, t3, t6; \ 166 \ 167 vpxor t1, x6, x6; \ 168 vpxor 2 * 16(mem_cd), x6, x6; \ 169 \ 170 vpxor t0, x7, x7; \ 171 vpxor 3 * 16(mem_cd), x7, x7; \ 172 \ 173 vpxor t7, x0, x0; \ 174 vpxor 4 * 16(mem_cd), x0, x0; \ 175 \ 176 vpxor t6, x1, x1; \ 177 vpxor 5 * 16(mem_cd), x1, x1; \ 178 \ 179 vpxor t5, x2, x2; \ 180 vpxor 6 * 16(mem_cd), x2, x2; \ 181 \ 182 vpxor t4, x3, x3; \ 183 vpxor 7 * 16(mem_cd), x3, x3; 184 185/* 186 * Size optimization... with inlined roundsm16, binary would be over 5 times 187 * larger and would only be 0.5% faster (on sandy-bridge). 188 */ 189.align 8 190roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd: 191 roundsm16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 192 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm15, 193 %rcx, (%r9)); 194 ret; 195ENDPROC(roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd) 196 197.align 8 198roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab: 199 roundsm16(%xmm4, %xmm5, %xmm6, %xmm7, %xmm0, %xmm1, %xmm2, %xmm3, 200 %xmm12, %xmm13, %xmm14, %xmm15, %xmm8, %xmm9, %xmm10, %xmm11, 201 %rax, (%r9)); 202 ret; 203ENDPROC(roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab) 204 205/* 206 * IN/OUT: 207 * x0..x7: byte-sliced AB state preloaded 208 * mem_ab: byte-sliced AB state in memory 209 * mem_cb: byte-sliced CD state in memory 210 */ 211#define two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 212 y6, y7, mem_ab, mem_cd, i, dir, store_ab) \ 213 leaq (key_table + (i) * 8)(CTX), %r9; \ 214 call roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \ 215 \ 216 vmovdqu x4, 0 * 16(mem_cd); \ 217 vmovdqu x5, 1 * 16(mem_cd); \ 218 vmovdqu x6, 2 * 16(mem_cd); \ 219 vmovdqu x7, 3 * 16(mem_cd); \ 220 vmovdqu x0, 4 * 16(mem_cd); \ 221 vmovdqu x1, 5 * 16(mem_cd); \ 222 vmovdqu x2, 6 * 16(mem_cd); \ 223 vmovdqu x3, 7 * 16(mem_cd); \ 224 \ 225 leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \ 226 call roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \ 227 \ 228 store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab); 229 230#define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */ 231 232#define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \ 233 /* Store new AB state */ \ 234 vmovdqu x0, 0 * 16(mem_ab); \ 235 vmovdqu x1, 1 * 16(mem_ab); \ 236 vmovdqu x2, 2 * 16(mem_ab); \ 237 vmovdqu x3, 3 * 16(mem_ab); \ 238 vmovdqu x4, 4 * 16(mem_ab); \ 239 vmovdqu x5, 5 * 16(mem_ab); \ 240 vmovdqu x6, 6 * 16(mem_ab); \ 241 vmovdqu x7, 7 * 16(mem_ab); 242 243#define enc_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 244 y6, y7, mem_ab, mem_cd, i) \ 245 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 246 y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \ 247 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 248 y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \ 249 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 250 y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store); 251 252#define dec_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 253 y6, y7, mem_ab, mem_cd, i) \ 254 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 255 y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \ 256 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 257 y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \ 258 two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 259 y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store); 260 261/* 262 * IN: 263 * v0..3: byte-sliced 32-bit integers 264 * OUT: 265 * v0..3: (IN <<< 1) 266 */ 267#define rol32_1_16(v0, v1, v2, v3, t0, t1, t2, zero) \ 268 vpcmpgtb v0, zero, t0; \ 269 vpaddb v0, v0, v0; \ 270 vpabsb t0, t0; \ 271 \ 272 vpcmpgtb v1, zero, t1; \ 273 vpaddb v1, v1, v1; \ 274 vpabsb t1, t1; \ 275 \ 276 vpcmpgtb v2, zero, t2; \ 277 vpaddb v2, v2, v2; \ 278 vpabsb t2, t2; \ 279 \ 280 vpor t0, v1, v1; \ 281 \ 282 vpcmpgtb v3, zero, t0; \ 283 vpaddb v3, v3, v3; \ 284 vpabsb t0, t0; \ 285 \ 286 vpor t1, v2, v2; \ 287 vpor t2, v3, v3; \ 288 vpor t0, v0, v0; 289 290/* 291 * IN: 292 * r: byte-sliced AB state in memory 293 * l: byte-sliced CD state in memory 294 * OUT: 295 * x0..x7: new byte-sliced CD state 296 */ 297#define fls16(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \ 298 tt1, tt2, tt3, kll, klr, krl, krr) \ 299 /* \ 300 * t0 = kll; \ 301 * t0 &= ll; \ 302 * lr ^= rol32(t0, 1); \ 303 */ \ 304 vpxor tt0, tt0, tt0; \ 305 vmovd kll, t0; \ 306 vpshufb tt0, t0, t3; \ 307 vpsrldq $1, t0, t0; \ 308 vpshufb tt0, t0, t2; \ 309 vpsrldq $1, t0, t0; \ 310 vpshufb tt0, t0, t1; \ 311 vpsrldq $1, t0, t0; \ 312 vpshufb tt0, t0, t0; \ 313 \ 314 vpand l0, t0, t0; \ 315 vpand l1, t1, t1; \ 316 vpand l2, t2, t2; \ 317 vpand l3, t3, t3; \ 318 \ 319 rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \ 320 \ 321 vpxor l4, t0, l4; \ 322 vmovdqu l4, 4 * 16(l); \ 323 vpxor l5, t1, l5; \ 324 vmovdqu l5, 5 * 16(l); \ 325 vpxor l6, t2, l6; \ 326 vmovdqu l6, 6 * 16(l); \ 327 vpxor l7, t3, l7; \ 328 vmovdqu l7, 7 * 16(l); \ 329 \ 330 /* \ 331 * t2 = krr; \ 332 * t2 |= rr; \ 333 * rl ^= t2; \ 334 */ \ 335 \ 336 vmovd krr, t0; \ 337 vpshufb tt0, t0, t3; \ 338 vpsrldq $1, t0, t0; \ 339 vpshufb tt0, t0, t2; \ 340 vpsrldq $1, t0, t0; \ 341 vpshufb tt0, t0, t1; \ 342 vpsrldq $1, t0, t0; \ 343 vpshufb tt0, t0, t0; \ 344 \ 345 vpor 4 * 16(r), t0, t0; \ 346 vpor 5 * 16(r), t1, t1; \ 347 vpor 6 * 16(r), t2, t2; \ 348 vpor 7 * 16(r), t3, t3; \ 349 \ 350 vpxor 0 * 16(r), t0, t0; \ 351 vpxor 1 * 16(r), t1, t1; \ 352 vpxor 2 * 16(r), t2, t2; \ 353 vpxor 3 * 16(r), t3, t3; \ 354 vmovdqu t0, 0 * 16(r); \ 355 vmovdqu t1, 1 * 16(r); \ 356 vmovdqu t2, 2 * 16(r); \ 357 vmovdqu t3, 3 * 16(r); \ 358 \ 359 /* \ 360 * t2 = krl; \ 361 * t2 &= rl; \ 362 * rr ^= rol32(t2, 1); \ 363 */ \ 364 vmovd krl, t0; \ 365 vpshufb tt0, t0, t3; \ 366 vpsrldq $1, t0, t0; \ 367 vpshufb tt0, t0, t2; \ 368 vpsrldq $1, t0, t0; \ 369 vpshufb tt0, t0, t1; \ 370 vpsrldq $1, t0, t0; \ 371 vpshufb tt0, t0, t0; \ 372 \ 373 vpand 0 * 16(r), t0, t0; \ 374 vpand 1 * 16(r), t1, t1; \ 375 vpand 2 * 16(r), t2, t2; \ 376 vpand 3 * 16(r), t3, t3; \ 377 \ 378 rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \ 379 \ 380 vpxor 4 * 16(r), t0, t0; \ 381 vpxor 5 * 16(r), t1, t1; \ 382 vpxor 6 * 16(r), t2, t2; \ 383 vpxor 7 * 16(r), t3, t3; \ 384 vmovdqu t0, 4 * 16(r); \ 385 vmovdqu t1, 5 * 16(r); \ 386 vmovdqu t2, 6 * 16(r); \ 387 vmovdqu t3, 7 * 16(r); \ 388 \ 389 /* \ 390 * t0 = klr; \ 391 * t0 |= lr; \ 392 * ll ^= t0; \ 393 */ \ 394 \ 395 vmovd klr, t0; \ 396 vpshufb tt0, t0, t3; \ 397 vpsrldq $1, t0, t0; \ 398 vpshufb tt0, t0, t2; \ 399 vpsrldq $1, t0, t0; \ 400 vpshufb tt0, t0, t1; \ 401 vpsrldq $1, t0, t0; \ 402 vpshufb tt0, t0, t0; \ 403 \ 404 vpor l4, t0, t0; \ 405 vpor l5, t1, t1; \ 406 vpor l6, t2, t2; \ 407 vpor l7, t3, t3; \ 408 \ 409 vpxor l0, t0, l0; \ 410 vmovdqu l0, 0 * 16(l); \ 411 vpxor l1, t1, l1; \ 412 vmovdqu l1, 1 * 16(l); \ 413 vpxor l2, t2, l2; \ 414 vmovdqu l2, 2 * 16(l); \ 415 vpxor l3, t3, l3; \ 416 vmovdqu l3, 3 * 16(l); 417 418#define transpose_4x4(x0, x1, x2, x3, t1, t2) \ 419 vpunpckhdq x1, x0, t2; \ 420 vpunpckldq x1, x0, x0; \ 421 \ 422 vpunpckldq x3, x2, t1; \ 423 vpunpckhdq x3, x2, x2; \ 424 \ 425 vpunpckhqdq t1, x0, x1; \ 426 vpunpcklqdq t1, x0, x0; \ 427 \ 428 vpunpckhqdq x2, t2, x3; \ 429 vpunpcklqdq x2, t2, x2; 430 431#define byteslice_16x16b(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, a3, \ 432 b3, c3, d3, st0, st1) \ 433 vmovdqu d2, st0; \ 434 vmovdqu d3, st1; \ 435 transpose_4x4(a0, a1, a2, a3, d2, d3); \ 436 transpose_4x4(b0, b1, b2, b3, d2, d3); \ 437 vmovdqu st0, d2; \ 438 vmovdqu st1, d3; \ 439 \ 440 vmovdqu a0, st0; \ 441 vmovdqu a1, st1; \ 442 transpose_4x4(c0, c1, c2, c3, a0, a1); \ 443 transpose_4x4(d0, d1, d2, d3, a0, a1); \ 444 \ 445 vmovdqu .Lshufb_16x16b, a0; \ 446 vmovdqu st1, a1; \ 447 vpshufb a0, a2, a2; \ 448 vpshufb a0, a3, a3; \ 449 vpshufb a0, b0, b0; \ 450 vpshufb a0, b1, b1; \ 451 vpshufb a0, b2, b2; \ 452 vpshufb a0, b3, b3; \ 453 vpshufb a0, a1, a1; \ 454 vpshufb a0, c0, c0; \ 455 vpshufb a0, c1, c1; \ 456 vpshufb a0, c2, c2; \ 457 vpshufb a0, c3, c3; \ 458 vpshufb a0, d0, d0; \ 459 vpshufb a0, d1, d1; \ 460 vpshufb a0, d2, d2; \ 461 vpshufb a0, d3, d3; \ 462 vmovdqu d3, st1; \ 463 vmovdqu st0, d3; \ 464 vpshufb a0, d3, a0; \ 465 vmovdqu d2, st0; \ 466 \ 467 transpose_4x4(a0, b0, c0, d0, d2, d3); \ 468 transpose_4x4(a1, b1, c1, d1, d2, d3); \ 469 vmovdqu st0, d2; \ 470 vmovdqu st1, d3; \ 471 \ 472 vmovdqu b0, st0; \ 473 vmovdqu b1, st1; \ 474 transpose_4x4(a2, b2, c2, d2, b0, b1); \ 475 transpose_4x4(a3, b3, c3, d3, b0, b1); \ 476 vmovdqu st0, b0; \ 477 vmovdqu st1, b1; \ 478 /* does not adjust output bytes inside vectors */ 479 480/* load blocks to registers and apply pre-whitening */ 481#define inpack16_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 482 y6, y7, rio, key) \ 483 vmovq key, x0; \ 484 vpshufb .Lpack_bswap, x0, x0; \ 485 \ 486 vpxor 0 * 16(rio), x0, y7; \ 487 vpxor 1 * 16(rio), x0, y6; \ 488 vpxor 2 * 16(rio), x0, y5; \ 489 vpxor 3 * 16(rio), x0, y4; \ 490 vpxor 4 * 16(rio), x0, y3; \ 491 vpxor 5 * 16(rio), x0, y2; \ 492 vpxor 6 * 16(rio), x0, y1; \ 493 vpxor 7 * 16(rio), x0, y0; \ 494 vpxor 8 * 16(rio), x0, x7; \ 495 vpxor 9 * 16(rio), x0, x6; \ 496 vpxor 10 * 16(rio), x0, x5; \ 497 vpxor 11 * 16(rio), x0, x4; \ 498 vpxor 12 * 16(rio), x0, x3; \ 499 vpxor 13 * 16(rio), x0, x2; \ 500 vpxor 14 * 16(rio), x0, x1; \ 501 vpxor 15 * 16(rio), x0, x0; 502 503/* byteslice pre-whitened blocks and store to temporary memory */ 504#define inpack16_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 505 y6, y7, mem_ab, mem_cd) \ 506 byteslice_16x16b(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \ 507 y5, y6, y7, (mem_ab), (mem_cd)); \ 508 \ 509 vmovdqu x0, 0 * 16(mem_ab); \ 510 vmovdqu x1, 1 * 16(mem_ab); \ 511 vmovdqu x2, 2 * 16(mem_ab); \ 512 vmovdqu x3, 3 * 16(mem_ab); \ 513 vmovdqu x4, 4 * 16(mem_ab); \ 514 vmovdqu x5, 5 * 16(mem_ab); \ 515 vmovdqu x6, 6 * 16(mem_ab); \ 516 vmovdqu x7, 7 * 16(mem_ab); \ 517 vmovdqu y0, 0 * 16(mem_cd); \ 518 vmovdqu y1, 1 * 16(mem_cd); \ 519 vmovdqu y2, 2 * 16(mem_cd); \ 520 vmovdqu y3, 3 * 16(mem_cd); \ 521 vmovdqu y4, 4 * 16(mem_cd); \ 522 vmovdqu y5, 5 * 16(mem_cd); \ 523 vmovdqu y6, 6 * 16(mem_cd); \ 524 vmovdqu y7, 7 * 16(mem_cd); 525 526/* de-byteslice, apply post-whitening and store blocks */ 527#define outunpack16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \ 528 y5, y6, y7, key, stack_tmp0, stack_tmp1) \ 529 byteslice_16x16b(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, y3, \ 530 y7, x3, x7, stack_tmp0, stack_tmp1); \ 531 \ 532 vmovdqu x0, stack_tmp0; \ 533 \ 534 vmovq key, x0; \ 535 vpshufb .Lpack_bswap, x0, x0; \ 536 \ 537 vpxor x0, y7, y7; \ 538 vpxor x0, y6, y6; \ 539 vpxor x0, y5, y5; \ 540 vpxor x0, y4, y4; \ 541 vpxor x0, y3, y3; \ 542 vpxor x0, y2, y2; \ 543 vpxor x0, y1, y1; \ 544 vpxor x0, y0, y0; \ 545 vpxor x0, x7, x7; \ 546 vpxor x0, x6, x6; \ 547 vpxor x0, x5, x5; \ 548 vpxor x0, x4, x4; \ 549 vpxor x0, x3, x3; \ 550 vpxor x0, x2, x2; \ 551 vpxor x0, x1, x1; \ 552 vpxor stack_tmp0, x0, x0; 553 554#define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \ 555 y6, y7, rio) \ 556 vmovdqu x0, 0 * 16(rio); \ 557 vmovdqu x1, 1 * 16(rio); \ 558 vmovdqu x2, 2 * 16(rio); \ 559 vmovdqu x3, 3 * 16(rio); \ 560 vmovdqu x4, 4 * 16(rio); \ 561 vmovdqu x5, 5 * 16(rio); \ 562 vmovdqu x6, 6 * 16(rio); \ 563 vmovdqu x7, 7 * 16(rio); \ 564 vmovdqu y0, 8 * 16(rio); \ 565 vmovdqu y1, 9 * 16(rio); \ 566 vmovdqu y2, 10 * 16(rio); \ 567 vmovdqu y3, 11 * 16(rio); \ 568 vmovdqu y4, 12 * 16(rio); \ 569 vmovdqu y5, 13 * 16(rio); \ 570 vmovdqu y6, 14 * 16(rio); \ 571 vmovdqu y7, 15 * 16(rio); 572 573.data 574.align 16 575 576#define SHUFB_BYTES(idx) \ 577 0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx) 578 579.Lshufb_16x16b: 580 .byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3); 581 582.Lpack_bswap: 583 .long 0x00010203 584 .long 0x04050607 585 .long 0x80808080 586 .long 0x80808080 587 588/* For CTR-mode IV byteswap */ 589.Lbswap128_mask: 590 .byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 591 592/* For XTS mode IV generation */ 593.Lxts_gf128mul_and_shl1_mask: 594 .byte 0x87, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 595 596/* 597 * pre-SubByte transform 598 * 599 * pre-lookup for sbox1, sbox2, sbox3: 600 * swap_bitendianness( 601 * isom_map_camellia_to_aes( 602 * camellia_f( 603 * swap_bitendianess(in) 604 * ) 605 * ) 606 * ) 607 * 608 * (note: '��� 0xc5' inside camellia_f()) 609 */ 610.Lpre_tf_lo_s1: 611 .byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86 612 .byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88 613.Lpre_tf_hi_s1: 614 .byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a 615 .byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23 616 617/* 618 * pre-SubByte transform 619 * 620 * pre-lookup for sbox4: 621 * swap_bitendianness( 622 * isom_map_camellia_to_aes( 623 * camellia_f( 624 * swap_bitendianess(in <<< 1) 625 * ) 626 * ) 627 * ) 628 * 629 * (note: '��� 0xc5' inside camellia_f()) 630 */ 631.Lpre_tf_lo_s4: 632 .byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25 633 .byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74 634.Lpre_tf_hi_s4: 635 .byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72 636 .byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf 637 638/* 639 * post-SubByte transform 640 * 641 * post-lookup for sbox1, sbox4: 642 * swap_bitendianness( 643 * camellia_h( 644 * isom_map_aes_to_camellia( 645 * swap_bitendianness( 646 * aes_inverse_affine_transform(in) 647 * ) 648 * ) 649 * ) 650 * ) 651 * 652 * (note: '��� 0x6e' inside camellia_h()) 653 */ 654.Lpost_tf_lo_s1: 655 .byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31 656 .byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1 657.Lpost_tf_hi_s1: 658 .byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8 659 .byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c 660 661/* 662 * post-SubByte transform 663 * 664 * post-lookup for sbox2: 665 * swap_bitendianness( 666 * camellia_h( 667 * isom_map_aes_to_camellia( 668 * swap_bitendianness( 669 * aes_inverse_affine_transform(in) 670 * ) 671 * ) 672 * ) 673 * ) <<< 1 674 * 675 * (note: '��� 0x6e' inside camellia_h()) 676 */ 677.Lpost_tf_lo_s2: 678 .byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62 679 .byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3 680.Lpost_tf_hi_s2: 681 .byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51 682 .byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18 683 684/* 685 * post-SubByte transform 686 * 687 * post-lookup for sbox3: 688 * swap_bitendianness( 689 * camellia_h( 690 * isom_map_aes_to_camellia( 691 * swap_bitendianness( 692 * aes_inverse_affine_transform(in) 693 * ) 694 * ) 695 * ) 696 * ) >>> 1 697 * 698 * (note: '��� 0x6e' inside camellia_h()) 699 */ 700.Lpost_tf_lo_s3: 701 .byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98 702 .byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8 703.Lpost_tf_hi_s3: 704 .byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54 705 .byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06 706 707/* For isolating SubBytes from AESENCLAST, inverse shift row */ 708.Linv_shift_row: 709 .byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b 710 .byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03 711 712/* 4-bit mask */ 713.align 4 714.L0f0f0f0f: 715 .long 0x0f0f0f0f 716 717.text 718 719.align 8 720__camellia_enc_blk16: 721 /* input: 722 * %rdi: ctx, CTX 723 * %rax: temporary storage, 256 bytes 724 * %xmm0..%xmm15: 16 plaintext blocks 725 * output: 726 * %xmm0..%xmm15: 16 encrypted blocks, order swapped: 727 * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8 728 */ 729 730 leaq 8 * 16(%rax), %rcx; 731 732 inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 733 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 734 %xmm15, %rax, %rcx); 735 736 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 737 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 738 %xmm15, %rax, %rcx, 0); 739 740 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 741 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 742 %xmm15, 743 ((key_table + (8) * 8) + 0)(CTX), 744 ((key_table + (8) * 8) + 4)(CTX), 745 ((key_table + (8) * 8) + 8)(CTX), 746 ((key_table + (8) * 8) + 12)(CTX)); 747 748 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 749 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 750 %xmm15, %rax, %rcx, 8); 751 752 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 753 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 754 %xmm15, 755 ((key_table + (16) * 8) + 0)(CTX), 756 ((key_table + (16) * 8) + 4)(CTX), 757 ((key_table + (16) * 8) + 8)(CTX), 758 ((key_table + (16) * 8) + 12)(CTX)); 759 760 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 761 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 762 %xmm15, %rax, %rcx, 16); 763 764 movl $24, %r8d; 765 cmpl $16, key_length(CTX); 766 jne .Lenc_max32; 767 768.Lenc_done: 769 /* load CD for output */ 770 vmovdqu 0 * 16(%rcx), %xmm8; 771 vmovdqu 1 * 16(%rcx), %xmm9; 772 vmovdqu 2 * 16(%rcx), %xmm10; 773 vmovdqu 3 * 16(%rcx), %xmm11; 774 vmovdqu 4 * 16(%rcx), %xmm12; 775 vmovdqu 5 * 16(%rcx), %xmm13; 776 vmovdqu 6 * 16(%rcx), %xmm14; 777 vmovdqu 7 * 16(%rcx), %xmm15; 778 779 outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 780 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 781 %xmm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 16(%rax)); 782 783 ret; 784 785.align 8 786.Lenc_max32: 787 movl $32, %r8d; 788 789 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 790 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 791 %xmm15, 792 ((key_table + (24) * 8) + 0)(CTX), 793 ((key_table + (24) * 8) + 4)(CTX), 794 ((key_table + (24) * 8) + 8)(CTX), 795 ((key_table + (24) * 8) + 12)(CTX)); 796 797 enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 798 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 799 %xmm15, %rax, %rcx, 24); 800 801 jmp .Lenc_done; 802ENDPROC(__camellia_enc_blk16) 803 804.align 8 805__camellia_dec_blk16: 806 /* input: 807 * %rdi: ctx, CTX 808 * %rax: temporary storage, 256 bytes 809 * %r8d: 24 for 16 byte key, 32 for larger 810 * %xmm0..%xmm15: 16 encrypted blocks 811 * output: 812 * %xmm0..%xmm15: 16 plaintext blocks, order swapped: 813 * 7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8 814 */ 815 816 leaq 8 * 16(%rax), %rcx; 817 818 inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 819 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 820 %xmm15, %rax, %rcx); 821 822 cmpl $32, %r8d; 823 je .Ldec_max32; 824 825.Ldec_max24: 826 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 827 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 828 %xmm15, %rax, %rcx, 16); 829 830 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 831 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 832 %xmm15, 833 ((key_table + (16) * 8) + 8)(CTX), 834 ((key_table + (16) * 8) + 12)(CTX), 835 ((key_table + (16) * 8) + 0)(CTX), 836 ((key_table + (16) * 8) + 4)(CTX)); 837 838 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 839 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 840 %xmm15, %rax, %rcx, 8); 841 842 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 843 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 844 %xmm15, 845 ((key_table + (8) * 8) + 8)(CTX), 846 ((key_table + (8) * 8) + 12)(CTX), 847 ((key_table + (8) * 8) + 0)(CTX), 848 ((key_table + (8) * 8) + 4)(CTX)); 849 850 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 851 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 852 %xmm15, %rax, %rcx, 0); 853 854 /* load CD for output */ 855 vmovdqu 0 * 16(%rcx), %xmm8; 856 vmovdqu 1 * 16(%rcx), %xmm9; 857 vmovdqu 2 * 16(%rcx), %xmm10; 858 vmovdqu 3 * 16(%rcx), %xmm11; 859 vmovdqu 4 * 16(%rcx), %xmm12; 860 vmovdqu 5 * 16(%rcx), %xmm13; 861 vmovdqu 6 * 16(%rcx), %xmm14; 862 vmovdqu 7 * 16(%rcx), %xmm15; 863 864 outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 865 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 866 %xmm15, (key_table)(CTX), (%rax), 1 * 16(%rax)); 867 868 ret; 869 870.align 8 871.Ldec_max32: 872 dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 873 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 874 %xmm15, %rax, %rcx, 24); 875 876 fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 877 %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 878 %xmm15, 879 ((key_table + (24) * 8) + 8)(CTX), 880 ((key_table + (24) * 8) + 12)(CTX), 881 ((key_table + (24) * 8) + 0)(CTX), 882 ((key_table + (24) * 8) + 4)(CTX)); 883 884 jmp .Ldec_max24; 885ENDPROC(__camellia_dec_blk16) 886 887ENTRY(camellia_ecb_enc_16way) 888 /* input: 889 * %rdi: ctx, CTX 890 * %rsi: dst (16 blocks) 891 * %rdx: src (16 blocks) 892 */ 893 894 inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 895 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 896 %xmm15, %rdx, (key_table)(CTX)); 897 898 /* now dst can be used as temporary buffer (even in src == dst case) */ 899 movq %rsi, %rax; 900 901 call __camellia_enc_blk16; 902 903 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0, 904 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9, 905 %xmm8, %rsi); 906 907 ret; 908ENDPROC(camellia_ecb_enc_16way) 909 910ENTRY(camellia_ecb_dec_16way) 911 /* input: 912 * %rdi: ctx, CTX 913 * %rsi: dst (16 blocks) 914 * %rdx: src (16 blocks) 915 */ 916 917 cmpl $16, key_length(CTX); 918 movl $32, %r8d; 919 movl $24, %eax; 920 cmovel %eax, %r8d; /* max */ 921 922 inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 923 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 924 %xmm15, %rdx, (key_table)(CTX, %r8, 8)); 925 926 /* now dst can be used as temporary buffer (even in src == dst case) */ 927 movq %rsi, %rax; 928 929 call __camellia_dec_blk16; 930 931 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0, 932 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9, 933 %xmm8, %rsi); 934 935 ret; 936ENDPROC(camellia_ecb_dec_16way) 937 938ENTRY(camellia_cbc_dec_16way) 939 /* input: 940 * %rdi: ctx, CTX 941 * %rsi: dst (16 blocks) 942 * %rdx: src (16 blocks) 943 */ 944 945 cmpl $16, key_length(CTX); 946 movl $32, %r8d; 947 movl $24, %eax; 948 cmovel %eax, %r8d; /* max */ 949 950 inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7, 951 %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, 952 %xmm15, %rdx, (key_table)(CTX, %r8, 8)); 953 954 /* 955 * dst might still be in-use (in case dst == src), so use stack for 956 * temporary storage. 957 */ 958 subq $(16 * 16), %rsp; 959 movq %rsp, %rax; 960 961 call __camellia_dec_blk16; 962 963 addq $(16 * 16), %rsp; 964 965 vpxor (0 * 16)(%rdx), %xmm6, %xmm6; 966 vpxor (1 * 16)(%rdx), %xmm5, %xmm5; 967 vpxor (2 * 16)(%rdx), %xmm4, %xmm4; 968 vpxor (3 * 16)(%rdx), %xmm3, %xmm3; 969 vpxor (4 * 16)(%rdx), %xmm2, %xmm2; 970 vpxor (5 * 16)(%rdx), %xmm1, %xmm1; 971 vpxor (6 * 16)(%rdx), %xmm0, %xmm0; 972 vpxor (7 * 16)(%rdx), %xmm15, %xmm15; 973 vpxor (8 * 16)(%rdx), %xmm14, %xmm14; 974 vpxor (9 * 16)(%rdx), %xmm13, %xmm13; 975 vpxor (10 * 16)(%rdx), %xmm12, %xmm12; 976 vpxor (11 * 16)(%rdx), %xmm11, %xmm11; 977 vpxor (12 * 16)(%rdx), %xmm10, %xmm10; 978 vpxor (13 * 16)(%rdx), %xmm9, %xmm9; 979 vpxor (14 * 16)(%rdx), %xmm8, %xmm8; 980 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0, 981 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9, 982 %xmm8, %rsi); 983 984 ret; 985ENDPROC(camellia_cbc_dec_16way) 986 987#define inc_le128(x, minus_one, tmp) \ 988 vpcmpeqq minus_one, x, tmp; \ 989 vpsubq minus_one, x, x; \ 990 vpslldq $8, tmp, tmp; \ 991 vpsubq tmp, x, x; 992 993ENTRY(camellia_ctr_16way) 994 /* input: 995 * %rdi: ctx, CTX 996 * %rsi: dst (16 blocks) 997 * %rdx: src (16 blocks) 998 * %rcx: iv (little endian, 128bit) 999 */ 1000 1001 subq $(16 * 16), %rsp; 1002 movq %rsp, %rax; 1003 1004 vmovdqa .Lbswap128_mask, %xmm14; 1005 1006 /* load IV and byteswap */ 1007 vmovdqu (%rcx), %xmm0; 1008 vpshufb %xmm14, %xmm0, %xmm15; 1009 vmovdqu %xmm15, 15 * 16(%rax); 1010 1011 vpcmpeqd %xmm15, %xmm15, %xmm15; 1012 vpsrldq $8, %xmm15, %xmm15; /* low: -1, high: 0 */ 1013 1014 /* construct IVs */ 1015 inc_le128(%xmm0, %xmm15, %xmm13); 1016 vpshufb %xmm14, %xmm0, %xmm13; 1017 vmovdqu %xmm13, 14 * 16(%rax); 1018 inc_le128(%xmm0, %xmm15, %xmm13); 1019 vpshufb %xmm14, %xmm0, %xmm13; 1020 vmovdqu %xmm13, 13 * 16(%rax); 1021 inc_le128(%xmm0, %xmm15, %xmm13); 1022 vpshufb %xmm14, %xmm0, %xmm12; 1023 inc_le128(%xmm0, %xmm15, %xmm13); 1024 vpshufb %xmm14, %xmm0, %xmm11; 1025 inc_le128(%xmm0, %xmm15, %xmm13); 1026 vpshufb %xmm14, %xmm0, %xmm10; 1027 inc_le128(%xmm0, %xmm15, %xmm13); 1028 vpshufb %xmm14, %xmm0, %xmm9; 1029 inc_le128(%xmm0, %xmm15, %xmm13); 1030 vpshufb %xmm14, %xmm0, %xmm8; 1031 inc_le128(%xmm0, %xmm15, %xmm13); 1032 vpshufb %xmm14, %xmm0, %xmm7; 1033 inc_le128(%xmm0, %xmm15, %xmm13); 1034 vpshufb %xmm14, %xmm0, %xmm6; 1035 inc_le128(%xmm0, %xmm15, %xmm13); 1036 vpshufb %xmm14, %xmm0, %xmm5; 1037 inc_le128(%xmm0, %xmm15, %xmm13); 1038 vpshufb %xmm14, %xmm0, %xmm4; 1039 inc_le128(%xmm0, %xmm15, %xmm13); 1040 vpshufb %xmm14, %xmm0, %xmm3; 1041 inc_le128(%xmm0, %xmm15, %xmm13); 1042 vpshufb %xmm14, %xmm0, %xmm2; 1043 inc_le128(%xmm0, %xmm15, %xmm13); 1044 vpshufb %xmm14, %xmm0, %xmm1; 1045 inc_le128(%xmm0, %xmm15, %xmm13); 1046 vmovdqa %xmm0, %xmm13; 1047 vpshufb %xmm14, %xmm0, %xmm0; 1048 inc_le128(%xmm13, %xmm15, %xmm14); 1049 vmovdqu %xmm13, (%rcx); 1050 1051 /* inpack16_pre: */ 1052 vmovq (key_table)(CTX), %xmm15; 1053 vpshufb .Lpack_bswap, %xmm15, %xmm15; 1054 vpxor %xmm0, %xmm15, %xmm0; 1055 vpxor %xmm1, %xmm15, %xmm1; 1056 vpxor %xmm2, %xmm15, %xmm2; 1057 vpxor %xmm3, %xmm15, %xmm3; 1058 vpxor %xmm4, %xmm15, %xmm4; 1059 vpxor %xmm5, %xmm15, %xmm5; 1060 vpxor %xmm6, %xmm15, %xmm6; 1061 vpxor %xmm7, %xmm15, %xmm7; 1062 vpxor %xmm8, %xmm15, %xmm8; 1063 vpxor %xmm9, %xmm15, %xmm9; 1064 vpxor %xmm10, %xmm15, %xmm10; 1065 vpxor %xmm11, %xmm15, %xmm11; 1066 vpxor %xmm12, %xmm15, %xmm12; 1067 vpxor 13 * 16(%rax), %xmm15, %xmm13; 1068 vpxor 14 * 16(%rax), %xmm15, %xmm14; 1069 vpxor 15 * 16(%rax), %xmm15, %xmm15; 1070 1071 call __camellia_enc_blk16; 1072 1073 addq $(16 * 16), %rsp; 1074 1075 vpxor 0 * 16(%rdx), %xmm7, %xmm7; 1076 vpxor 1 * 16(%rdx), %xmm6, %xmm6; 1077 vpxor 2 * 16(%rdx), %xmm5, %xmm5; 1078 vpxor 3 * 16(%rdx), %xmm4, %xmm4; 1079 vpxor 4 * 16(%rdx), %xmm3, %xmm3; 1080 vpxor 5 * 16(%rdx), %xmm2, %xmm2; 1081 vpxor 6 * 16(%rdx), %xmm1, %xmm1; 1082 vpxor 7 * 16(%rdx), %xmm0, %xmm0; 1083 vpxor 8 * 16(%rdx), %xmm15, %xmm15; 1084 vpxor 9 * 16(%rdx), %xmm14, %xmm14; 1085 vpxor 10 * 16(%rdx), %xmm13, %xmm13; 1086 vpxor 11 * 16(%rdx), %xmm12, %xmm12; 1087 vpxor 12 * 16(%rdx), %xmm11, %xmm11; 1088 vpxor 13 * 16(%rdx), %xmm10, %xmm10; 1089 vpxor 14 * 16(%rdx), %xmm9, %xmm9; 1090 vpxor 15 * 16(%rdx), %xmm8, %xmm8; 1091 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0, 1092 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9, 1093 %xmm8, %rsi); 1094 1095 ret; 1096ENDPROC(camellia_ctr_16way) 1097 1098#define gf128mul_x_ble(iv, mask, tmp) \ 1099 vpsrad $31, iv, tmp; \ 1100 vpaddq iv, iv, iv; \ 1101 vpshufd $0x13, tmp, tmp; \ 1102 vpand mask, tmp, tmp; \ 1103 vpxor tmp, iv, iv; 1104 1105.align 8 1106camellia_xts_crypt_16way: 1107 /* input: 1108 * %rdi: ctx, CTX 1109 * %rsi: dst (16 blocks) 1110 * %rdx: src (16 blocks) 1111 * %rcx: iv (t ��� ����� ��� GF(2�������)) 1112 * %r8: index for input whitening key 1113 * %r9: pointer to __camellia_enc_blk16 or __camellia_dec_blk16 1114 */ 1115 1116 subq $(16 * 16), %rsp; 1117 movq %rsp, %rax; 1118 1119 vmovdqa .Lxts_gf128mul_and_shl1_mask, %xmm14; 1120 1121 /* load IV */ 1122 vmovdqu (%rcx), %xmm0; 1123 vpxor 0 * 16(%rdx), %xmm0, %xmm15; 1124 vmovdqu %xmm15, 15 * 16(%rax); 1125 vmovdqu %xmm0, 0 * 16(%rsi); 1126 1127 /* construct IVs */ 1128 gf128mul_x_ble(%xmm0, %xmm14, %xmm15); 1129 vpxor 1 * 16(%rdx), %xmm0, %xmm15; 1130 vmovdqu %xmm15, 14 * 16(%rax); 1131 vmovdqu %xmm0, 1 * 16(%rsi); 1132 1133 gf128mul_x_ble(%xmm0, %xmm14, %xmm15); 1134 vpxor 2 * 16(%rdx), %xmm0, %xmm13; 1135 vmovdqu %xmm0, 2 * 16(%rsi); 1136 1137 gf128mul_x_ble(%xmm0, %xmm14, %xmm15); 1138 vpxor 3 * 16(%rdx), %xmm0, %xmm12; 1139 vmovdqu %xmm0, 3 * 16(%rsi); 1140 1141 gf128mul_x_ble(%xmm0, %xmm14, %xmm15); 1142 vpxor 4 * 16(%rdx), %xmm0, %xmm11; 1143 vmovdqu %xmm0, 4 * 16(%rsi); 1144 1145 gf128mul_x_ble(%xmm0, %xmm14, %xmm15); 1146 vpxor 5 * 16(%rdx), %xmm0, %xmm10; 1147 vmovdqu %xmm0, 5 * 16(%rsi); 1148 1149 gf128mul_x_ble(%xmm0, %xmm14, %xmm15); 1150 vpxor 6 * 16(%rdx), %xmm0, %xmm9; 1151 vmovdqu %xmm0, 6 * 16(%rsi); 1152 1153 gf128mul_x_ble(%xmm0, %xmm14, %xmm15); 1154 vpxor 7 * 16(%rdx), %xmm0, %xmm8; 1155 vmovdqu %xmm0, 7 * 16(%rsi); 1156 1157 gf128mul_x_ble(%xmm0, %xmm14, %xmm15); 1158 vpxor 8 * 16(%rdx), %xmm0, %xmm7; 1159 vmovdqu %xmm0, 8 * 16(%rsi); 1160 1161 gf128mul_x_ble(%xmm0, %xmm14, %xmm15); 1162 vpxor 9 * 16(%rdx), %xmm0, %xmm6; 1163 vmovdqu %xmm0, 9 * 16(%rsi); 1164 1165 gf128mul_x_ble(%xmm0, %xmm14, %xmm15); 1166 vpxor 10 * 16(%rdx), %xmm0, %xmm5; 1167 vmovdqu %xmm0, 10 * 16(%rsi); 1168 1169 gf128mul_x_ble(%xmm0, %xmm14, %xmm15); 1170 vpxor 11 * 16(%rdx), %xmm0, %xmm4; 1171 vmovdqu %xmm0, 11 * 16(%rsi); 1172 1173 gf128mul_x_ble(%xmm0, %xmm14, %xmm15); 1174 vpxor 12 * 16(%rdx), %xmm0, %xmm3; 1175 vmovdqu %xmm0, 12 * 16(%rsi); 1176 1177 gf128mul_x_ble(%xmm0, %xmm14, %xmm15); 1178 vpxor 13 * 16(%rdx), %xmm0, %xmm2; 1179 vmovdqu %xmm0, 13 * 16(%rsi); 1180 1181 gf128mul_x_ble(%xmm0, %xmm14, %xmm15); 1182 vpxor 14 * 16(%rdx), %xmm0, %xmm1; 1183 vmovdqu %xmm0, 14 * 16(%rsi); 1184 1185 gf128mul_x_ble(%xmm0, %xmm14, %xmm15); 1186 vpxor 15 * 16(%rdx), %xmm0, %xmm15; 1187 vmovdqu %xmm15, 0 * 16(%rax); 1188 vmovdqu %xmm0, 15 * 16(%rsi); 1189 1190 gf128mul_x_ble(%xmm0, %xmm14, %xmm15); 1191 vmovdqu %xmm0, (%rcx); 1192 1193 /* inpack16_pre: */ 1194 vmovq (key_table)(CTX, %r8, 8), %xmm15; 1195 vpshufb .Lpack_bswap, %xmm15, %xmm15; 1196 vpxor 0 * 16(%rax), %xmm15, %xmm0; 1197 vpxor %xmm1, %xmm15, %xmm1; 1198 vpxor %xmm2, %xmm15, %xmm2; 1199 vpxor %xmm3, %xmm15, %xmm3; 1200 vpxor %xmm4, %xmm15, %xmm4; 1201 vpxor %xmm5, %xmm15, %xmm5; 1202 vpxor %xmm6, %xmm15, %xmm6; 1203 vpxor %xmm7, %xmm15, %xmm7; 1204 vpxor %xmm8, %xmm15, %xmm8; 1205 vpxor %xmm9, %xmm15, %xmm9; 1206 vpxor %xmm10, %xmm15, %xmm10; 1207 vpxor %xmm11, %xmm15, %xmm11; 1208 vpxor %xmm12, %xmm15, %xmm12; 1209 vpxor %xmm13, %xmm15, %xmm13; 1210 vpxor 14 * 16(%rax), %xmm15, %xmm14; 1211 vpxor 15 * 16(%rax), %xmm15, %xmm15; 1212 1213 call *%r9; 1214 1215 addq $(16 * 16), %rsp; 1216 1217 vpxor 0 * 16(%rsi), %xmm7, %xmm7; 1218 vpxor 1 * 16(%rsi), %xmm6, %xmm6; 1219 vpxor 2 * 16(%rsi), %xmm5, %xmm5; 1220 vpxor 3 * 16(%rsi), %xmm4, %xmm4; 1221 vpxor 4 * 16(%rsi), %xmm3, %xmm3; 1222 vpxor 5 * 16(%rsi), %xmm2, %xmm2; 1223 vpxor 6 * 16(%rsi), %xmm1, %xmm1; 1224 vpxor 7 * 16(%rsi), %xmm0, %xmm0; 1225 vpxor 8 * 16(%rsi), %xmm15, %xmm15; 1226 vpxor 9 * 16(%rsi), %xmm14, %xmm14; 1227 vpxor 10 * 16(%rsi), %xmm13, %xmm13; 1228 vpxor 11 * 16(%rsi), %xmm12, %xmm12; 1229 vpxor 12 * 16(%rsi), %xmm11, %xmm11; 1230 vpxor 13 * 16(%rsi), %xmm10, %xmm10; 1231 vpxor 14 * 16(%rsi), %xmm9, %xmm9; 1232 vpxor 15 * 16(%rsi), %xmm8, %xmm8; 1233 write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0, 1234 %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9, 1235 %xmm8, %rsi); 1236 1237 ret; 1238ENDPROC(camellia_xts_crypt_16way) 1239 1240ENTRY(camellia_xts_enc_16way) 1241 /* input: 1242 * %rdi: ctx, CTX 1243 * %rsi: dst (16 blocks) 1244 * %rdx: src (16 blocks) 1245 * %rcx: iv (t ��� ����� ��� GF(2�������)) 1246 */ 1247 xorl %r8d, %r8d; /* input whitening key, 0 for enc */ 1248 1249 leaq __camellia_enc_blk16, %r9; 1250 1251 jmp camellia_xts_crypt_16way; 1252ENDPROC(camellia_xts_enc_16way) 1253 1254ENTRY(camellia_xts_dec_16way) 1255 /* input: 1256 * %rdi: ctx, CTX 1257 * %rsi: dst (16 blocks) 1258 * %rdx: src (16 blocks) 1259 * %rcx: iv (t ��� ����� ��� GF(2�������)) 1260 */ 1261 1262 cmpl $16, key_length(CTX); 1263 movl $32, %r8d; 1264 movl $24, %eax; 1265 cmovel %eax, %r8d; /* input whitening key, last for dec */ 1266 1267 leaq __camellia_dec_blk16, %r9; 1268 1269 jmp camellia_xts_crypt_16way; 1270ENDPROC(camellia_xts_dec_16way) 1271