1/* irq.c: UltraSparc IRQ handling/init/registry.
2 *
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1998  Eddie C. Dost    (ecd@skynet.be)
5 * Copyright (C) 1998  Jakub Jelinek    (jj@ultra.linux.cz)
6 */
7
8#include <linux/sched.h>
9#include <linux/linkage.h>
10#include <linux/ptrace.h>
11#include <linux/errno.h>
12#include <linux/kernel_stat.h>
13#include <linux/signal.h>
14#include <linux/mm.h>
15#include <linux/interrupt.h>
16#include <linux/slab.h>
17#include <linux/random.h>
18#include <linux/init.h>
19#include <linux/delay.h>
20#include <linux/proc_fs.h>
21#include <linux/seq_file.h>
22#include <linux/ftrace.h>
23#include <linux/irq.h>
24#include <linux/kmemleak.h>
25
26#include <asm/ptrace.h>
27#include <asm/processor.h>
28#include <linux/atomic.h>
29#include <asm/irq.h>
30#include <asm/io.h>
31#include <asm/iommu.h>
32#include <asm/upa.h>
33#include <asm/oplib.h>
34#include <asm/prom.h>
35#include <asm/timer.h>
36#include <asm/smp.h>
37#include <asm/starfire.h>
38#include <asm/uaccess.h>
39#include <asm/cache.h>
40#include <asm/cpudata.h>
41#include <asm/auxio.h>
42#include <asm/head.h>
43#include <asm/hypervisor.h>
44#include <asm/cacheflush.h>
45
46#include "entry.h"
47#include "cpumap.h"
48#include "kstack.h"
49
50struct ino_bucket *ivector_table;
51unsigned long ivector_table_pa;
52
53/* On several sun4u processors, it is illegal to mix bypass and
54 * non-bypass accesses.  Therefore we access all INO buckets
55 * using bypass accesses only.
56 */
57static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
58{
59	unsigned long ret;
60
61	__asm__ __volatile__("ldxa	[%1] %2, %0"
62			     : "=&r" (ret)
63			     : "r" (bucket_pa +
64				    offsetof(struct ino_bucket,
65					     __irq_chain_pa)),
66			       "i" (ASI_PHYS_USE_EC));
67
68	return ret;
69}
70
71static void bucket_clear_chain_pa(unsigned long bucket_pa)
72{
73	__asm__ __volatile__("stxa	%%g0, [%0] %1"
74			     : /* no outputs */
75			     : "r" (bucket_pa +
76				    offsetof(struct ino_bucket,
77					     __irq_chain_pa)),
78			       "i" (ASI_PHYS_USE_EC));
79}
80
81static unsigned int bucket_get_irq(unsigned long bucket_pa)
82{
83	unsigned int ret;
84
85	__asm__ __volatile__("lduwa	[%1] %2, %0"
86			     : "=&r" (ret)
87			     : "r" (bucket_pa +
88				    offsetof(struct ino_bucket,
89					     __irq)),
90			       "i" (ASI_PHYS_USE_EC));
91
92	return ret;
93}
94
95static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
96{
97	__asm__ __volatile__("stwa	%0, [%1] %2"
98			     : /* no outputs */
99			     : "r" (irq),
100			       "r" (bucket_pa +
101				    offsetof(struct ino_bucket,
102					     __irq)),
103			       "i" (ASI_PHYS_USE_EC));
104}
105
106#define irq_work_pa(__cpu)	&(trap_block[(__cpu)].irq_worklist_pa)
107
108static unsigned long hvirq_major __initdata;
109static int __init early_hvirq_major(char *p)
110{
111	int rc = kstrtoul(p, 10, &hvirq_major);
112
113	return rc;
114}
115early_param("hvirq", early_hvirq_major);
116
117static int hv_irq_version;
118
119/* Major version 2.0 of HV_GRP_INTR added support for the VIRQ cookie
120 * based interfaces, but:
121 *
122 * 1) Several OSs, Solaris and Linux included, use them even when only
123 *    negotiating version 1.0 (or failing to negotiate at all).  So the
124 *    hypervisor has a workaround that provides the VIRQ interfaces even
125 *    when only verion 1.0 of the API is in use.
126 *
127 * 2) Second, and more importantly, with major version 2.0 these VIRQ
128 *    interfaces only were actually hooked up for LDC interrupts, even
129 *    though the Hypervisor specification clearly stated:
130 *
131 *	The new interrupt API functions will be available to a guest
132 *	when it negotiates version 2.0 in the interrupt API group 0x2. When
133 *	a guest negotiates version 2.0, all interrupt sources will only
134 *	support using the cookie interface, and any attempt to use the
135 *	version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in the
136 *	ENOTSUPPORTED error being returned.
137 *
138 *   with an emphasis on "all interrupt sources".
139 *
140 * To correct this, major version 3.0 was created which does actually
141 * support VIRQs for all interrupt sources (not just LDC devices).  So
142 * if we want to move completely over the cookie based VIRQs we must
143 * negotiate major version 3.0 or later of HV_GRP_INTR.
144 */
145static bool sun4v_cookie_only_virqs(void)
146{
147	if (hv_irq_version >= 3)
148		return true;
149	return false;
150}
151
152static void __init irq_init_hv(void)
153{
154	unsigned long hv_error, major, minor = 0;
155
156	if (tlb_type != hypervisor)
157		return;
158
159	if (hvirq_major)
160		major = hvirq_major;
161	else
162		major = 3;
163
164	hv_error = sun4v_hvapi_register(HV_GRP_INTR, major, &minor);
165	if (!hv_error)
166		hv_irq_version = major;
167	else
168		hv_irq_version = 1;
169
170	pr_info("SUN4V: Using IRQ API major %d, cookie only virqs %s\n",
171		hv_irq_version,
172		sun4v_cookie_only_virqs() ? "enabled" : "disabled");
173}
174
175/* This function is for the timer interrupt.*/
176int __init arch_probe_nr_irqs(void)
177{
178	return 1;
179}
180
181#define DEFAULT_NUM_IVECS	(0xfffU)
182static unsigned int nr_ivec = DEFAULT_NUM_IVECS;
183#define NUM_IVECS (nr_ivec)
184
185static unsigned int __init size_nr_ivec(void)
186{
187	if (tlb_type == hypervisor) {
188		switch (sun4v_chip_type) {
189		/* Athena's devhandle|devino is large.*/
190		case SUN4V_CHIP_SPARC64X:
191			nr_ivec = 0xffff;
192			break;
193		}
194	}
195	return nr_ivec;
196}
197
198struct irq_handler_data {
199	union {
200		struct {
201			unsigned int dev_handle;
202			unsigned int dev_ino;
203		};
204		unsigned long sysino;
205	};
206	struct ino_bucket bucket;
207	unsigned long	iclr;
208	unsigned long	imap;
209};
210
211static inline unsigned int irq_data_to_handle(struct irq_data *data)
212{
213	struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
214
215	return ihd->dev_handle;
216}
217
218static inline unsigned int irq_data_to_ino(struct irq_data *data)
219{
220	struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
221
222	return ihd->dev_ino;
223}
224
225static inline unsigned long irq_data_to_sysino(struct irq_data *data)
226{
227	struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
228
229	return ihd->sysino;
230}
231
232void irq_free(unsigned int irq)
233{
234	void *data = irq_get_handler_data(irq);
235
236	kfree(data);
237	irq_set_handler_data(irq, NULL);
238	irq_free_descs(irq, 1);
239}
240
241unsigned int irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
242{
243	int irq;
244
245	irq = __irq_alloc_descs(-1, 1, 1, numa_node_id(), NULL);
246	if (irq <= 0)
247		goto out;
248
249	return irq;
250out:
251	return 0;
252}
253
254static unsigned int cookie_exists(u32 devhandle, unsigned int devino)
255{
256	unsigned long hv_err, cookie;
257	struct ino_bucket *bucket;
258	unsigned int irq = 0U;
259
260	hv_err = sun4v_vintr_get_cookie(devhandle, devino, &cookie);
261	if (hv_err) {
262		pr_err("HV get cookie failed hv_err = %ld\n", hv_err);
263		goto out;
264	}
265
266	if (cookie & ((1UL << 63UL))) {
267		cookie = ~cookie;
268		bucket = (struct ino_bucket *) __va(cookie);
269		irq = bucket->__irq;
270	}
271out:
272	return irq;
273}
274
275static unsigned int sysino_exists(u32 devhandle, unsigned int devino)
276{
277	unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
278	struct ino_bucket *bucket;
279	unsigned int irq;
280
281	bucket = &ivector_table[sysino];
282	irq = bucket_get_irq(__pa(bucket));
283
284	return irq;
285}
286
287void ack_bad_irq(unsigned int irq)
288{
289	pr_crit("BAD IRQ ack %d\n", irq);
290}
291
292void irq_install_pre_handler(int irq,
293			     void (*func)(unsigned int, void *, void *),
294			     void *arg1, void *arg2)
295{
296	pr_warn("IRQ pre handler NOT supported.\n");
297}
298
299/*
300 * /proc/interrupts printing:
301 */
302int arch_show_interrupts(struct seq_file *p, int prec)
303{
304	int j;
305
306	seq_printf(p, "NMI: ");
307	for_each_online_cpu(j)
308		seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
309	seq_printf(p, "     Non-maskable interrupts\n");
310	return 0;
311}
312
313static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
314{
315	unsigned int tid;
316
317	if (this_is_starfire) {
318		tid = starfire_translate(imap, cpuid);
319		tid <<= IMAP_TID_SHIFT;
320		tid &= IMAP_TID_UPA;
321	} else {
322		if (tlb_type == cheetah || tlb_type == cheetah_plus) {
323			unsigned long ver;
324
325			__asm__ ("rdpr %%ver, %0" : "=r" (ver));
326			if ((ver >> 32UL) == __JALAPENO_ID ||
327			    (ver >> 32UL) == __SERRANO_ID) {
328				tid = cpuid << IMAP_TID_SHIFT;
329				tid &= IMAP_TID_JBUS;
330			} else {
331				unsigned int a = cpuid & 0x1f;
332				unsigned int n = (cpuid >> 5) & 0x1f;
333
334				tid = ((a << IMAP_AID_SHIFT) |
335				       (n << IMAP_NID_SHIFT));
336				tid &= (IMAP_AID_SAFARI |
337					IMAP_NID_SAFARI);
338			}
339		} else {
340			tid = cpuid << IMAP_TID_SHIFT;
341			tid &= IMAP_TID_UPA;
342		}
343	}
344
345	return tid;
346}
347
348#ifdef CONFIG_SMP
349static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
350{
351	cpumask_t mask;
352	int cpuid;
353
354	cpumask_copy(&mask, affinity);
355	if (cpumask_equal(&mask, cpu_online_mask)) {
356		cpuid = map_to_cpu(irq);
357	} else {
358		cpumask_t tmp;
359
360		cpumask_and(&tmp, cpu_online_mask, &mask);
361		cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp);
362	}
363
364	return cpuid;
365}
366#else
367#define irq_choose_cpu(irq, affinity)	\
368	real_hard_smp_processor_id()
369#endif
370
371static void sun4u_irq_enable(struct irq_data *data)
372{
373	struct irq_handler_data *handler_data;
374
375	handler_data = irq_data_get_irq_handler_data(data);
376	if (likely(handler_data)) {
377		unsigned long cpuid, imap, val;
378		unsigned int tid;
379
380		cpuid = irq_choose_cpu(data->irq,
381				       irq_data_get_affinity_mask(data));
382		imap = handler_data->imap;
383
384		tid = sun4u_compute_tid(imap, cpuid);
385
386		val = upa_readq(imap);
387		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
388			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
389		val |= tid | IMAP_VALID;
390		upa_writeq(val, imap);
391		upa_writeq(ICLR_IDLE, handler_data->iclr);
392	}
393}
394
395static int sun4u_set_affinity(struct irq_data *data,
396			       const struct cpumask *mask, bool force)
397{
398	struct irq_handler_data *handler_data;
399
400	handler_data = irq_data_get_irq_handler_data(data);
401	if (likely(handler_data)) {
402		unsigned long cpuid, imap, val;
403		unsigned int tid;
404
405		cpuid = irq_choose_cpu(data->irq, mask);
406		imap = handler_data->imap;
407
408		tid = sun4u_compute_tid(imap, cpuid);
409
410		val = upa_readq(imap);
411		val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
412			 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
413		val |= tid | IMAP_VALID;
414		upa_writeq(val, imap);
415		upa_writeq(ICLR_IDLE, handler_data->iclr);
416	}
417
418	return 0;
419}
420
421/* Don't do anything.  The desc->status check for IRQ_DISABLED in
422 * handler_irq() will skip the handler call and that will leave the
423 * interrupt in the sent state.  The next ->enable() call will hit the
424 * ICLR register to reset the state machine.
425 *
426 * This scheme is necessary, instead of clearing the Valid bit in the
427 * IMAP register, to handle the case of IMAP registers being shared by
428 * multiple INOs (and thus ICLR registers).  Since we use a different
429 * virtual IRQ for each shared IMAP instance, the generic code thinks
430 * there is only one user so it prematurely calls ->disable() on
431 * free_irq().
432 *
433 * We have to provide an explicit ->disable() method instead of using
434 * NULL to get the default.  The reason is that if the generic code
435 * sees that, it also hooks up a default ->shutdown method which
436 * invokes ->mask() which we do not want.  See irq_chip_set_defaults().
437 */
438static void sun4u_irq_disable(struct irq_data *data)
439{
440}
441
442static void sun4u_irq_eoi(struct irq_data *data)
443{
444	struct irq_handler_data *handler_data;
445
446	handler_data = irq_data_get_irq_handler_data(data);
447	if (likely(handler_data))
448		upa_writeq(ICLR_IDLE, handler_data->iclr);
449}
450
451static void sun4v_irq_enable(struct irq_data *data)
452{
453	unsigned long cpuid = irq_choose_cpu(data->irq,
454					     irq_data_get_affinity_mask(data));
455	unsigned int ino = irq_data_to_sysino(data);
456	int err;
457
458	err = sun4v_intr_settarget(ino, cpuid);
459	if (err != HV_EOK)
460		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
461		       "err(%d)\n", ino, cpuid, err);
462	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
463	if (err != HV_EOK)
464		printk(KERN_ERR "sun4v_intr_setstate(%x): "
465		       "err(%d)\n", ino, err);
466	err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
467	if (err != HV_EOK)
468		printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
469		       ino, err);
470}
471
472static int sun4v_set_affinity(struct irq_data *data,
473			       const struct cpumask *mask, bool force)
474{
475	unsigned long cpuid = irq_choose_cpu(data->irq, mask);
476	unsigned int ino = irq_data_to_sysino(data);
477	int err;
478
479	err = sun4v_intr_settarget(ino, cpuid);
480	if (err != HV_EOK)
481		printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
482		       "err(%d)\n", ino, cpuid, err);
483
484	return 0;
485}
486
487static void sun4v_irq_disable(struct irq_data *data)
488{
489	unsigned int ino = irq_data_to_sysino(data);
490	int err;
491
492	err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
493	if (err != HV_EOK)
494		printk(KERN_ERR "sun4v_intr_setenabled(%x): "
495		       "err(%d)\n", ino, err);
496}
497
498static void sun4v_irq_eoi(struct irq_data *data)
499{
500	unsigned int ino = irq_data_to_sysino(data);
501	int err;
502
503	err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
504	if (err != HV_EOK)
505		printk(KERN_ERR "sun4v_intr_setstate(%x): "
506		       "err(%d)\n", ino, err);
507}
508
509static void sun4v_virq_enable(struct irq_data *data)
510{
511	unsigned long dev_handle = irq_data_to_handle(data);
512	unsigned long dev_ino = irq_data_to_ino(data);
513	unsigned long cpuid;
514	int err;
515
516	cpuid = irq_choose_cpu(data->irq, irq_data_get_affinity_mask(data));
517
518	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
519	if (err != HV_EOK)
520		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
521		       "err(%d)\n",
522		       dev_handle, dev_ino, cpuid, err);
523	err = sun4v_vintr_set_state(dev_handle, dev_ino,
524				    HV_INTR_STATE_IDLE);
525	if (err != HV_EOK)
526		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
527		       "HV_INTR_STATE_IDLE): err(%d)\n",
528		       dev_handle, dev_ino, err);
529	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
530				    HV_INTR_ENABLED);
531	if (err != HV_EOK)
532		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
533		       "HV_INTR_ENABLED): err(%d)\n",
534		       dev_handle, dev_ino, err);
535}
536
537static int sun4v_virt_set_affinity(struct irq_data *data,
538				    const struct cpumask *mask, bool force)
539{
540	unsigned long dev_handle = irq_data_to_handle(data);
541	unsigned long dev_ino = irq_data_to_ino(data);
542	unsigned long cpuid;
543	int err;
544
545	cpuid = irq_choose_cpu(data->irq, mask);
546
547	err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
548	if (err != HV_EOK)
549		printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
550		       "err(%d)\n",
551		       dev_handle, dev_ino, cpuid, err);
552
553	return 0;
554}
555
556static void sun4v_virq_disable(struct irq_data *data)
557{
558	unsigned long dev_handle = irq_data_to_handle(data);
559	unsigned long dev_ino = irq_data_to_ino(data);
560	int err;
561
562
563	err = sun4v_vintr_set_valid(dev_handle, dev_ino,
564				    HV_INTR_DISABLED);
565	if (err != HV_EOK)
566		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
567		       "HV_INTR_DISABLED): err(%d)\n",
568		       dev_handle, dev_ino, err);
569}
570
571static void sun4v_virq_eoi(struct irq_data *data)
572{
573	unsigned long dev_handle = irq_data_to_handle(data);
574	unsigned long dev_ino = irq_data_to_ino(data);
575	int err;
576
577	err = sun4v_vintr_set_state(dev_handle, dev_ino,
578				    HV_INTR_STATE_IDLE);
579	if (err != HV_EOK)
580		printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
581		       "HV_INTR_STATE_IDLE): err(%d)\n",
582		       dev_handle, dev_ino, err);
583}
584
585static struct irq_chip sun4u_irq = {
586	.name			= "sun4u",
587	.irq_enable		= sun4u_irq_enable,
588	.irq_disable		= sun4u_irq_disable,
589	.irq_eoi		= sun4u_irq_eoi,
590	.irq_set_affinity	= sun4u_set_affinity,
591	.flags			= IRQCHIP_EOI_IF_HANDLED,
592};
593
594static struct irq_chip sun4v_irq = {
595	.name			= "sun4v",
596	.irq_enable		= sun4v_irq_enable,
597	.irq_disable		= sun4v_irq_disable,
598	.irq_eoi		= sun4v_irq_eoi,
599	.irq_set_affinity	= sun4v_set_affinity,
600	.flags			= IRQCHIP_EOI_IF_HANDLED,
601};
602
603static struct irq_chip sun4v_virq = {
604	.name			= "vsun4v",
605	.irq_enable		= sun4v_virq_enable,
606	.irq_disable		= sun4v_virq_disable,
607	.irq_eoi		= sun4v_virq_eoi,
608	.irq_set_affinity	= sun4v_virt_set_affinity,
609	.flags			= IRQCHIP_EOI_IF_HANDLED,
610};
611
612unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
613{
614	struct irq_handler_data *handler_data;
615	struct ino_bucket *bucket;
616	unsigned int irq;
617	int ino;
618
619	BUG_ON(tlb_type == hypervisor);
620
621	ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
622	bucket = &ivector_table[ino];
623	irq = bucket_get_irq(__pa(bucket));
624	if (!irq) {
625		irq = irq_alloc(0, ino);
626		bucket_set_irq(__pa(bucket), irq);
627		irq_set_chip_and_handler_name(irq, &sun4u_irq,
628					      handle_fasteoi_irq, "IVEC");
629	}
630
631	handler_data = irq_get_handler_data(irq);
632	if (unlikely(handler_data))
633		goto out;
634
635	handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
636	if (unlikely(!handler_data)) {
637		prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
638		prom_halt();
639	}
640	irq_set_handler_data(irq, handler_data);
641
642	handler_data->imap  = imap;
643	handler_data->iclr  = iclr;
644
645out:
646	return irq;
647}
648
649static unsigned int sun4v_build_common(u32 devhandle, unsigned int devino,
650		void (*handler_data_init)(struct irq_handler_data *data,
651		u32 devhandle, unsigned int devino),
652		struct irq_chip *chip)
653{
654	struct irq_handler_data *data;
655	unsigned int irq;
656
657	irq = irq_alloc(devhandle, devino);
658	if (!irq)
659		goto out;
660
661	data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
662	if (unlikely(!data)) {
663		pr_err("IRQ handler data allocation failed.\n");
664		irq_free(irq);
665		irq = 0;
666		goto out;
667	}
668
669	irq_set_handler_data(irq, data);
670	handler_data_init(data, devhandle, devino);
671	irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, "IVEC");
672	data->imap = ~0UL;
673	data->iclr = ~0UL;
674out:
675	return irq;
676}
677
678static unsigned long cookie_assign(unsigned int irq, u32 devhandle,
679		unsigned int devino)
680{
681	struct irq_handler_data *ihd = irq_get_handler_data(irq);
682	unsigned long hv_error, cookie;
683
684	/* handler_irq needs to find the irq. cookie is seen signed in
685	 * sun4v_dev_mondo and treated as a non ivector_table delivery.
686	 */
687	ihd->bucket.__irq = irq;
688	cookie = ~__pa(&ihd->bucket);
689
690	hv_error = sun4v_vintr_set_cookie(devhandle, devino, cookie);
691	if (hv_error)
692		pr_err("HV vintr set cookie failed = %ld\n", hv_error);
693
694	return hv_error;
695}
696
697static void cookie_handler_data(struct irq_handler_data *data,
698				u32 devhandle, unsigned int devino)
699{
700	data->dev_handle = devhandle;
701	data->dev_ino = devino;
702}
703
704static unsigned int cookie_build_irq(u32 devhandle, unsigned int devino,
705				     struct irq_chip *chip)
706{
707	unsigned long hv_error;
708	unsigned int irq;
709
710	irq = sun4v_build_common(devhandle, devino, cookie_handler_data, chip);
711
712	hv_error = cookie_assign(irq, devhandle, devino);
713	if (hv_error) {
714		irq_free(irq);
715		irq = 0;
716	}
717
718	return irq;
719}
720
721static unsigned int sun4v_build_cookie(u32 devhandle, unsigned int devino)
722{
723	unsigned int irq;
724
725	irq = cookie_exists(devhandle, devino);
726	if (irq)
727		goto out;
728
729	irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
730
731out:
732	return irq;
733}
734
735static void sysino_set_bucket(unsigned int irq)
736{
737	struct irq_handler_data *ihd = irq_get_handler_data(irq);
738	struct ino_bucket *bucket;
739	unsigned long sysino;
740
741	sysino = sun4v_devino_to_sysino(ihd->dev_handle, ihd->dev_ino);
742	BUG_ON(sysino >= nr_ivec);
743	bucket = &ivector_table[sysino];
744	bucket_set_irq(__pa(bucket), irq);
745}
746
747static void sysino_handler_data(struct irq_handler_data *data,
748				u32 devhandle, unsigned int devino)
749{
750	unsigned long sysino;
751
752	sysino = sun4v_devino_to_sysino(devhandle, devino);
753	data->sysino = sysino;
754}
755
756static unsigned int sysino_build_irq(u32 devhandle, unsigned int devino,
757				     struct irq_chip *chip)
758{
759	unsigned int irq;
760
761	irq = sun4v_build_common(devhandle, devino, sysino_handler_data, chip);
762	if (!irq)
763		goto out;
764
765	sysino_set_bucket(irq);
766out:
767	return irq;
768}
769
770static int sun4v_build_sysino(u32 devhandle, unsigned int devino)
771{
772	int irq;
773
774	irq = sysino_exists(devhandle, devino);
775	if (irq)
776		goto out;
777
778	irq = sysino_build_irq(devhandle, devino, &sun4v_irq);
779out:
780	return irq;
781}
782
783unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
784{
785	unsigned int irq;
786
787	if (sun4v_cookie_only_virqs())
788		irq = sun4v_build_cookie(devhandle, devino);
789	else
790		irq = sun4v_build_sysino(devhandle, devino);
791
792	return irq;
793}
794
795unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
796{
797	int irq;
798
799	irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
800	if (!irq)
801		goto out;
802
803	/* This is borrowed from the original function.
804	 */
805	irq_set_status_flags(irq, IRQ_NOAUTOEN);
806
807out:
808	return irq;
809}
810
811void *hardirq_stack[NR_CPUS];
812void *softirq_stack[NR_CPUS];
813
814void __irq_entry handler_irq(int pil, struct pt_regs *regs)
815{
816	unsigned long pstate, bucket_pa;
817	struct pt_regs *old_regs;
818	void *orig_sp;
819
820	clear_softint(1 << pil);
821
822	old_regs = set_irq_regs(regs);
823	irq_enter();
824
825	/* Grab an atomic snapshot of the pending IVECs.  */
826	__asm__ __volatile__("rdpr	%%pstate, %0\n\t"
827			     "wrpr	%0, %3, %%pstate\n\t"
828			     "ldx	[%2], %1\n\t"
829			     "stx	%%g0, [%2]\n\t"
830			     "wrpr	%0, 0x0, %%pstate\n\t"
831			     : "=&r" (pstate), "=&r" (bucket_pa)
832			     : "r" (irq_work_pa(smp_processor_id())),
833			       "i" (PSTATE_IE)
834			     : "memory");
835
836	orig_sp = set_hardirq_stack();
837
838	while (bucket_pa) {
839		unsigned long next_pa;
840		unsigned int irq;
841
842		next_pa = bucket_get_chain_pa(bucket_pa);
843		irq = bucket_get_irq(bucket_pa);
844		bucket_clear_chain_pa(bucket_pa);
845
846		generic_handle_irq(irq);
847
848		bucket_pa = next_pa;
849	}
850
851	restore_hardirq_stack(orig_sp);
852
853	irq_exit();
854	set_irq_regs(old_regs);
855}
856
857void do_softirq_own_stack(void)
858{
859	void *orig_sp, *sp = softirq_stack[smp_processor_id()];
860
861	sp += THREAD_SIZE - 192 - STACK_BIAS;
862
863	__asm__ __volatile__("mov %%sp, %0\n\t"
864			     "mov %1, %%sp"
865			     : "=&r" (orig_sp)
866			     : "r" (sp));
867	__do_softirq();
868	__asm__ __volatile__("mov %0, %%sp"
869			     : : "r" (orig_sp));
870}
871
872#ifdef CONFIG_HOTPLUG_CPU
873void fixup_irqs(void)
874{
875	unsigned int irq;
876
877	for (irq = 0; irq < NR_IRQS; irq++) {
878		struct irq_desc *desc = irq_to_desc(irq);
879		struct irq_data *data;
880		unsigned long flags;
881
882		if (!desc)
883			continue;
884		data = irq_desc_get_irq_data(desc);
885		raw_spin_lock_irqsave(&desc->lock, flags);
886		if (desc->action && !irqd_is_per_cpu(data)) {
887			if (data->chip->irq_set_affinity)
888				data->chip->irq_set_affinity(data,
889					irq_data_get_affinity_mask(data),
890					false);
891		}
892		raw_spin_unlock_irqrestore(&desc->lock, flags);
893	}
894
895	tick_ops->disable_irq();
896}
897#endif
898
899struct sun5_timer {
900	u64	count0;
901	u64	limit0;
902	u64	count1;
903	u64	limit1;
904};
905
906static struct sun5_timer *prom_timers;
907static u64 prom_limit0, prom_limit1;
908
909static void map_prom_timers(void)
910{
911	struct device_node *dp;
912	const unsigned int *addr;
913
914	/* PROM timer node hangs out in the top level of device siblings... */
915	dp = of_find_node_by_path("/");
916	dp = dp->child;
917	while (dp) {
918		if (!strcmp(dp->name, "counter-timer"))
919			break;
920		dp = dp->sibling;
921	}
922
923	/* Assume if node is not present, PROM uses different tick mechanism
924	 * which we should not care about.
925	 */
926	if (!dp) {
927		prom_timers = (struct sun5_timer *) 0;
928		return;
929	}
930
931	/* If PROM is really using this, it must be mapped by him. */
932	addr = of_get_property(dp, "address", NULL);
933	if (!addr) {
934		prom_printf("PROM does not have timer mapped, trying to continue.\n");
935		prom_timers = (struct sun5_timer *) 0;
936		return;
937	}
938	prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
939}
940
941static void kill_prom_timer(void)
942{
943	if (!prom_timers)
944		return;
945
946	/* Save them away for later. */
947	prom_limit0 = prom_timers->limit0;
948	prom_limit1 = prom_timers->limit1;
949
950	/* Just as in sun4c PROM uses timer which ticks at IRQ 14.
951	 * We turn both off here just to be paranoid.
952	 */
953	prom_timers->limit0 = 0;
954	prom_timers->limit1 = 0;
955
956	/* Wheee, eat the interrupt packet too... */
957	__asm__ __volatile__(
958"	mov	0x40, %%g2\n"
959"	ldxa	[%%g0] %0, %%g1\n"
960"	ldxa	[%%g2] %1, %%g1\n"
961"	stxa	%%g0, [%%g0] %0\n"
962"	membar	#Sync\n"
963	: /* no outputs */
964	: "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
965	: "g1", "g2");
966}
967
968void notrace init_irqwork_curcpu(void)
969{
970	int cpu = hard_smp_processor_id();
971
972	trap_block[cpu].irq_worklist_pa = 0UL;
973}
974
975/* Please be very careful with register_one_mondo() and
976 * sun4v_register_mondo_queues().
977 *
978 * On SMP this gets invoked from the CPU trampoline before
979 * the cpu has fully taken over the trap table from OBP,
980 * and it's kernel stack + %g6 thread register state is
981 * not fully cooked yet.
982 *
983 * Therefore you cannot make any OBP calls, not even prom_printf,
984 * from these two routines.
985 */
986static void notrace register_one_mondo(unsigned long paddr, unsigned long type,
987				       unsigned long qmask)
988{
989	unsigned long num_entries = (qmask + 1) / 64;
990	unsigned long status;
991
992	status = sun4v_cpu_qconf(type, paddr, num_entries);
993	if (status != HV_EOK) {
994		prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
995			    "err %lu\n", type, paddr, num_entries, status);
996		prom_halt();
997	}
998}
999
1000void notrace sun4v_register_mondo_queues(int this_cpu)
1001{
1002	struct trap_per_cpu *tb = &trap_block[this_cpu];
1003
1004	register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
1005			   tb->cpu_mondo_qmask);
1006	register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
1007			   tb->dev_mondo_qmask);
1008	register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
1009			   tb->resum_qmask);
1010	register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
1011			   tb->nonresum_qmask);
1012}
1013
1014/* Each queue region must be a power of 2 multiple of 64 bytes in
1015 * size.  The base real address must be aligned to the size of the
1016 * region.  Thus, an 8KB queue must be 8KB aligned, for example.
1017 */
1018static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
1019{
1020	unsigned long size = PAGE_ALIGN(qmask + 1);
1021	unsigned long order = get_order(size);
1022	unsigned long p;
1023
1024	p = __get_free_pages(GFP_KERNEL, order);
1025	if (!p) {
1026		prom_printf("SUN4V: Error, cannot allocate queue.\n");
1027		prom_halt();
1028	}
1029
1030	*pa_ptr = __pa(p);
1031}
1032
1033static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
1034{
1035#ifdef CONFIG_SMP
1036	unsigned long page;
1037
1038	BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
1039
1040	page = get_zeroed_page(GFP_KERNEL);
1041	if (!page) {
1042		prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
1043		prom_halt();
1044	}
1045
1046	tb->cpu_mondo_block_pa = __pa(page);
1047	tb->cpu_list_pa = __pa(page + 64);
1048#endif
1049}
1050
1051/* Allocate mondo and error queues for all possible cpus.  */
1052static void __init sun4v_init_mondo_queues(void)
1053{
1054	int cpu;
1055
1056	for_each_possible_cpu(cpu) {
1057		struct trap_per_cpu *tb = &trap_block[cpu];
1058
1059		alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
1060		alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
1061		alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
1062		alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
1063		alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
1064		alloc_one_queue(&tb->nonresum_kernel_buf_pa,
1065				tb->nonresum_qmask);
1066	}
1067}
1068
1069static void __init init_send_mondo_info(void)
1070{
1071	int cpu;
1072
1073	for_each_possible_cpu(cpu) {
1074		struct trap_per_cpu *tb = &trap_block[cpu];
1075
1076		init_cpu_send_mondo_info(tb);
1077	}
1078}
1079
1080static struct irqaction timer_irq_action = {
1081	.name = "timer",
1082};
1083
1084static void __init irq_ivector_init(void)
1085{
1086	unsigned long size, order;
1087	unsigned int ivecs;
1088
1089	/* If we are doing cookie only VIRQs then we do not need the ivector
1090	 * table to process interrupts.
1091	 */
1092	if (sun4v_cookie_only_virqs())
1093		return;
1094
1095	ivecs = size_nr_ivec();
1096	size = sizeof(struct ino_bucket) * ivecs;
1097	order = get_order(size);
1098	ivector_table = (struct ino_bucket *)
1099		__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1100	if (!ivector_table) {
1101		prom_printf("Fatal error, cannot allocate ivector_table\n");
1102		prom_halt();
1103	}
1104	__flush_dcache_range((unsigned long) ivector_table,
1105			     ((unsigned long) ivector_table) + size);
1106
1107	ivector_table_pa = __pa(ivector_table);
1108}
1109
1110/* Only invoked on boot processor.*/
1111void __init init_IRQ(void)
1112{
1113	irq_init_hv();
1114	irq_ivector_init();
1115	map_prom_timers();
1116	kill_prom_timer();
1117
1118	if (tlb_type == hypervisor)
1119		sun4v_init_mondo_queues();
1120
1121	init_send_mondo_info();
1122
1123	if (tlb_type == hypervisor) {
1124		/* Load up the boot cpu's entries.  */
1125		sun4v_register_mondo_queues(hard_smp_processor_id());
1126	}
1127
1128	/* We need to clear any IRQ's pending in the soft interrupt
1129	 * registers, a spurious one could be left around from the
1130	 * PROM timer which we just disabled.
1131	 */
1132	clear_softint(get_softint());
1133
1134	/* Now that ivector table is initialized, it is safe
1135	 * to receive IRQ vector traps.  We will normally take
1136	 * one or two right now, in case some device PROM used
1137	 * to boot us wants to speak to us.  We just ignore them.
1138	 */
1139	__asm__ __volatile__("rdpr	%%pstate, %%g1\n\t"
1140			     "or	%%g1, %0, %%g1\n\t"
1141			     "wrpr	%%g1, 0x0, %%pstate"
1142			     : /* No outputs */
1143			     : "i" (PSTATE_IE)
1144			     : "g1");
1145
1146	irq_to_desc(0)->action = &timer_irq_action;
1147}
1148