1/* 2 * arch/sh/mm/cache-sh5.c 3 * 4 * Copyright (C) 2000, 2001 Paolo Alberelli 5 * Copyright (C) 2002 Benedict Gaster 6 * Copyright (C) 2003 Richard Curnow 7 * Copyright (C) 2003 - 2008 Paul Mundt 8 * 9 * This file is subject to the terms and conditions of the GNU General Public 10 * License. See the file "COPYING" in the main directory of this archive 11 * for more details. 12 */ 13#include <linux/init.h> 14#include <linux/mman.h> 15#include <linux/mm.h> 16#include <asm/tlb.h> 17#include <asm/processor.h> 18#include <asm/cache.h> 19#include <asm/pgalloc.h> 20#include <asm/uaccess.h> 21#include <asm/mmu_context.h> 22 23extern void __weak sh4__flush_region_init(void); 24 25/* Wired TLB entry for the D-cache */ 26static unsigned long long dtlb_cache_slot; 27 28/* 29 * The following group of functions deal with mapping and unmapping a 30 * temporary page into a DTLB slot that has been set aside for exclusive 31 * use. 32 */ 33static inline void 34sh64_setup_dtlb_cache_slot(unsigned long eaddr, unsigned long asid, 35 unsigned long paddr) 36{ 37 local_irq_disable(); 38 sh64_setup_tlb_slot(dtlb_cache_slot, eaddr, asid, paddr); 39} 40 41static inline void sh64_teardown_dtlb_cache_slot(void) 42{ 43 sh64_teardown_tlb_slot(dtlb_cache_slot); 44 local_irq_enable(); 45} 46 47static inline void sh64_icache_inv_all(void) 48{ 49 unsigned long long addr, flag, data; 50 unsigned long flags; 51 52 addr = ICCR0; 53 flag = ICCR0_ICI; 54 data = 0; 55 56 /* Make this a critical section for safety (probably not strictly necessary.) */ 57 local_irq_save(flags); 58 59 /* Without %1 it gets unexplicably wrong */ 60 __asm__ __volatile__ ( 61 "getcfg %3, 0, %0\n\t" 62 "or %0, %2, %0\n\t" 63 "putcfg %3, 0, %0\n\t" 64 "synci" 65 : "=&r" (data) 66 : "0" (data), "r" (flag), "r" (addr)); 67 68 local_irq_restore(flags); 69} 70 71static void sh64_icache_inv_kernel_range(unsigned long start, unsigned long end) 72{ 73 /* Invalidate range of addresses [start,end] from the I-cache, where 74 * the addresses lie in the kernel superpage. */ 75 76 unsigned long long ullend, addr, aligned_start; 77 aligned_start = (unsigned long long)(signed long long)(signed long) start; 78 addr = L1_CACHE_ALIGN(aligned_start); 79 ullend = (unsigned long long) (signed long long) (signed long) end; 80 81 while (addr <= ullend) { 82 __asm__ __volatile__ ("icbi %0, 0" : : "r" (addr)); 83 addr += L1_CACHE_BYTES; 84 } 85} 86 87static void sh64_icache_inv_user_page(struct vm_area_struct *vma, unsigned long eaddr) 88{ 89 /* If we get called, we know that vma->vm_flags contains VM_EXEC. 90 Also, eaddr is page-aligned. */ 91 unsigned int cpu = smp_processor_id(); 92 unsigned long long addr, end_addr; 93 unsigned long flags = 0; 94 unsigned long running_asid, vma_asid; 95 addr = eaddr; 96 end_addr = addr + PAGE_SIZE; 97 98 /* Check whether we can use the current ASID for the I-cache 99 invalidation. For example, if we're called via 100 access_process_vm->flush_cache_page->here, (e.g. when reading from 101 /proc), 'running_asid' will be that of the reader, not of the 102 victim. 103 104 Also, note the risk that we might get pre-empted between the ASID 105 compare and blocking IRQs, and before we regain control, the 106 pid->ASID mapping changes. However, the whole cache will get 107 invalidated when the mapping is renewed, so the worst that can 108 happen is that the loop below ends up invalidating somebody else's 109 cache entries. 110 */ 111 112 running_asid = get_asid(); 113 vma_asid = cpu_asid(cpu, vma->vm_mm); 114 if (running_asid != vma_asid) { 115 local_irq_save(flags); 116 switch_and_save_asid(vma_asid); 117 } 118 while (addr < end_addr) { 119 /* Worth unrolling a little */ 120 __asm__ __volatile__("icbi %0, 0" : : "r" (addr)); 121 __asm__ __volatile__("icbi %0, 32" : : "r" (addr)); 122 __asm__ __volatile__("icbi %0, 64" : : "r" (addr)); 123 __asm__ __volatile__("icbi %0, 96" : : "r" (addr)); 124 addr += 128; 125 } 126 if (running_asid != vma_asid) { 127 switch_and_save_asid(running_asid); 128 local_irq_restore(flags); 129 } 130} 131 132static void sh64_icache_inv_user_page_range(struct mm_struct *mm, 133 unsigned long start, unsigned long end) 134{ 135 /* Used for invalidating big chunks of I-cache, i.e. assume the range 136 is whole pages. If 'start' or 'end' is not page aligned, the code 137 is conservative and invalidates to the ends of the enclosing pages. 138 This is functionally OK, just a performance loss. */ 139 140 /* See the comments below in sh64_dcache_purge_user_range() regarding 141 the choice of algorithm. However, for the I-cache option (2) isn't 142 available because there are no physical tags so aliases can't be 143 resolved. The icbi instruction has to be used through the user 144 mapping. Because icbi is cheaper than ocbp on a cache hit, it 145 would be cheaper to use the selective code for a large range than is 146 possible with the D-cache. Just assume 64 for now as a working 147 figure. 148 */ 149 int n_pages; 150 151 if (!mm) 152 return; 153 154 n_pages = ((end - start) >> PAGE_SHIFT); 155 if (n_pages >= 64) { 156 sh64_icache_inv_all(); 157 } else { 158 unsigned long aligned_start; 159 unsigned long eaddr; 160 unsigned long after_last_page_start; 161 unsigned long mm_asid, current_asid; 162 unsigned long flags = 0; 163 164 mm_asid = cpu_asid(smp_processor_id(), mm); 165 current_asid = get_asid(); 166 167 if (mm_asid != current_asid) { 168 /* Switch ASID and run the invalidate loop under cli */ 169 local_irq_save(flags); 170 switch_and_save_asid(mm_asid); 171 } 172 173 aligned_start = start & PAGE_MASK; 174 after_last_page_start = PAGE_SIZE + ((end - 1) & PAGE_MASK); 175 176 while (aligned_start < after_last_page_start) { 177 struct vm_area_struct *vma; 178 unsigned long vma_end; 179 vma = find_vma(mm, aligned_start); 180 if (!vma || (aligned_start <= vma->vm_end)) { 181 /* Avoid getting stuck in an error condition */ 182 aligned_start += PAGE_SIZE; 183 continue; 184 } 185 vma_end = vma->vm_end; 186 if (vma->vm_flags & VM_EXEC) { 187 /* Executable */ 188 eaddr = aligned_start; 189 while (eaddr < vma_end) { 190 sh64_icache_inv_user_page(vma, eaddr); 191 eaddr += PAGE_SIZE; 192 } 193 } 194 aligned_start = vma->vm_end; /* Skip to start of next region */ 195 } 196 197 if (mm_asid != current_asid) { 198 switch_and_save_asid(current_asid); 199 local_irq_restore(flags); 200 } 201 } 202} 203 204static void sh64_icache_inv_current_user_range(unsigned long start, unsigned long end) 205{ 206 /* The icbi instruction never raises ITLBMISS. i.e. if there's not a 207 cache hit on the virtual tag the instruction ends there, without a 208 TLB lookup. */ 209 210 unsigned long long aligned_start; 211 unsigned long long ull_end; 212 unsigned long long addr; 213 214 ull_end = end; 215 216 /* Just invalidate over the range using the natural addresses. TLB 217 miss handling will be OK (TBC). Since it's for the current process, 218 either we're already in the right ASID context, or the ASIDs have 219 been recycled since we were last active in which case we might just 220 invalidate another processes I-cache entries : no worries, just a 221 performance drop for him. */ 222 aligned_start = L1_CACHE_ALIGN(start); 223 addr = aligned_start; 224 while (addr < ull_end) { 225 __asm__ __volatile__ ("icbi %0, 0" : : "r" (addr)); 226 __asm__ __volatile__ ("nop"); 227 __asm__ __volatile__ ("nop"); 228 addr += L1_CACHE_BYTES; 229 } 230} 231 232/* Buffer used as the target of alloco instructions to purge data from cache 233 sets by natural eviction. -- RPC */ 234#define DUMMY_ALLOCO_AREA_SIZE ((L1_CACHE_BYTES << 10) + (1024 * 4)) 235static unsigned char dummy_alloco_area[DUMMY_ALLOCO_AREA_SIZE] __cacheline_aligned = { 0, }; 236 237static void inline sh64_dcache_purge_sets(int sets_to_purge_base, int n_sets) 238{ 239 /* Purge all ways in a particular block of sets, specified by the base 240 set number and number of sets. Can handle wrap-around, if that's 241 needed. */ 242 243 int dummy_buffer_base_set; 244 unsigned long long eaddr, eaddr0, eaddr1; 245 int j; 246 int set_offset; 247 248 dummy_buffer_base_set = ((int)&dummy_alloco_area & 249 cpu_data->dcache.entry_mask) >> 250 cpu_data->dcache.entry_shift; 251 set_offset = sets_to_purge_base - dummy_buffer_base_set; 252 253 for (j = 0; j < n_sets; j++, set_offset++) { 254 set_offset &= (cpu_data->dcache.sets - 1); 255 eaddr0 = (unsigned long long)dummy_alloco_area + 256 (set_offset << cpu_data->dcache.entry_shift); 257 258 /* 259 * Do one alloco which hits the required set per cache 260 * way. For write-back mode, this will purge the #ways 261 * resident lines. There's little point unrolling this 262 * loop because the allocos stall more if they're too 263 * close together. 264 */ 265 eaddr1 = eaddr0 + cpu_data->dcache.way_size * 266 cpu_data->dcache.ways; 267 268 for (eaddr = eaddr0; eaddr < eaddr1; 269 eaddr += cpu_data->dcache.way_size) { 270 __asm__ __volatile__ ("alloco %0, 0" : : "r" (eaddr)); 271 __asm__ __volatile__ ("synco"); /* TAKum03020 */ 272 } 273 274 eaddr1 = eaddr0 + cpu_data->dcache.way_size * 275 cpu_data->dcache.ways; 276 277 for (eaddr = eaddr0; eaddr < eaddr1; 278 eaddr += cpu_data->dcache.way_size) { 279 /* 280 * Load from each address. Required because 281 * alloco is a NOP if the cache is write-through. 282 */ 283 if (test_bit(SH_CACHE_MODE_WT, &(cpu_data->dcache.flags))) 284 __raw_readb((unsigned long)eaddr); 285 } 286 } 287 288 /* 289 * Don't use OCBI to invalidate the lines. That costs cycles 290 * directly. If the dummy block is just left resident, it will 291 * naturally get evicted as required. 292 */ 293} 294 295/* 296 * Purge the entire contents of the dcache. The most efficient way to 297 * achieve this is to use alloco instructions on a region of unused 298 * memory equal in size to the cache, thereby causing the current 299 * contents to be discarded by natural eviction. The alternative, namely 300 * reading every tag, setting up a mapping for the corresponding page and 301 * doing an OCBP for the line, would be much more expensive. 302 */ 303static void sh64_dcache_purge_all(void) 304{ 305 306 sh64_dcache_purge_sets(0, cpu_data->dcache.sets); 307} 308 309 310/* Assumes this address (+ (2**n_synbits) pages up from it) aren't used for 311 anything else in the kernel */ 312#define MAGIC_PAGE0_START 0xffffffffec000000ULL 313 314/* Purge the physical page 'paddr' from the cache. It's known that any 315 * cache lines requiring attention have the same page colour as the the 316 * address 'eaddr'. 317 * 318 * This relies on the fact that the D-cache matches on physical tags when 319 * no virtual tag matches. So we create an alias for the original page 320 * and purge through that. (Alternatively, we could have done this by 321 * switching ASID to match the original mapping and purged through that, 322 * but that involves ASID switching cost + probably a TLBMISS + refill 323 * anyway.) 324 */ 325static void sh64_dcache_purge_coloured_phy_page(unsigned long paddr, 326 unsigned long eaddr) 327{ 328 unsigned long long magic_page_start; 329 unsigned long long magic_eaddr, magic_eaddr_end; 330 331 magic_page_start = MAGIC_PAGE0_START + (eaddr & CACHE_OC_SYN_MASK); 332 333 /* As long as the kernel is not pre-emptible, this doesn't need to be 334 under cli/sti. */ 335 sh64_setup_dtlb_cache_slot(magic_page_start, get_asid(), paddr); 336 337 magic_eaddr = magic_page_start; 338 magic_eaddr_end = magic_eaddr + PAGE_SIZE; 339 340 while (magic_eaddr < magic_eaddr_end) { 341 /* Little point in unrolling this loop - the OCBPs are blocking 342 and won't go any quicker (i.e. the loop overhead is parallel 343 to part of the OCBP execution.) */ 344 __asm__ __volatile__ ("ocbp %0, 0" : : "r" (magic_eaddr)); 345 magic_eaddr += L1_CACHE_BYTES; 346 } 347 348 sh64_teardown_dtlb_cache_slot(); 349} 350 351/* 352 * Purge a page given its physical start address, by creating a temporary 353 * 1 page mapping and purging across that. Even if we know the virtual 354 * address (& vma or mm) of the page, the method here is more elegant 355 * because it avoids issues of coping with page faults on the purge 356 * instructions (i.e. no special-case code required in the critical path 357 * in the TLB miss handling). 358 */ 359static void sh64_dcache_purge_phy_page(unsigned long paddr) 360{ 361 unsigned long long eaddr_start, eaddr, eaddr_end; 362 int i; 363 364 /* As long as the kernel is not pre-emptible, this doesn't need to be 365 under cli/sti. */ 366 eaddr_start = MAGIC_PAGE0_START; 367 for (i = 0; i < (1 << CACHE_OC_N_SYNBITS); i++) { 368 sh64_setup_dtlb_cache_slot(eaddr_start, get_asid(), paddr); 369 370 eaddr = eaddr_start; 371 eaddr_end = eaddr + PAGE_SIZE; 372 while (eaddr < eaddr_end) { 373 __asm__ __volatile__ ("ocbp %0, 0" : : "r" (eaddr)); 374 eaddr += L1_CACHE_BYTES; 375 } 376 377 sh64_teardown_dtlb_cache_slot(); 378 eaddr_start += PAGE_SIZE; 379 } 380} 381 382static void sh64_dcache_purge_user_pages(struct mm_struct *mm, 383 unsigned long addr, unsigned long end) 384{ 385 pgd_t *pgd; 386 pud_t *pud; 387 pmd_t *pmd; 388 pte_t *pte; 389 pte_t entry; 390 spinlock_t *ptl; 391 unsigned long paddr; 392 393 if (!mm) 394 return; /* No way to find physical address of page */ 395 396 pgd = pgd_offset(mm, addr); 397 if (pgd_bad(*pgd)) 398 return; 399 400 pud = pud_offset(pgd, addr); 401 if (pud_none(*pud) || pud_bad(*pud)) 402 return; 403 404 pmd = pmd_offset(pud, addr); 405 if (pmd_none(*pmd) || pmd_bad(*pmd)) 406 return; 407 408 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 409 do { 410 entry = *pte; 411 if (pte_none(entry) || !pte_present(entry)) 412 continue; 413 paddr = pte_val(entry) & PAGE_MASK; 414 sh64_dcache_purge_coloured_phy_page(paddr, addr); 415 } while (pte++, addr += PAGE_SIZE, addr != end); 416 pte_unmap_unlock(pte - 1, ptl); 417} 418 419/* 420 * There are at least 5 choices for the implementation of this, with 421 * pros (+), cons(-), comments(*): 422 * 423 * 1. ocbp each line in the range through the original user's ASID 424 * + no lines spuriously evicted 425 * - tlbmiss handling (must either handle faults on demand => extra 426 * special-case code in tlbmiss critical path), or map the page in 427 * advance (=> flush_tlb_range in advance to avoid multiple hits) 428 * - ASID switching 429 * - expensive for large ranges 430 * 431 * 2. temporarily map each page in the range to a special effective 432 * address and ocbp through the temporary mapping; relies on the 433 * fact that SH-5 OCB* always do TLB lookup and match on ptags (they 434 * never look at the etags) 435 * + no spurious evictions 436 * - expensive for large ranges 437 * * surely cheaper than (1) 438 * 439 * 3. walk all the lines in the cache, check the tags, if a match 440 * occurs create a page mapping to ocbp the line through 441 * + no spurious evictions 442 * - tag inspection overhead 443 * - (especially for small ranges) 444 * - potential cost of setting up/tearing down page mapping for 445 * every line that matches the range 446 * * cost partly independent of range size 447 * 448 * 4. walk all the lines in the cache, check the tags, if a match 449 * occurs use 4 * alloco to purge the line (+3 other probably 450 * innocent victims) by natural eviction 451 * + no tlb mapping overheads 452 * - spurious evictions 453 * - tag inspection overhead 454 * 455 * 5. implement like flush_cache_all 456 * + no tag inspection overhead 457 * - spurious evictions 458 * - bad for small ranges 459 * 460 * (1) can be ruled out as more expensive than (2). (2) appears best 461 * for small ranges. The choice between (3), (4) and (5) for large 462 * ranges and the range size for the large/small boundary need 463 * benchmarking to determine. 464 * 465 * For now use approach (2) for small ranges and (5) for large ones. 466 */ 467static void sh64_dcache_purge_user_range(struct mm_struct *mm, 468 unsigned long start, unsigned long end) 469{ 470 int n_pages = ((end - start) >> PAGE_SHIFT); 471 472 if (n_pages >= 64 || ((start ^ (end - 1)) & PMD_MASK)) { 473 sh64_dcache_purge_all(); 474 } else { 475 /* Small range, covered by a single page table page */ 476 start &= PAGE_MASK; /* should already be so */ 477 end = PAGE_ALIGN(end); /* should already be so */ 478 sh64_dcache_purge_user_pages(mm, start, end); 479 } 480} 481 482/* 483 * Invalidate the entire contents of both caches, after writing back to 484 * memory any dirty data from the D-cache. 485 */ 486static void sh5_flush_cache_all(void *unused) 487{ 488 sh64_dcache_purge_all(); 489 sh64_icache_inv_all(); 490} 491 492/* 493 * Invalidate an entire user-address space from both caches, after 494 * writing back dirty data (e.g. for shared mmap etc). 495 * 496 * This could be coded selectively by inspecting all the tags then 497 * doing 4*alloco on any set containing a match (as for 498 * flush_cache_range), but fork/exit/execve (where this is called from) 499 * are expensive anyway. 500 * 501 * Have to do a purge here, despite the comments re I-cache below. 502 * There could be odd-coloured dirty data associated with the mm still 503 * in the cache - if this gets written out through natural eviction 504 * after the kernel has reused the page there will be chaos. 505 * 506 * The mm being torn down won't ever be active again, so any Icache 507 * lines tagged with its ASID won't be visible for the rest of the 508 * lifetime of this ASID cycle. Before the ASID gets reused, there 509 * will be a flush_cache_all. Hence we don't need to touch the 510 * I-cache. This is similar to the lack of action needed in 511 * flush_tlb_mm - see fault.c. 512 */ 513static void sh5_flush_cache_mm(void *unused) 514{ 515 sh64_dcache_purge_all(); 516} 517 518/* 519 * Invalidate (from both caches) the range [start,end) of virtual 520 * addresses from the user address space specified by mm, after writing 521 * back any dirty data. 522 * 523 * Note, 'end' is 1 byte beyond the end of the range to flush. 524 */ 525static void sh5_flush_cache_range(void *args) 526{ 527 struct flusher_data *data = args; 528 struct vm_area_struct *vma; 529 unsigned long start, end; 530 531 vma = data->vma; 532 start = data->addr1; 533 end = data->addr2; 534 535 sh64_dcache_purge_user_range(vma->vm_mm, start, end); 536 sh64_icache_inv_user_page_range(vma->vm_mm, start, end); 537} 538 539/* 540 * Invalidate any entries in either cache for the vma within the user 541 * address space vma->vm_mm for the page starting at virtual address 542 * 'eaddr'. This seems to be used primarily in breaking COW. Note, 543 * the I-cache must be searched too in case the page in question is 544 * both writable and being executed from (e.g. stack trampolines.) 545 * 546 * Note, this is called with pte lock held. 547 */ 548static void sh5_flush_cache_page(void *args) 549{ 550 struct flusher_data *data = args; 551 struct vm_area_struct *vma; 552 unsigned long eaddr, pfn; 553 554 vma = data->vma; 555 eaddr = data->addr1; 556 pfn = data->addr2; 557 558 sh64_dcache_purge_phy_page(pfn << PAGE_SHIFT); 559 560 if (vma->vm_flags & VM_EXEC) 561 sh64_icache_inv_user_page(vma, eaddr); 562} 563 564static void sh5_flush_dcache_page(void *page) 565{ 566 sh64_dcache_purge_phy_page(page_to_phys((struct page *)page)); 567 wmb(); 568} 569 570/* 571 * Flush the range [start,end] of kernel virtual address space from 572 * the I-cache. The corresponding range must be purged from the 573 * D-cache also because the SH-5 doesn't have cache snooping between 574 * the caches. The addresses will be visible through the superpage 575 * mapping, therefore it's guaranteed that there no cache entries for 576 * the range in cache sets of the wrong colour. 577 */ 578static void sh5_flush_icache_range(void *args) 579{ 580 struct flusher_data *data = args; 581 unsigned long start, end; 582 583 start = data->addr1; 584 end = data->addr2; 585 586 __flush_purge_region((void *)start, end); 587 wmb(); 588 sh64_icache_inv_kernel_range(start, end); 589} 590 591/* 592 * For the address range [start,end), write back the data from the 593 * D-cache and invalidate the corresponding region of the I-cache for the 594 * current process. Used to flush signal trampolines on the stack to 595 * make them executable. 596 */ 597static void sh5_flush_cache_sigtramp(void *vaddr) 598{ 599 unsigned long end = (unsigned long)vaddr + L1_CACHE_BYTES; 600 601 __flush_wback_region(vaddr, L1_CACHE_BYTES); 602 wmb(); 603 sh64_icache_inv_current_user_range((unsigned long)vaddr, end); 604} 605 606void __init sh5_cache_init(void) 607{ 608 local_flush_cache_all = sh5_flush_cache_all; 609 local_flush_cache_mm = sh5_flush_cache_mm; 610 local_flush_cache_dup_mm = sh5_flush_cache_mm; 611 local_flush_cache_page = sh5_flush_cache_page; 612 local_flush_cache_range = sh5_flush_cache_range; 613 local_flush_dcache_page = sh5_flush_dcache_page; 614 local_flush_icache_range = sh5_flush_icache_range; 615 local_flush_cache_sigtramp = sh5_flush_cache_sigtramp; 616 617 /* Reserve a slot for dcache colouring in the DTLB */ 618 dtlb_cache_slot = sh64_get_wired_dtlb_entry(); 619 620 sh4__flush_region_init(); 621} 622