1/* 2 * guest access functions 3 * 4 * Copyright IBM Corp. 2014 5 * 6 */ 7 8#include <linux/vmalloc.h> 9#include <linux/err.h> 10#include <asm/pgtable.h> 11#include "kvm-s390.h" 12#include "gaccess.h" 13#include <asm/switch_to.h> 14 15union asce { 16 unsigned long val; 17 struct { 18 unsigned long origin : 52; /* Region- or Segment-Table Origin */ 19 unsigned long : 2; 20 unsigned long g : 1; /* Subspace Group Control */ 21 unsigned long p : 1; /* Private Space Control */ 22 unsigned long s : 1; /* Storage-Alteration-Event Control */ 23 unsigned long x : 1; /* Space-Switch-Event Control */ 24 unsigned long r : 1; /* Real-Space Control */ 25 unsigned long : 1; 26 unsigned long dt : 2; /* Designation-Type Control */ 27 unsigned long tl : 2; /* Region- or Segment-Table Length */ 28 }; 29}; 30 31enum { 32 ASCE_TYPE_SEGMENT = 0, 33 ASCE_TYPE_REGION3 = 1, 34 ASCE_TYPE_REGION2 = 2, 35 ASCE_TYPE_REGION1 = 3 36}; 37 38union region1_table_entry { 39 unsigned long val; 40 struct { 41 unsigned long rto: 52;/* Region-Table Origin */ 42 unsigned long : 2; 43 unsigned long p : 1; /* DAT-Protection Bit */ 44 unsigned long : 1; 45 unsigned long tf : 2; /* Region-Second-Table Offset */ 46 unsigned long i : 1; /* Region-Invalid Bit */ 47 unsigned long : 1; 48 unsigned long tt : 2; /* Table-Type Bits */ 49 unsigned long tl : 2; /* Region-Second-Table Length */ 50 }; 51}; 52 53union region2_table_entry { 54 unsigned long val; 55 struct { 56 unsigned long rto: 52;/* Region-Table Origin */ 57 unsigned long : 2; 58 unsigned long p : 1; /* DAT-Protection Bit */ 59 unsigned long : 1; 60 unsigned long tf : 2; /* Region-Third-Table Offset */ 61 unsigned long i : 1; /* Region-Invalid Bit */ 62 unsigned long : 1; 63 unsigned long tt : 2; /* Table-Type Bits */ 64 unsigned long tl : 2; /* Region-Third-Table Length */ 65 }; 66}; 67 68struct region3_table_entry_fc0 { 69 unsigned long sto: 52;/* Segment-Table Origin */ 70 unsigned long : 1; 71 unsigned long fc : 1; /* Format-Control */ 72 unsigned long p : 1; /* DAT-Protection Bit */ 73 unsigned long : 1; 74 unsigned long tf : 2; /* Segment-Table Offset */ 75 unsigned long i : 1; /* Region-Invalid Bit */ 76 unsigned long cr : 1; /* Common-Region Bit */ 77 unsigned long tt : 2; /* Table-Type Bits */ 78 unsigned long tl : 2; /* Segment-Table Length */ 79}; 80 81struct region3_table_entry_fc1 { 82 unsigned long rfaa : 33; /* Region-Frame Absolute Address */ 83 unsigned long : 14; 84 unsigned long av : 1; /* ACCF-Validity Control */ 85 unsigned long acc: 4; /* Access-Control Bits */ 86 unsigned long f : 1; /* Fetch-Protection Bit */ 87 unsigned long fc : 1; /* Format-Control */ 88 unsigned long p : 1; /* DAT-Protection Bit */ 89 unsigned long co : 1; /* Change-Recording Override */ 90 unsigned long : 2; 91 unsigned long i : 1; /* Region-Invalid Bit */ 92 unsigned long cr : 1; /* Common-Region Bit */ 93 unsigned long tt : 2; /* Table-Type Bits */ 94 unsigned long : 2; 95}; 96 97union region3_table_entry { 98 unsigned long val; 99 struct region3_table_entry_fc0 fc0; 100 struct region3_table_entry_fc1 fc1; 101 struct { 102 unsigned long : 53; 103 unsigned long fc : 1; /* Format-Control */ 104 unsigned long : 4; 105 unsigned long i : 1; /* Region-Invalid Bit */ 106 unsigned long cr : 1; /* Common-Region Bit */ 107 unsigned long tt : 2; /* Table-Type Bits */ 108 unsigned long : 2; 109 }; 110}; 111 112struct segment_entry_fc0 { 113 unsigned long pto: 53;/* Page-Table Origin */ 114 unsigned long fc : 1; /* Format-Control */ 115 unsigned long p : 1; /* DAT-Protection Bit */ 116 unsigned long : 3; 117 unsigned long i : 1; /* Segment-Invalid Bit */ 118 unsigned long cs : 1; /* Common-Segment Bit */ 119 unsigned long tt : 2; /* Table-Type Bits */ 120 unsigned long : 2; 121}; 122 123struct segment_entry_fc1 { 124 unsigned long sfaa : 44; /* Segment-Frame Absolute Address */ 125 unsigned long : 3; 126 unsigned long av : 1; /* ACCF-Validity Control */ 127 unsigned long acc: 4; /* Access-Control Bits */ 128 unsigned long f : 1; /* Fetch-Protection Bit */ 129 unsigned long fc : 1; /* Format-Control */ 130 unsigned long p : 1; /* DAT-Protection Bit */ 131 unsigned long co : 1; /* Change-Recording Override */ 132 unsigned long : 2; 133 unsigned long i : 1; /* Segment-Invalid Bit */ 134 unsigned long cs : 1; /* Common-Segment Bit */ 135 unsigned long tt : 2; /* Table-Type Bits */ 136 unsigned long : 2; 137}; 138 139union segment_table_entry { 140 unsigned long val; 141 struct segment_entry_fc0 fc0; 142 struct segment_entry_fc1 fc1; 143 struct { 144 unsigned long : 53; 145 unsigned long fc : 1; /* Format-Control */ 146 unsigned long : 4; 147 unsigned long i : 1; /* Segment-Invalid Bit */ 148 unsigned long cs : 1; /* Common-Segment Bit */ 149 unsigned long tt : 2; /* Table-Type Bits */ 150 unsigned long : 2; 151 }; 152}; 153 154enum { 155 TABLE_TYPE_SEGMENT = 0, 156 TABLE_TYPE_REGION3 = 1, 157 TABLE_TYPE_REGION2 = 2, 158 TABLE_TYPE_REGION1 = 3 159}; 160 161union page_table_entry { 162 unsigned long val; 163 struct { 164 unsigned long pfra : 52; /* Page-Frame Real Address */ 165 unsigned long z : 1; /* Zero Bit */ 166 unsigned long i : 1; /* Page-Invalid Bit */ 167 unsigned long p : 1; /* DAT-Protection Bit */ 168 unsigned long co : 1; /* Change-Recording Override */ 169 unsigned long : 8; 170 }; 171}; 172 173/* 174 * vaddress union in order to easily decode a virtual address into its 175 * region first index, region second index etc. parts. 176 */ 177union vaddress { 178 unsigned long addr; 179 struct { 180 unsigned long rfx : 11; 181 unsigned long rsx : 11; 182 unsigned long rtx : 11; 183 unsigned long sx : 11; 184 unsigned long px : 8; 185 unsigned long bx : 12; 186 }; 187 struct { 188 unsigned long rfx01 : 2; 189 unsigned long : 9; 190 unsigned long rsx01 : 2; 191 unsigned long : 9; 192 unsigned long rtx01 : 2; 193 unsigned long : 9; 194 unsigned long sx01 : 2; 195 unsigned long : 29; 196 }; 197}; 198 199/* 200 * raddress union which will contain the result (real or absolute address) 201 * after a page table walk. The rfaa, sfaa and pfra members are used to 202 * simply assign them the value of a region, segment or page table entry. 203 */ 204union raddress { 205 unsigned long addr; 206 unsigned long rfaa : 33; /* Region-Frame Absolute Address */ 207 unsigned long sfaa : 44; /* Segment-Frame Absolute Address */ 208 unsigned long pfra : 52; /* Page-Frame Real Address */ 209}; 210 211union alet { 212 u32 val; 213 struct { 214 u32 reserved : 7; 215 u32 p : 1; 216 u32 alesn : 8; 217 u32 alen : 16; 218 }; 219}; 220 221union ald { 222 u32 val; 223 struct { 224 u32 : 1; 225 u32 alo : 24; 226 u32 all : 7; 227 }; 228}; 229 230struct ale { 231 unsigned long i : 1; /* ALEN-Invalid Bit */ 232 unsigned long : 5; 233 unsigned long fo : 1; /* Fetch-Only Bit */ 234 unsigned long p : 1; /* Private Bit */ 235 unsigned long alesn : 8; /* Access-List-Entry Sequence Number */ 236 unsigned long aleax : 16; /* Access-List-Entry Authorization Index */ 237 unsigned long : 32; 238 unsigned long : 1; 239 unsigned long asteo : 25; /* ASN-Second-Table-Entry Origin */ 240 unsigned long : 6; 241 unsigned long astesn : 32; /* ASTE Sequence Number */ 242} __packed; 243 244struct aste { 245 unsigned long i : 1; /* ASX-Invalid Bit */ 246 unsigned long ato : 29; /* Authority-Table Origin */ 247 unsigned long : 1; 248 unsigned long b : 1; /* Base-Space Bit */ 249 unsigned long ax : 16; /* Authorization Index */ 250 unsigned long atl : 12; /* Authority-Table Length */ 251 unsigned long : 2; 252 unsigned long ca : 1; /* Controlled-ASN Bit */ 253 unsigned long ra : 1; /* Reusable-ASN Bit */ 254 unsigned long asce : 64; /* Address-Space-Control Element */ 255 unsigned long ald : 32; 256 unsigned long astesn : 32; 257 /* .. more fields there */ 258} __packed; 259 260int ipte_lock_held(struct kvm_vcpu *vcpu) 261{ 262 union ipte_control *ic = &vcpu->kvm->arch.sca->ipte_control; 263 264 if (vcpu->arch.sie_block->eca & 1) 265 return ic->kh != 0; 266 return vcpu->kvm->arch.ipte_lock_count != 0; 267} 268 269static void ipte_lock_simple(struct kvm_vcpu *vcpu) 270{ 271 union ipte_control old, new, *ic; 272 273 mutex_lock(&vcpu->kvm->arch.ipte_mutex); 274 vcpu->kvm->arch.ipte_lock_count++; 275 if (vcpu->kvm->arch.ipte_lock_count > 1) 276 goto out; 277 ic = &vcpu->kvm->arch.sca->ipte_control; 278 do { 279 old = READ_ONCE(*ic); 280 while (old.k) { 281 cond_resched(); 282 old = READ_ONCE(*ic); 283 } 284 new = old; 285 new.k = 1; 286 } while (cmpxchg(&ic->val, old.val, new.val) != old.val); 287out: 288 mutex_unlock(&vcpu->kvm->arch.ipte_mutex); 289} 290 291static void ipte_unlock_simple(struct kvm_vcpu *vcpu) 292{ 293 union ipte_control old, new, *ic; 294 295 mutex_lock(&vcpu->kvm->arch.ipte_mutex); 296 vcpu->kvm->arch.ipte_lock_count--; 297 if (vcpu->kvm->arch.ipte_lock_count) 298 goto out; 299 ic = &vcpu->kvm->arch.sca->ipte_control; 300 do { 301 old = READ_ONCE(*ic); 302 new = old; 303 new.k = 0; 304 } while (cmpxchg(&ic->val, old.val, new.val) != old.val); 305 wake_up(&vcpu->kvm->arch.ipte_wq); 306out: 307 mutex_unlock(&vcpu->kvm->arch.ipte_mutex); 308} 309 310static void ipte_lock_siif(struct kvm_vcpu *vcpu) 311{ 312 union ipte_control old, new, *ic; 313 314 ic = &vcpu->kvm->arch.sca->ipte_control; 315 do { 316 old = READ_ONCE(*ic); 317 while (old.kg) { 318 cond_resched(); 319 old = READ_ONCE(*ic); 320 } 321 new = old; 322 new.k = 1; 323 new.kh++; 324 } while (cmpxchg(&ic->val, old.val, new.val) != old.val); 325} 326 327static void ipte_unlock_siif(struct kvm_vcpu *vcpu) 328{ 329 union ipte_control old, new, *ic; 330 331 ic = &vcpu->kvm->arch.sca->ipte_control; 332 do { 333 old = READ_ONCE(*ic); 334 new = old; 335 new.kh--; 336 if (!new.kh) 337 new.k = 0; 338 } while (cmpxchg(&ic->val, old.val, new.val) != old.val); 339 if (!new.kh) 340 wake_up(&vcpu->kvm->arch.ipte_wq); 341} 342 343void ipte_lock(struct kvm_vcpu *vcpu) 344{ 345 if (vcpu->arch.sie_block->eca & 1) 346 ipte_lock_siif(vcpu); 347 else 348 ipte_lock_simple(vcpu); 349} 350 351void ipte_unlock(struct kvm_vcpu *vcpu) 352{ 353 if (vcpu->arch.sie_block->eca & 1) 354 ipte_unlock_siif(vcpu); 355 else 356 ipte_unlock_simple(vcpu); 357} 358 359static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, ar_t ar, 360 int write) 361{ 362 union alet alet; 363 struct ale ale; 364 struct aste aste; 365 unsigned long ald_addr, authority_table_addr; 366 union ald ald; 367 int eax, rc; 368 u8 authority_table; 369 370 if (ar >= NUM_ACRS) 371 return -EINVAL; 372 373 save_access_regs(vcpu->run->s.regs.acrs); 374 alet.val = vcpu->run->s.regs.acrs[ar]; 375 376 if (ar == 0 || alet.val == 0) { 377 asce->val = vcpu->arch.sie_block->gcr[1]; 378 return 0; 379 } else if (alet.val == 1) { 380 asce->val = vcpu->arch.sie_block->gcr[7]; 381 return 0; 382 } 383 384 if (alet.reserved) 385 return PGM_ALET_SPECIFICATION; 386 387 if (alet.p) 388 ald_addr = vcpu->arch.sie_block->gcr[5]; 389 else 390 ald_addr = vcpu->arch.sie_block->gcr[2]; 391 ald_addr &= 0x7fffffc0; 392 393 rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald)); 394 if (rc) 395 return rc; 396 397 if (alet.alen / 8 > ald.all) 398 return PGM_ALEN_TRANSLATION; 399 400 if (0x7fffffff - ald.alo * 128 < alet.alen * 16) 401 return PGM_ADDRESSING; 402 403 rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale, 404 sizeof(struct ale)); 405 if (rc) 406 return rc; 407 408 if (ale.i == 1) 409 return PGM_ALEN_TRANSLATION; 410 if (ale.alesn != alet.alesn) 411 return PGM_ALE_SEQUENCE; 412 413 rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste)); 414 if (rc) 415 return rc; 416 417 if (aste.i) 418 return PGM_ASTE_VALIDITY; 419 if (aste.astesn != ale.astesn) 420 return PGM_ASTE_SEQUENCE; 421 422 if (ale.p == 1) { 423 eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff; 424 if (ale.aleax != eax) { 425 if (eax / 16 > aste.atl) 426 return PGM_EXTENDED_AUTHORITY; 427 428 authority_table_addr = aste.ato * 4 + eax / 4; 429 430 rc = read_guest_real(vcpu, authority_table_addr, 431 &authority_table, 432 sizeof(u8)); 433 if (rc) 434 return rc; 435 436 if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0) 437 return PGM_EXTENDED_AUTHORITY; 438 } 439 } 440 441 if (ale.fo == 1 && write) 442 return PGM_PROTECTION; 443 444 asce->val = aste.asce; 445 return 0; 446} 447 448struct trans_exc_code_bits { 449 unsigned long addr : 52; /* Translation-exception Address */ 450 unsigned long fsi : 2; /* Access Exception Fetch/Store Indication */ 451 unsigned long : 6; 452 unsigned long b60 : 1; 453 unsigned long b61 : 1; 454 unsigned long as : 2; /* ASCE Identifier */ 455}; 456 457enum { 458 FSI_UNKNOWN = 0, /* Unknown wether fetch or store */ 459 FSI_STORE = 1, /* Exception was due to store operation */ 460 FSI_FETCH = 2 /* Exception was due to fetch operation */ 461}; 462 463static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce, 464 ar_t ar, int write) 465{ 466 int rc; 467 psw_t *psw = &vcpu->arch.sie_block->gpsw; 468 struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm; 469 struct trans_exc_code_bits *tec_bits; 470 471 memset(pgm, 0, sizeof(*pgm)); 472 tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code; 473 tec_bits->fsi = write ? FSI_STORE : FSI_FETCH; 474 tec_bits->as = psw_bits(*psw).as; 475 476 if (!psw_bits(*psw).t) { 477 asce->val = 0; 478 asce->r = 1; 479 return 0; 480 } 481 482 switch (psw_bits(vcpu->arch.sie_block->gpsw).as) { 483 case PSW_AS_PRIMARY: 484 asce->val = vcpu->arch.sie_block->gcr[1]; 485 return 0; 486 case PSW_AS_SECONDARY: 487 asce->val = vcpu->arch.sie_block->gcr[7]; 488 return 0; 489 case PSW_AS_HOME: 490 asce->val = vcpu->arch.sie_block->gcr[13]; 491 return 0; 492 case PSW_AS_ACCREG: 493 rc = ar_translation(vcpu, asce, ar, write); 494 switch (rc) { 495 case PGM_ALEN_TRANSLATION: 496 case PGM_ALE_SEQUENCE: 497 case PGM_ASTE_VALIDITY: 498 case PGM_ASTE_SEQUENCE: 499 case PGM_EXTENDED_AUTHORITY: 500 vcpu->arch.pgm.exc_access_id = ar; 501 break; 502 case PGM_PROTECTION: 503 tec_bits->b60 = 1; 504 tec_bits->b61 = 1; 505 break; 506 } 507 if (rc > 0) 508 pgm->code = rc; 509 return rc; 510 } 511 return 0; 512} 513 514static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val) 515{ 516 return kvm_read_guest(kvm, gpa, val, sizeof(*val)); 517} 518 519/** 520 * guest_translate - translate a guest virtual into a guest absolute address 521 * @vcpu: virtual cpu 522 * @gva: guest virtual address 523 * @gpa: points to where guest physical (absolute) address should be stored 524 * @asce: effective asce 525 * @write: indicates if access is a write access 526 * 527 * Translate a guest virtual address into a guest absolute address by means 528 * of dynamic address translation as specified by the architecture. 529 * If the resulting absolute address is not available in the configuration 530 * an addressing exception is indicated and @gpa will not be changed. 531 * 532 * Returns: - zero on success; @gpa contains the resulting absolute address 533 * - a negative value if guest access failed due to e.g. broken 534 * guest mapping 535 * - a positve value if an access exception happened. In this case 536 * the returned value is the program interruption code as defined 537 * by the architecture 538 */ 539static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva, 540 unsigned long *gpa, const union asce asce, 541 int write) 542{ 543 union vaddress vaddr = {.addr = gva}; 544 union raddress raddr = {.addr = gva}; 545 union page_table_entry pte; 546 int dat_protection = 0; 547 union ctlreg0 ctlreg0; 548 unsigned long ptr; 549 int edat1, edat2; 550 551 ctlreg0.val = vcpu->arch.sie_block->gcr[0]; 552 edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8); 553 edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78); 554 if (asce.r) 555 goto real_address; 556 ptr = asce.origin * 4096; 557 switch (asce.dt) { 558 case ASCE_TYPE_REGION1: 559 if (vaddr.rfx01 > asce.tl) 560 return PGM_REGION_FIRST_TRANS; 561 ptr += vaddr.rfx * 8; 562 break; 563 case ASCE_TYPE_REGION2: 564 if (vaddr.rfx) 565 return PGM_ASCE_TYPE; 566 if (vaddr.rsx01 > asce.tl) 567 return PGM_REGION_SECOND_TRANS; 568 ptr += vaddr.rsx * 8; 569 break; 570 case ASCE_TYPE_REGION3: 571 if (vaddr.rfx || vaddr.rsx) 572 return PGM_ASCE_TYPE; 573 if (vaddr.rtx01 > asce.tl) 574 return PGM_REGION_THIRD_TRANS; 575 ptr += vaddr.rtx * 8; 576 break; 577 case ASCE_TYPE_SEGMENT: 578 if (vaddr.rfx || vaddr.rsx || vaddr.rtx) 579 return PGM_ASCE_TYPE; 580 if (vaddr.sx01 > asce.tl) 581 return PGM_SEGMENT_TRANSLATION; 582 ptr += vaddr.sx * 8; 583 break; 584 } 585 switch (asce.dt) { 586 case ASCE_TYPE_REGION1: { 587 union region1_table_entry rfte; 588 589 if (kvm_is_error_gpa(vcpu->kvm, ptr)) 590 return PGM_ADDRESSING; 591 if (deref_table(vcpu->kvm, ptr, &rfte.val)) 592 return -EFAULT; 593 if (rfte.i) 594 return PGM_REGION_FIRST_TRANS; 595 if (rfte.tt != TABLE_TYPE_REGION1) 596 return PGM_TRANSLATION_SPEC; 597 if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl) 598 return PGM_REGION_SECOND_TRANS; 599 if (edat1) 600 dat_protection |= rfte.p; 601 ptr = rfte.rto * 4096 + vaddr.rsx * 8; 602 } 603 /* fallthrough */ 604 case ASCE_TYPE_REGION2: { 605 union region2_table_entry rste; 606 607 if (kvm_is_error_gpa(vcpu->kvm, ptr)) 608 return PGM_ADDRESSING; 609 if (deref_table(vcpu->kvm, ptr, &rste.val)) 610 return -EFAULT; 611 if (rste.i) 612 return PGM_REGION_SECOND_TRANS; 613 if (rste.tt != TABLE_TYPE_REGION2) 614 return PGM_TRANSLATION_SPEC; 615 if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl) 616 return PGM_REGION_THIRD_TRANS; 617 if (edat1) 618 dat_protection |= rste.p; 619 ptr = rste.rto * 4096 + vaddr.rtx * 8; 620 } 621 /* fallthrough */ 622 case ASCE_TYPE_REGION3: { 623 union region3_table_entry rtte; 624 625 if (kvm_is_error_gpa(vcpu->kvm, ptr)) 626 return PGM_ADDRESSING; 627 if (deref_table(vcpu->kvm, ptr, &rtte.val)) 628 return -EFAULT; 629 if (rtte.i) 630 return PGM_REGION_THIRD_TRANS; 631 if (rtte.tt != TABLE_TYPE_REGION3) 632 return PGM_TRANSLATION_SPEC; 633 if (rtte.cr && asce.p && edat2) 634 return PGM_TRANSLATION_SPEC; 635 if (rtte.fc && edat2) { 636 dat_protection |= rtte.fc1.p; 637 raddr.rfaa = rtte.fc1.rfaa; 638 goto absolute_address; 639 } 640 if (vaddr.sx01 < rtte.fc0.tf) 641 return PGM_SEGMENT_TRANSLATION; 642 if (vaddr.sx01 > rtte.fc0.tl) 643 return PGM_SEGMENT_TRANSLATION; 644 if (edat1) 645 dat_protection |= rtte.fc0.p; 646 ptr = rtte.fc0.sto * 4096 + vaddr.sx * 8; 647 } 648 /* fallthrough */ 649 case ASCE_TYPE_SEGMENT: { 650 union segment_table_entry ste; 651 652 if (kvm_is_error_gpa(vcpu->kvm, ptr)) 653 return PGM_ADDRESSING; 654 if (deref_table(vcpu->kvm, ptr, &ste.val)) 655 return -EFAULT; 656 if (ste.i) 657 return PGM_SEGMENT_TRANSLATION; 658 if (ste.tt != TABLE_TYPE_SEGMENT) 659 return PGM_TRANSLATION_SPEC; 660 if (ste.cs && asce.p) 661 return PGM_TRANSLATION_SPEC; 662 if (ste.fc && edat1) { 663 dat_protection |= ste.fc1.p; 664 raddr.sfaa = ste.fc1.sfaa; 665 goto absolute_address; 666 } 667 dat_protection |= ste.fc0.p; 668 ptr = ste.fc0.pto * 2048 + vaddr.px * 8; 669 } 670 } 671 if (kvm_is_error_gpa(vcpu->kvm, ptr)) 672 return PGM_ADDRESSING; 673 if (deref_table(vcpu->kvm, ptr, &pte.val)) 674 return -EFAULT; 675 if (pte.i) 676 return PGM_PAGE_TRANSLATION; 677 if (pte.z) 678 return PGM_TRANSLATION_SPEC; 679 if (pte.co && !edat1) 680 return PGM_TRANSLATION_SPEC; 681 dat_protection |= pte.p; 682 raddr.pfra = pte.pfra; 683real_address: 684 raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr); 685absolute_address: 686 if (write && dat_protection) 687 return PGM_PROTECTION; 688 if (kvm_is_error_gpa(vcpu->kvm, raddr.addr)) 689 return PGM_ADDRESSING; 690 *gpa = raddr.addr; 691 return 0; 692} 693 694static inline int is_low_address(unsigned long ga) 695{ 696 /* Check for address ranges 0..511 and 4096..4607 */ 697 return (ga & ~0x11fful) == 0; 698} 699 700static int low_address_protection_enabled(struct kvm_vcpu *vcpu, 701 const union asce asce) 702{ 703 union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]}; 704 psw_t *psw = &vcpu->arch.sie_block->gpsw; 705 706 if (!ctlreg0.lap) 707 return 0; 708 if (psw_bits(*psw).t && asce.p) 709 return 0; 710 return 1; 711} 712 713static int guest_page_range(struct kvm_vcpu *vcpu, unsigned long ga, 714 unsigned long *pages, unsigned long nr_pages, 715 const union asce asce, int write) 716{ 717 struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm; 718 psw_t *psw = &vcpu->arch.sie_block->gpsw; 719 struct trans_exc_code_bits *tec_bits; 720 int lap_enabled, rc; 721 722 tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code; 723 lap_enabled = low_address_protection_enabled(vcpu, asce); 724 while (nr_pages) { 725 ga = kvm_s390_logical_to_effective(vcpu, ga); 726 tec_bits->addr = ga >> PAGE_SHIFT; 727 if (write && lap_enabled && is_low_address(ga)) { 728 pgm->code = PGM_PROTECTION; 729 return pgm->code; 730 } 731 ga &= PAGE_MASK; 732 if (psw_bits(*psw).t) { 733 rc = guest_translate(vcpu, ga, pages, asce, write); 734 if (rc < 0) 735 return rc; 736 if (rc == PGM_PROTECTION) 737 tec_bits->b61 = 1; 738 if (rc) 739 pgm->code = rc; 740 } else { 741 *pages = kvm_s390_real_to_abs(vcpu, ga); 742 if (kvm_is_error_gpa(vcpu->kvm, *pages)) 743 pgm->code = PGM_ADDRESSING; 744 } 745 if (pgm->code) 746 return pgm->code; 747 ga += PAGE_SIZE; 748 pages++; 749 nr_pages--; 750 } 751 return 0; 752} 753 754int access_guest(struct kvm_vcpu *vcpu, unsigned long ga, ar_t ar, void *data, 755 unsigned long len, int write) 756{ 757 psw_t *psw = &vcpu->arch.sie_block->gpsw; 758 unsigned long _len, nr_pages, gpa, idx; 759 unsigned long pages_array[2]; 760 unsigned long *pages; 761 int need_ipte_lock; 762 union asce asce; 763 int rc; 764 765 if (!len) 766 return 0; 767 rc = get_vcpu_asce(vcpu, &asce, ar, write); 768 if (rc) 769 return rc; 770 nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1; 771 pages = pages_array; 772 if (nr_pages > ARRAY_SIZE(pages_array)) 773 pages = vmalloc(nr_pages * sizeof(unsigned long)); 774 if (!pages) 775 return -ENOMEM; 776 need_ipte_lock = psw_bits(*psw).t && !asce.r; 777 if (need_ipte_lock) 778 ipte_lock(vcpu); 779 rc = guest_page_range(vcpu, ga, pages, nr_pages, asce, write); 780 for (idx = 0; idx < nr_pages && !rc; idx++) { 781 gpa = *(pages + idx) + (ga & ~PAGE_MASK); 782 _len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len); 783 if (write) 784 rc = kvm_write_guest(vcpu->kvm, gpa, data, _len); 785 else 786 rc = kvm_read_guest(vcpu->kvm, gpa, data, _len); 787 len -= _len; 788 ga += _len; 789 data += _len; 790 } 791 if (need_ipte_lock) 792 ipte_unlock(vcpu); 793 if (nr_pages > ARRAY_SIZE(pages_array)) 794 vfree(pages); 795 return rc; 796} 797 798int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra, 799 void *data, unsigned long len, int write) 800{ 801 unsigned long _len, gpa; 802 int rc = 0; 803 804 while (len && !rc) { 805 gpa = kvm_s390_real_to_abs(vcpu, gra); 806 _len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len); 807 if (write) 808 rc = write_guest_abs(vcpu, gpa, data, _len); 809 else 810 rc = read_guest_abs(vcpu, gpa, data, _len); 811 len -= _len; 812 gra += _len; 813 data += _len; 814 } 815 return rc; 816} 817 818/** 819 * guest_translate_address - translate guest logical into guest absolute address 820 * 821 * Parameter semantics are the same as the ones from guest_translate. 822 * The memory contents at the guest address are not changed. 823 * 824 * Note: The IPTE lock is not taken during this function, so the caller 825 * has to take care of this. 826 */ 827int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva, ar_t ar, 828 unsigned long *gpa, int write) 829{ 830 struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm; 831 psw_t *psw = &vcpu->arch.sie_block->gpsw; 832 struct trans_exc_code_bits *tec; 833 union asce asce; 834 int rc; 835 836 gva = kvm_s390_logical_to_effective(vcpu, gva); 837 tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code; 838 rc = get_vcpu_asce(vcpu, &asce, ar, write); 839 tec->addr = gva >> PAGE_SHIFT; 840 if (rc) 841 return rc; 842 if (is_low_address(gva) && low_address_protection_enabled(vcpu, asce)) { 843 if (write) { 844 rc = pgm->code = PGM_PROTECTION; 845 return rc; 846 } 847 } 848 849 if (psw_bits(*psw).t && !asce.r) { /* Use DAT? */ 850 rc = guest_translate(vcpu, gva, gpa, asce, write); 851 if (rc > 0) { 852 if (rc == PGM_PROTECTION) 853 tec->b61 = 1; 854 pgm->code = rc; 855 } 856 } else { 857 rc = 0; 858 *gpa = kvm_s390_real_to_abs(vcpu, gva); 859 if (kvm_is_error_gpa(vcpu->kvm, *gpa)) 860 rc = pgm->code = PGM_ADDRESSING; 861 } 862 863 return rc; 864} 865 866/** 867 * check_gva_range - test a range of guest virtual addresses for accessibility 868 */ 869int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, ar_t ar, 870 unsigned long length, int is_write) 871{ 872 unsigned long gpa; 873 unsigned long currlen; 874 int rc = 0; 875 876 ipte_lock(vcpu); 877 while (length > 0 && !rc) { 878 currlen = min(length, PAGE_SIZE - (gva % PAGE_SIZE)); 879 rc = guest_translate_address(vcpu, gva, ar, &gpa, is_write); 880 gva += currlen; 881 length -= currlen; 882 } 883 ipte_unlock(vcpu); 884 885 return rc; 886} 887 888/** 889 * kvm_s390_check_low_addr_prot_real - check for low-address protection 890 * @gra: Guest real address 891 * 892 * Checks whether an address is subject to low-address protection and set 893 * up vcpu->arch.pgm accordingly if necessary. 894 * 895 * Return: 0 if no protection exception, or PGM_PROTECTION if protected. 896 */ 897int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra) 898{ 899 struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm; 900 psw_t *psw = &vcpu->arch.sie_block->gpsw; 901 struct trans_exc_code_bits *tec_bits; 902 union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]}; 903 904 if (!ctlreg0.lap || !is_low_address(gra)) 905 return 0; 906 907 memset(pgm, 0, sizeof(*pgm)); 908 tec_bits = (struct trans_exc_code_bits *)&pgm->trans_exc_code; 909 tec_bits->fsi = FSI_STORE; 910 tec_bits->as = psw_bits(*psw).as; 911 tec_bits->addr = gra >> PAGE_SHIFT; 912 pgm->code = PGM_PROTECTION; 913 914 return pgm->code; 915} 916