1/*
2 *    Time of day based timer functions.
3 *
4 *  S390 version
5 *    Copyright IBM Corp. 1999, 2008
6 *    Author(s): Hartmut Penner (hp@de.ibm.com),
7 *               Martin Schwidefsky (schwidefsky@de.ibm.com),
8 *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
9 *
10 *  Derived from "arch/i386/kernel/time.c"
11 *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
12 */
13
14#define KMSG_COMPONENT "time"
15#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16
17#include <linux/kernel_stat.h>
18#include <linux/errno.h>
19#include <linux/module.h>
20#include <linux/sched.h>
21#include <linux/kernel.h>
22#include <linux/param.h>
23#include <linux/string.h>
24#include <linux/mm.h>
25#include <linux/interrupt.h>
26#include <linux/cpu.h>
27#include <linux/stop_machine.h>
28#include <linux/time.h>
29#include <linux/device.h>
30#include <linux/delay.h>
31#include <linux/init.h>
32#include <linux/smp.h>
33#include <linux/types.h>
34#include <linux/profile.h>
35#include <linux/timex.h>
36#include <linux/notifier.h>
37#include <linux/timekeeper_internal.h>
38#include <linux/clockchips.h>
39#include <linux/gfp.h>
40#include <linux/kprobes.h>
41#include <asm/uaccess.h>
42#include <asm/delay.h>
43#include <asm/div64.h>
44#include <asm/vdso.h>
45#include <asm/irq.h>
46#include <asm/irq_regs.h>
47#include <asm/vtimer.h>
48#include <asm/etr.h>
49#include <asm/cio.h>
50#include "entry.h"
51
52/* change this if you have some constant time drift */
53#define USECS_PER_JIFFY     ((unsigned long) 1000000/HZ)
54#define CLK_TICKS_PER_JIFFY ((unsigned long) USECS_PER_JIFFY << 12)
55
56u64 sched_clock_base_cc = -1;	/* Force to data section. */
57EXPORT_SYMBOL_GPL(sched_clock_base_cc);
58
59static DEFINE_PER_CPU(struct clock_event_device, comparators);
60
61ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
62EXPORT_SYMBOL(s390_epoch_delta_notifier);
63
64/*
65 * Scheduler clock - returns current time in nanosec units.
66 */
67unsigned long long notrace sched_clock(void)
68{
69	return tod_to_ns(get_tod_clock_monotonic());
70}
71NOKPROBE_SYMBOL(sched_clock);
72
73/*
74 * Monotonic_clock - returns # of nanoseconds passed since time_init()
75 */
76unsigned long long monotonic_clock(void)
77{
78	return sched_clock();
79}
80EXPORT_SYMBOL(monotonic_clock);
81
82void tod_to_timeval(__u64 todval, struct timespec64 *xt)
83{
84	unsigned long long sec;
85
86	sec = todval >> 12;
87	do_div(sec, 1000000);
88	xt->tv_sec = sec;
89	todval -= (sec * 1000000) << 12;
90	xt->tv_nsec = ((todval * 1000) >> 12);
91}
92EXPORT_SYMBOL(tod_to_timeval);
93
94void clock_comparator_work(void)
95{
96	struct clock_event_device *cd;
97
98	S390_lowcore.clock_comparator = -1ULL;
99	cd = this_cpu_ptr(&comparators);
100	cd->event_handler(cd);
101}
102
103/*
104 * Fixup the clock comparator.
105 */
106static void fixup_clock_comparator(unsigned long long delta)
107{
108	/* If nobody is waiting there's nothing to fix. */
109	if (S390_lowcore.clock_comparator == -1ULL)
110		return;
111	S390_lowcore.clock_comparator += delta;
112	set_clock_comparator(S390_lowcore.clock_comparator);
113}
114
115static int s390_next_event(unsigned long delta,
116			   struct clock_event_device *evt)
117{
118	S390_lowcore.clock_comparator = get_tod_clock() + delta;
119	set_clock_comparator(S390_lowcore.clock_comparator);
120	return 0;
121}
122
123/*
124 * Set up lowcore and control register of the current cpu to
125 * enable TOD clock and clock comparator interrupts.
126 */
127void init_cpu_timer(void)
128{
129	struct clock_event_device *cd;
130	int cpu;
131
132	S390_lowcore.clock_comparator = -1ULL;
133	set_clock_comparator(S390_lowcore.clock_comparator);
134
135	cpu = smp_processor_id();
136	cd = &per_cpu(comparators, cpu);
137	cd->name		= "comparator";
138	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
139	cd->mult		= 16777;
140	cd->shift		= 12;
141	cd->min_delta_ns	= 1;
142	cd->max_delta_ns	= LONG_MAX;
143	cd->rating		= 400;
144	cd->cpumask		= cpumask_of(cpu);
145	cd->set_next_event	= s390_next_event;
146
147	clockevents_register_device(cd);
148
149	/* Enable clock comparator timer interrupt. */
150	__ctl_set_bit(0,11);
151
152	/* Always allow the timing alert external interrupt. */
153	__ctl_set_bit(0, 4);
154}
155
156static void clock_comparator_interrupt(struct ext_code ext_code,
157				       unsigned int param32,
158				       unsigned long param64)
159{
160	inc_irq_stat(IRQEXT_CLK);
161	if (S390_lowcore.clock_comparator == -1ULL)
162		set_clock_comparator(S390_lowcore.clock_comparator);
163}
164
165static void etr_timing_alert(struct etr_irq_parm *);
166static void stp_timing_alert(struct stp_irq_parm *);
167
168static void timing_alert_interrupt(struct ext_code ext_code,
169				   unsigned int param32, unsigned long param64)
170{
171	inc_irq_stat(IRQEXT_TLA);
172	if (param32 & 0x00c40000)
173		etr_timing_alert((struct etr_irq_parm *) &param32);
174	if (param32 & 0x00038000)
175		stp_timing_alert((struct stp_irq_parm *) &param32);
176}
177
178static void etr_reset(void);
179static void stp_reset(void);
180
181void read_persistent_clock64(struct timespec64 *ts)
182{
183	tod_to_timeval(get_tod_clock() - TOD_UNIX_EPOCH, ts);
184}
185
186void read_boot_clock64(struct timespec64 *ts)
187{
188	tod_to_timeval(sched_clock_base_cc - TOD_UNIX_EPOCH, ts);
189}
190
191static cycle_t read_tod_clock(struct clocksource *cs)
192{
193	return get_tod_clock();
194}
195
196static struct clocksource clocksource_tod = {
197	.name		= "tod",
198	.rating		= 400,
199	.read		= read_tod_clock,
200	.mask		= -1ULL,
201	.mult		= 1000,
202	.shift		= 12,
203	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
204};
205
206struct clocksource * __init clocksource_default_clock(void)
207{
208	return &clocksource_tod;
209}
210
211void update_vsyscall(struct timekeeper *tk)
212{
213	u64 nsecps;
214
215	if (tk->tkr_mono.clock != &clocksource_tod)
216		return;
217
218	/* Make userspace gettimeofday spin until we're done. */
219	++vdso_data->tb_update_count;
220	smp_wmb();
221	vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
222	vdso_data->xtime_clock_sec = tk->xtime_sec;
223	vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
224	vdso_data->wtom_clock_sec =
225		tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
226	vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
227		+ ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
228	nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
229	while (vdso_data->wtom_clock_nsec >= nsecps) {
230		vdso_data->wtom_clock_nsec -= nsecps;
231		vdso_data->wtom_clock_sec++;
232	}
233
234	vdso_data->xtime_coarse_sec = tk->xtime_sec;
235	vdso_data->xtime_coarse_nsec =
236		(long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
237	vdso_data->wtom_coarse_sec =
238		vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
239	vdso_data->wtom_coarse_nsec =
240		vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
241	while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
242		vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
243		vdso_data->wtom_coarse_sec++;
244	}
245
246	vdso_data->tk_mult = tk->tkr_mono.mult;
247	vdso_data->tk_shift = tk->tkr_mono.shift;
248	smp_wmb();
249	++vdso_data->tb_update_count;
250}
251
252extern struct timezone sys_tz;
253
254void update_vsyscall_tz(void)
255{
256	/* Make userspace gettimeofday spin until we're done. */
257	++vdso_data->tb_update_count;
258	smp_wmb();
259	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
260	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
261	smp_wmb();
262	++vdso_data->tb_update_count;
263}
264
265/*
266 * Initialize the TOD clock and the CPU timer of
267 * the boot cpu.
268 */
269void __init time_init(void)
270{
271	/* Reset time synchronization interfaces. */
272	etr_reset();
273	stp_reset();
274
275	/* request the clock comparator external interrupt */
276	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
277		panic("Couldn't request external interrupt 0x1004");
278
279	/* request the timing alert external interrupt */
280	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
281		panic("Couldn't request external interrupt 0x1406");
282
283	if (__clocksource_register(&clocksource_tod) != 0)
284		panic("Could not register TOD clock source");
285
286	/* Enable TOD clock interrupts on the boot cpu. */
287	init_cpu_timer();
288
289	/* Enable cpu timer interrupts on the boot cpu. */
290	vtime_init();
291}
292
293/*
294 * The time is "clock". old is what we think the time is.
295 * Adjust the value by a multiple of jiffies and add the delta to ntp.
296 * "delay" is an approximation how long the synchronization took. If
297 * the time correction is positive, then "delay" is subtracted from
298 * the time difference and only the remaining part is passed to ntp.
299 */
300static unsigned long long adjust_time(unsigned long long old,
301				      unsigned long long clock,
302				      unsigned long long delay)
303{
304	unsigned long long delta, ticks;
305	struct timex adjust;
306
307	if (clock > old) {
308		/* It is later than we thought. */
309		delta = ticks = clock - old;
310		delta = ticks = (delta < delay) ? 0 : delta - delay;
311		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
312		adjust.offset = ticks * (1000000 / HZ);
313	} else {
314		/* It is earlier than we thought. */
315		delta = ticks = old - clock;
316		delta -= do_div(ticks, CLK_TICKS_PER_JIFFY);
317		delta = -delta;
318		adjust.offset = -ticks * (1000000 / HZ);
319	}
320	sched_clock_base_cc += delta;
321	if (adjust.offset != 0) {
322		pr_notice("The ETR interface has adjusted the clock "
323			  "by %li microseconds\n", adjust.offset);
324		adjust.modes = ADJ_OFFSET_SINGLESHOT;
325		do_adjtimex(&adjust);
326	}
327	return delta;
328}
329
330static DEFINE_PER_CPU(atomic_t, clock_sync_word);
331static DEFINE_MUTEX(clock_sync_mutex);
332static unsigned long clock_sync_flags;
333
334#define CLOCK_SYNC_HAS_ETR	0
335#define CLOCK_SYNC_HAS_STP	1
336#define CLOCK_SYNC_ETR		2
337#define CLOCK_SYNC_STP		3
338
339/*
340 * The synchronous get_clock function. It will write the current clock
341 * value to the clock pointer and return 0 if the clock is in sync with
342 * the external time source. If the clock mode is local it will return
343 * -EOPNOTSUPP and -EAGAIN if the clock is not in sync with the external
344 * reference.
345 */
346int get_sync_clock(unsigned long long *clock)
347{
348	atomic_t *sw_ptr;
349	unsigned int sw0, sw1;
350
351	sw_ptr = &get_cpu_var(clock_sync_word);
352	sw0 = atomic_read(sw_ptr);
353	*clock = get_tod_clock();
354	sw1 = atomic_read(sw_ptr);
355	put_cpu_var(clock_sync_word);
356	if (sw0 == sw1 && (sw0 & 0x80000000U))
357		/* Success: time is in sync. */
358		return 0;
359	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags) &&
360	    !test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
361		return -EOPNOTSUPP;
362	if (!test_bit(CLOCK_SYNC_ETR, &clock_sync_flags) &&
363	    !test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
364		return -EACCES;
365	return -EAGAIN;
366}
367EXPORT_SYMBOL(get_sync_clock);
368
369/*
370 * Make get_sync_clock return -EAGAIN.
371 */
372static void disable_sync_clock(void *dummy)
373{
374	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
375	/*
376	 * Clear the in-sync bit 2^31. All get_sync_clock calls will
377	 * fail until the sync bit is turned back on. In addition
378	 * increase the "sequence" counter to avoid the race of an
379	 * etr event and the complete recovery against get_sync_clock.
380	 */
381	atomic_andnot(0x80000000, sw_ptr);
382	atomic_inc(sw_ptr);
383}
384
385/*
386 * Make get_sync_clock return 0 again.
387 * Needs to be called from a context disabled for preemption.
388 */
389static void enable_sync_clock(void)
390{
391	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
392	atomic_or(0x80000000, sw_ptr);
393}
394
395/*
396 * Function to check if the clock is in sync.
397 */
398static inline int check_sync_clock(void)
399{
400	atomic_t *sw_ptr;
401	int rc;
402
403	sw_ptr = &get_cpu_var(clock_sync_word);
404	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
405	put_cpu_var(clock_sync_word);
406	return rc;
407}
408
409/* Single threaded workqueue used for etr and stp sync events */
410static struct workqueue_struct *time_sync_wq;
411
412static void __init time_init_wq(void)
413{
414	if (time_sync_wq)
415		return;
416	time_sync_wq = create_singlethread_workqueue("timesync");
417}
418
419/*
420 * External Time Reference (ETR) code.
421 */
422static int etr_port0_online;
423static int etr_port1_online;
424static int etr_steai_available;
425
426static int __init early_parse_etr(char *p)
427{
428	if (strncmp(p, "off", 3) == 0)
429		etr_port0_online = etr_port1_online = 0;
430	else if (strncmp(p, "port0", 5) == 0)
431		etr_port0_online = 1;
432	else if (strncmp(p, "port1", 5) == 0)
433		etr_port1_online = 1;
434	else if (strncmp(p, "on", 2) == 0)
435		etr_port0_online = etr_port1_online = 1;
436	return 0;
437}
438early_param("etr", early_parse_etr);
439
440enum etr_event {
441	ETR_EVENT_PORT0_CHANGE,
442	ETR_EVENT_PORT1_CHANGE,
443	ETR_EVENT_PORT_ALERT,
444	ETR_EVENT_SYNC_CHECK,
445	ETR_EVENT_SWITCH_LOCAL,
446	ETR_EVENT_UPDATE,
447};
448
449/*
450 * Valid bit combinations of the eacr register are (x = don't care):
451 * e0 e1 dp p0 p1 ea es sl
452 *  0  0  x  0	0  0  0  0  initial, disabled state
453 *  0  0  x  0	1  1  0  0  port 1 online
454 *  0  0  x  1	0  1  0  0  port 0 online
455 *  0  0  x  1	1  1  0  0  both ports online
456 *  0  1  x  0	1  1  0  0  port 1 online and usable, ETR or PPS mode
457 *  0  1  x  0	1  1  0  1  port 1 online, usable and ETR mode
458 *  0  1  x  0	1  1  1  0  port 1 online, usable, PPS mode, in-sync
459 *  0  1  x  0	1  1  1  1  port 1 online, usable, ETR mode, in-sync
460 *  0  1  x  1	1  1  0  0  both ports online, port 1 usable
461 *  0  1  x  1	1  1  1  0  both ports online, port 1 usable, PPS mode, in-sync
462 *  0  1  x  1	1  1  1  1  both ports online, port 1 usable, ETR mode, in-sync
463 *  1  0  x  1	0  1  0  0  port 0 online and usable, ETR or PPS mode
464 *  1  0  x  1	0  1  0  1  port 0 online, usable and ETR mode
465 *  1  0  x  1	0  1  1  0  port 0 online, usable, PPS mode, in-sync
466 *  1  0  x  1	0  1  1  1  port 0 online, usable, ETR mode, in-sync
467 *  1  0  x  1	1  1  0  0  both ports online, port 0 usable
468 *  1  0  x  1	1  1  1  0  both ports online, port 0 usable, PPS mode, in-sync
469 *  1  0  x  1	1  1  1  1  both ports online, port 0 usable, ETR mode, in-sync
470 *  1  1  x  1	1  1  1  0  both ports online & usable, ETR, in-sync
471 *  1  1  x  1	1  1  1  1  both ports online & usable, ETR, in-sync
472 */
473static struct etr_eacr etr_eacr;
474static u64 etr_tolec;			/* time of last eacr update */
475static struct etr_aib etr_port0;
476static int etr_port0_uptodate;
477static struct etr_aib etr_port1;
478static int etr_port1_uptodate;
479static unsigned long etr_events;
480static struct timer_list etr_timer;
481
482static void etr_timeout(unsigned long dummy);
483static void etr_work_fn(struct work_struct *work);
484static DEFINE_MUTEX(etr_work_mutex);
485static DECLARE_WORK(etr_work, etr_work_fn);
486
487/*
488 * Reset ETR attachment.
489 */
490static void etr_reset(void)
491{
492	etr_eacr =  (struct etr_eacr) {
493		.e0 = 0, .e1 = 0, ._pad0 = 4, .dp = 0,
494		.p0 = 0, .p1 = 0, ._pad1 = 0, .ea = 0,
495		.es = 0, .sl = 0 };
496	if (etr_setr(&etr_eacr) == 0) {
497		etr_tolec = get_tod_clock();
498		set_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags);
499		if (etr_port0_online && etr_port1_online)
500			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
501	} else if (etr_port0_online || etr_port1_online) {
502		pr_warning("The real or virtual hardware system does "
503			   "not provide an ETR interface\n");
504		etr_port0_online = etr_port1_online = 0;
505	}
506}
507
508static int __init etr_init(void)
509{
510	struct etr_aib aib;
511
512	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
513		return 0;
514	time_init_wq();
515	/* Check if this machine has the steai instruction. */
516	if (etr_steai(&aib, ETR_STEAI_STEPPING_PORT) == 0)
517		etr_steai_available = 1;
518	setup_timer(&etr_timer, etr_timeout, 0UL);
519	if (etr_port0_online) {
520		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
521		queue_work(time_sync_wq, &etr_work);
522	}
523	if (etr_port1_online) {
524		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
525		queue_work(time_sync_wq, &etr_work);
526	}
527	return 0;
528}
529
530arch_initcall(etr_init);
531
532/*
533 * Two sorts of ETR machine checks. The architecture reads:
534 * "When a machine-check niterruption occurs and if a switch-to-local or
535 *  ETR-sync-check interrupt request is pending but disabled, this pending
536 *  disabled interruption request is indicated and is cleared".
537 * Which means that we can get etr_switch_to_local events from the machine
538 * check handler although the interruption condition is disabled. Lovely..
539 */
540
541/*
542 * Switch to local machine check. This is called when the last usable
543 * ETR port goes inactive. After switch to local the clock is not in sync.
544 */
545int etr_switch_to_local(void)
546{
547	if (!etr_eacr.sl)
548		return 0;
549	disable_sync_clock(NULL);
550	if (!test_and_set_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events)) {
551		etr_eacr.es = etr_eacr.sl = 0;
552		etr_setr(&etr_eacr);
553		return 1;
554	}
555	return 0;
556}
557
558/*
559 * ETR sync check machine check. This is called when the ETR OTE and the
560 * local clock OTE are farther apart than the ETR sync check tolerance.
561 * After a ETR sync check the clock is not in sync. The machine check
562 * is broadcasted to all cpus at the same time.
563 */
564int etr_sync_check(void)
565{
566	if (!etr_eacr.es)
567		return 0;
568	disable_sync_clock(NULL);
569	if (!test_and_set_bit(ETR_EVENT_SYNC_CHECK, &etr_events)) {
570		etr_eacr.es = 0;
571		etr_setr(&etr_eacr);
572		return 1;
573	}
574	return 0;
575}
576
577void etr_queue_work(void)
578{
579	queue_work(time_sync_wq, &etr_work);
580}
581
582/*
583 * ETR timing alert. There are two causes:
584 * 1) port state change, check the usability of the port
585 * 2) port alert, one of the ETR-data-validity bits (v1-v2 bits of the
586 *    sldr-status word) or ETR-data word 1 (edf1) or ETR-data word 3 (edf3)
587 *    or ETR-data word 4 (edf4) has changed.
588 */
589static void etr_timing_alert(struct etr_irq_parm *intparm)
590{
591	if (intparm->pc0)
592		/* ETR port 0 state change. */
593		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
594	if (intparm->pc1)
595		/* ETR port 1 state change. */
596		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
597	if (intparm->eai)
598		/*
599		 * ETR port alert on either port 0, 1 or both.
600		 * Both ports are not up-to-date now.
601		 */
602		set_bit(ETR_EVENT_PORT_ALERT, &etr_events);
603	queue_work(time_sync_wq, &etr_work);
604}
605
606static void etr_timeout(unsigned long dummy)
607{
608	set_bit(ETR_EVENT_UPDATE, &etr_events);
609	queue_work(time_sync_wq, &etr_work);
610}
611
612/*
613 * Check if the etr mode is pss.
614 */
615static inline int etr_mode_is_pps(struct etr_eacr eacr)
616{
617	return eacr.es && !eacr.sl;
618}
619
620/*
621 * Check if the etr mode is etr.
622 */
623static inline int etr_mode_is_etr(struct etr_eacr eacr)
624{
625	return eacr.es && eacr.sl;
626}
627
628/*
629 * Check if the port can be used for TOD synchronization.
630 * For PPS mode the port has to receive OTEs. For ETR mode
631 * the port has to receive OTEs, the ETR stepping bit has to
632 * be zero and the validity bits for data frame 1, 2, and 3
633 * have to be 1.
634 */
635static int etr_port_valid(struct etr_aib *aib, int port)
636{
637	unsigned int psc;
638
639	/* Check that this port is receiving OTEs. */
640	if (aib->tsp == 0)
641		return 0;
642
643	psc = port ? aib->esw.psc1 : aib->esw.psc0;
644	if (psc == etr_lpsc_pps_mode)
645		return 1;
646	if (psc == etr_lpsc_operational_step)
647		return !aib->esw.y && aib->slsw.v1 &&
648			aib->slsw.v2 && aib->slsw.v3;
649	return 0;
650}
651
652/*
653 * Check if two ports are on the same network.
654 */
655static int etr_compare_network(struct etr_aib *aib1, struct etr_aib *aib2)
656{
657	// FIXME: any other fields we have to compare?
658	return aib1->edf1.net_id == aib2->edf1.net_id;
659}
660
661/*
662 * Wrapper for etr_stei that converts physical port states
663 * to logical port states to be consistent with the output
664 * of stetr (see etr_psc vs. etr_lpsc).
665 */
666static void etr_steai_cv(struct etr_aib *aib, unsigned int func)
667{
668	BUG_ON(etr_steai(aib, func) != 0);
669	/* Convert port state to logical port state. */
670	if (aib->esw.psc0 == 1)
671		aib->esw.psc0 = 2;
672	else if (aib->esw.psc0 == 0 && aib->esw.p == 0)
673		aib->esw.psc0 = 1;
674	if (aib->esw.psc1 == 1)
675		aib->esw.psc1 = 2;
676	else if (aib->esw.psc1 == 0 && aib->esw.p == 1)
677		aib->esw.psc1 = 1;
678}
679
680/*
681 * Check if the aib a2 is still connected to the same attachment as
682 * aib a1, the etv values differ by one and a2 is valid.
683 */
684static int etr_aib_follows(struct etr_aib *a1, struct etr_aib *a2, int p)
685{
686	int state_a1, state_a2;
687
688	/* Paranoia check: e0/e1 should better be the same. */
689	if (a1->esw.eacr.e0 != a2->esw.eacr.e0 ||
690	    a1->esw.eacr.e1 != a2->esw.eacr.e1)
691		return 0;
692
693	/* Still connected to the same etr ? */
694	state_a1 = p ? a1->esw.psc1 : a1->esw.psc0;
695	state_a2 = p ? a2->esw.psc1 : a2->esw.psc0;
696	if (state_a1 == etr_lpsc_operational_step) {
697		if (state_a2 != etr_lpsc_operational_step ||
698		    a1->edf1.net_id != a2->edf1.net_id ||
699		    a1->edf1.etr_id != a2->edf1.etr_id ||
700		    a1->edf1.etr_pn != a2->edf1.etr_pn)
701			return 0;
702	} else if (state_a2 != etr_lpsc_pps_mode)
703		return 0;
704
705	/* The ETV value of a2 needs to be ETV of a1 + 1. */
706	if (a1->edf2.etv + 1 != a2->edf2.etv)
707		return 0;
708
709	if (!etr_port_valid(a2, p))
710		return 0;
711
712	return 1;
713}
714
715struct clock_sync_data {
716	atomic_t cpus;
717	int in_sync;
718	unsigned long long fixup_cc;
719	int etr_port;
720	struct etr_aib *etr_aib;
721};
722
723static void clock_sync_cpu(struct clock_sync_data *sync)
724{
725	atomic_dec(&sync->cpus);
726	enable_sync_clock();
727	/*
728	 * This looks like a busy wait loop but it isn't. etr_sync_cpus
729	 * is called on all other cpus while the TOD clocks is stopped.
730	 * __udelay will stop the cpu on an enabled wait psw until the
731	 * TOD is running again.
732	 */
733	while (sync->in_sync == 0) {
734		__udelay(1);
735		/*
736		 * A different cpu changes *in_sync. Therefore use
737		 * barrier() to force memory access.
738		 */
739		barrier();
740	}
741	if (sync->in_sync != 1)
742		/* Didn't work. Clear per-cpu in sync bit again. */
743		disable_sync_clock(NULL);
744	/*
745	 * This round of TOD syncing is done. Set the clock comparator
746	 * to the next tick and let the processor continue.
747	 */
748	fixup_clock_comparator(sync->fixup_cc);
749}
750
751/*
752 * Sync the TOD clock using the port referred to by aibp. This port
753 * has to be enabled and the other port has to be disabled. The
754 * last eacr update has to be more than 1.6 seconds in the past.
755 */
756static int etr_sync_clock(void *data)
757{
758	static int first;
759	unsigned long long clock, old_clock, clock_delta, delay, delta;
760	struct clock_sync_data *etr_sync;
761	struct etr_aib *sync_port, *aib;
762	int port;
763	int rc;
764
765	etr_sync = data;
766
767	if (xchg(&first, 1) == 1) {
768		/* Slave */
769		clock_sync_cpu(etr_sync);
770		return 0;
771	}
772
773	/* Wait until all other cpus entered the sync function. */
774	while (atomic_read(&etr_sync->cpus) != 0)
775		cpu_relax();
776
777	port = etr_sync->etr_port;
778	aib = etr_sync->etr_aib;
779	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
780	enable_sync_clock();
781
782	/* Set clock to next OTE. */
783	__ctl_set_bit(14, 21);
784	__ctl_set_bit(0, 29);
785	clock = ((unsigned long long) (aib->edf2.etv + 1)) << 32;
786	old_clock = get_tod_clock();
787	if (set_tod_clock(clock) == 0) {
788		__udelay(1);	/* Wait for the clock to start. */
789		__ctl_clear_bit(0, 29);
790		__ctl_clear_bit(14, 21);
791		etr_stetr(aib);
792		/* Adjust Linux timing variables. */
793		delay = (unsigned long long)
794			(aib->edf2.etv - sync_port->edf2.etv) << 32;
795		delta = adjust_time(old_clock, clock, delay);
796		clock_delta = clock - old_clock;
797		atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0,
798					   &clock_delta);
799		etr_sync->fixup_cc = delta;
800		fixup_clock_comparator(delta);
801		/* Verify that the clock is properly set. */
802		if (!etr_aib_follows(sync_port, aib, port)) {
803			/* Didn't work. */
804			disable_sync_clock(NULL);
805			etr_sync->in_sync = -EAGAIN;
806			rc = -EAGAIN;
807		} else {
808			etr_sync->in_sync = 1;
809			rc = 0;
810		}
811	} else {
812		/* Could not set the clock ?!? */
813		__ctl_clear_bit(0, 29);
814		__ctl_clear_bit(14, 21);
815		disable_sync_clock(NULL);
816		etr_sync->in_sync = -EAGAIN;
817		rc = -EAGAIN;
818	}
819	xchg(&first, 0);
820	return rc;
821}
822
823static int etr_sync_clock_stop(struct etr_aib *aib, int port)
824{
825	struct clock_sync_data etr_sync;
826	struct etr_aib *sync_port;
827	int follows;
828	int rc;
829
830	/* Check if the current aib is adjacent to the sync port aib. */
831	sync_port = (port == 0) ? &etr_port0 : &etr_port1;
832	follows = etr_aib_follows(sync_port, aib, port);
833	memcpy(sync_port, aib, sizeof(*aib));
834	if (!follows)
835		return -EAGAIN;
836	memset(&etr_sync, 0, sizeof(etr_sync));
837	etr_sync.etr_aib = aib;
838	etr_sync.etr_port = port;
839	get_online_cpus();
840	atomic_set(&etr_sync.cpus, num_online_cpus() - 1);
841	rc = stop_machine(etr_sync_clock, &etr_sync, cpu_online_mask);
842	put_online_cpus();
843	return rc;
844}
845
846/*
847 * Handle the immediate effects of the different events.
848 * The port change event is used for online/offline changes.
849 */
850static struct etr_eacr etr_handle_events(struct etr_eacr eacr)
851{
852	if (test_and_clear_bit(ETR_EVENT_SYNC_CHECK, &etr_events))
853		eacr.es = 0;
854	if (test_and_clear_bit(ETR_EVENT_SWITCH_LOCAL, &etr_events))
855		eacr.es = eacr.sl = 0;
856	if (test_and_clear_bit(ETR_EVENT_PORT_ALERT, &etr_events))
857		etr_port0_uptodate = etr_port1_uptodate = 0;
858
859	if (test_and_clear_bit(ETR_EVENT_PORT0_CHANGE, &etr_events)) {
860		if (eacr.e0)
861			/*
862			 * Port change of an enabled port. We have to
863			 * assume that this can have caused an stepping
864			 * port switch.
865			 */
866			etr_tolec = get_tod_clock();
867		eacr.p0 = etr_port0_online;
868		if (!eacr.p0)
869			eacr.e0 = 0;
870		etr_port0_uptodate = 0;
871	}
872	if (test_and_clear_bit(ETR_EVENT_PORT1_CHANGE, &etr_events)) {
873		if (eacr.e1)
874			/*
875			 * Port change of an enabled port. We have to
876			 * assume that this can have caused an stepping
877			 * port switch.
878			 */
879			etr_tolec = get_tod_clock();
880		eacr.p1 = etr_port1_online;
881		if (!eacr.p1)
882			eacr.e1 = 0;
883		etr_port1_uptodate = 0;
884	}
885	clear_bit(ETR_EVENT_UPDATE, &etr_events);
886	return eacr;
887}
888
889/*
890 * Set up a timer that expires after the etr_tolec + 1.6 seconds if
891 * one of the ports needs an update.
892 */
893static void etr_set_tolec_timeout(unsigned long long now)
894{
895	unsigned long micros;
896
897	if ((!etr_eacr.p0 || etr_port0_uptodate) &&
898	    (!etr_eacr.p1 || etr_port1_uptodate))
899		return;
900	micros = (now > etr_tolec) ? ((now - etr_tolec) >> 12) : 0;
901	micros = (micros > 1600000) ? 0 : 1600000 - micros;
902	mod_timer(&etr_timer, jiffies + (micros * HZ) / 1000000 + 1);
903}
904
905/*
906 * Set up a time that expires after 1/2 second.
907 */
908static void etr_set_sync_timeout(void)
909{
910	mod_timer(&etr_timer, jiffies + HZ/2);
911}
912
913/*
914 * Update the aib information for one or both ports.
915 */
916static struct etr_eacr etr_handle_update(struct etr_aib *aib,
917					 struct etr_eacr eacr)
918{
919	/* With both ports disabled the aib information is useless. */
920	if (!eacr.e0 && !eacr.e1)
921		return eacr;
922
923	/* Update port0 or port1 with aib stored in etr_work_fn. */
924	if (aib->esw.q == 0) {
925		/* Information for port 0 stored. */
926		if (eacr.p0 && !etr_port0_uptodate) {
927			etr_port0 = *aib;
928			if (etr_port0_online)
929				etr_port0_uptodate = 1;
930		}
931	} else {
932		/* Information for port 1 stored. */
933		if (eacr.p1 && !etr_port1_uptodate) {
934			etr_port1 = *aib;
935			if (etr_port0_online)
936				etr_port1_uptodate = 1;
937		}
938	}
939
940	/*
941	 * Do not try to get the alternate port aib if the clock
942	 * is not in sync yet.
943	 */
944	if (!eacr.es || !check_sync_clock())
945		return eacr;
946
947	/*
948	 * If steai is available we can get the information about
949	 * the other port immediately. If only stetr is available the
950	 * data-port bit toggle has to be used.
951	 */
952	if (etr_steai_available) {
953		if (eacr.p0 && !etr_port0_uptodate) {
954			etr_steai_cv(&etr_port0, ETR_STEAI_PORT_0);
955			etr_port0_uptodate = 1;
956		}
957		if (eacr.p1 && !etr_port1_uptodate) {
958			etr_steai_cv(&etr_port1, ETR_STEAI_PORT_1);
959			etr_port1_uptodate = 1;
960		}
961	} else {
962		/*
963		 * One port was updated above, if the other
964		 * port is not uptodate toggle dp bit.
965		 */
966		if ((eacr.p0 && !etr_port0_uptodate) ||
967		    (eacr.p1 && !etr_port1_uptodate))
968			eacr.dp ^= 1;
969		else
970			eacr.dp = 0;
971	}
972	return eacr;
973}
974
975/*
976 * Write new etr control register if it differs from the current one.
977 * Return 1 if etr_tolec has been updated as well.
978 */
979static void etr_update_eacr(struct etr_eacr eacr)
980{
981	int dp_changed;
982
983	if (memcmp(&etr_eacr, &eacr, sizeof(eacr)) == 0)
984		/* No change, return. */
985		return;
986	/*
987	 * The disable of an active port of the change of the data port
988	 * bit can/will cause a change in the data port.
989	 */
990	dp_changed = etr_eacr.e0 > eacr.e0 || etr_eacr.e1 > eacr.e1 ||
991		(etr_eacr.dp ^ eacr.dp) != 0;
992	etr_eacr = eacr;
993	etr_setr(&etr_eacr);
994	if (dp_changed)
995		etr_tolec = get_tod_clock();
996}
997
998/*
999 * ETR work. In this function you'll find the main logic. In
1000 * particular this is the only function that calls etr_update_eacr(),
1001 * it "controls" the etr control register.
1002 */
1003static void etr_work_fn(struct work_struct *work)
1004{
1005	unsigned long long now;
1006	struct etr_eacr eacr;
1007	struct etr_aib aib;
1008	int sync_port;
1009
1010	/* prevent multiple execution. */
1011	mutex_lock(&etr_work_mutex);
1012
1013	/* Create working copy of etr_eacr. */
1014	eacr = etr_eacr;
1015
1016	/* Check for the different events and their immediate effects. */
1017	eacr = etr_handle_events(eacr);
1018
1019	/* Check if ETR is supposed to be active. */
1020	eacr.ea = eacr.p0 || eacr.p1;
1021	if (!eacr.ea) {
1022		/* Both ports offline. Reset everything. */
1023		eacr.dp = eacr.es = eacr.sl = 0;
1024		on_each_cpu(disable_sync_clock, NULL, 1);
1025		del_timer_sync(&etr_timer);
1026		etr_update_eacr(eacr);
1027		goto out_unlock;
1028	}
1029
1030	/* Store aib to get the current ETR status word. */
1031	BUG_ON(etr_stetr(&aib) != 0);
1032	etr_port0.esw = etr_port1.esw = aib.esw;	/* Copy status word. */
1033	now = get_tod_clock();
1034
1035	/*
1036	 * Update the port information if the last stepping port change
1037	 * or data port change is older than 1.6 seconds.
1038	 */
1039	if (now >= etr_tolec + (1600000 << 12))
1040		eacr = etr_handle_update(&aib, eacr);
1041
1042	/*
1043	 * Select ports to enable. The preferred synchronization mode is PPS.
1044	 * If a port can be enabled depends on a number of things:
1045	 * 1) The port needs to be online and uptodate. A port is not
1046	 *    disabled just because it is not uptodate, but it is only
1047	 *    enabled if it is uptodate.
1048	 * 2) The port needs to have the same mode (pps / etr).
1049	 * 3) The port needs to be usable -> etr_port_valid() == 1
1050	 * 4) To enable the second port the clock needs to be in sync.
1051	 * 5) If both ports are useable and are ETR ports, the network id
1052	 *    has to be the same.
1053	 * The eacr.sl bit is used to indicate etr mode vs. pps mode.
1054	 */
1055	if (eacr.p0 && aib.esw.psc0 == etr_lpsc_pps_mode) {
1056		eacr.sl = 0;
1057		eacr.e0 = 1;
1058		if (!etr_mode_is_pps(etr_eacr))
1059			eacr.es = 0;
1060		if (!eacr.es || !eacr.p1 || aib.esw.psc1 != etr_lpsc_pps_mode)
1061			eacr.e1 = 0;
1062		// FIXME: uptodate checks ?
1063		else if (etr_port0_uptodate && etr_port1_uptodate)
1064			eacr.e1 = 1;
1065		sync_port = (etr_port0_uptodate &&
1066			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1067	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_pps_mode) {
1068		eacr.sl = 0;
1069		eacr.e0 = 0;
1070		eacr.e1 = 1;
1071		if (!etr_mode_is_pps(etr_eacr))
1072			eacr.es = 0;
1073		sync_port = (etr_port1_uptodate &&
1074			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1075	} else if (eacr.p0 && aib.esw.psc0 == etr_lpsc_operational_step) {
1076		eacr.sl = 1;
1077		eacr.e0 = 1;
1078		if (!etr_mode_is_etr(etr_eacr))
1079			eacr.es = 0;
1080		if (!eacr.es || !eacr.p1 ||
1081		    aib.esw.psc1 != etr_lpsc_operational_alt)
1082			eacr.e1 = 0;
1083		else if (etr_port0_uptodate && etr_port1_uptodate &&
1084			 etr_compare_network(&etr_port0, &etr_port1))
1085			eacr.e1 = 1;
1086		sync_port = (etr_port0_uptodate &&
1087			     etr_port_valid(&etr_port0, 0)) ? 0 : -1;
1088	} else if (eacr.p1 && aib.esw.psc1 == etr_lpsc_operational_step) {
1089		eacr.sl = 1;
1090		eacr.e0 = 0;
1091		eacr.e1 = 1;
1092		if (!etr_mode_is_etr(etr_eacr))
1093			eacr.es = 0;
1094		sync_port = (etr_port1_uptodate &&
1095			     etr_port_valid(&etr_port1, 1)) ? 1 : -1;
1096	} else {
1097		/* Both ports not usable. */
1098		eacr.es = eacr.sl = 0;
1099		sync_port = -1;
1100	}
1101
1102	/*
1103	 * If the clock is in sync just update the eacr and return.
1104	 * If there is no valid sync port wait for a port update.
1105	 */
1106	if ((eacr.es && check_sync_clock()) || sync_port < 0) {
1107		etr_update_eacr(eacr);
1108		etr_set_tolec_timeout(now);
1109		goto out_unlock;
1110	}
1111
1112	/*
1113	 * Prepare control register for clock syncing
1114	 * (reset data port bit, set sync check control.
1115	 */
1116	eacr.dp = 0;
1117	eacr.es = 1;
1118
1119	/*
1120	 * Update eacr and try to synchronize the clock. If the update
1121	 * of eacr caused a stepping port switch (or if we have to
1122	 * assume that a stepping port switch has occurred) or the
1123	 * clock syncing failed, reset the sync check control bit
1124	 * and set up a timer to try again after 0.5 seconds
1125	 */
1126	etr_update_eacr(eacr);
1127	if (now < etr_tolec + (1600000 << 12) ||
1128	    etr_sync_clock_stop(&aib, sync_port) != 0) {
1129		/* Sync failed. Try again in 1/2 second. */
1130		eacr.es = 0;
1131		etr_update_eacr(eacr);
1132		etr_set_sync_timeout();
1133	} else
1134		etr_set_tolec_timeout(now);
1135out_unlock:
1136	mutex_unlock(&etr_work_mutex);
1137}
1138
1139/*
1140 * Sysfs interface functions
1141 */
1142static struct bus_type etr_subsys = {
1143	.name		= "etr",
1144	.dev_name	= "etr",
1145};
1146
1147static struct device etr_port0_dev = {
1148	.id	= 0,
1149	.bus	= &etr_subsys,
1150};
1151
1152static struct device etr_port1_dev = {
1153	.id	= 1,
1154	.bus	= &etr_subsys,
1155};
1156
1157/*
1158 * ETR subsys attributes
1159 */
1160static ssize_t etr_stepping_port_show(struct device *dev,
1161					struct device_attribute *attr,
1162					char *buf)
1163{
1164	return sprintf(buf, "%i\n", etr_port0.esw.p);
1165}
1166
1167static DEVICE_ATTR(stepping_port, 0400, etr_stepping_port_show, NULL);
1168
1169static ssize_t etr_stepping_mode_show(struct device *dev,
1170					struct device_attribute *attr,
1171					char *buf)
1172{
1173	char *mode_str;
1174
1175	if (etr_mode_is_pps(etr_eacr))
1176		mode_str = "pps";
1177	else if (etr_mode_is_etr(etr_eacr))
1178		mode_str = "etr";
1179	else
1180		mode_str = "local";
1181	return sprintf(buf, "%s\n", mode_str);
1182}
1183
1184static DEVICE_ATTR(stepping_mode, 0400, etr_stepping_mode_show, NULL);
1185
1186/*
1187 * ETR port attributes
1188 */
1189static inline struct etr_aib *etr_aib_from_dev(struct device *dev)
1190{
1191	if (dev == &etr_port0_dev)
1192		return etr_port0_online ? &etr_port0 : NULL;
1193	else
1194		return etr_port1_online ? &etr_port1 : NULL;
1195}
1196
1197static ssize_t etr_online_show(struct device *dev,
1198				struct device_attribute *attr,
1199				char *buf)
1200{
1201	unsigned int online;
1202
1203	online = (dev == &etr_port0_dev) ? etr_port0_online : etr_port1_online;
1204	return sprintf(buf, "%i\n", online);
1205}
1206
1207static ssize_t etr_online_store(struct device *dev,
1208				struct device_attribute *attr,
1209				const char *buf, size_t count)
1210{
1211	unsigned int value;
1212
1213	value = simple_strtoul(buf, NULL, 0);
1214	if (value != 0 && value != 1)
1215		return -EINVAL;
1216	if (!test_bit(CLOCK_SYNC_HAS_ETR, &clock_sync_flags))
1217		return -EOPNOTSUPP;
1218	mutex_lock(&clock_sync_mutex);
1219	if (dev == &etr_port0_dev) {
1220		if (etr_port0_online == value)
1221			goto out;	/* Nothing to do. */
1222		etr_port0_online = value;
1223		if (etr_port0_online && etr_port1_online)
1224			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1225		else
1226			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1227		set_bit(ETR_EVENT_PORT0_CHANGE, &etr_events);
1228		queue_work(time_sync_wq, &etr_work);
1229	} else {
1230		if (etr_port1_online == value)
1231			goto out;	/* Nothing to do. */
1232		etr_port1_online = value;
1233		if (etr_port0_online && etr_port1_online)
1234			set_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1235		else
1236			clear_bit(CLOCK_SYNC_ETR, &clock_sync_flags);
1237		set_bit(ETR_EVENT_PORT1_CHANGE, &etr_events);
1238		queue_work(time_sync_wq, &etr_work);
1239	}
1240out:
1241	mutex_unlock(&clock_sync_mutex);
1242	return count;
1243}
1244
1245static DEVICE_ATTR(online, 0600, etr_online_show, etr_online_store);
1246
1247static ssize_t etr_stepping_control_show(struct device *dev,
1248					struct device_attribute *attr,
1249					char *buf)
1250{
1251	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1252		       etr_eacr.e0 : etr_eacr.e1);
1253}
1254
1255static DEVICE_ATTR(stepping_control, 0400, etr_stepping_control_show, NULL);
1256
1257static ssize_t etr_mode_code_show(struct device *dev,
1258				struct device_attribute *attr, char *buf)
1259{
1260	if (!etr_port0_online && !etr_port1_online)
1261		/* Status word is not uptodate if both ports are offline. */
1262		return -ENODATA;
1263	return sprintf(buf, "%i\n", (dev == &etr_port0_dev) ?
1264		       etr_port0.esw.psc0 : etr_port0.esw.psc1);
1265}
1266
1267static DEVICE_ATTR(state_code, 0400, etr_mode_code_show, NULL);
1268
1269static ssize_t etr_untuned_show(struct device *dev,
1270				struct device_attribute *attr, char *buf)
1271{
1272	struct etr_aib *aib = etr_aib_from_dev(dev);
1273
1274	if (!aib || !aib->slsw.v1)
1275		return -ENODATA;
1276	return sprintf(buf, "%i\n", aib->edf1.u);
1277}
1278
1279static DEVICE_ATTR(untuned, 0400, etr_untuned_show, NULL);
1280
1281static ssize_t etr_network_id_show(struct device *dev,
1282				struct device_attribute *attr, char *buf)
1283{
1284	struct etr_aib *aib = etr_aib_from_dev(dev);
1285
1286	if (!aib || !aib->slsw.v1)
1287		return -ENODATA;
1288	return sprintf(buf, "%i\n", aib->edf1.net_id);
1289}
1290
1291static DEVICE_ATTR(network, 0400, etr_network_id_show, NULL);
1292
1293static ssize_t etr_id_show(struct device *dev,
1294			struct device_attribute *attr, char *buf)
1295{
1296	struct etr_aib *aib = etr_aib_from_dev(dev);
1297
1298	if (!aib || !aib->slsw.v1)
1299		return -ENODATA;
1300	return sprintf(buf, "%i\n", aib->edf1.etr_id);
1301}
1302
1303static DEVICE_ATTR(id, 0400, etr_id_show, NULL);
1304
1305static ssize_t etr_port_number_show(struct device *dev,
1306			struct device_attribute *attr, char *buf)
1307{
1308	struct etr_aib *aib = etr_aib_from_dev(dev);
1309
1310	if (!aib || !aib->slsw.v1)
1311		return -ENODATA;
1312	return sprintf(buf, "%i\n", aib->edf1.etr_pn);
1313}
1314
1315static DEVICE_ATTR(port, 0400, etr_port_number_show, NULL);
1316
1317static ssize_t etr_coupled_show(struct device *dev,
1318			struct device_attribute *attr, char *buf)
1319{
1320	struct etr_aib *aib = etr_aib_from_dev(dev);
1321
1322	if (!aib || !aib->slsw.v3)
1323		return -ENODATA;
1324	return sprintf(buf, "%i\n", aib->edf3.c);
1325}
1326
1327static DEVICE_ATTR(coupled, 0400, etr_coupled_show, NULL);
1328
1329static ssize_t etr_local_time_show(struct device *dev,
1330			struct device_attribute *attr, char *buf)
1331{
1332	struct etr_aib *aib = etr_aib_from_dev(dev);
1333
1334	if (!aib || !aib->slsw.v3)
1335		return -ENODATA;
1336	return sprintf(buf, "%i\n", aib->edf3.blto);
1337}
1338
1339static DEVICE_ATTR(local_time, 0400, etr_local_time_show, NULL);
1340
1341static ssize_t etr_utc_offset_show(struct device *dev,
1342			struct device_attribute *attr, char *buf)
1343{
1344	struct etr_aib *aib = etr_aib_from_dev(dev);
1345
1346	if (!aib || !aib->slsw.v3)
1347		return -ENODATA;
1348	return sprintf(buf, "%i\n", aib->edf3.buo);
1349}
1350
1351static DEVICE_ATTR(utc_offset, 0400, etr_utc_offset_show, NULL);
1352
1353static struct device_attribute *etr_port_attributes[] = {
1354	&dev_attr_online,
1355	&dev_attr_stepping_control,
1356	&dev_attr_state_code,
1357	&dev_attr_untuned,
1358	&dev_attr_network,
1359	&dev_attr_id,
1360	&dev_attr_port,
1361	&dev_attr_coupled,
1362	&dev_attr_local_time,
1363	&dev_attr_utc_offset,
1364	NULL
1365};
1366
1367static int __init etr_register_port(struct device *dev)
1368{
1369	struct device_attribute **attr;
1370	int rc;
1371
1372	rc = device_register(dev);
1373	if (rc)
1374		goto out;
1375	for (attr = etr_port_attributes; *attr; attr++) {
1376		rc = device_create_file(dev, *attr);
1377		if (rc)
1378			goto out_unreg;
1379	}
1380	return 0;
1381out_unreg:
1382	for (; attr >= etr_port_attributes; attr--)
1383		device_remove_file(dev, *attr);
1384	device_unregister(dev);
1385out:
1386	return rc;
1387}
1388
1389static void __init etr_unregister_port(struct device *dev)
1390{
1391	struct device_attribute **attr;
1392
1393	for (attr = etr_port_attributes; *attr; attr++)
1394		device_remove_file(dev, *attr);
1395	device_unregister(dev);
1396}
1397
1398static int __init etr_init_sysfs(void)
1399{
1400	int rc;
1401
1402	rc = subsys_system_register(&etr_subsys, NULL);
1403	if (rc)
1404		goto out;
1405	rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1406	if (rc)
1407		goto out_unreg_subsys;
1408	rc = device_create_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1409	if (rc)
1410		goto out_remove_stepping_port;
1411	rc = etr_register_port(&etr_port0_dev);
1412	if (rc)
1413		goto out_remove_stepping_mode;
1414	rc = etr_register_port(&etr_port1_dev);
1415	if (rc)
1416		goto out_remove_port0;
1417	return 0;
1418
1419out_remove_port0:
1420	etr_unregister_port(&etr_port0_dev);
1421out_remove_stepping_mode:
1422	device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_mode);
1423out_remove_stepping_port:
1424	device_remove_file(etr_subsys.dev_root, &dev_attr_stepping_port);
1425out_unreg_subsys:
1426	bus_unregister(&etr_subsys);
1427out:
1428	return rc;
1429}
1430
1431device_initcall(etr_init_sysfs);
1432
1433/*
1434 * Server Time Protocol (STP) code.
1435 */
1436static int stp_online;
1437static struct stp_sstpi stp_info;
1438static void *stp_page;
1439
1440static void stp_work_fn(struct work_struct *work);
1441static DEFINE_MUTEX(stp_work_mutex);
1442static DECLARE_WORK(stp_work, stp_work_fn);
1443static struct timer_list stp_timer;
1444
1445static int __init early_parse_stp(char *p)
1446{
1447	if (strncmp(p, "off", 3) == 0)
1448		stp_online = 0;
1449	else if (strncmp(p, "on", 2) == 0)
1450		stp_online = 1;
1451	return 0;
1452}
1453early_param("stp", early_parse_stp);
1454
1455/*
1456 * Reset STP attachment.
1457 */
1458static void __init stp_reset(void)
1459{
1460	int rc;
1461
1462	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
1463	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1464	if (rc == 0)
1465		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
1466	else if (stp_online) {
1467		pr_warning("The real or virtual hardware system does "
1468			   "not provide an STP interface\n");
1469		free_page((unsigned long) stp_page);
1470		stp_page = NULL;
1471		stp_online = 0;
1472	}
1473}
1474
1475static void stp_timeout(unsigned long dummy)
1476{
1477	queue_work(time_sync_wq, &stp_work);
1478}
1479
1480static int __init stp_init(void)
1481{
1482	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1483		return 0;
1484	setup_timer(&stp_timer, stp_timeout, 0UL);
1485	time_init_wq();
1486	if (!stp_online)
1487		return 0;
1488	queue_work(time_sync_wq, &stp_work);
1489	return 0;
1490}
1491
1492arch_initcall(stp_init);
1493
1494/*
1495 * STP timing alert. There are three causes:
1496 * 1) timing status change
1497 * 2) link availability change
1498 * 3) time control parameter change
1499 * In all three cases we are only interested in the clock source state.
1500 * If a STP clock source is now available use it.
1501 */
1502static void stp_timing_alert(struct stp_irq_parm *intparm)
1503{
1504	if (intparm->tsc || intparm->lac || intparm->tcpc)
1505		queue_work(time_sync_wq, &stp_work);
1506}
1507
1508/*
1509 * STP sync check machine check. This is called when the timing state
1510 * changes from the synchronized state to the unsynchronized state.
1511 * After a STP sync check the clock is not in sync. The machine check
1512 * is broadcasted to all cpus at the same time.
1513 */
1514int stp_sync_check(void)
1515{
1516	disable_sync_clock(NULL);
1517	return 1;
1518}
1519
1520/*
1521 * STP island condition machine check. This is called when an attached
1522 * server  attempts to communicate over an STP link and the servers
1523 * have matching CTN ids and have a valid stratum-1 configuration
1524 * but the configurations do not match.
1525 */
1526int stp_island_check(void)
1527{
1528	disable_sync_clock(NULL);
1529	return 1;
1530}
1531
1532void stp_queue_work(void)
1533{
1534	queue_work(time_sync_wq, &stp_work);
1535}
1536
1537static int stp_sync_clock(void *data)
1538{
1539	static int first;
1540	unsigned long long old_clock, delta, new_clock, clock_delta;
1541	struct clock_sync_data *stp_sync;
1542	int rc;
1543
1544	stp_sync = data;
1545
1546	if (xchg(&first, 1) == 1) {
1547		/* Slave */
1548		clock_sync_cpu(stp_sync);
1549		return 0;
1550	}
1551
1552	/* Wait until all other cpus entered the sync function. */
1553	while (atomic_read(&stp_sync->cpus) != 0)
1554		cpu_relax();
1555
1556	enable_sync_clock();
1557
1558	rc = 0;
1559	if (stp_info.todoff[0] || stp_info.todoff[1] ||
1560	    stp_info.todoff[2] || stp_info.todoff[3] ||
1561	    stp_info.tmd != 2) {
1562		old_clock = get_tod_clock();
1563		rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0);
1564		if (rc == 0) {
1565			new_clock = get_tod_clock();
1566			delta = adjust_time(old_clock, new_clock, 0);
1567			clock_delta = new_clock - old_clock;
1568			atomic_notifier_call_chain(&s390_epoch_delta_notifier,
1569						   0, &clock_delta);
1570			fixup_clock_comparator(delta);
1571			rc = chsc_sstpi(stp_page, &stp_info,
1572					sizeof(struct stp_sstpi));
1573			if (rc == 0 && stp_info.tmd != 2)
1574				rc = -EAGAIN;
1575		}
1576	}
1577	if (rc) {
1578		disable_sync_clock(NULL);
1579		stp_sync->in_sync = -EAGAIN;
1580	} else
1581		stp_sync->in_sync = 1;
1582	xchg(&first, 0);
1583	return 0;
1584}
1585
1586/*
1587 * STP work. Check for the STP state and take over the clock
1588 * synchronization if the STP clock source is usable.
1589 */
1590static void stp_work_fn(struct work_struct *work)
1591{
1592	struct clock_sync_data stp_sync;
1593	int rc;
1594
1595	/* prevent multiple execution. */
1596	mutex_lock(&stp_work_mutex);
1597
1598	if (!stp_online) {
1599		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000);
1600		del_timer_sync(&stp_timer);
1601		goto out_unlock;
1602	}
1603
1604	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0);
1605	if (rc)
1606		goto out_unlock;
1607
1608	rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
1609	if (rc || stp_info.c == 0)
1610		goto out_unlock;
1611
1612	/* Skip synchronization if the clock is already in sync. */
1613	if (check_sync_clock())
1614		goto out_unlock;
1615
1616	memset(&stp_sync, 0, sizeof(stp_sync));
1617	get_online_cpus();
1618	atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
1619	stop_machine(stp_sync_clock, &stp_sync, cpu_online_mask);
1620	put_online_cpus();
1621
1622	if (!check_sync_clock())
1623		/*
1624		 * There is a usable clock but the synchonization failed.
1625		 * Retry after a second.
1626		 */
1627		mod_timer(&stp_timer, jiffies + HZ);
1628
1629out_unlock:
1630	mutex_unlock(&stp_work_mutex);
1631}
1632
1633/*
1634 * STP subsys sysfs interface functions
1635 */
1636static struct bus_type stp_subsys = {
1637	.name		= "stp",
1638	.dev_name	= "stp",
1639};
1640
1641static ssize_t stp_ctn_id_show(struct device *dev,
1642				struct device_attribute *attr,
1643				char *buf)
1644{
1645	if (!stp_online)
1646		return -ENODATA;
1647	return sprintf(buf, "%016llx\n",
1648		       *(unsigned long long *) stp_info.ctnid);
1649}
1650
1651static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
1652
1653static ssize_t stp_ctn_type_show(struct device *dev,
1654				struct device_attribute *attr,
1655				char *buf)
1656{
1657	if (!stp_online)
1658		return -ENODATA;
1659	return sprintf(buf, "%i\n", stp_info.ctn);
1660}
1661
1662static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
1663
1664static ssize_t stp_dst_offset_show(struct device *dev,
1665				   struct device_attribute *attr,
1666				   char *buf)
1667{
1668	if (!stp_online || !(stp_info.vbits & 0x2000))
1669		return -ENODATA;
1670	return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
1671}
1672
1673static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
1674
1675static ssize_t stp_leap_seconds_show(struct device *dev,
1676					struct device_attribute *attr,
1677					char *buf)
1678{
1679	if (!stp_online || !(stp_info.vbits & 0x8000))
1680		return -ENODATA;
1681	return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
1682}
1683
1684static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
1685
1686static ssize_t stp_stratum_show(struct device *dev,
1687				struct device_attribute *attr,
1688				char *buf)
1689{
1690	if (!stp_online)
1691		return -ENODATA;
1692	return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
1693}
1694
1695static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
1696
1697static ssize_t stp_time_offset_show(struct device *dev,
1698				struct device_attribute *attr,
1699				char *buf)
1700{
1701	if (!stp_online || !(stp_info.vbits & 0x0800))
1702		return -ENODATA;
1703	return sprintf(buf, "%i\n", (int) stp_info.tto);
1704}
1705
1706static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
1707
1708static ssize_t stp_time_zone_offset_show(struct device *dev,
1709				struct device_attribute *attr,
1710				char *buf)
1711{
1712	if (!stp_online || !(stp_info.vbits & 0x4000))
1713		return -ENODATA;
1714	return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
1715}
1716
1717static DEVICE_ATTR(time_zone_offset, 0400,
1718			 stp_time_zone_offset_show, NULL);
1719
1720static ssize_t stp_timing_mode_show(struct device *dev,
1721				struct device_attribute *attr,
1722				char *buf)
1723{
1724	if (!stp_online)
1725		return -ENODATA;
1726	return sprintf(buf, "%i\n", stp_info.tmd);
1727}
1728
1729static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
1730
1731static ssize_t stp_timing_state_show(struct device *dev,
1732				struct device_attribute *attr,
1733				char *buf)
1734{
1735	if (!stp_online)
1736		return -ENODATA;
1737	return sprintf(buf, "%i\n", stp_info.tst);
1738}
1739
1740static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
1741
1742static ssize_t stp_online_show(struct device *dev,
1743				struct device_attribute *attr,
1744				char *buf)
1745{
1746	return sprintf(buf, "%i\n", stp_online);
1747}
1748
1749static ssize_t stp_online_store(struct device *dev,
1750				struct device_attribute *attr,
1751				const char *buf, size_t count)
1752{
1753	unsigned int value;
1754
1755	value = simple_strtoul(buf, NULL, 0);
1756	if (value != 0 && value != 1)
1757		return -EINVAL;
1758	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
1759		return -EOPNOTSUPP;
1760	mutex_lock(&clock_sync_mutex);
1761	stp_online = value;
1762	if (stp_online)
1763		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1764	else
1765		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
1766	queue_work(time_sync_wq, &stp_work);
1767	mutex_unlock(&clock_sync_mutex);
1768	return count;
1769}
1770
1771/*
1772 * Can't use DEVICE_ATTR because the attribute should be named
1773 * stp/online but dev_attr_online already exists in this file ..
1774 */
1775static struct device_attribute dev_attr_stp_online = {
1776	.attr = { .name = "online", .mode = 0600 },
1777	.show	= stp_online_show,
1778	.store	= stp_online_store,
1779};
1780
1781static struct device_attribute *stp_attributes[] = {
1782	&dev_attr_ctn_id,
1783	&dev_attr_ctn_type,
1784	&dev_attr_dst_offset,
1785	&dev_attr_leap_seconds,
1786	&dev_attr_stp_online,
1787	&dev_attr_stratum,
1788	&dev_attr_time_offset,
1789	&dev_attr_time_zone_offset,
1790	&dev_attr_timing_mode,
1791	&dev_attr_timing_state,
1792	NULL
1793};
1794
1795static int __init stp_init_sysfs(void)
1796{
1797	struct device_attribute **attr;
1798	int rc;
1799
1800	rc = subsys_system_register(&stp_subsys, NULL);
1801	if (rc)
1802		goto out;
1803	for (attr = stp_attributes; *attr; attr++) {
1804		rc = device_create_file(stp_subsys.dev_root, *attr);
1805		if (rc)
1806			goto out_unreg;
1807	}
1808	return 0;
1809out_unreg:
1810	for (; attr >= stp_attributes; attr--)
1811		device_remove_file(stp_subsys.dev_root, *attr);
1812	bus_unregister(&stp_subsys);
1813out:
1814	return rc;
1815}
1816
1817device_initcall(stp_init_sysfs);
1818