1/*
2 *  S390 version
3 *    Copyright IBM Corp. 1999, 2000
4 *    Author(s): Hartmut Penner (hp@de.ibm.com)
5 *               Ulrich Weigand (weigand@de.ibm.com)
6 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7 *
8 *  Derived from "include/asm-i386/pgtable.h"
9 */
10
11#ifndef _ASM_S390_PGTABLE_H
12#define _ASM_S390_PGTABLE_H
13
14/*
15 * The Linux memory management assumes a three-level page table setup.
16 * For s390 64 bit we use up to four of the five levels the hardware
17 * provides (region first tables are not used).
18 *
19 * The "pgd_xxx()" functions are trivial for a folded two-level
20 * setup: the pgd is never bad, and a pmd always exists (as it's folded
21 * into the pgd entry)
22 *
23 * This file contains the functions and defines necessary to modify and use
24 * the S390 page table tree.
25 */
26#ifndef __ASSEMBLY__
27#include <linux/sched.h>
28#include <linux/mm_types.h>
29#include <linux/page-flags.h>
30#include <linux/radix-tree.h>
31#include <asm/bug.h>
32#include <asm/page.h>
33
34extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
35extern void paging_init(void);
36extern void vmem_map_init(void);
37
38/*
39 * The S390 doesn't have any external MMU info: the kernel page
40 * tables contain all the necessary information.
41 */
42#define update_mmu_cache(vma, address, ptep)     do { } while (0)
43#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
44
45/*
46 * ZERO_PAGE is a global shared page that is always zero; used
47 * for zero-mapped memory areas etc..
48 */
49
50extern unsigned long empty_zero_page;
51extern unsigned long zero_page_mask;
52
53#define ZERO_PAGE(vaddr) \
54	(virt_to_page((void *)(empty_zero_page + \
55	 (((unsigned long)(vaddr)) &zero_page_mask))))
56#define __HAVE_COLOR_ZERO_PAGE
57
58/* TODO: s390 cannot support io_remap_pfn_range... */
59#endif /* !__ASSEMBLY__ */
60
61/*
62 * PMD_SHIFT determines the size of the area a second-level page
63 * table can map
64 * PGDIR_SHIFT determines what a third-level page table entry can map
65 */
66#define PMD_SHIFT	20
67#define PUD_SHIFT	31
68#define PGDIR_SHIFT	42
69
70#define PMD_SIZE        (1UL << PMD_SHIFT)
71#define PMD_MASK        (~(PMD_SIZE-1))
72#define PUD_SIZE	(1UL << PUD_SHIFT)
73#define PUD_MASK	(~(PUD_SIZE-1))
74#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
75#define PGDIR_MASK	(~(PGDIR_SIZE-1))
76
77/*
78 * entries per page directory level: the S390 is two-level, so
79 * we don't really have any PMD directory physically.
80 * for S390 segment-table entries are combined to one PGD
81 * that leads to 1024 pte per pgd
82 */
83#define PTRS_PER_PTE	256
84#define PTRS_PER_PMD	2048
85#define PTRS_PER_PUD	2048
86#define PTRS_PER_PGD	2048
87
88#define FIRST_USER_ADDRESS  0UL
89
90#define pte_ERROR(e) \
91	printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
92#define pmd_ERROR(e) \
93	printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
94#define pud_ERROR(e) \
95	printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
96#define pgd_ERROR(e) \
97	printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
98
99#ifndef __ASSEMBLY__
100/*
101 * The vmalloc and module area will always be on the topmost area of the
102 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
103 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
104 * modules will reside. That makes sure that inter module branches always
105 * happen without trampolines and in addition the placement within a 2GB frame
106 * is branch prediction unit friendly.
107 */
108extern unsigned long VMALLOC_START;
109extern unsigned long VMALLOC_END;
110extern struct page *vmemmap;
111
112#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
113
114extern unsigned long MODULES_VADDR;
115extern unsigned long MODULES_END;
116#define MODULES_VADDR	MODULES_VADDR
117#define MODULES_END	MODULES_END
118#define MODULES_LEN	(1UL << 31)
119
120static inline int is_module_addr(void *addr)
121{
122	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
123	if (addr < (void *)MODULES_VADDR)
124		return 0;
125	if (addr > (void *)MODULES_END)
126		return 0;
127	return 1;
128}
129
130/*
131 * A 64 bit pagetable entry of S390 has following format:
132 * |			 PFRA			      |0IPC|  OS  |
133 * 0000000000111111111122222222223333333333444444444455555555556666
134 * 0123456789012345678901234567890123456789012345678901234567890123
135 *
136 * I Page-Invalid Bit:    Page is not available for address-translation
137 * P Page-Protection Bit: Store access not possible for page
138 * C Change-bit override: HW is not required to set change bit
139 *
140 * A 64 bit segmenttable entry of S390 has following format:
141 * |        P-table origin                              |      TT
142 * 0000000000111111111122222222223333333333444444444455555555556666
143 * 0123456789012345678901234567890123456789012345678901234567890123
144 *
145 * I Segment-Invalid Bit:    Segment is not available for address-translation
146 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
147 * P Page-Protection Bit: Store access not possible for page
148 * TT Type 00
149 *
150 * A 64 bit region table entry of S390 has following format:
151 * |        S-table origin                             |   TF  TTTL
152 * 0000000000111111111122222222223333333333444444444455555555556666
153 * 0123456789012345678901234567890123456789012345678901234567890123
154 *
155 * I Segment-Invalid Bit:    Segment is not available for address-translation
156 * TT Type 01
157 * TF
158 * TL Table length
159 *
160 * The 64 bit regiontable origin of S390 has following format:
161 * |      region table origon                          |       DTTL
162 * 0000000000111111111122222222223333333333444444444455555555556666
163 * 0123456789012345678901234567890123456789012345678901234567890123
164 *
165 * X Space-Switch event:
166 * G Segment-Invalid Bit:
167 * P Private-Space Bit:
168 * S Storage-Alteration:
169 * R Real space
170 * TL Table-Length:
171 *
172 * A storage key has the following format:
173 * | ACC |F|R|C|0|
174 *  0   3 4 5 6 7
175 * ACC: access key
176 * F  : fetch protection bit
177 * R  : referenced bit
178 * C  : changed bit
179 */
180
181/* Hardware bits in the page table entry */
182#define _PAGE_PROTECT	0x200		/* HW read-only bit  */
183#define _PAGE_INVALID	0x400		/* HW invalid bit    */
184#define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
185
186/* Software bits in the page table entry */
187#define _PAGE_PRESENT	0x001		/* SW pte present bit */
188#define _PAGE_YOUNG	0x004		/* SW pte young bit */
189#define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
190#define _PAGE_READ	0x010		/* SW pte read bit */
191#define _PAGE_WRITE	0x020		/* SW pte write bit */
192#define _PAGE_SPECIAL	0x040		/* SW associated with special page */
193#define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
194#define __HAVE_ARCH_PTE_SPECIAL
195
196#ifdef CONFIG_MEM_SOFT_DIRTY
197#define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
198#else
199#define _PAGE_SOFT_DIRTY 0x000
200#endif
201
202/* Set of bits not changed in pte_modify */
203#define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
204				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
205
206/*
207 * handle_pte_fault uses pte_present and pte_none to find out the pte type
208 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
209 * distinguish present from not-present ptes. It is changed only with the page
210 * table lock held.
211 *
212 * The following table gives the different possible bit combinations for
213 * the pte hardware and software bits in the last 12 bits of a pte
214 * (. unassigned bit, x don't care, t swap type):
215 *
216 *				842100000000
217 *				000084210000
218 *				000000008421
219 *				.IR.uswrdy.p
220 * empty			.10.00000000
221 * swap				.11..ttttt.0
222 * prot-none, clean, old	.11.xx0000.1
223 * prot-none, clean, young	.11.xx0001.1
224 * prot-none, dirty, old	.10.xx0010.1
225 * prot-none, dirty, young	.10.xx0011.1
226 * read-only, clean, old	.11.xx0100.1
227 * read-only, clean, young	.01.xx0101.1
228 * read-only, dirty, old	.11.xx0110.1
229 * read-only, dirty, young	.01.xx0111.1
230 * read-write, clean, old	.11.xx1100.1
231 * read-write, clean, young	.01.xx1101.1
232 * read-write, dirty, old	.10.xx1110.1
233 * read-write, dirty, young	.00.xx1111.1
234 * HW-bits: R read-only, I invalid
235 * SW-bits: p present, y young, d dirty, r read, w write, s special,
236 *	    u unused, l large
237 *
238 * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
239 * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
240 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
241 */
242
243/* Bits in the segment/region table address-space-control-element */
244#define _ASCE_ORIGIN		~0xfffUL/* segment table origin		    */
245#define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
246#define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
247#define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
248#define _ASCE_REAL_SPACE	0x20	/* real space control		    */
249#define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
250#define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
251#define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
252#define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
253#define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
254#define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
255
256/* Bits in the region table entry */
257#define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
258#define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
259#define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
260#define _REGION_ENTRY_TYPE_MASK	0x0c	/* region/segment table type mask   */
261#define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
262#define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
263#define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
264#define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
265
266#define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
267#define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
268#define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
269#define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
270#define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
271#define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
272
273#define _REGION3_ENTRY_LARGE	0x400	/* RTTE-format control, large page  */
274#define _REGION3_ENTRY_RO	0x200	/* page protection bit		    */
275
276/* Bits in the segment table entry */
277#define _SEGMENT_ENTRY_BITS	0xfffffffffffffe33UL
278#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
279#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
280#define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* segment table origin		    */
281#define _SEGMENT_ENTRY_PROTECT	0x200	/* page protection bit		    */
282#define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
283
284#define _SEGMENT_ENTRY		(0)
285#define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
286
287#define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
288#define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
289#define _SEGMENT_ENTRY_SPLIT	0x0800	/* THP splitting bit */
290#define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
291#define _SEGMENT_ENTRY_READ	0x0002	/* SW segment read bit */
292#define _SEGMENT_ENTRY_WRITE	0x0001	/* SW segment write bit */
293
294#ifdef CONFIG_MEM_SOFT_DIRTY
295#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
296#else
297#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
298#endif
299
300/*
301 * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
302 *				dy..R...I...wr
303 * prot-none, clean, old	00..1...1...00
304 * prot-none, clean, young	01..1...1...00
305 * prot-none, dirty, old	10..1...1...00
306 * prot-none, dirty, young	11..1...1...00
307 * read-only, clean, old	00..1...1...01
308 * read-only, clean, young	01..1...0...01
309 * read-only, dirty, old	10..1...1...01
310 * read-only, dirty, young	11..1...0...01
311 * read-write, clean, old	00..1...1...11
312 * read-write, clean, young	01..1...0...11
313 * read-write, dirty, old	10..0...1...11
314 * read-write, dirty, young	11..0...0...11
315 * The segment table origin is used to distinguish empty (origin==0) from
316 * read-write, old segment table entries (origin!=0)
317 * HW-bits: R read-only, I invalid
318 * SW-bits: y young, d dirty, r read, w write
319 */
320
321#define _SEGMENT_ENTRY_SPLIT_BIT 11	/* THP splitting bit number */
322
323/* Page status table bits for virtualization */
324#define PGSTE_ACC_BITS	0xf000000000000000UL
325#define PGSTE_FP_BIT	0x0800000000000000UL
326#define PGSTE_PCL_BIT	0x0080000000000000UL
327#define PGSTE_HR_BIT	0x0040000000000000UL
328#define PGSTE_HC_BIT	0x0020000000000000UL
329#define PGSTE_GR_BIT	0x0004000000000000UL
330#define PGSTE_GC_BIT	0x0002000000000000UL
331#define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
332#define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
333
334/* Guest Page State used for virtualization */
335#define _PGSTE_GPS_ZERO		0x0000000080000000UL
336#define _PGSTE_GPS_USAGE_MASK	0x0000000003000000UL
337#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
338#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
339
340/*
341 * A user page table pointer has the space-switch-event bit, the
342 * private-space-control bit and the storage-alteration-event-control
343 * bit set. A kernel page table pointer doesn't need them.
344 */
345#define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
346				 _ASCE_ALT_EVENT)
347
348/*
349 * Page protection definitions.
350 */
351#define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID)
352#define PAGE_READ	__pgprot(_PAGE_PRESENT | _PAGE_READ | \
353				 _PAGE_INVALID | _PAGE_PROTECT)
354#define PAGE_WRITE	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
355				 _PAGE_INVALID | _PAGE_PROTECT)
356
357#define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
358				 _PAGE_YOUNG | _PAGE_DIRTY)
359#define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
360				 _PAGE_YOUNG | _PAGE_DIRTY)
361#define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
362				 _PAGE_PROTECT)
363
364/*
365 * On s390 the page table entry has an invalid bit and a read-only bit.
366 * Read permission implies execute permission and write permission
367 * implies read permission.
368 */
369         /*xwr*/
370#define __P000	PAGE_NONE
371#define __P001	PAGE_READ
372#define __P010	PAGE_READ
373#define __P011	PAGE_READ
374#define __P100	PAGE_READ
375#define __P101	PAGE_READ
376#define __P110	PAGE_READ
377#define __P111	PAGE_READ
378
379#define __S000	PAGE_NONE
380#define __S001	PAGE_READ
381#define __S010	PAGE_WRITE
382#define __S011	PAGE_WRITE
383#define __S100	PAGE_READ
384#define __S101	PAGE_READ
385#define __S110	PAGE_WRITE
386#define __S111	PAGE_WRITE
387
388/*
389 * Segment entry (large page) protection definitions.
390 */
391#define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
392				 _SEGMENT_ENTRY_PROTECT)
393#define SEGMENT_READ	__pgprot(_SEGMENT_ENTRY_PROTECT | \
394				 _SEGMENT_ENTRY_READ)
395#define SEGMENT_WRITE	__pgprot(_SEGMENT_ENTRY_READ | \
396				 _SEGMENT_ENTRY_WRITE)
397
398static inline int mm_has_pgste(struct mm_struct *mm)
399{
400#ifdef CONFIG_PGSTE
401	if (unlikely(mm->context.has_pgste))
402		return 1;
403#endif
404	return 0;
405}
406
407static inline int mm_alloc_pgste(struct mm_struct *mm)
408{
409#ifdef CONFIG_PGSTE
410	if (unlikely(mm->context.alloc_pgste))
411		return 1;
412#endif
413	return 0;
414}
415
416/*
417 * In the case that a guest uses storage keys
418 * faults should no longer be backed by zero pages
419 */
420#define mm_forbids_zeropage mm_use_skey
421static inline int mm_use_skey(struct mm_struct *mm)
422{
423#ifdef CONFIG_PGSTE
424	if (mm->context.use_skey)
425		return 1;
426#endif
427	return 0;
428}
429
430/*
431 * pgd/pmd/pte query functions
432 */
433static inline int pgd_present(pgd_t pgd)
434{
435	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
436		return 1;
437	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
438}
439
440static inline int pgd_none(pgd_t pgd)
441{
442	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
443		return 0;
444	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
445}
446
447static inline int pgd_bad(pgd_t pgd)
448{
449	/*
450	 * With dynamic page table levels the pgd can be a region table
451	 * entry or a segment table entry. Check for the bit that are
452	 * invalid for either table entry.
453	 */
454	unsigned long mask =
455		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
456		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
457	return (pgd_val(pgd) & mask) != 0;
458}
459
460static inline int pud_present(pud_t pud)
461{
462	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
463		return 1;
464	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
465}
466
467static inline int pud_none(pud_t pud)
468{
469	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
470		return 0;
471	return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
472}
473
474static inline int pud_large(pud_t pud)
475{
476	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
477		return 0;
478	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
479}
480
481static inline int pud_bad(pud_t pud)
482{
483	/*
484	 * With dynamic page table levels the pud can be a region table
485	 * entry or a segment table entry. Check for the bit that are
486	 * invalid for either table entry.
487	 */
488	unsigned long mask =
489		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
490		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
491	return (pud_val(pud) & mask) != 0;
492}
493
494static inline int pmd_present(pmd_t pmd)
495{
496	return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
497}
498
499static inline int pmd_none(pmd_t pmd)
500{
501	return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
502}
503
504static inline int pmd_large(pmd_t pmd)
505{
506	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
507}
508
509static inline unsigned long pmd_pfn(pmd_t pmd)
510{
511	unsigned long origin_mask;
512
513	origin_mask = _SEGMENT_ENTRY_ORIGIN;
514	if (pmd_large(pmd))
515		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
516	return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
517}
518
519static inline int pmd_bad(pmd_t pmd)
520{
521	if (pmd_large(pmd))
522		return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
523	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
524}
525
526#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
527extern void pmdp_splitting_flush(struct vm_area_struct *vma,
528				 unsigned long addr, pmd_t *pmdp);
529
530#define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
531extern int pmdp_set_access_flags(struct vm_area_struct *vma,
532				 unsigned long address, pmd_t *pmdp,
533				 pmd_t entry, int dirty);
534
535#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
536extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
537				  unsigned long address, pmd_t *pmdp);
538
539#define __HAVE_ARCH_PMD_WRITE
540static inline int pmd_write(pmd_t pmd)
541{
542	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
543}
544
545static inline int pmd_dirty(pmd_t pmd)
546{
547	int dirty = 1;
548	if (pmd_large(pmd))
549		dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
550	return dirty;
551}
552
553static inline int pmd_young(pmd_t pmd)
554{
555	int young = 1;
556	if (pmd_large(pmd))
557		young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
558	return young;
559}
560
561static inline int pte_present(pte_t pte)
562{
563	/* Bit pattern: (pte & 0x001) == 0x001 */
564	return (pte_val(pte) & _PAGE_PRESENT) != 0;
565}
566
567static inline int pte_none(pte_t pte)
568{
569	/* Bit pattern: pte == 0x400 */
570	return pte_val(pte) == _PAGE_INVALID;
571}
572
573static inline int pte_swap(pte_t pte)
574{
575	/* Bit pattern: (pte & 0x201) == 0x200 */
576	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
577		== _PAGE_PROTECT;
578}
579
580static inline int pte_special(pte_t pte)
581{
582	return (pte_val(pte) & _PAGE_SPECIAL);
583}
584
585#define __HAVE_ARCH_PTE_SAME
586static inline int pte_same(pte_t a, pte_t b)
587{
588	return pte_val(a) == pte_val(b);
589}
590
591#ifdef CONFIG_NUMA_BALANCING
592static inline int pte_protnone(pte_t pte)
593{
594	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
595}
596
597static inline int pmd_protnone(pmd_t pmd)
598{
599	/* pmd_large(pmd) implies pmd_present(pmd) */
600	return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
601}
602#endif
603
604static inline int pte_soft_dirty(pte_t pte)
605{
606	return pte_val(pte) & _PAGE_SOFT_DIRTY;
607}
608#define pte_swp_soft_dirty pte_soft_dirty
609
610static inline pte_t pte_mksoft_dirty(pte_t pte)
611{
612	pte_val(pte) |= _PAGE_SOFT_DIRTY;
613	return pte;
614}
615#define pte_swp_mksoft_dirty pte_mksoft_dirty
616
617static inline pte_t pte_clear_soft_dirty(pte_t pte)
618{
619	pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
620	return pte;
621}
622#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
623
624static inline int pmd_soft_dirty(pmd_t pmd)
625{
626	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
627}
628
629static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
630{
631	pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
632	return pmd;
633}
634
635static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
636{
637	pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
638	return pmd;
639}
640
641static inline pgste_t pgste_get_lock(pte_t *ptep)
642{
643	unsigned long new = 0;
644#ifdef CONFIG_PGSTE
645	unsigned long old;
646
647	preempt_disable();
648	asm(
649		"	lg	%0,%2\n"
650		"0:	lgr	%1,%0\n"
651		"	nihh	%0,0xff7f\n"	/* clear PCL bit in old */
652		"	oihh	%1,0x0080\n"	/* set PCL bit in new */
653		"	csg	%0,%1,%2\n"
654		"	jl	0b\n"
655		: "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
656		: "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
657#endif
658	return __pgste(new);
659}
660
661static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
662{
663#ifdef CONFIG_PGSTE
664	asm(
665		"	nihh	%1,0xff7f\n"	/* clear PCL bit */
666		"	stg	%1,%0\n"
667		: "=Q" (ptep[PTRS_PER_PTE])
668		: "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
669		: "cc", "memory");
670	preempt_enable();
671#endif
672}
673
674static inline pgste_t pgste_get(pte_t *ptep)
675{
676	unsigned long pgste = 0;
677#ifdef CONFIG_PGSTE
678	pgste = *(unsigned long *)(ptep + PTRS_PER_PTE);
679#endif
680	return __pgste(pgste);
681}
682
683static inline void pgste_set(pte_t *ptep, pgste_t pgste)
684{
685#ifdef CONFIG_PGSTE
686	*(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
687#endif
688}
689
690static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste,
691				       struct mm_struct *mm)
692{
693#ifdef CONFIG_PGSTE
694	unsigned long address, bits, skey;
695
696	if (!mm_use_skey(mm) || pte_val(*ptep) & _PAGE_INVALID)
697		return pgste;
698	address = pte_val(*ptep) & PAGE_MASK;
699	skey = (unsigned long) page_get_storage_key(address);
700	bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
701	/* Transfer page changed & referenced bit to guest bits in pgste */
702	pgste_val(pgste) |= bits << 48;		/* GR bit & GC bit */
703	/* Copy page access key and fetch protection bit to pgste */
704	pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
705	pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
706#endif
707	return pgste;
708
709}
710
711static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry,
712				 struct mm_struct *mm)
713{
714#ifdef CONFIG_PGSTE
715	unsigned long address;
716	unsigned long nkey;
717
718	if (!mm_use_skey(mm) || pte_val(entry) & _PAGE_INVALID)
719		return;
720	VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
721	address = pte_val(entry) & PAGE_MASK;
722	/*
723	 * Set page access key and fetch protection bit from pgste.
724	 * The guest C/R information is still in the PGSTE, set real
725	 * key C/R to 0.
726	 */
727	nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
728	nkey |= (pgste_val(pgste) & (PGSTE_GR_BIT | PGSTE_GC_BIT)) >> 48;
729	page_set_storage_key(address, nkey, 0);
730#endif
731}
732
733static inline pgste_t pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry)
734{
735	if ((pte_val(entry) & _PAGE_PRESENT) &&
736	    (pte_val(entry) & _PAGE_WRITE) &&
737	    !(pte_val(entry) & _PAGE_INVALID)) {
738		if (!MACHINE_HAS_ESOP) {
739			/*
740			 * Without enhanced suppression-on-protection force
741			 * the dirty bit on for all writable ptes.
742			 */
743			pte_val(entry) |= _PAGE_DIRTY;
744			pte_val(entry) &= ~_PAGE_PROTECT;
745		}
746		if (!(pte_val(entry) & _PAGE_PROTECT))
747			/* This pte allows write access, set user-dirty */
748			pgste_val(pgste) |= PGSTE_UC_BIT;
749	}
750	*ptep = entry;
751	return pgste;
752}
753
754/**
755 * struct gmap_struct - guest address space
756 * @crst_list: list of all crst tables used in the guest address space
757 * @mm: pointer to the parent mm_struct
758 * @guest_to_host: radix tree with guest to host address translation
759 * @host_to_guest: radix tree with pointer to segment table entries
760 * @guest_table_lock: spinlock to protect all entries in the guest page table
761 * @table: pointer to the page directory
762 * @asce: address space control element for gmap page table
763 * @pfault_enabled: defines if pfaults are applicable for the guest
764 */
765struct gmap {
766	struct list_head list;
767	struct list_head crst_list;
768	struct mm_struct *mm;
769	struct radix_tree_root guest_to_host;
770	struct radix_tree_root host_to_guest;
771	spinlock_t guest_table_lock;
772	unsigned long *table;
773	unsigned long asce;
774	unsigned long asce_end;
775	void *private;
776	bool pfault_enabled;
777};
778
779/**
780 * struct gmap_notifier - notify function block for page invalidation
781 * @notifier_call: address of callback function
782 */
783struct gmap_notifier {
784	struct list_head list;
785	void (*notifier_call)(struct gmap *gmap, unsigned long gaddr);
786};
787
788struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit);
789void gmap_free(struct gmap *gmap);
790void gmap_enable(struct gmap *gmap);
791void gmap_disable(struct gmap *gmap);
792int gmap_map_segment(struct gmap *gmap, unsigned long from,
793		     unsigned long to, unsigned long len);
794int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
795unsigned long __gmap_translate(struct gmap *, unsigned long gaddr);
796unsigned long gmap_translate(struct gmap *, unsigned long gaddr);
797int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr);
798int gmap_fault(struct gmap *, unsigned long gaddr, unsigned int fault_flags);
799void gmap_discard(struct gmap *, unsigned long from, unsigned long to);
800void __gmap_zap(struct gmap *, unsigned long gaddr);
801bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *);
802
803
804void gmap_register_ipte_notifier(struct gmap_notifier *);
805void gmap_unregister_ipte_notifier(struct gmap_notifier *);
806int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
807void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *);
808
809static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
810					unsigned long addr,
811					pte_t *ptep, pgste_t pgste)
812{
813#ifdef CONFIG_PGSTE
814	if (pgste_val(pgste) & PGSTE_IN_BIT) {
815		pgste_val(pgste) &= ~PGSTE_IN_BIT;
816		gmap_do_ipte_notify(mm, addr, ptep);
817	}
818#endif
819	return pgste;
820}
821
822/*
823 * Certain architectures need to do special things when PTEs
824 * within a page table are directly modified.  Thus, the following
825 * hook is made available.
826 */
827static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
828			      pte_t *ptep, pte_t entry)
829{
830	pgste_t pgste;
831
832	if (mm_has_pgste(mm)) {
833		pgste = pgste_get_lock(ptep);
834		pgste_val(pgste) &= ~_PGSTE_GPS_ZERO;
835		pgste_set_key(ptep, pgste, entry, mm);
836		pgste = pgste_set_pte(ptep, pgste, entry);
837		pgste_set_unlock(ptep, pgste);
838	} else {
839		*ptep = entry;
840	}
841}
842
843/*
844 * query functions pte_write/pte_dirty/pte_young only work if
845 * pte_present() is true. Undefined behaviour if not..
846 */
847static inline int pte_write(pte_t pte)
848{
849	return (pte_val(pte) & _PAGE_WRITE) != 0;
850}
851
852static inline int pte_dirty(pte_t pte)
853{
854	return (pte_val(pte) & _PAGE_DIRTY) != 0;
855}
856
857static inline int pte_young(pte_t pte)
858{
859	return (pte_val(pte) & _PAGE_YOUNG) != 0;
860}
861
862#define __HAVE_ARCH_PTE_UNUSED
863static inline int pte_unused(pte_t pte)
864{
865	return pte_val(pte) & _PAGE_UNUSED;
866}
867
868/*
869 * pgd/pmd/pte modification functions
870 */
871
872static inline void pgd_clear(pgd_t *pgd)
873{
874	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
875		pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
876}
877
878static inline void pud_clear(pud_t *pud)
879{
880	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
881		pud_val(*pud) = _REGION3_ENTRY_EMPTY;
882}
883
884static inline void pmd_clear(pmd_t *pmdp)
885{
886	pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
887}
888
889static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
890{
891	pte_val(*ptep) = _PAGE_INVALID;
892}
893
894/*
895 * The following pte modification functions only work if
896 * pte_present() is true. Undefined behaviour if not..
897 */
898static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
899{
900	pte_val(pte) &= _PAGE_CHG_MASK;
901	pte_val(pte) |= pgprot_val(newprot);
902	/*
903	 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
904	 * invalid bit set, clear it again for readable, young pages
905	 */
906	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
907		pte_val(pte) &= ~_PAGE_INVALID;
908	/*
909	 * newprot for PAGE_READ and PAGE_WRITE has the page protection
910	 * bit set, clear it again for writable, dirty pages
911	 */
912	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
913		pte_val(pte) &= ~_PAGE_PROTECT;
914	return pte;
915}
916
917static inline pte_t pte_wrprotect(pte_t pte)
918{
919	pte_val(pte) &= ~_PAGE_WRITE;
920	pte_val(pte) |= _PAGE_PROTECT;
921	return pte;
922}
923
924static inline pte_t pte_mkwrite(pte_t pte)
925{
926	pte_val(pte) |= _PAGE_WRITE;
927	if (pte_val(pte) & _PAGE_DIRTY)
928		pte_val(pte) &= ~_PAGE_PROTECT;
929	return pte;
930}
931
932static inline pte_t pte_mkclean(pte_t pte)
933{
934	pte_val(pte) &= ~_PAGE_DIRTY;
935	pte_val(pte) |= _PAGE_PROTECT;
936	return pte;
937}
938
939static inline pte_t pte_mkdirty(pte_t pte)
940{
941	pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
942	if (pte_val(pte) & _PAGE_WRITE)
943		pte_val(pte) &= ~_PAGE_PROTECT;
944	return pte;
945}
946
947static inline pte_t pte_mkold(pte_t pte)
948{
949	pte_val(pte) &= ~_PAGE_YOUNG;
950	pte_val(pte) |= _PAGE_INVALID;
951	return pte;
952}
953
954static inline pte_t pte_mkyoung(pte_t pte)
955{
956	pte_val(pte) |= _PAGE_YOUNG;
957	if (pte_val(pte) & _PAGE_READ)
958		pte_val(pte) &= ~_PAGE_INVALID;
959	return pte;
960}
961
962static inline pte_t pte_mkspecial(pte_t pte)
963{
964	pte_val(pte) |= _PAGE_SPECIAL;
965	return pte;
966}
967
968#ifdef CONFIG_HUGETLB_PAGE
969static inline pte_t pte_mkhuge(pte_t pte)
970{
971	pte_val(pte) |= _PAGE_LARGE;
972	return pte;
973}
974#endif
975
976static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
977{
978	unsigned long pto = (unsigned long) ptep;
979
980	/* Invalidation + global TLB flush for the pte */
981	asm volatile(
982		"	ipte	%2,%3"
983		: "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
984}
985
986static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
987{
988	unsigned long pto = (unsigned long) ptep;
989
990	/* Invalidation + local TLB flush for the pte */
991	asm volatile(
992		"	.insn rrf,0xb2210000,%2,%3,0,1"
993		: "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
994}
995
996static inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep)
997{
998	unsigned long pto = (unsigned long) ptep;
999
1000	/* Invalidate a range of ptes + global TLB flush of the ptes */
1001	do {
1002		asm volatile(
1003			"	.insn rrf,0xb2210000,%2,%0,%1,0"
1004			: "+a" (address), "+a" (nr) : "a" (pto) : "memory");
1005	} while (nr != 255);
1006}
1007
1008static inline void ptep_flush_direct(struct mm_struct *mm,
1009				     unsigned long address, pte_t *ptep)
1010{
1011	int active, count;
1012
1013	if (pte_val(*ptep) & _PAGE_INVALID)
1014		return;
1015	active = (mm == current->active_mm) ? 1 : 0;
1016	count = atomic_add_return(0x10000, &mm->context.attach_count);
1017	if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1018	    cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1019		__ptep_ipte_local(address, ptep);
1020	else
1021		__ptep_ipte(address, ptep);
1022	atomic_sub(0x10000, &mm->context.attach_count);
1023}
1024
1025static inline void ptep_flush_lazy(struct mm_struct *mm,
1026				   unsigned long address, pte_t *ptep)
1027{
1028	int active, count;
1029
1030	if (pte_val(*ptep) & _PAGE_INVALID)
1031		return;
1032	active = (mm == current->active_mm) ? 1 : 0;
1033	count = atomic_add_return(0x10000, &mm->context.attach_count);
1034	if ((count & 0xffff) <= active) {
1035		pte_val(*ptep) |= _PAGE_INVALID;
1036		mm->context.flush_mm = 1;
1037	} else
1038		__ptep_ipte(address, ptep);
1039	atomic_sub(0x10000, &mm->context.attach_count);
1040}
1041
1042/*
1043 * Get (and clear) the user dirty bit for a pte.
1044 */
1045static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
1046						 unsigned long addr,
1047						 pte_t *ptep)
1048{
1049	pgste_t pgste;
1050	pte_t pte;
1051	int dirty;
1052
1053	if (!mm_has_pgste(mm))
1054		return 0;
1055	pgste = pgste_get_lock(ptep);
1056	dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT);
1057	pgste_val(pgste) &= ~PGSTE_UC_BIT;
1058	pte = *ptep;
1059	if (dirty && (pte_val(pte) & _PAGE_PRESENT)) {
1060		pgste = pgste_ipte_notify(mm, addr, ptep, pgste);
1061		__ptep_ipte(addr, ptep);
1062		if (MACHINE_HAS_ESOP || !(pte_val(pte) & _PAGE_WRITE))
1063			pte_val(pte) |= _PAGE_PROTECT;
1064		else
1065			pte_val(pte) |= _PAGE_INVALID;
1066		*ptep = pte;
1067	}
1068	pgste_set_unlock(ptep, pgste);
1069	return dirty;
1070}
1071
1072#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1073static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1074					    unsigned long addr, pte_t *ptep)
1075{
1076	pgste_t pgste;
1077	pte_t pte, oldpte;
1078	int young;
1079
1080	if (mm_has_pgste(vma->vm_mm)) {
1081		pgste = pgste_get_lock(ptep);
1082		pgste = pgste_ipte_notify(vma->vm_mm, addr, ptep, pgste);
1083	}
1084
1085	oldpte = pte = *ptep;
1086	ptep_flush_direct(vma->vm_mm, addr, ptep);
1087	young = pte_young(pte);
1088	pte = pte_mkold(pte);
1089
1090	if (mm_has_pgste(vma->vm_mm)) {
1091		pgste = pgste_update_all(&oldpte, pgste, vma->vm_mm);
1092		pgste = pgste_set_pte(ptep, pgste, pte);
1093		pgste_set_unlock(ptep, pgste);
1094	} else
1095		*ptep = pte;
1096
1097	return young;
1098}
1099
1100#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1101static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1102					 unsigned long address, pte_t *ptep)
1103{
1104	return ptep_test_and_clear_young(vma, address, ptep);
1105}
1106
1107/*
1108 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1109 * both clear the TLB for the unmapped pte. The reason is that
1110 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1111 * to modify an active pte. The sequence is
1112 *   1) ptep_get_and_clear
1113 *   2) set_pte_at
1114 *   3) flush_tlb_range
1115 * On s390 the tlb needs to get flushed with the modification of the pte
1116 * if the pte is active. The only way how this can be implemented is to
1117 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1118 * is a nop.
1119 */
1120#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1121static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1122				       unsigned long address, pte_t *ptep)
1123{
1124	pgste_t pgste;
1125	pte_t pte;
1126
1127	if (mm_has_pgste(mm)) {
1128		pgste = pgste_get_lock(ptep);
1129		pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1130	}
1131
1132	pte = *ptep;
1133	ptep_flush_lazy(mm, address, ptep);
1134	pte_val(*ptep) = _PAGE_INVALID;
1135
1136	if (mm_has_pgste(mm)) {
1137		pgste = pgste_update_all(&pte, pgste, mm);
1138		pgste_set_unlock(ptep, pgste);
1139	}
1140	return pte;
1141}
1142
1143#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1144static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1145					   unsigned long address,
1146					   pte_t *ptep)
1147{
1148	pgste_t pgste;
1149	pte_t pte;
1150
1151	if (mm_has_pgste(mm)) {
1152		pgste = pgste_get_lock(ptep);
1153		pgste_ipte_notify(mm, address, ptep, pgste);
1154	}
1155
1156	pte = *ptep;
1157	ptep_flush_lazy(mm, address, ptep);
1158
1159	if (mm_has_pgste(mm)) {
1160		pgste = pgste_update_all(&pte, pgste, mm);
1161		pgste_set(ptep, pgste);
1162	}
1163	return pte;
1164}
1165
1166static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1167					   unsigned long address,
1168					   pte_t *ptep, pte_t pte)
1169{
1170	pgste_t pgste;
1171
1172	if (mm_has_pgste(mm)) {
1173		pgste = pgste_get(ptep);
1174		pgste_set_key(ptep, pgste, pte, mm);
1175		pgste = pgste_set_pte(ptep, pgste, pte);
1176		pgste_set_unlock(ptep, pgste);
1177	} else
1178		*ptep = pte;
1179}
1180
1181#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1182static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1183				     unsigned long address, pte_t *ptep)
1184{
1185	pgste_t pgste;
1186	pte_t pte;
1187
1188	if (mm_has_pgste(vma->vm_mm)) {
1189		pgste = pgste_get_lock(ptep);
1190		pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1191	}
1192
1193	pte = *ptep;
1194	ptep_flush_direct(vma->vm_mm, address, ptep);
1195	pte_val(*ptep) = _PAGE_INVALID;
1196
1197	if (mm_has_pgste(vma->vm_mm)) {
1198		if ((pgste_val(pgste) & _PGSTE_GPS_USAGE_MASK) ==
1199		    _PGSTE_GPS_USAGE_UNUSED)
1200			pte_val(pte) |= _PAGE_UNUSED;
1201		pgste = pgste_update_all(&pte, pgste, vma->vm_mm);
1202		pgste_set_unlock(ptep, pgste);
1203	}
1204	return pte;
1205}
1206
1207/*
1208 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1209 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1210 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1211 * cannot be accessed while the batched unmap is running. In this case
1212 * full==1 and a simple pte_clear is enough. See tlb.h.
1213 */
1214#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1215static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1216					    unsigned long address,
1217					    pte_t *ptep, int full)
1218{
1219	pgste_t pgste;
1220	pte_t pte;
1221
1222	if (!full && mm_has_pgste(mm)) {
1223		pgste = pgste_get_lock(ptep);
1224		pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1225	}
1226
1227	pte = *ptep;
1228	if (!full)
1229		ptep_flush_lazy(mm, address, ptep);
1230	pte_val(*ptep) = _PAGE_INVALID;
1231
1232	if (!full && mm_has_pgste(mm)) {
1233		pgste = pgste_update_all(&pte, pgste, mm);
1234		pgste_set_unlock(ptep, pgste);
1235	}
1236	return pte;
1237}
1238
1239#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1240static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1241				       unsigned long address, pte_t *ptep)
1242{
1243	pgste_t pgste;
1244	pte_t pte = *ptep;
1245
1246	if (pte_write(pte)) {
1247		if (mm_has_pgste(mm)) {
1248			pgste = pgste_get_lock(ptep);
1249			pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1250		}
1251
1252		ptep_flush_lazy(mm, address, ptep);
1253		pte = pte_wrprotect(pte);
1254
1255		if (mm_has_pgste(mm)) {
1256			pgste = pgste_set_pte(ptep, pgste, pte);
1257			pgste_set_unlock(ptep, pgste);
1258		} else
1259			*ptep = pte;
1260	}
1261	return pte;
1262}
1263
1264#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1265static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1266					unsigned long address, pte_t *ptep,
1267					pte_t entry, int dirty)
1268{
1269	pgste_t pgste;
1270	pte_t oldpte;
1271
1272	oldpte = *ptep;
1273	if (pte_same(oldpte, entry))
1274		return 0;
1275	if (mm_has_pgste(vma->vm_mm)) {
1276		pgste = pgste_get_lock(ptep);
1277		pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1278	}
1279
1280	ptep_flush_direct(vma->vm_mm, address, ptep);
1281
1282	if (mm_has_pgste(vma->vm_mm)) {
1283		if (pte_val(oldpte) & _PAGE_INVALID)
1284			pgste_set_key(ptep, pgste, entry, vma->vm_mm);
1285		pgste = pgste_set_pte(ptep, pgste, entry);
1286		pgste_set_unlock(ptep, pgste);
1287	} else
1288		*ptep = entry;
1289	return 1;
1290}
1291
1292/*
1293 * Conversion functions: convert a page and protection to a page entry,
1294 * and a page entry and page directory to the page they refer to.
1295 */
1296static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1297{
1298	pte_t __pte;
1299	pte_val(__pte) = physpage + pgprot_val(pgprot);
1300	return pte_mkyoung(__pte);
1301}
1302
1303static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1304{
1305	unsigned long physpage = page_to_phys(page);
1306	pte_t __pte = mk_pte_phys(physpage, pgprot);
1307
1308	if (pte_write(__pte) && PageDirty(page))
1309		__pte = pte_mkdirty(__pte);
1310	return __pte;
1311}
1312
1313#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1314#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1315#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1316#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1317
1318#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1319#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1320
1321#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1322#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1323#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1324
1325static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1326{
1327	pud_t *pud = (pud_t *) pgd;
1328	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1329		pud = (pud_t *) pgd_deref(*pgd);
1330	return pud  + pud_index(address);
1331}
1332
1333static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1334{
1335	pmd_t *pmd = (pmd_t *) pud;
1336	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1337		pmd = (pmd_t *) pud_deref(*pud);
1338	return pmd + pmd_index(address);
1339}
1340
1341#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1342#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1343#define pte_page(x) pfn_to_page(pte_pfn(x))
1344
1345#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1346
1347/* Find an entry in the lowest level page table.. */
1348#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1349#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1350#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1351#define pte_unmap(pte) do { } while (0)
1352
1353#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1354static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1355{
1356	/*
1357	 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1358	 * Convert to segment table entry format.
1359	 */
1360	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1361		return pgprot_val(SEGMENT_NONE);
1362	if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
1363		return pgprot_val(SEGMENT_READ);
1364	return pgprot_val(SEGMENT_WRITE);
1365}
1366
1367static inline pmd_t pmd_wrprotect(pmd_t pmd)
1368{
1369	pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1370	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1371	return pmd;
1372}
1373
1374static inline pmd_t pmd_mkwrite(pmd_t pmd)
1375{
1376	pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1377	if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1378		return pmd;
1379	pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1380	return pmd;
1381}
1382
1383static inline pmd_t pmd_mkclean(pmd_t pmd)
1384{
1385	if (pmd_large(pmd)) {
1386		pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1387		pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1388	}
1389	return pmd;
1390}
1391
1392static inline pmd_t pmd_mkdirty(pmd_t pmd)
1393{
1394	if (pmd_large(pmd)) {
1395		pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1396				_SEGMENT_ENTRY_SOFT_DIRTY;
1397		if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1398			pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1399	}
1400	return pmd;
1401}
1402
1403static inline pmd_t pmd_mkyoung(pmd_t pmd)
1404{
1405	if (pmd_large(pmd)) {
1406		pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1407		if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1408			pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1409	}
1410	return pmd;
1411}
1412
1413static inline pmd_t pmd_mkold(pmd_t pmd)
1414{
1415	if (pmd_large(pmd)) {
1416		pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1417		pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1418	}
1419	return pmd;
1420}
1421
1422static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1423{
1424	if (pmd_large(pmd)) {
1425		pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1426			_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1427			_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SPLIT |
1428			_SEGMENT_ENTRY_SOFT_DIRTY;
1429		pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1430		if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1431			pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1432		if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1433			pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1434		return pmd;
1435	}
1436	pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1437	pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1438	return pmd;
1439}
1440
1441static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1442{
1443	pmd_t __pmd;
1444	pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1445	return __pmd;
1446}
1447
1448#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1449
1450static inline void __pmdp_csp(pmd_t *pmdp)
1451{
1452	register unsigned long reg2 asm("2") = pmd_val(*pmdp);
1453	register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
1454					       _SEGMENT_ENTRY_INVALID;
1455	register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
1456
1457	asm volatile(
1458		"	csp %1,%3"
1459		: "=m" (*pmdp)
1460		: "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
1461}
1462
1463static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
1464{
1465	unsigned long sto;
1466
1467	sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1468	asm volatile(
1469		"	.insn	rrf,0xb98e0000,%2,%3,0,0"
1470		: "=m" (*pmdp)
1471		: "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1472		: "cc" );
1473}
1474
1475static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
1476{
1477	unsigned long sto;
1478
1479	sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1480	asm volatile(
1481		"	.insn	rrf,0xb98e0000,%2,%3,0,1"
1482		: "=m" (*pmdp)
1483		: "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1484		: "cc" );
1485}
1486
1487static inline void pmdp_flush_direct(struct mm_struct *mm,
1488				     unsigned long address, pmd_t *pmdp)
1489{
1490	int active, count;
1491
1492	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1493		return;
1494	if (!MACHINE_HAS_IDTE) {
1495		__pmdp_csp(pmdp);
1496		return;
1497	}
1498	active = (mm == current->active_mm) ? 1 : 0;
1499	count = atomic_add_return(0x10000, &mm->context.attach_count);
1500	if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1501	    cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1502		__pmdp_idte_local(address, pmdp);
1503	else
1504		__pmdp_idte(address, pmdp);
1505	atomic_sub(0x10000, &mm->context.attach_count);
1506}
1507
1508static inline void pmdp_flush_lazy(struct mm_struct *mm,
1509				   unsigned long address, pmd_t *pmdp)
1510{
1511	int active, count;
1512
1513	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1514		return;
1515	active = (mm == current->active_mm) ? 1 : 0;
1516	count = atomic_add_return(0x10000, &mm->context.attach_count);
1517	if ((count & 0xffff) <= active) {
1518		pmd_val(*pmdp) |= _SEGMENT_ENTRY_INVALID;
1519		mm->context.flush_mm = 1;
1520	} else if (MACHINE_HAS_IDTE)
1521		__pmdp_idte(address, pmdp);
1522	else
1523		__pmdp_csp(pmdp);
1524	atomic_sub(0x10000, &mm->context.attach_count);
1525}
1526
1527#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1528
1529#define __HAVE_ARCH_PGTABLE_DEPOSIT
1530extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1531				       pgtable_t pgtable);
1532
1533#define __HAVE_ARCH_PGTABLE_WITHDRAW
1534extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1535
1536static inline int pmd_trans_splitting(pmd_t pmd)
1537{
1538	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) &&
1539		(pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT);
1540}
1541
1542static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1543			      pmd_t *pmdp, pmd_t entry)
1544{
1545	*pmdp = entry;
1546}
1547
1548static inline pmd_t pmd_mkhuge(pmd_t pmd)
1549{
1550	pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1551	pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1552	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1553	return pmd;
1554}
1555
1556#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1557static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1558					    unsigned long address, pmd_t *pmdp)
1559{
1560	pmd_t pmd;
1561
1562	pmd = *pmdp;
1563	pmdp_flush_direct(vma->vm_mm, address, pmdp);
1564	*pmdp = pmd_mkold(pmd);
1565	return pmd_young(pmd);
1566}
1567
1568#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1569static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1570					    unsigned long address, pmd_t *pmdp)
1571{
1572	pmd_t pmd = *pmdp;
1573
1574	pmdp_flush_direct(mm, address, pmdp);
1575	pmd_clear(pmdp);
1576	return pmd;
1577}
1578
1579#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1580static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1581						 unsigned long address,
1582						 pmd_t *pmdp, int full)
1583{
1584	pmd_t pmd = *pmdp;
1585
1586	if (!full)
1587		pmdp_flush_lazy(mm, address, pmdp);
1588	pmd_clear(pmdp);
1589	return pmd;
1590}
1591
1592#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1593static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1594					  unsigned long address, pmd_t *pmdp)
1595{
1596	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1597}
1598
1599#define __HAVE_ARCH_PMDP_INVALIDATE
1600static inline void pmdp_invalidate(struct vm_area_struct *vma,
1601				   unsigned long address, pmd_t *pmdp)
1602{
1603	pmdp_flush_direct(vma->vm_mm, address, pmdp);
1604}
1605
1606#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1607static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1608				      unsigned long address, pmd_t *pmdp)
1609{
1610	pmd_t pmd = *pmdp;
1611
1612	if (pmd_write(pmd)) {
1613		pmdp_flush_direct(mm, address, pmdp);
1614		set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1615	}
1616}
1617
1618static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1619					unsigned long address,
1620					pmd_t *pmdp)
1621{
1622	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1623}
1624#define pmdp_collapse_flush pmdp_collapse_flush
1625
1626#define pfn_pmd(pfn, pgprot)	mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1627#define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1628
1629static inline int pmd_trans_huge(pmd_t pmd)
1630{
1631	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1632}
1633
1634static inline int has_transparent_hugepage(void)
1635{
1636	return MACHINE_HAS_HPAGE ? 1 : 0;
1637}
1638#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1639
1640/*
1641 * 64 bit swap entry format:
1642 * A page-table entry has some bits we have to treat in a special way.
1643 * Bits 52 and bit 55 have to be zero, otherwise a specification
1644 * exception will occur instead of a page translation exception. The
1645 * specification exception has the bad habit not to store necessary
1646 * information in the lowcore.
1647 * Bits 54 and 63 are used to indicate the page type.
1648 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1649 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1650 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1651 * for the offset.
1652 * |			  offset			|01100|type |00|
1653 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1654 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1655 */
1656
1657#define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1658#define __SWP_OFFSET_SHIFT	12
1659#define __SWP_TYPE_MASK		((1UL << 5) - 1)
1660#define __SWP_TYPE_SHIFT	2
1661
1662static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1663{
1664	pte_t pte;
1665
1666	pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1667	pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1668	pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1669	return pte;
1670}
1671
1672static inline unsigned long __swp_type(swp_entry_t entry)
1673{
1674	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1675}
1676
1677static inline unsigned long __swp_offset(swp_entry_t entry)
1678{
1679	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1680}
1681
1682static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1683{
1684	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1685}
1686
1687#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1688#define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1689
1690#endif /* !__ASSEMBLY__ */
1691
1692#define kern_addr_valid(addr)   (1)
1693
1694extern int vmem_add_mapping(unsigned long start, unsigned long size);
1695extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1696extern int s390_enable_sie(void);
1697extern int s390_enable_skey(void);
1698extern void s390_reset_cmma(struct mm_struct *mm);
1699
1700/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1701#define HAVE_ARCH_UNMAPPED_AREA
1702#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1703
1704/*
1705 * No page table caches to initialise
1706 */
1707static inline void pgtable_cache_init(void) { }
1708static inline void check_pgt_cache(void) { }
1709
1710#include <asm-generic/pgtable.h>
1711
1712#endif /* _S390_PAGE_H */
1713