1/* 2 * PowerPC64 SLB support. 3 * 4 * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM 5 * Based on earlier code written by: 6 * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com 7 * Copyright (c) 2001 Dave Engebretsen 8 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 9 * 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17#include <asm/pgtable.h> 18#include <asm/mmu.h> 19#include <asm/mmu_context.h> 20#include <asm/paca.h> 21#include <asm/cputable.h> 22#include <asm/cacheflush.h> 23#include <asm/smp.h> 24#include <linux/compiler.h> 25#include <asm/udbg.h> 26#include <asm/code-patching.h> 27 28enum slb_index { 29 LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */ 30 VMALLOC_INDEX = 1, /* Kernel virtual map (0xd000000000000000) */ 31 KSTACK_INDEX = 2, /* Kernel stack map */ 32}; 33 34extern void slb_allocate_realmode(unsigned long ea); 35extern void slb_allocate_user(unsigned long ea); 36 37static void slb_allocate(unsigned long ea) 38{ 39 /* Currently, we do real mode for all SLBs including user, but 40 * that will change if we bring back dynamic VSIDs 41 */ 42 slb_allocate_realmode(ea); 43} 44 45#define slb_esid_mask(ssize) \ 46 (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T) 47 48static inline unsigned long mk_esid_data(unsigned long ea, int ssize, 49 enum slb_index index) 50{ 51 return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index; 52} 53 54static inline unsigned long mk_vsid_data(unsigned long ea, int ssize, 55 unsigned long flags) 56{ 57 return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags | 58 ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT); 59} 60 61static inline void slb_shadow_update(unsigned long ea, int ssize, 62 unsigned long flags, 63 enum slb_index index) 64{ 65 struct slb_shadow *p = get_slb_shadow(); 66 67 /* 68 * Clear the ESID first so the entry is not valid while we are 69 * updating it. No write barriers are needed here, provided 70 * we only update the current CPU's SLB shadow buffer. 71 */ 72 p->save_area[index].esid = 0; 73 p->save_area[index].vsid = cpu_to_be64(mk_vsid_data(ea, ssize, flags)); 74 p->save_area[index].esid = cpu_to_be64(mk_esid_data(ea, ssize, index)); 75} 76 77static inline void slb_shadow_clear(enum slb_index index) 78{ 79 get_slb_shadow()->save_area[index].esid = 0; 80} 81 82static inline void create_shadowed_slbe(unsigned long ea, int ssize, 83 unsigned long flags, 84 enum slb_index index) 85{ 86 /* 87 * Updating the shadow buffer before writing the SLB ensures 88 * we don't get a stale entry here if we get preempted by PHYP 89 * between these two statements. 90 */ 91 slb_shadow_update(ea, ssize, flags, index); 92 93 asm volatile("slbmte %0,%1" : 94 : "r" (mk_vsid_data(ea, ssize, flags)), 95 "r" (mk_esid_data(ea, ssize, index)) 96 : "memory" ); 97} 98 99static void __slb_flush_and_rebolt(void) 100{ 101 /* If you change this make sure you change SLB_NUM_BOLTED 102 * and PR KVM appropriately too. */ 103 unsigned long linear_llp, vmalloc_llp, lflags, vflags; 104 unsigned long ksp_esid_data, ksp_vsid_data; 105 106 linear_llp = mmu_psize_defs[mmu_linear_psize].sllp; 107 vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp; 108 lflags = SLB_VSID_KERNEL | linear_llp; 109 vflags = SLB_VSID_KERNEL | vmalloc_llp; 110 111 ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, KSTACK_INDEX); 112 if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) { 113 ksp_esid_data &= ~SLB_ESID_V; 114 ksp_vsid_data = 0; 115 slb_shadow_clear(KSTACK_INDEX); 116 } else { 117 /* Update stack entry; others don't change */ 118 slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, KSTACK_INDEX); 119 ksp_vsid_data = 120 be64_to_cpu(get_slb_shadow()->save_area[KSTACK_INDEX].vsid); 121 } 122 123 /* We need to do this all in asm, so we're sure we don't touch 124 * the stack between the slbia and rebolting it. */ 125 asm volatile("isync\n" 126 "slbia\n" 127 /* Slot 1 - first VMALLOC segment */ 128 "slbmte %0,%1\n" 129 /* Slot 2 - kernel stack */ 130 "slbmte %2,%3\n" 131 "isync" 132 :: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)), 133 "r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, 1)), 134 "r"(ksp_vsid_data), 135 "r"(ksp_esid_data) 136 : "memory"); 137} 138 139void slb_flush_and_rebolt(void) 140{ 141 142 WARN_ON(!irqs_disabled()); 143 144 /* 145 * We can't take a PMU exception in the following code, so hard 146 * disable interrupts. 147 */ 148 hard_irq_disable(); 149 150 __slb_flush_and_rebolt(); 151 get_paca()->slb_cache_ptr = 0; 152} 153 154void slb_vmalloc_update(void) 155{ 156 unsigned long vflags; 157 158 vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp; 159 slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX); 160 slb_flush_and_rebolt(); 161} 162 163/* Helper function to compare esids. There are four cases to handle. 164 * 1. The system is not 1T segment size capable. Use the GET_ESID compare. 165 * 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare. 166 * 3. The system is 1T capable, only one of the two addresses is > 1T. This is not a match. 167 * 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare. 168 */ 169static inline int esids_match(unsigned long addr1, unsigned long addr2) 170{ 171 int esid_1t_count; 172 173 /* System is not 1T segment size capable. */ 174 if (!mmu_has_feature(MMU_FTR_1T_SEGMENT)) 175 return (GET_ESID(addr1) == GET_ESID(addr2)); 176 177 esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) + 178 ((addr2 >> SID_SHIFT_1T) != 0)); 179 180 /* both addresses are < 1T */ 181 if (esid_1t_count == 0) 182 return (GET_ESID(addr1) == GET_ESID(addr2)); 183 184 /* One address < 1T, the other > 1T. Not a match */ 185 if (esid_1t_count == 1) 186 return 0; 187 188 /* Both addresses are > 1T. */ 189 return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2)); 190} 191 192/* Flush all user entries from the segment table of the current processor. */ 193void switch_slb(struct task_struct *tsk, struct mm_struct *mm) 194{ 195 unsigned long offset; 196 unsigned long slbie_data = 0; 197 unsigned long pc = KSTK_EIP(tsk); 198 unsigned long stack = KSTK_ESP(tsk); 199 unsigned long exec_base; 200 201 /* 202 * We need interrupts hard-disabled here, not just soft-disabled, 203 * so that a PMU interrupt can't occur, which might try to access 204 * user memory (to get a stack trace) and possible cause an SLB miss 205 * which would update the slb_cache/slb_cache_ptr fields in the PACA. 206 */ 207 hard_irq_disable(); 208 offset = get_paca()->slb_cache_ptr; 209 if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) && 210 offset <= SLB_CACHE_ENTRIES) { 211 int i; 212 asm volatile("isync" : : : "memory"); 213 for (i = 0; i < offset; i++) { 214 slbie_data = (unsigned long)get_paca()->slb_cache[i] 215 << SID_SHIFT; /* EA */ 216 slbie_data |= user_segment_size(slbie_data) 217 << SLBIE_SSIZE_SHIFT; 218 slbie_data |= SLBIE_C; /* C set for user addresses */ 219 asm volatile("slbie %0" : : "r" (slbie_data)); 220 } 221 asm volatile("isync" : : : "memory"); 222 } else { 223 __slb_flush_and_rebolt(); 224 } 225 226 /* Workaround POWER5 < DD2.1 issue */ 227 if (offset == 1 || offset > SLB_CACHE_ENTRIES) 228 asm volatile("slbie %0" : : "r" (slbie_data)); 229 230 get_paca()->slb_cache_ptr = 0; 231 get_paca()->context = mm->context; 232 233 /* 234 * preload some userspace segments into the SLB. 235 * Almost all 32 and 64bit PowerPC executables are linked at 236 * 0x10000000 so it makes sense to preload this segment. 237 */ 238 exec_base = 0x10000000; 239 240 if (is_kernel_addr(pc) || is_kernel_addr(stack) || 241 is_kernel_addr(exec_base)) 242 return; 243 244 slb_allocate(pc); 245 246 if (!esids_match(pc, stack)) 247 slb_allocate(stack); 248 249 if (!esids_match(pc, exec_base) && 250 !esids_match(stack, exec_base)) 251 slb_allocate(exec_base); 252} 253 254static inline void patch_slb_encoding(unsigned int *insn_addr, 255 unsigned int immed) 256{ 257 258 /* 259 * This function patches either an li or a cmpldi instruction with 260 * a new immediate value. This relies on the fact that both li 261 * (which is actually addi) and cmpldi both take a 16-bit immediate 262 * value, and it is situated in the same location in the instruction, 263 * ie. bits 16-31 (Big endian bit order) or the lower 16 bits. 264 * The signedness of the immediate operand differs between the two 265 * instructions however this code is only ever patching a small value, 266 * much less than 1 << 15, so we can get away with it. 267 * To patch the value we read the existing instruction, clear the 268 * immediate value, and or in our new value, then write the instruction 269 * back. 270 */ 271 unsigned int insn = (*insn_addr & 0xffff0000) | immed; 272 patch_instruction(insn_addr, insn); 273} 274 275extern u32 slb_miss_kernel_load_linear[]; 276extern u32 slb_miss_kernel_load_io[]; 277extern u32 slb_compare_rr_to_size[]; 278extern u32 slb_miss_kernel_load_vmemmap[]; 279 280void slb_set_size(u16 size) 281{ 282 if (mmu_slb_size == size) 283 return; 284 285 mmu_slb_size = size; 286 patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size); 287} 288 289void slb_initialize(void) 290{ 291 unsigned long linear_llp, vmalloc_llp, io_llp; 292 unsigned long lflags, vflags; 293 static int slb_encoding_inited; 294#ifdef CONFIG_SPARSEMEM_VMEMMAP 295 unsigned long vmemmap_llp; 296#endif 297 298 /* Prepare our SLB miss handler based on our page size */ 299 linear_llp = mmu_psize_defs[mmu_linear_psize].sllp; 300 io_llp = mmu_psize_defs[mmu_io_psize].sllp; 301 vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp; 302 get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp; 303#ifdef CONFIG_SPARSEMEM_VMEMMAP 304 vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp; 305#endif 306 if (!slb_encoding_inited) { 307 slb_encoding_inited = 1; 308 patch_slb_encoding(slb_miss_kernel_load_linear, 309 SLB_VSID_KERNEL | linear_llp); 310 patch_slb_encoding(slb_miss_kernel_load_io, 311 SLB_VSID_KERNEL | io_llp); 312 patch_slb_encoding(slb_compare_rr_to_size, 313 mmu_slb_size); 314 315 pr_devel("SLB: linear LLP = %04lx\n", linear_llp); 316 pr_devel("SLB: io LLP = %04lx\n", io_llp); 317 318#ifdef CONFIG_SPARSEMEM_VMEMMAP 319 patch_slb_encoding(slb_miss_kernel_load_vmemmap, 320 SLB_VSID_KERNEL | vmemmap_llp); 321 pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp); 322#endif 323 } 324 325 get_paca()->stab_rr = SLB_NUM_BOLTED; 326 327 lflags = SLB_VSID_KERNEL | linear_llp; 328 vflags = SLB_VSID_KERNEL | vmalloc_llp; 329 330 /* Invalidate the entire SLB (even entry 0) & all the ERATS */ 331 asm volatile("isync":::"memory"); 332 asm volatile("slbmte %0,%0"::"r" (0) : "memory"); 333 asm volatile("isync; slbia; isync":::"memory"); 334 create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX); 335 create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX); 336 337 /* For the boot cpu, we're running on the stack in init_thread_union, 338 * which is in the first segment of the linear mapping, and also 339 * get_paca()->kstack hasn't been initialized yet. 340 * For secondary cpus, we need to bolt the kernel stack entry now. 341 */ 342 slb_shadow_clear(KSTACK_INDEX); 343 if (raw_smp_processor_id() != boot_cpuid && 344 (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET) 345 create_shadowed_slbe(get_paca()->kstack, 346 mmu_kernel_ssize, lflags, KSTACK_INDEX); 347 348 asm volatile("isync":::"memory"); 349} 350