1/* 2 * pSeries NUMA support 3 * 4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11#define pr_fmt(fmt) "numa: " fmt 12 13#include <linux/threads.h> 14#include <linux/bootmem.h> 15#include <linux/init.h> 16#include <linux/mm.h> 17#include <linux/mmzone.h> 18#include <linux/export.h> 19#include <linux/nodemask.h> 20#include <linux/cpu.h> 21#include <linux/notifier.h> 22#include <linux/memblock.h> 23#include <linux/of.h> 24#include <linux/pfn.h> 25#include <linux/cpuset.h> 26#include <linux/node.h> 27#include <linux/stop_machine.h> 28#include <linux/proc_fs.h> 29#include <linux/seq_file.h> 30#include <linux/uaccess.h> 31#include <linux/slab.h> 32#include <asm/cputhreads.h> 33#include <asm/sparsemem.h> 34#include <asm/prom.h> 35#include <asm/smp.h> 36#include <asm/cputhreads.h> 37#include <asm/topology.h> 38#include <asm/firmware.h> 39#include <asm/paca.h> 40#include <asm/hvcall.h> 41#include <asm/setup.h> 42#include <asm/vdso.h> 43 44static int numa_enabled = 1; 45 46static char *cmdline __initdata; 47 48static int numa_debug; 49#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } 50 51int numa_cpu_lookup_table[NR_CPUS]; 52cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; 53struct pglist_data *node_data[MAX_NUMNODES]; 54 55EXPORT_SYMBOL(numa_cpu_lookup_table); 56EXPORT_SYMBOL(node_to_cpumask_map); 57EXPORT_SYMBOL(node_data); 58 59static int min_common_depth; 60static int n_mem_addr_cells, n_mem_size_cells; 61static int form1_affinity; 62 63#define MAX_DISTANCE_REF_POINTS 4 64static int distance_ref_points_depth; 65static const __be32 *distance_ref_points; 66static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; 67 68/* 69 * Allocate node_to_cpumask_map based on number of available nodes 70 * Requires node_possible_map to be valid. 71 * 72 * Note: cpumask_of_node() is not valid until after this is done. 73 */ 74static void __init setup_node_to_cpumask_map(void) 75{ 76 unsigned int node; 77 78 /* setup nr_node_ids if not done yet */ 79 if (nr_node_ids == MAX_NUMNODES) 80 setup_nr_node_ids(); 81 82 /* allocate the map */ 83 for_each_node(node) 84 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); 85 86 /* cpumask_of_node() will now work */ 87 dbg("Node to cpumask map for %d nodes\n", nr_node_ids); 88} 89 90static int __init fake_numa_create_new_node(unsigned long end_pfn, 91 unsigned int *nid) 92{ 93 unsigned long long mem; 94 char *p = cmdline; 95 static unsigned int fake_nid; 96 static unsigned long long curr_boundary; 97 98 /* 99 * Modify node id, iff we started creating NUMA nodes 100 * We want to continue from where we left of the last time 101 */ 102 if (fake_nid) 103 *nid = fake_nid; 104 /* 105 * In case there are no more arguments to parse, the 106 * node_id should be the same as the last fake node id 107 * (we've handled this above). 108 */ 109 if (!p) 110 return 0; 111 112 mem = memparse(p, &p); 113 if (!mem) 114 return 0; 115 116 if (mem < curr_boundary) 117 return 0; 118 119 curr_boundary = mem; 120 121 if ((end_pfn << PAGE_SHIFT) > mem) { 122 /* 123 * Skip commas and spaces 124 */ 125 while (*p == ',' || *p == ' ' || *p == '\t') 126 p++; 127 128 cmdline = p; 129 fake_nid++; 130 *nid = fake_nid; 131 dbg("created new fake_node with id %d\n", fake_nid); 132 return 1; 133 } 134 return 0; 135} 136 137static void reset_numa_cpu_lookup_table(void) 138{ 139 unsigned int cpu; 140 141 for_each_possible_cpu(cpu) 142 numa_cpu_lookup_table[cpu] = -1; 143} 144 145static void update_numa_cpu_lookup_table(unsigned int cpu, int node) 146{ 147 numa_cpu_lookup_table[cpu] = node; 148} 149 150static void map_cpu_to_node(int cpu, int node) 151{ 152 update_numa_cpu_lookup_table(cpu, node); 153 154 dbg("adding cpu %d to node %d\n", cpu, node); 155 156 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) 157 cpumask_set_cpu(cpu, node_to_cpumask_map[node]); 158} 159 160#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) 161static void unmap_cpu_from_node(unsigned long cpu) 162{ 163 int node = numa_cpu_lookup_table[cpu]; 164 165 dbg("removing cpu %lu from node %d\n", cpu, node); 166 167 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { 168 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); 169 } else { 170 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", 171 cpu, node); 172 } 173} 174#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ 175 176/* must hold reference to node during call */ 177static const __be32 *of_get_associativity(struct device_node *dev) 178{ 179 return of_get_property(dev, "ibm,associativity", NULL); 180} 181 182/* 183 * Returns the property linux,drconf-usable-memory if 184 * it exists (the property exists only in kexec/kdump kernels, 185 * added by kexec-tools) 186 */ 187static const __be32 *of_get_usable_memory(struct device_node *memory) 188{ 189 const __be32 *prop; 190 u32 len; 191 prop = of_get_property(memory, "linux,drconf-usable-memory", &len); 192 if (!prop || len < sizeof(unsigned int)) 193 return NULL; 194 return prop; 195} 196 197int __node_distance(int a, int b) 198{ 199 int i; 200 int distance = LOCAL_DISTANCE; 201 202 if (!form1_affinity) 203 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE); 204 205 for (i = 0; i < distance_ref_points_depth; i++) { 206 if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) 207 break; 208 209 /* Double the distance for each NUMA level */ 210 distance *= 2; 211 } 212 213 return distance; 214} 215EXPORT_SYMBOL(__node_distance); 216 217static void initialize_distance_lookup_table(int nid, 218 const __be32 *associativity) 219{ 220 int i; 221 222 if (!form1_affinity) 223 return; 224 225 for (i = 0; i < distance_ref_points_depth; i++) { 226 const __be32 *entry; 227 228 entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1]; 229 distance_lookup_table[nid][i] = of_read_number(entry, 1); 230 } 231} 232 233/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa 234 * info is found. 235 */ 236static int associativity_to_nid(const __be32 *associativity) 237{ 238 int nid = -1; 239 240 if (min_common_depth == -1) 241 goto out; 242 243 if (of_read_number(associativity, 1) >= min_common_depth) 244 nid = of_read_number(&associativity[min_common_depth], 1); 245 246 /* POWER4 LPAR uses 0xffff as invalid node */ 247 if (nid == 0xffff || nid >= MAX_NUMNODES) 248 nid = -1; 249 250 if (nid > 0 && 251 of_read_number(associativity, 1) >= distance_ref_points_depth) { 252 /* 253 * Skip the length field and send start of associativity array 254 */ 255 initialize_distance_lookup_table(nid, associativity + 1); 256 } 257 258out: 259 return nid; 260} 261 262/* Returns the nid associated with the given device tree node, 263 * or -1 if not found. 264 */ 265static int of_node_to_nid_single(struct device_node *device) 266{ 267 int nid = -1; 268 const __be32 *tmp; 269 270 tmp = of_get_associativity(device); 271 if (tmp) 272 nid = associativity_to_nid(tmp); 273 return nid; 274} 275 276/* Walk the device tree upwards, looking for an associativity id */ 277int of_node_to_nid(struct device_node *device) 278{ 279 int nid = -1; 280 281 of_node_get(device); 282 while (device) { 283 nid = of_node_to_nid_single(device); 284 if (nid != -1) 285 break; 286 287 device = of_get_next_parent(device); 288 } 289 of_node_put(device); 290 291 return nid; 292} 293EXPORT_SYMBOL_GPL(of_node_to_nid); 294 295static int __init find_min_common_depth(void) 296{ 297 int depth; 298 struct device_node *root; 299 300 if (firmware_has_feature(FW_FEATURE_OPAL)) 301 root = of_find_node_by_path("/ibm,opal"); 302 else 303 root = of_find_node_by_path("/rtas"); 304 if (!root) 305 root = of_find_node_by_path("/"); 306 307 /* 308 * This property is a set of 32-bit integers, each representing 309 * an index into the ibm,associativity nodes. 310 * 311 * With form 0 affinity the first integer is for an SMP configuration 312 * (should be all 0's) and the second is for a normal NUMA 313 * configuration. We have only one level of NUMA. 314 * 315 * With form 1 affinity the first integer is the most significant 316 * NUMA boundary and the following are progressively less significant 317 * boundaries. There can be more than one level of NUMA. 318 */ 319 distance_ref_points = of_get_property(root, 320 "ibm,associativity-reference-points", 321 &distance_ref_points_depth); 322 323 if (!distance_ref_points) { 324 dbg("NUMA: ibm,associativity-reference-points not found.\n"); 325 goto err; 326 } 327 328 distance_ref_points_depth /= sizeof(int); 329 330 if (firmware_has_feature(FW_FEATURE_OPAL) || 331 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) { 332 dbg("Using form 1 affinity\n"); 333 form1_affinity = 1; 334 } 335 336 if (form1_affinity) { 337 depth = of_read_number(distance_ref_points, 1); 338 } else { 339 if (distance_ref_points_depth < 2) { 340 printk(KERN_WARNING "NUMA: " 341 "short ibm,associativity-reference-points\n"); 342 goto err; 343 } 344 345 depth = of_read_number(&distance_ref_points[1], 1); 346 } 347 348 /* 349 * Warn and cap if the hardware supports more than 350 * MAX_DISTANCE_REF_POINTS domains. 351 */ 352 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { 353 printk(KERN_WARNING "NUMA: distance array capped at " 354 "%d entries\n", MAX_DISTANCE_REF_POINTS); 355 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; 356 } 357 358 of_node_put(root); 359 return depth; 360 361err: 362 of_node_put(root); 363 return -1; 364} 365 366static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) 367{ 368 struct device_node *memory = NULL; 369 370 memory = of_find_node_by_type(memory, "memory"); 371 if (!memory) 372 panic("numa.c: No memory nodes found!"); 373 374 *n_addr_cells = of_n_addr_cells(memory); 375 *n_size_cells = of_n_size_cells(memory); 376 of_node_put(memory); 377} 378 379static unsigned long read_n_cells(int n, const __be32 **buf) 380{ 381 unsigned long result = 0; 382 383 while (n--) { 384 result = (result << 32) | of_read_number(*buf, 1); 385 (*buf)++; 386 } 387 return result; 388} 389 390/* 391 * Read the next memblock list entry from the ibm,dynamic-memory property 392 * and return the information in the provided of_drconf_cell structure. 393 */ 394static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp) 395{ 396 const __be32 *cp; 397 398 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp); 399 400 cp = *cellp; 401 drmem->drc_index = of_read_number(cp, 1); 402 drmem->reserved = of_read_number(&cp[1], 1); 403 drmem->aa_index = of_read_number(&cp[2], 1); 404 drmem->flags = of_read_number(&cp[3], 1); 405 406 *cellp = cp + 4; 407} 408 409/* 410 * Retrieve and validate the ibm,dynamic-memory property of the device tree. 411 * 412 * The layout of the ibm,dynamic-memory property is a number N of memblock 413 * list entries followed by N memblock list entries. Each memblock list entry 414 * contains information as laid out in the of_drconf_cell struct above. 415 */ 416static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm) 417{ 418 const __be32 *prop; 419 u32 len, entries; 420 421 prop = of_get_property(memory, "ibm,dynamic-memory", &len); 422 if (!prop || len < sizeof(unsigned int)) 423 return 0; 424 425 entries = of_read_number(prop++, 1); 426 427 /* Now that we know the number of entries, revalidate the size 428 * of the property read in to ensure we have everything 429 */ 430 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int)) 431 return 0; 432 433 *dm = prop; 434 return entries; 435} 436 437/* 438 * Retrieve and validate the ibm,lmb-size property for drconf memory 439 * from the device tree. 440 */ 441static u64 of_get_lmb_size(struct device_node *memory) 442{ 443 const __be32 *prop; 444 u32 len; 445 446 prop = of_get_property(memory, "ibm,lmb-size", &len); 447 if (!prop || len < sizeof(unsigned int)) 448 return 0; 449 450 return read_n_cells(n_mem_size_cells, &prop); 451} 452 453struct assoc_arrays { 454 u32 n_arrays; 455 u32 array_sz; 456 const __be32 *arrays; 457}; 458 459/* 460 * Retrieve and validate the list of associativity arrays for drconf 461 * memory from the ibm,associativity-lookup-arrays property of the 462 * device tree.. 463 * 464 * The layout of the ibm,associativity-lookup-arrays property is a number N 465 * indicating the number of associativity arrays, followed by a number M 466 * indicating the size of each associativity array, followed by a list 467 * of N associativity arrays. 468 */ 469static int of_get_assoc_arrays(struct device_node *memory, 470 struct assoc_arrays *aa) 471{ 472 const __be32 *prop; 473 u32 len; 474 475 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); 476 if (!prop || len < 2 * sizeof(unsigned int)) 477 return -1; 478 479 aa->n_arrays = of_read_number(prop++, 1); 480 aa->array_sz = of_read_number(prop++, 1); 481 482 /* Now that we know the number of arrays and size of each array, 483 * revalidate the size of the property read in. 484 */ 485 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) 486 return -1; 487 488 aa->arrays = prop; 489 return 0; 490} 491 492/* 493 * This is like of_node_to_nid_single() for memory represented in the 494 * ibm,dynamic-reconfiguration-memory node. 495 */ 496static int of_drconf_to_nid_single(struct of_drconf_cell *drmem, 497 struct assoc_arrays *aa) 498{ 499 int default_nid = 0; 500 int nid = default_nid; 501 int index; 502 503 if (min_common_depth > 0 && min_common_depth <= aa->array_sz && 504 !(drmem->flags & DRCONF_MEM_AI_INVALID) && 505 drmem->aa_index < aa->n_arrays) { 506 index = drmem->aa_index * aa->array_sz + min_common_depth - 1; 507 nid = of_read_number(&aa->arrays[index], 1); 508 509 if (nid == 0xffff || nid >= MAX_NUMNODES) 510 nid = default_nid; 511 512 if (nid > 0) { 513 index = drmem->aa_index * aa->array_sz; 514 initialize_distance_lookup_table(nid, 515 &aa->arrays[index]); 516 } 517 } 518 519 return nid; 520} 521 522/* 523 * Figure out to which domain a cpu belongs and stick it there. 524 * Return the id of the domain used. 525 */ 526static int numa_setup_cpu(unsigned long lcpu) 527{ 528 int nid = -1; 529 struct device_node *cpu; 530 531 /* 532 * If a valid cpu-to-node mapping is already available, use it 533 * directly instead of querying the firmware, since it represents 534 * the most recent mapping notified to us by the platform (eg: VPHN). 535 */ 536 if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) { 537 map_cpu_to_node(lcpu, nid); 538 return nid; 539 } 540 541 cpu = of_get_cpu_node(lcpu, NULL); 542 543 if (!cpu) { 544 WARN_ON(1); 545 if (cpu_present(lcpu)) 546 goto out_present; 547 else 548 goto out; 549 } 550 551 nid = of_node_to_nid_single(cpu); 552 553out_present: 554 if (nid < 0 || !node_online(nid)) 555 nid = first_online_node; 556 557 map_cpu_to_node(lcpu, nid); 558 of_node_put(cpu); 559out: 560 return nid; 561} 562 563static void verify_cpu_node_mapping(int cpu, int node) 564{ 565 int base, sibling, i; 566 567 /* Verify that all the threads in the core belong to the same node */ 568 base = cpu_first_thread_sibling(cpu); 569 570 for (i = 0; i < threads_per_core; i++) { 571 sibling = base + i; 572 573 if (sibling == cpu || cpu_is_offline(sibling)) 574 continue; 575 576 if (cpu_to_node(sibling) != node) { 577 WARN(1, "CPU thread siblings %d and %d don't belong" 578 " to the same node!\n", cpu, sibling); 579 break; 580 } 581 } 582} 583 584static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action, 585 void *hcpu) 586{ 587 unsigned long lcpu = (unsigned long)hcpu; 588 int ret = NOTIFY_DONE, nid; 589 590 switch (action) { 591 case CPU_UP_PREPARE: 592 case CPU_UP_PREPARE_FROZEN: 593 nid = numa_setup_cpu(lcpu); 594 verify_cpu_node_mapping((int)lcpu, nid); 595 ret = NOTIFY_OK; 596 break; 597#ifdef CONFIG_HOTPLUG_CPU 598 case CPU_DEAD: 599 case CPU_DEAD_FROZEN: 600 case CPU_UP_CANCELED: 601 case CPU_UP_CANCELED_FROZEN: 602 unmap_cpu_from_node(lcpu); 603 ret = NOTIFY_OK; 604 break; 605#endif 606 } 607 return ret; 608} 609 610/* 611 * Check and possibly modify a memory region to enforce the memory limit. 612 * 613 * Returns the size the region should have to enforce the memory limit. 614 * This will either be the original value of size, a truncated value, 615 * or zero. If the returned value of size is 0 the region should be 616 * discarded as it lies wholly above the memory limit. 617 */ 618static unsigned long __init numa_enforce_memory_limit(unsigned long start, 619 unsigned long size) 620{ 621 /* 622 * We use memblock_end_of_DRAM() in here instead of memory_limit because 623 * we've already adjusted it for the limit and it takes care of 624 * having memory holes below the limit. Also, in the case of 625 * iommu_is_off, memory_limit is not set but is implicitly enforced. 626 */ 627 628 if (start + size <= memblock_end_of_DRAM()) 629 return size; 630 631 if (start >= memblock_end_of_DRAM()) 632 return 0; 633 634 return memblock_end_of_DRAM() - start; 635} 636 637/* 638 * Reads the counter for a given entry in 639 * linux,drconf-usable-memory property 640 */ 641static inline int __init read_usm_ranges(const __be32 **usm) 642{ 643 /* 644 * For each lmb in ibm,dynamic-memory a corresponding 645 * entry in linux,drconf-usable-memory property contains 646 * a counter followed by that many (base, size) duple. 647 * read the counter from linux,drconf-usable-memory 648 */ 649 return read_n_cells(n_mem_size_cells, usm); 650} 651 652/* 653 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory 654 * node. This assumes n_mem_{addr,size}_cells have been set. 655 */ 656static void __init parse_drconf_memory(struct device_node *memory) 657{ 658 const __be32 *uninitialized_var(dm), *usm; 659 unsigned int n, rc, ranges, is_kexec_kdump = 0; 660 unsigned long lmb_size, base, size, sz; 661 int nid; 662 struct assoc_arrays aa = { .arrays = NULL }; 663 664 n = of_get_drconf_memory(memory, &dm); 665 if (!n) 666 return; 667 668 lmb_size = of_get_lmb_size(memory); 669 if (!lmb_size) 670 return; 671 672 rc = of_get_assoc_arrays(memory, &aa); 673 if (rc) 674 return; 675 676 /* check if this is a kexec/kdump kernel */ 677 usm = of_get_usable_memory(memory); 678 if (usm != NULL) 679 is_kexec_kdump = 1; 680 681 for (; n != 0; --n) { 682 struct of_drconf_cell drmem; 683 684 read_drconf_cell(&drmem, &dm); 685 686 /* skip this block if the reserved bit is set in flags (0x80) 687 or if the block is not assigned to this partition (0x8) */ 688 if ((drmem.flags & DRCONF_MEM_RESERVED) 689 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 690 continue; 691 692 base = drmem.base_addr; 693 size = lmb_size; 694 ranges = 1; 695 696 if (is_kexec_kdump) { 697 ranges = read_usm_ranges(&usm); 698 if (!ranges) /* there are no (base, size) duple */ 699 continue; 700 } 701 do { 702 if (is_kexec_kdump) { 703 base = read_n_cells(n_mem_addr_cells, &usm); 704 size = read_n_cells(n_mem_size_cells, &usm); 705 } 706 nid = of_drconf_to_nid_single(&drmem, &aa); 707 fake_numa_create_new_node( 708 ((base + size) >> PAGE_SHIFT), 709 &nid); 710 node_set_online(nid); 711 sz = numa_enforce_memory_limit(base, size); 712 if (sz) 713 memblock_set_node(base, sz, 714 &memblock.memory, nid); 715 } while (--ranges); 716 } 717} 718 719static int __init parse_numa_properties(void) 720{ 721 struct device_node *memory; 722 int default_nid = 0; 723 unsigned long i; 724 725 if (numa_enabled == 0) { 726 printk(KERN_WARNING "NUMA disabled by user\n"); 727 return -1; 728 } 729 730 min_common_depth = find_min_common_depth(); 731 732 if (min_common_depth < 0) 733 return min_common_depth; 734 735 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); 736 737 /* 738 * Even though we connect cpus to numa domains later in SMP 739 * init, we need to know the node ids now. This is because 740 * each node to be onlined must have NODE_DATA etc backing it. 741 */ 742 for_each_present_cpu(i) { 743 struct device_node *cpu; 744 int nid; 745 746 cpu = of_get_cpu_node(i, NULL); 747 BUG_ON(!cpu); 748 nid = of_node_to_nid_single(cpu); 749 of_node_put(cpu); 750 751 /* 752 * Don't fall back to default_nid yet -- we will plug 753 * cpus into nodes once the memory scan has discovered 754 * the topology. 755 */ 756 if (nid < 0) 757 continue; 758 node_set_online(nid); 759 } 760 761 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); 762 763 for_each_node_by_type(memory, "memory") { 764 unsigned long start; 765 unsigned long size; 766 int nid; 767 int ranges; 768 const __be32 *memcell_buf; 769 unsigned int len; 770 771 memcell_buf = of_get_property(memory, 772 "linux,usable-memory", &len); 773 if (!memcell_buf || len <= 0) 774 memcell_buf = of_get_property(memory, "reg", &len); 775 if (!memcell_buf || len <= 0) 776 continue; 777 778 /* ranges in cell */ 779 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 780new_range: 781 /* these are order-sensitive, and modify the buffer pointer */ 782 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 783 size = read_n_cells(n_mem_size_cells, &memcell_buf); 784 785 /* 786 * Assumption: either all memory nodes or none will 787 * have associativity properties. If none, then 788 * everything goes to default_nid. 789 */ 790 nid = of_node_to_nid_single(memory); 791 if (nid < 0) 792 nid = default_nid; 793 794 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); 795 node_set_online(nid); 796 797 if (!(size = numa_enforce_memory_limit(start, size))) { 798 if (--ranges) 799 goto new_range; 800 else 801 continue; 802 } 803 804 memblock_set_node(start, size, &memblock.memory, nid); 805 806 if (--ranges) 807 goto new_range; 808 } 809 810 /* 811 * Now do the same thing for each MEMBLOCK listed in the 812 * ibm,dynamic-memory property in the 813 * ibm,dynamic-reconfiguration-memory node. 814 */ 815 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 816 if (memory) 817 parse_drconf_memory(memory); 818 819 return 0; 820} 821 822static void __init setup_nonnuma(void) 823{ 824 unsigned long top_of_ram = memblock_end_of_DRAM(); 825 unsigned long total_ram = memblock_phys_mem_size(); 826 unsigned long start_pfn, end_pfn; 827 unsigned int nid = 0; 828 struct memblock_region *reg; 829 830 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", 831 top_of_ram, total_ram); 832 printk(KERN_DEBUG "Memory hole size: %ldMB\n", 833 (top_of_ram - total_ram) >> 20); 834 835 for_each_memblock(memory, reg) { 836 start_pfn = memblock_region_memory_base_pfn(reg); 837 end_pfn = memblock_region_memory_end_pfn(reg); 838 839 fake_numa_create_new_node(end_pfn, &nid); 840 memblock_set_node(PFN_PHYS(start_pfn), 841 PFN_PHYS(end_pfn - start_pfn), 842 &memblock.memory, nid); 843 node_set_online(nid); 844 } 845} 846 847void __init dump_numa_cpu_topology(void) 848{ 849 unsigned int node; 850 unsigned int cpu, count; 851 852 if (min_common_depth == -1 || !numa_enabled) 853 return; 854 855 for_each_online_node(node) { 856 printk(KERN_DEBUG "Node %d CPUs:", node); 857 858 count = 0; 859 /* 860 * If we used a CPU iterator here we would miss printing 861 * the holes in the cpumap. 862 */ 863 for (cpu = 0; cpu < nr_cpu_ids; cpu++) { 864 if (cpumask_test_cpu(cpu, 865 node_to_cpumask_map[node])) { 866 if (count == 0) 867 printk(" %u", cpu); 868 ++count; 869 } else { 870 if (count > 1) 871 printk("-%u", cpu - 1); 872 count = 0; 873 } 874 } 875 876 if (count > 1) 877 printk("-%u", nr_cpu_ids - 1); 878 printk("\n"); 879 } 880} 881 882static void __init dump_numa_memory_topology(void) 883{ 884 unsigned int node; 885 unsigned int count; 886 887 if (min_common_depth == -1 || !numa_enabled) 888 return; 889 890 for_each_online_node(node) { 891 unsigned long i; 892 893 printk(KERN_DEBUG "Node %d Memory:", node); 894 895 count = 0; 896 897 for (i = 0; i < memblock_end_of_DRAM(); 898 i += (1 << SECTION_SIZE_BITS)) { 899 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) { 900 if (count == 0) 901 printk(" 0x%lx", i); 902 ++count; 903 } else { 904 if (count > 0) 905 printk("-0x%lx", i); 906 count = 0; 907 } 908 } 909 910 if (count > 0) 911 printk("-0x%lx", i); 912 printk("\n"); 913 } 914} 915 916static struct notifier_block ppc64_numa_nb = { 917 .notifier_call = cpu_numa_callback, 918 .priority = 1 /* Must run before sched domains notifier. */ 919}; 920 921/* Initialize NODE_DATA for a node on the local memory */ 922static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn) 923{ 924 u64 spanned_pages = end_pfn - start_pfn; 925 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES); 926 u64 nd_pa; 927 void *nd; 928 int tnid; 929 930 if (spanned_pages) 931 pr_info("Initmem setup node %d [mem %#010Lx-%#010Lx]\n", 932 nid, start_pfn << PAGE_SHIFT, 933 (end_pfn << PAGE_SHIFT) - 1); 934 else 935 pr_info("Initmem setup node %d\n", nid); 936 937 nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); 938 nd = __va(nd_pa); 939 940 /* report and initialize */ 941 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n", 942 nd_pa, nd_pa + nd_size - 1); 943 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); 944 if (tnid != nid) 945 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid); 946 947 node_data[nid] = nd; 948 memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); 949 NODE_DATA(nid)->node_id = nid; 950 NODE_DATA(nid)->node_start_pfn = start_pfn; 951 NODE_DATA(nid)->node_spanned_pages = spanned_pages; 952} 953 954void __init initmem_init(void) 955{ 956 int nid, cpu; 957 958 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; 959 max_pfn = max_low_pfn; 960 961 if (parse_numa_properties()) 962 setup_nonnuma(); 963 else 964 dump_numa_memory_topology(); 965 966 memblock_dump_all(); 967 968 /* 969 * Reduce the possible NUMA nodes to the online NUMA nodes, 970 * since we do not support node hotplug. This ensures that we 971 * lower the maximum NUMA node ID to what is actually present. 972 */ 973 nodes_and(node_possible_map, node_possible_map, node_online_map); 974 975 for_each_online_node(nid) { 976 unsigned long start_pfn, end_pfn; 977 978 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 979 setup_node_data(nid, start_pfn, end_pfn); 980 sparse_memory_present_with_active_regions(nid); 981 } 982 983 sparse_init(); 984 985 setup_node_to_cpumask_map(); 986 987 reset_numa_cpu_lookup_table(); 988 register_cpu_notifier(&ppc64_numa_nb); 989 /* 990 * We need the numa_cpu_lookup_table to be accurate for all CPUs, 991 * even before we online them, so that we can use cpu_to_{node,mem} 992 * early in boot, cf. smp_prepare_cpus(). 993 */ 994 for_each_present_cpu(cpu) { 995 numa_setup_cpu((unsigned long)cpu); 996 } 997} 998 999static int __init early_numa(char *p) 1000{ 1001 if (!p) 1002 return 0; 1003 1004 if (strstr(p, "off")) 1005 numa_enabled = 0; 1006 1007 if (strstr(p, "debug")) 1008 numa_debug = 1; 1009 1010 p = strstr(p, "fake="); 1011 if (p) 1012 cmdline = p + strlen("fake="); 1013 1014 return 0; 1015} 1016early_param("numa", early_numa); 1017 1018static bool topology_updates_enabled = true; 1019 1020static int __init early_topology_updates(char *p) 1021{ 1022 if (!p) 1023 return 0; 1024 1025 if (!strcmp(p, "off")) { 1026 pr_info("Disabling topology updates\n"); 1027 topology_updates_enabled = false; 1028 } 1029 1030 return 0; 1031} 1032early_param("topology_updates", early_topology_updates); 1033 1034#ifdef CONFIG_MEMORY_HOTPLUG 1035/* 1036 * Find the node associated with a hot added memory section for 1037 * memory represented in the device tree by the property 1038 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. 1039 */ 1040static int hot_add_drconf_scn_to_nid(struct device_node *memory, 1041 unsigned long scn_addr) 1042{ 1043 const __be32 *dm; 1044 unsigned int drconf_cell_cnt, rc; 1045 unsigned long lmb_size; 1046 struct assoc_arrays aa; 1047 int nid = -1; 1048 1049 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1050 if (!drconf_cell_cnt) 1051 return -1; 1052 1053 lmb_size = of_get_lmb_size(memory); 1054 if (!lmb_size) 1055 return -1; 1056 1057 rc = of_get_assoc_arrays(memory, &aa); 1058 if (rc) 1059 return -1; 1060 1061 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) { 1062 struct of_drconf_cell drmem; 1063 1064 read_drconf_cell(&drmem, &dm); 1065 1066 /* skip this block if it is reserved or not assigned to 1067 * this partition */ 1068 if ((drmem.flags & DRCONF_MEM_RESERVED) 1069 || !(drmem.flags & DRCONF_MEM_ASSIGNED)) 1070 continue; 1071 1072 if ((scn_addr < drmem.base_addr) 1073 || (scn_addr >= (drmem.base_addr + lmb_size))) 1074 continue; 1075 1076 nid = of_drconf_to_nid_single(&drmem, &aa); 1077 break; 1078 } 1079 1080 return nid; 1081} 1082 1083/* 1084 * Find the node associated with a hot added memory section for memory 1085 * represented in the device tree as a node (i.e. memory@XXXX) for 1086 * each memblock. 1087 */ 1088static int hot_add_node_scn_to_nid(unsigned long scn_addr) 1089{ 1090 struct device_node *memory; 1091 int nid = -1; 1092 1093 for_each_node_by_type(memory, "memory") { 1094 unsigned long start, size; 1095 int ranges; 1096 const __be32 *memcell_buf; 1097 unsigned int len; 1098 1099 memcell_buf = of_get_property(memory, "reg", &len); 1100 if (!memcell_buf || len <= 0) 1101 continue; 1102 1103 /* ranges in cell */ 1104 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); 1105 1106 while (ranges--) { 1107 start = read_n_cells(n_mem_addr_cells, &memcell_buf); 1108 size = read_n_cells(n_mem_size_cells, &memcell_buf); 1109 1110 if ((scn_addr < start) || (scn_addr >= (start + size))) 1111 continue; 1112 1113 nid = of_node_to_nid_single(memory); 1114 break; 1115 } 1116 1117 if (nid >= 0) 1118 break; 1119 } 1120 1121 of_node_put(memory); 1122 1123 return nid; 1124} 1125 1126/* 1127 * Find the node associated with a hot added memory section. Section 1128 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that 1129 * sections are fully contained within a single MEMBLOCK. 1130 */ 1131int hot_add_scn_to_nid(unsigned long scn_addr) 1132{ 1133 struct device_node *memory = NULL; 1134 int nid, found = 0; 1135 1136 if (!numa_enabled || (min_common_depth < 0)) 1137 return first_online_node; 1138 1139 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1140 if (memory) { 1141 nid = hot_add_drconf_scn_to_nid(memory, scn_addr); 1142 of_node_put(memory); 1143 } else { 1144 nid = hot_add_node_scn_to_nid(scn_addr); 1145 } 1146 1147 if (nid < 0 || !node_online(nid)) 1148 nid = first_online_node; 1149 1150 if (NODE_DATA(nid)->node_spanned_pages) 1151 return nid; 1152 1153 for_each_online_node(nid) { 1154 if (NODE_DATA(nid)->node_spanned_pages) { 1155 found = 1; 1156 break; 1157 } 1158 } 1159 1160 BUG_ON(!found); 1161 return nid; 1162} 1163 1164static u64 hot_add_drconf_memory_max(void) 1165{ 1166 struct device_node *memory = NULL; 1167 unsigned int drconf_cell_cnt = 0; 1168 u64 lmb_size = 0; 1169 const __be32 *dm = NULL; 1170 1171 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); 1172 if (memory) { 1173 drconf_cell_cnt = of_get_drconf_memory(memory, &dm); 1174 lmb_size = of_get_lmb_size(memory); 1175 of_node_put(memory); 1176 } 1177 return lmb_size * drconf_cell_cnt; 1178} 1179 1180/* 1181 * memory_hotplug_max - return max address of memory that may be added 1182 * 1183 * This is currently only used on systems that support drconfig memory 1184 * hotplug. 1185 */ 1186u64 memory_hotplug_max(void) 1187{ 1188 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); 1189} 1190#endif /* CONFIG_MEMORY_HOTPLUG */ 1191 1192/* Virtual Processor Home Node (VPHN) support */ 1193#ifdef CONFIG_PPC_SPLPAR 1194 1195#include "vphn.h" 1196 1197struct topology_update_data { 1198 struct topology_update_data *next; 1199 unsigned int cpu; 1200 int old_nid; 1201 int new_nid; 1202}; 1203 1204static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS]; 1205static cpumask_t cpu_associativity_changes_mask; 1206static int vphn_enabled; 1207static int prrn_enabled; 1208static void reset_topology_timer(void); 1209 1210/* 1211 * Store the current values of the associativity change counters in the 1212 * hypervisor. 1213 */ 1214static void setup_cpu_associativity_change_counters(void) 1215{ 1216 int cpu; 1217 1218 /* The VPHN feature supports a maximum of 8 reference points */ 1219 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8); 1220 1221 for_each_possible_cpu(cpu) { 1222 int i; 1223 u8 *counts = vphn_cpu_change_counts[cpu]; 1224 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1225 1226 for (i = 0; i < distance_ref_points_depth; i++) 1227 counts[i] = hypervisor_counts[i]; 1228 } 1229} 1230 1231/* 1232 * The hypervisor maintains a set of 8 associativity change counters in 1233 * the VPA of each cpu that correspond to the associativity levels in the 1234 * ibm,associativity-reference-points property. When an associativity 1235 * level changes, the corresponding counter is incremented. 1236 * 1237 * Set a bit in cpu_associativity_changes_mask for each cpu whose home 1238 * node associativity levels have changed. 1239 * 1240 * Returns the number of cpus with unhandled associativity changes. 1241 */ 1242static int update_cpu_associativity_changes_mask(void) 1243{ 1244 int cpu; 1245 cpumask_t *changes = &cpu_associativity_changes_mask; 1246 1247 for_each_possible_cpu(cpu) { 1248 int i, changed = 0; 1249 u8 *counts = vphn_cpu_change_counts[cpu]; 1250 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts; 1251 1252 for (i = 0; i < distance_ref_points_depth; i++) { 1253 if (hypervisor_counts[i] != counts[i]) { 1254 counts[i] = hypervisor_counts[i]; 1255 changed = 1; 1256 } 1257 } 1258 if (changed) { 1259 cpumask_or(changes, changes, cpu_sibling_mask(cpu)); 1260 cpu = cpu_last_thread_sibling(cpu); 1261 } 1262 } 1263 1264 return cpumask_weight(changes); 1265} 1266 1267/* 1268 * Retrieve the new associativity information for a virtual processor's 1269 * home node. 1270 */ 1271static long hcall_vphn(unsigned long cpu, __be32 *associativity) 1272{ 1273 long rc; 1274 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0}; 1275 u64 flags = 1; 1276 int hwcpu = get_hard_smp_processor_id(cpu); 1277 1278 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu); 1279 vphn_unpack_associativity(retbuf, associativity); 1280 1281 return rc; 1282} 1283 1284static long vphn_get_associativity(unsigned long cpu, 1285 __be32 *associativity) 1286{ 1287 long rc; 1288 1289 rc = hcall_vphn(cpu, associativity); 1290 1291 switch (rc) { 1292 case H_FUNCTION: 1293 printk(KERN_INFO 1294 "VPHN is not supported. Disabling polling...\n"); 1295 stop_topology_update(); 1296 break; 1297 case H_HARDWARE: 1298 printk(KERN_ERR 1299 "hcall_vphn() experienced a hardware fault " 1300 "preventing VPHN. Disabling polling...\n"); 1301 stop_topology_update(); 1302 } 1303 1304 return rc; 1305} 1306 1307/* 1308 * Update the CPU maps and sysfs entries for a single CPU when its NUMA 1309 * characteristics change. This function doesn't perform any locking and is 1310 * only safe to call from stop_machine(). 1311 */ 1312static int update_cpu_topology(void *data) 1313{ 1314 struct topology_update_data *update; 1315 unsigned long cpu; 1316 1317 if (!data) 1318 return -EINVAL; 1319 1320 cpu = smp_processor_id(); 1321 1322 for (update = data; update; update = update->next) { 1323 int new_nid = update->new_nid; 1324 if (cpu != update->cpu) 1325 continue; 1326 1327 unmap_cpu_from_node(cpu); 1328 map_cpu_to_node(cpu, new_nid); 1329 set_cpu_numa_node(cpu, new_nid); 1330 set_cpu_numa_mem(cpu, local_memory_node(new_nid)); 1331 vdso_getcpu_init(); 1332 } 1333 1334 return 0; 1335} 1336 1337static int update_lookup_table(void *data) 1338{ 1339 struct topology_update_data *update; 1340 1341 if (!data) 1342 return -EINVAL; 1343 1344 /* 1345 * Upon topology update, the numa-cpu lookup table needs to be updated 1346 * for all threads in the core, including offline CPUs, to ensure that 1347 * future hotplug operations respect the cpu-to-node associativity 1348 * properly. 1349 */ 1350 for (update = data; update; update = update->next) { 1351 int nid, base, j; 1352 1353 nid = update->new_nid; 1354 base = cpu_first_thread_sibling(update->cpu); 1355 1356 for (j = 0; j < threads_per_core; j++) { 1357 update_numa_cpu_lookup_table(base + j, nid); 1358 } 1359 } 1360 1361 return 0; 1362} 1363 1364/* 1365 * Update the node maps and sysfs entries for each cpu whose home node 1366 * has changed. Returns 1 when the topology has changed, and 0 otherwise. 1367 */ 1368int arch_update_cpu_topology(void) 1369{ 1370 unsigned int cpu, sibling, changed = 0; 1371 struct topology_update_data *updates, *ud; 1372 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; 1373 cpumask_t updated_cpus; 1374 struct device *dev; 1375 int weight, new_nid, i = 0; 1376 1377 if (!prrn_enabled && !vphn_enabled) 1378 return 0; 1379 1380 weight = cpumask_weight(&cpu_associativity_changes_mask); 1381 if (!weight) 1382 return 0; 1383 1384 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL); 1385 if (!updates) 1386 return 0; 1387 1388 cpumask_clear(&updated_cpus); 1389 1390 for_each_cpu(cpu, &cpu_associativity_changes_mask) { 1391 /* 1392 * If siblings aren't flagged for changes, updates list 1393 * will be too short. Skip on this update and set for next 1394 * update. 1395 */ 1396 if (!cpumask_subset(cpu_sibling_mask(cpu), 1397 &cpu_associativity_changes_mask)) { 1398 pr_info("Sibling bits not set for associativity " 1399 "change, cpu%d\n", cpu); 1400 cpumask_or(&cpu_associativity_changes_mask, 1401 &cpu_associativity_changes_mask, 1402 cpu_sibling_mask(cpu)); 1403 cpu = cpu_last_thread_sibling(cpu); 1404 continue; 1405 } 1406 1407 /* Use associativity from first thread for all siblings */ 1408 vphn_get_associativity(cpu, associativity); 1409 new_nid = associativity_to_nid(associativity); 1410 if (new_nid < 0 || !node_online(new_nid)) 1411 new_nid = first_online_node; 1412 1413 if (new_nid == numa_cpu_lookup_table[cpu]) { 1414 cpumask_andnot(&cpu_associativity_changes_mask, 1415 &cpu_associativity_changes_mask, 1416 cpu_sibling_mask(cpu)); 1417 cpu = cpu_last_thread_sibling(cpu); 1418 continue; 1419 } 1420 1421 for_each_cpu(sibling, cpu_sibling_mask(cpu)) { 1422 ud = &updates[i++]; 1423 ud->cpu = sibling; 1424 ud->new_nid = new_nid; 1425 ud->old_nid = numa_cpu_lookup_table[sibling]; 1426 cpumask_set_cpu(sibling, &updated_cpus); 1427 if (i < weight) 1428 ud->next = &updates[i]; 1429 } 1430 cpu = cpu_last_thread_sibling(cpu); 1431 } 1432 1433 pr_debug("Topology update for the following CPUs:\n"); 1434 if (cpumask_weight(&updated_cpus)) { 1435 for (ud = &updates[0]; ud; ud = ud->next) { 1436 pr_debug("cpu %d moving from node %d " 1437 "to %d\n", ud->cpu, 1438 ud->old_nid, ud->new_nid); 1439 } 1440 } 1441 1442 /* 1443 * In cases where we have nothing to update (because the updates list 1444 * is too short or because the new topology is same as the old one), 1445 * skip invoking update_cpu_topology() via stop-machine(). This is 1446 * necessary (and not just a fast-path optimization) since stop-machine 1447 * can end up electing a random CPU to run update_cpu_topology(), and 1448 * thus trick us into setting up incorrect cpu-node mappings (since 1449 * 'updates' is kzalloc()'ed). 1450 * 1451 * And for the similar reason, we will skip all the following updating. 1452 */ 1453 if (!cpumask_weight(&updated_cpus)) 1454 goto out; 1455 1456 stop_machine(update_cpu_topology, &updates[0], &updated_cpus); 1457 1458 /* 1459 * Update the numa-cpu lookup table with the new mappings, even for 1460 * offline CPUs. It is best to perform this update from the stop- 1461 * machine context. 1462 */ 1463 stop_machine(update_lookup_table, &updates[0], 1464 cpumask_of(raw_smp_processor_id())); 1465 1466 for (ud = &updates[0]; ud; ud = ud->next) { 1467 unregister_cpu_under_node(ud->cpu, ud->old_nid); 1468 register_cpu_under_node(ud->cpu, ud->new_nid); 1469 1470 dev = get_cpu_device(ud->cpu); 1471 if (dev) 1472 kobject_uevent(&dev->kobj, KOBJ_CHANGE); 1473 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask); 1474 changed = 1; 1475 } 1476 1477out: 1478 kfree(updates); 1479 return changed; 1480} 1481 1482static void topology_work_fn(struct work_struct *work) 1483{ 1484 rebuild_sched_domains(); 1485} 1486static DECLARE_WORK(topology_work, topology_work_fn); 1487 1488static void topology_schedule_update(void) 1489{ 1490 schedule_work(&topology_work); 1491} 1492 1493static void topology_timer_fn(unsigned long ignored) 1494{ 1495 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask)) 1496 topology_schedule_update(); 1497 else if (vphn_enabled) { 1498 if (update_cpu_associativity_changes_mask() > 0) 1499 topology_schedule_update(); 1500 reset_topology_timer(); 1501 } 1502} 1503static struct timer_list topology_timer = 1504 TIMER_INITIALIZER(topology_timer_fn, 0, 0); 1505 1506static void reset_topology_timer(void) 1507{ 1508 topology_timer.data = 0; 1509 topology_timer.expires = jiffies + 60 * HZ; 1510 mod_timer(&topology_timer, topology_timer.expires); 1511} 1512 1513#ifdef CONFIG_SMP 1514 1515static void stage_topology_update(int core_id) 1516{ 1517 cpumask_or(&cpu_associativity_changes_mask, 1518 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id)); 1519 reset_topology_timer(); 1520} 1521 1522static int dt_update_callback(struct notifier_block *nb, 1523 unsigned long action, void *data) 1524{ 1525 struct of_reconfig_data *update = data; 1526 int rc = NOTIFY_DONE; 1527 1528 switch (action) { 1529 case OF_RECONFIG_UPDATE_PROPERTY: 1530 if (!of_prop_cmp(update->dn->type, "cpu") && 1531 !of_prop_cmp(update->prop->name, "ibm,associativity")) { 1532 u32 core_id; 1533 of_property_read_u32(update->dn, "reg", &core_id); 1534 stage_topology_update(core_id); 1535 rc = NOTIFY_OK; 1536 } 1537 break; 1538 } 1539 1540 return rc; 1541} 1542 1543static struct notifier_block dt_update_nb = { 1544 .notifier_call = dt_update_callback, 1545}; 1546 1547#endif 1548 1549/* 1550 * Start polling for associativity changes. 1551 */ 1552int start_topology_update(void) 1553{ 1554 int rc = 0; 1555 1556 if (firmware_has_feature(FW_FEATURE_PRRN)) { 1557 if (!prrn_enabled) { 1558 prrn_enabled = 1; 1559 vphn_enabled = 0; 1560#ifdef CONFIG_SMP 1561 rc = of_reconfig_notifier_register(&dt_update_nb); 1562#endif 1563 } 1564 } else if (firmware_has_feature(FW_FEATURE_VPHN) && 1565 lppaca_shared_proc(get_lppaca())) { 1566 if (!vphn_enabled) { 1567 prrn_enabled = 0; 1568 vphn_enabled = 1; 1569 setup_cpu_associativity_change_counters(); 1570 init_timer_deferrable(&topology_timer); 1571 reset_topology_timer(); 1572 } 1573 } 1574 1575 return rc; 1576} 1577 1578/* 1579 * Disable polling for VPHN associativity changes. 1580 */ 1581int stop_topology_update(void) 1582{ 1583 int rc = 0; 1584 1585 if (prrn_enabled) { 1586 prrn_enabled = 0; 1587#ifdef CONFIG_SMP 1588 rc = of_reconfig_notifier_unregister(&dt_update_nb); 1589#endif 1590 } else if (vphn_enabled) { 1591 vphn_enabled = 0; 1592 rc = del_timer_sync(&topology_timer); 1593 } 1594 1595 return rc; 1596} 1597 1598int prrn_is_enabled(void) 1599{ 1600 return prrn_enabled; 1601} 1602 1603static int topology_read(struct seq_file *file, void *v) 1604{ 1605 if (vphn_enabled || prrn_enabled) 1606 seq_puts(file, "on\n"); 1607 else 1608 seq_puts(file, "off\n"); 1609 1610 return 0; 1611} 1612 1613static int topology_open(struct inode *inode, struct file *file) 1614{ 1615 return single_open(file, topology_read, NULL); 1616} 1617 1618static ssize_t topology_write(struct file *file, const char __user *buf, 1619 size_t count, loff_t *off) 1620{ 1621 char kbuf[4]; /* "on" or "off" plus null. */ 1622 int read_len; 1623 1624 read_len = count < 3 ? count : 3; 1625 if (copy_from_user(kbuf, buf, read_len)) 1626 return -EINVAL; 1627 1628 kbuf[read_len] = '\0'; 1629 1630 if (!strncmp(kbuf, "on", 2)) 1631 start_topology_update(); 1632 else if (!strncmp(kbuf, "off", 3)) 1633 stop_topology_update(); 1634 else 1635 return -EINVAL; 1636 1637 return count; 1638} 1639 1640static const struct file_operations topology_ops = { 1641 .read = seq_read, 1642 .write = topology_write, 1643 .open = topology_open, 1644 .release = single_release 1645}; 1646 1647static int topology_update_init(void) 1648{ 1649 /* Do not poll for changes if disabled at boot */ 1650 if (topology_updates_enabled) 1651 start_topology_update(); 1652 1653 if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops)) 1654 return -ENOMEM; 1655 1656 return 0; 1657} 1658device_initcall(topology_update_init); 1659#endif /* CONFIG_PPC_SPLPAR */ 1660