1/* 2 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved. 3 * 4 * Author: Yu Liu, <yu.liu@freescale.com> 5 * 6 * Description: 7 * This file is derived from arch/powerpc/kvm/44x.c, 8 * by Hollis Blanchard <hollisb@us.ibm.com>. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License, version 2, as 12 * published by the Free Software Foundation. 13 */ 14 15#include <linux/kvm_host.h> 16#include <linux/slab.h> 17#include <linux/err.h> 18#include <linux/export.h> 19#include <linux/module.h> 20#include <linux/miscdevice.h> 21 22#include <asm/reg.h> 23#include <asm/cputable.h> 24#include <asm/tlbflush.h> 25#include <asm/kvm_ppc.h> 26 27#include "../mm/mmu_decl.h" 28#include "booke.h" 29#include "e500.h" 30 31struct id { 32 unsigned long val; 33 struct id **pentry; 34}; 35 36#define NUM_TIDS 256 37 38/* 39 * This table provide mappings from: 40 * (guestAS,guestTID,guestPR) --> ID of physical cpu 41 * guestAS [0..1] 42 * guestTID [0..255] 43 * guestPR [0..1] 44 * ID [1..255] 45 * Each vcpu keeps one vcpu_id_table. 46 */ 47struct vcpu_id_table { 48 struct id id[2][NUM_TIDS][2]; 49}; 50 51/* 52 * This table provide reversed mappings of vcpu_id_table: 53 * ID --> address of vcpu_id_table item. 54 * Each physical core has one pcpu_id_table. 55 */ 56struct pcpu_id_table { 57 struct id *entry[NUM_TIDS]; 58}; 59 60static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids); 61 62/* This variable keeps last used shadow ID on local core. 63 * The valid range of shadow ID is [1..255] */ 64static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid); 65 66/* 67 * Allocate a free shadow id and setup a valid sid mapping in given entry. 68 * A mapping is only valid when vcpu_id_table and pcpu_id_table are match. 69 * 70 * The caller must have preemption disabled, and keep it that way until 71 * it has finished with the returned shadow id (either written into the 72 * TLB or arch.shadow_pid, or discarded). 73 */ 74static inline int local_sid_setup_one(struct id *entry) 75{ 76 unsigned long sid; 77 int ret = -1; 78 79 sid = __this_cpu_inc_return(pcpu_last_used_sid); 80 if (sid < NUM_TIDS) { 81 __this_cpu_write(pcpu_sids.entry[sid], entry); 82 entry->val = sid; 83 entry->pentry = this_cpu_ptr(&pcpu_sids.entry[sid]); 84 ret = sid; 85 } 86 87 /* 88 * If sid == NUM_TIDS, we've run out of sids. We return -1, and 89 * the caller will invalidate everything and start over. 90 * 91 * sid > NUM_TIDS indicates a race, which we disable preemption to 92 * avoid. 93 */ 94 WARN_ON(sid > NUM_TIDS); 95 96 return ret; 97} 98 99/* 100 * Check if given entry contain a valid shadow id mapping. 101 * An ID mapping is considered valid only if 102 * both vcpu and pcpu know this mapping. 103 * 104 * The caller must have preemption disabled, and keep it that way until 105 * it has finished with the returned shadow id (either written into the 106 * TLB or arch.shadow_pid, or discarded). 107 */ 108static inline int local_sid_lookup(struct id *entry) 109{ 110 if (entry && entry->val != 0 && 111 __this_cpu_read(pcpu_sids.entry[entry->val]) == entry && 112 entry->pentry == this_cpu_ptr(&pcpu_sids.entry[entry->val])) 113 return entry->val; 114 return -1; 115} 116 117/* Invalidate all id mappings on local core -- call with preempt disabled */ 118static inline void local_sid_destroy_all(void) 119{ 120 __this_cpu_write(pcpu_last_used_sid, 0); 121 memset(this_cpu_ptr(&pcpu_sids), 0, sizeof(pcpu_sids)); 122} 123 124static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500) 125{ 126 vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL); 127 return vcpu_e500->idt; 128} 129 130static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500) 131{ 132 kfree(vcpu_e500->idt); 133 vcpu_e500->idt = NULL; 134} 135 136/* Map guest pid to shadow. 137 * We use PID to keep shadow of current guest non-zero PID, 138 * and use PID1 to keep shadow of guest zero PID. 139 * So that guest tlbe with TID=0 can be accessed at any time */ 140static void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500) 141{ 142 preempt_disable(); 143 vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500, 144 get_cur_as(&vcpu_e500->vcpu), 145 get_cur_pid(&vcpu_e500->vcpu), 146 get_cur_pr(&vcpu_e500->vcpu), 1); 147 vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500, 148 get_cur_as(&vcpu_e500->vcpu), 0, 149 get_cur_pr(&vcpu_e500->vcpu), 1); 150 preempt_enable(); 151} 152 153/* Invalidate all mappings on vcpu */ 154static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500) 155{ 156 memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table)); 157 158 /* Update shadow pid when mappings are changed */ 159 kvmppc_e500_recalc_shadow_pid(vcpu_e500); 160} 161 162/* Invalidate one ID mapping on vcpu */ 163static inline void kvmppc_e500_id_table_reset_one( 164 struct kvmppc_vcpu_e500 *vcpu_e500, 165 int as, int pid, int pr) 166{ 167 struct vcpu_id_table *idt = vcpu_e500->idt; 168 169 BUG_ON(as >= 2); 170 BUG_ON(pid >= NUM_TIDS); 171 BUG_ON(pr >= 2); 172 173 idt->id[as][pid][pr].val = 0; 174 idt->id[as][pid][pr].pentry = NULL; 175 176 /* Update shadow pid when mappings are changed */ 177 kvmppc_e500_recalc_shadow_pid(vcpu_e500); 178} 179 180/* 181 * Map guest (vcpu,AS,ID,PR) to physical core shadow id. 182 * This function first lookup if a valid mapping exists, 183 * if not, then creates a new one. 184 * 185 * The caller must have preemption disabled, and keep it that way until 186 * it has finished with the returned shadow id (either written into the 187 * TLB or arch.shadow_pid, or discarded). 188 */ 189unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500, 190 unsigned int as, unsigned int gid, 191 unsigned int pr, int avoid_recursion) 192{ 193 struct vcpu_id_table *idt = vcpu_e500->idt; 194 int sid; 195 196 BUG_ON(as >= 2); 197 BUG_ON(gid >= NUM_TIDS); 198 BUG_ON(pr >= 2); 199 200 sid = local_sid_lookup(&idt->id[as][gid][pr]); 201 202 while (sid <= 0) { 203 /* No mapping yet */ 204 sid = local_sid_setup_one(&idt->id[as][gid][pr]); 205 if (sid <= 0) { 206 _tlbil_all(); 207 local_sid_destroy_all(); 208 } 209 210 /* Update shadow pid when mappings are changed */ 211 if (!avoid_recursion) 212 kvmppc_e500_recalc_shadow_pid(vcpu_e500); 213 } 214 215 return sid; 216} 217 218unsigned int kvmppc_e500_get_tlb_stid(struct kvm_vcpu *vcpu, 219 struct kvm_book3e_206_tlb_entry *gtlbe) 220{ 221 return kvmppc_e500_get_sid(to_e500(vcpu), get_tlb_ts(gtlbe), 222 get_tlb_tid(gtlbe), get_cur_pr(vcpu), 0); 223} 224 225void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid) 226{ 227 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 228 229 if (vcpu->arch.pid != pid) { 230 vcpu_e500->pid[0] = vcpu->arch.pid = pid; 231 kvmppc_e500_recalc_shadow_pid(vcpu_e500); 232 } 233} 234 235/* gtlbe must not be mapped by more than one host tlbe */ 236void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500, 237 struct kvm_book3e_206_tlb_entry *gtlbe) 238{ 239 struct vcpu_id_table *idt = vcpu_e500->idt; 240 unsigned int pr, tid, ts; 241 int pid; 242 u32 val, eaddr; 243 unsigned long flags; 244 245 ts = get_tlb_ts(gtlbe); 246 tid = get_tlb_tid(gtlbe); 247 248 preempt_disable(); 249 250 /* One guest ID may be mapped to two shadow IDs */ 251 for (pr = 0; pr < 2; pr++) { 252 /* 253 * The shadow PID can have a valid mapping on at most one 254 * host CPU. In the common case, it will be valid on this 255 * CPU, in which case we do a local invalidation of the 256 * specific address. 257 * 258 * If the shadow PID is not valid on the current host CPU, 259 * we invalidate the entire shadow PID. 260 */ 261 pid = local_sid_lookup(&idt->id[ts][tid][pr]); 262 if (pid <= 0) { 263 kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr); 264 continue; 265 } 266 267 /* 268 * The guest is invalidating a 4K entry which is in a PID 269 * that has a valid shadow mapping on this host CPU. We 270 * search host TLB to invalidate it's shadow TLB entry, 271 * similar to __tlbil_va except that we need to look in AS1. 272 */ 273 val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS; 274 eaddr = get_tlb_eaddr(gtlbe); 275 276 local_irq_save(flags); 277 278 mtspr(SPRN_MAS6, val); 279 asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr)); 280 val = mfspr(SPRN_MAS1); 281 if (val & MAS1_VALID) { 282 mtspr(SPRN_MAS1, val & ~MAS1_VALID); 283 asm volatile("tlbwe"); 284 } 285 286 local_irq_restore(flags); 287 } 288 289 preempt_enable(); 290} 291 292void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500) 293{ 294 kvmppc_e500_id_table_reset_all(vcpu_e500); 295} 296 297void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr) 298{ 299 /* Recalc shadow pid since MSR changes */ 300 kvmppc_e500_recalc_shadow_pid(to_e500(vcpu)); 301} 302 303static void kvmppc_core_vcpu_load_e500(struct kvm_vcpu *vcpu, int cpu) 304{ 305 kvmppc_booke_vcpu_load(vcpu, cpu); 306 307 /* Shadow PID may be expired on local core */ 308 kvmppc_e500_recalc_shadow_pid(to_e500(vcpu)); 309} 310 311static void kvmppc_core_vcpu_put_e500(struct kvm_vcpu *vcpu) 312{ 313#ifdef CONFIG_SPE 314 if (vcpu->arch.shadow_msr & MSR_SPE) 315 kvmppc_vcpu_disable_spe(vcpu); 316#endif 317 318 kvmppc_booke_vcpu_put(vcpu); 319} 320 321int kvmppc_core_check_processor_compat(void) 322{ 323 int r; 324 325 if (strcmp(cur_cpu_spec->cpu_name, "e500v2") == 0) 326 r = 0; 327 else 328 r = -ENOTSUPP; 329 330 return r; 331} 332 333static void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500) 334{ 335 struct kvm_book3e_206_tlb_entry *tlbe; 336 337 /* Insert large initial mapping for guest. */ 338 tlbe = get_entry(vcpu_e500, 1, 0); 339 tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M); 340 tlbe->mas2 = 0; 341 tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK; 342 343 /* 4K map for serial output. Used by kernel wrapper. */ 344 tlbe = get_entry(vcpu_e500, 1, 1); 345 tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K); 346 tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G; 347 tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK; 348} 349 350int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu) 351{ 352 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 353 354 kvmppc_e500_tlb_setup(vcpu_e500); 355 356 /* Registers init */ 357 vcpu->arch.pvr = mfspr(SPRN_PVR); 358 vcpu_e500->svr = mfspr(SPRN_SVR); 359 360 vcpu->arch.cpu_type = KVM_CPU_E500V2; 361 362 return 0; 363} 364 365static int kvmppc_core_get_sregs_e500(struct kvm_vcpu *vcpu, 366 struct kvm_sregs *sregs) 367{ 368 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 369 370 sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_SPE | 371 KVM_SREGS_E_PM; 372 sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL; 373 374 sregs->u.e.impl.fsl.features = 0; 375 sregs->u.e.impl.fsl.svr = vcpu_e500->svr; 376 sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0; 377 sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar; 378 379 sregs->u.e.ivor_high[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL]; 380 sregs->u.e.ivor_high[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA]; 381 sregs->u.e.ivor_high[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND]; 382 sregs->u.e.ivor_high[3] = 383 vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR]; 384 385 kvmppc_get_sregs_ivor(vcpu, sregs); 386 kvmppc_get_sregs_e500_tlb(vcpu, sregs); 387 return 0; 388} 389 390static int kvmppc_core_set_sregs_e500(struct kvm_vcpu *vcpu, 391 struct kvm_sregs *sregs) 392{ 393 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 394 int ret; 395 396 if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) { 397 vcpu_e500->svr = sregs->u.e.impl.fsl.svr; 398 vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0; 399 vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar; 400 } 401 402 ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs); 403 if (ret < 0) 404 return ret; 405 406 if (!(sregs->u.e.features & KVM_SREGS_E_IVOR)) 407 return 0; 408 409 if (sregs->u.e.features & KVM_SREGS_E_SPE) { 410 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL] = 411 sregs->u.e.ivor_high[0]; 412 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA] = 413 sregs->u.e.ivor_high[1]; 414 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND] = 415 sregs->u.e.ivor_high[2]; 416 } 417 418 if (sregs->u.e.features & KVM_SREGS_E_PM) { 419 vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] = 420 sregs->u.e.ivor_high[3]; 421 } 422 423 return kvmppc_set_sregs_ivor(vcpu, sregs); 424} 425 426static int kvmppc_get_one_reg_e500(struct kvm_vcpu *vcpu, u64 id, 427 union kvmppc_one_reg *val) 428{ 429 int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val); 430 return r; 431} 432 433static int kvmppc_set_one_reg_e500(struct kvm_vcpu *vcpu, u64 id, 434 union kvmppc_one_reg *val) 435{ 436 int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val); 437 return r; 438} 439 440static struct kvm_vcpu *kvmppc_core_vcpu_create_e500(struct kvm *kvm, 441 unsigned int id) 442{ 443 struct kvmppc_vcpu_e500 *vcpu_e500; 444 struct kvm_vcpu *vcpu; 445 int err; 446 447 vcpu_e500 = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); 448 if (!vcpu_e500) { 449 err = -ENOMEM; 450 goto out; 451 } 452 453 vcpu = &vcpu_e500->vcpu; 454 err = kvm_vcpu_init(vcpu, kvm, id); 455 if (err) 456 goto free_vcpu; 457 458 if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL) 459 goto uninit_vcpu; 460 461 err = kvmppc_e500_tlb_init(vcpu_e500); 462 if (err) 463 goto uninit_id; 464 465 vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO); 466 if (!vcpu->arch.shared) 467 goto uninit_tlb; 468 469 return vcpu; 470 471uninit_tlb: 472 kvmppc_e500_tlb_uninit(vcpu_e500); 473uninit_id: 474 kvmppc_e500_id_table_free(vcpu_e500); 475uninit_vcpu: 476 kvm_vcpu_uninit(vcpu); 477free_vcpu: 478 kmem_cache_free(kvm_vcpu_cache, vcpu_e500); 479out: 480 return ERR_PTR(err); 481} 482 483static void kvmppc_core_vcpu_free_e500(struct kvm_vcpu *vcpu) 484{ 485 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); 486 487 free_page((unsigned long)vcpu->arch.shared); 488 kvmppc_e500_tlb_uninit(vcpu_e500); 489 kvmppc_e500_id_table_free(vcpu_e500); 490 kvm_vcpu_uninit(vcpu); 491 kmem_cache_free(kvm_vcpu_cache, vcpu_e500); 492} 493 494static int kvmppc_core_init_vm_e500(struct kvm *kvm) 495{ 496 return 0; 497} 498 499static void kvmppc_core_destroy_vm_e500(struct kvm *kvm) 500{ 501} 502 503static struct kvmppc_ops kvm_ops_e500 = { 504 .get_sregs = kvmppc_core_get_sregs_e500, 505 .set_sregs = kvmppc_core_set_sregs_e500, 506 .get_one_reg = kvmppc_get_one_reg_e500, 507 .set_one_reg = kvmppc_set_one_reg_e500, 508 .vcpu_load = kvmppc_core_vcpu_load_e500, 509 .vcpu_put = kvmppc_core_vcpu_put_e500, 510 .vcpu_create = kvmppc_core_vcpu_create_e500, 511 .vcpu_free = kvmppc_core_vcpu_free_e500, 512 .mmu_destroy = kvmppc_mmu_destroy_e500, 513 .init_vm = kvmppc_core_init_vm_e500, 514 .destroy_vm = kvmppc_core_destroy_vm_e500, 515 .emulate_op = kvmppc_core_emulate_op_e500, 516 .emulate_mtspr = kvmppc_core_emulate_mtspr_e500, 517 .emulate_mfspr = kvmppc_core_emulate_mfspr_e500, 518}; 519 520static int __init kvmppc_e500_init(void) 521{ 522 int r, i; 523 unsigned long ivor[3]; 524 /* Process remaining handlers above the generic first 16 */ 525 unsigned long *handler = &kvmppc_booke_handler_addr[16]; 526 unsigned long handler_len; 527 unsigned long max_ivor = 0; 528 529 r = kvmppc_core_check_processor_compat(); 530 if (r) 531 goto err_out; 532 533 r = kvmppc_booke_init(); 534 if (r) 535 goto err_out; 536 537 /* copy extra E500 exception handlers */ 538 ivor[0] = mfspr(SPRN_IVOR32); 539 ivor[1] = mfspr(SPRN_IVOR33); 540 ivor[2] = mfspr(SPRN_IVOR34); 541 for (i = 0; i < 3; i++) { 542 if (ivor[i] > ivor[max_ivor]) 543 max_ivor = i; 544 545 handler_len = handler[i + 1] - handler[i]; 546 memcpy((void *)kvmppc_booke_handlers + ivor[i], 547 (void *)handler[i], handler_len); 548 } 549 handler_len = handler[max_ivor + 1] - handler[max_ivor]; 550 flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers + 551 ivor[max_ivor] + handler_len); 552 553 r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE); 554 if (r) 555 goto err_out; 556 kvm_ops_e500.owner = THIS_MODULE; 557 kvmppc_pr_ops = &kvm_ops_e500; 558 559err_out: 560 return r; 561} 562 563static void __exit kvmppc_e500_exit(void) 564{ 565 kvmppc_pr_ops = NULL; 566 kvmppc_booke_exit(); 567} 568 569module_init(kvmppc_e500_init); 570module_exit(kvmppc_e500_exit); 571MODULE_ALIAS_MISCDEV(KVM_MINOR); 572MODULE_ALIAS("devname:kvm"); 573