1/*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7 */
8
9#include <linux/types.h>
10#include <linux/string.h>
11#include <linux/kvm.h>
12#include <linux/kvm_host.h>
13#include <linux/hugetlb.h>
14#include <linux/module.h>
15#include <linux/log2.h>
16
17#include <asm/tlbflush.h>
18#include <asm/kvm_ppc.h>
19#include <asm/kvm_book3s.h>
20#include <asm/mmu-hash64.h>
21#include <asm/hvcall.h>
22#include <asm/synch.h>
23#include <asm/ppc-opcode.h>
24
25/* Translate address of a vmalloc'd thing to a linear map address */
26static void *real_vmalloc_addr(void *x)
27{
28	unsigned long addr = (unsigned long) x;
29	pte_t *p;
30	/*
31	 * assume we don't have huge pages in vmalloc space...
32	 * So don't worry about THP collapse/split. Called
33	 * Only in realmode, hence won't need irq_save/restore.
34	 */
35	p = __find_linux_pte_or_hugepte(swapper_pg_dir, addr, NULL, NULL);
36	if (!p || !pte_present(*p))
37		return NULL;
38	addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
39	return __va(addr);
40}
41
42/* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */
43static int global_invalidates(struct kvm *kvm, unsigned long flags)
44{
45	int global;
46
47	/*
48	 * If there is only one vcore, and it's currently running,
49	 * as indicated by local_paca->kvm_hstate.kvm_vcpu being set,
50	 * we can use tlbiel as long as we mark all other physical
51	 * cores as potentially having stale TLB entries for this lpid.
52	 * Otherwise, don't use tlbiel.
53	 */
54	if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcpu)
55		global = 0;
56	else
57		global = 1;
58
59	if (!global) {
60		/* any other core might now have stale TLB entries... */
61		smp_wmb();
62		cpumask_setall(&kvm->arch.need_tlb_flush);
63		cpumask_clear_cpu(local_paca->kvm_hstate.kvm_vcore->pcpu,
64				  &kvm->arch.need_tlb_flush);
65	}
66
67	return global;
68}
69
70/*
71 * Add this HPTE into the chain for the real page.
72 * Must be called with the chain locked; it unlocks the chain.
73 */
74void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
75			     unsigned long *rmap, long pte_index, int realmode)
76{
77	struct revmap_entry *head, *tail;
78	unsigned long i;
79
80	if (*rmap & KVMPPC_RMAP_PRESENT) {
81		i = *rmap & KVMPPC_RMAP_INDEX;
82		head = &kvm->arch.revmap[i];
83		if (realmode)
84			head = real_vmalloc_addr(head);
85		tail = &kvm->arch.revmap[head->back];
86		if (realmode)
87			tail = real_vmalloc_addr(tail);
88		rev->forw = i;
89		rev->back = head->back;
90		tail->forw = pte_index;
91		head->back = pte_index;
92	} else {
93		rev->forw = rev->back = pte_index;
94		*rmap = (*rmap & ~KVMPPC_RMAP_INDEX) |
95			pte_index | KVMPPC_RMAP_PRESENT;
96	}
97	unlock_rmap(rmap);
98}
99EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
100
101/* Update the changed page order field of an rmap entry */
102void kvmppc_update_rmap_change(unsigned long *rmap, unsigned long psize)
103{
104	unsigned long order;
105
106	if (!psize)
107		return;
108	order = ilog2(psize);
109	order <<= KVMPPC_RMAP_CHG_SHIFT;
110	if (order > (*rmap & KVMPPC_RMAP_CHG_ORDER))
111		*rmap = (*rmap & ~KVMPPC_RMAP_CHG_ORDER) | order;
112}
113EXPORT_SYMBOL_GPL(kvmppc_update_rmap_change);
114
115/* Returns a pointer to the revmap entry for the page mapped by a HPTE */
116static unsigned long *revmap_for_hpte(struct kvm *kvm, unsigned long hpte_v,
117				      unsigned long hpte_gr)
118{
119	struct kvm_memory_slot *memslot;
120	unsigned long *rmap;
121	unsigned long gfn;
122
123	gfn = hpte_rpn(hpte_gr, hpte_page_size(hpte_v, hpte_gr));
124	memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
125	if (!memslot)
126		return NULL;
127
128	rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
129	return rmap;
130}
131
132/* Remove this HPTE from the chain for a real page */
133static void remove_revmap_chain(struct kvm *kvm, long pte_index,
134				struct revmap_entry *rev,
135				unsigned long hpte_v, unsigned long hpte_r)
136{
137	struct revmap_entry *next, *prev;
138	unsigned long ptel, head;
139	unsigned long *rmap;
140	unsigned long rcbits;
141
142	rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
143	ptel = rev->guest_rpte |= rcbits;
144	rmap = revmap_for_hpte(kvm, hpte_v, ptel);
145	if (!rmap)
146		return;
147	lock_rmap(rmap);
148
149	head = *rmap & KVMPPC_RMAP_INDEX;
150	next = real_vmalloc_addr(&kvm->arch.revmap[rev->forw]);
151	prev = real_vmalloc_addr(&kvm->arch.revmap[rev->back]);
152	next->back = rev->back;
153	prev->forw = rev->forw;
154	if (head == pte_index) {
155		head = rev->forw;
156		if (head == pte_index)
157			*rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
158		else
159			*rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
160	}
161	*rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
162	if (rcbits & HPTE_R_C)
163		kvmppc_update_rmap_change(rmap, hpte_page_size(hpte_v, hpte_r));
164	unlock_rmap(rmap);
165}
166
167long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
168		       long pte_index, unsigned long pteh, unsigned long ptel,
169		       pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret)
170{
171	unsigned long i, pa, gpa, gfn, psize;
172	unsigned long slot_fn, hva;
173	__be64 *hpte;
174	struct revmap_entry *rev;
175	unsigned long g_ptel;
176	struct kvm_memory_slot *memslot;
177	unsigned hpage_shift;
178	unsigned long is_io;
179	unsigned long *rmap;
180	pte_t *ptep;
181	unsigned int writing;
182	unsigned long mmu_seq;
183	unsigned long rcbits, irq_flags = 0;
184
185	psize = hpte_page_size(pteh, ptel);
186	if (!psize)
187		return H_PARAMETER;
188	writing = hpte_is_writable(ptel);
189	pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
190	ptel &= ~HPTE_GR_RESERVED;
191	g_ptel = ptel;
192
193	/* used later to detect if we might have been invalidated */
194	mmu_seq = kvm->mmu_notifier_seq;
195	smp_rmb();
196
197	/* Find the memslot (if any) for this address */
198	gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
199	gfn = gpa >> PAGE_SHIFT;
200	memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
201	pa = 0;
202	is_io = ~0ul;
203	rmap = NULL;
204	if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
205		/* Emulated MMIO - mark this with key=31 */
206		pteh |= HPTE_V_ABSENT;
207		ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
208		goto do_insert;
209	}
210
211	/* Check if the requested page fits entirely in the memslot. */
212	if (!slot_is_aligned(memslot, psize))
213		return H_PARAMETER;
214	slot_fn = gfn - memslot->base_gfn;
215	rmap = &memslot->arch.rmap[slot_fn];
216
217	/* Translate to host virtual address */
218	hva = __gfn_to_hva_memslot(memslot, gfn);
219	/*
220	 * If we had a page table table change after lookup, we would
221	 * retry via mmu_notifier_retry.
222	 */
223	if (realmode)
224		ptep = __find_linux_pte_or_hugepte(pgdir, hva, NULL,
225						   &hpage_shift);
226	else {
227		local_irq_save(irq_flags);
228		ptep = find_linux_pte_or_hugepte(pgdir, hva, NULL,
229						 &hpage_shift);
230	}
231	if (ptep) {
232		pte_t pte;
233		unsigned int host_pte_size;
234
235		if (hpage_shift)
236			host_pte_size = 1ul << hpage_shift;
237		else
238			host_pte_size = PAGE_SIZE;
239		/*
240		 * We should always find the guest page size
241		 * to <= host page size, if host is using hugepage
242		 */
243		if (host_pte_size < psize) {
244			if (!realmode)
245				local_irq_restore(flags);
246			return H_PARAMETER;
247		}
248		pte = kvmppc_read_update_linux_pte(ptep, writing);
249		if (pte_present(pte) && !pte_protnone(pte)) {
250			if (writing && !pte_write(pte))
251				/* make the actual HPTE be read-only */
252				ptel = hpte_make_readonly(ptel);
253			is_io = hpte_cache_bits(pte_val(pte));
254			pa = pte_pfn(pte) << PAGE_SHIFT;
255			pa |= hva & (host_pte_size - 1);
256			pa |= gpa & ~PAGE_MASK;
257		}
258	}
259	if (!realmode)
260		local_irq_restore(irq_flags);
261
262	ptel &= ~(HPTE_R_PP0 - psize);
263	ptel |= pa;
264
265	if (pa)
266		pteh |= HPTE_V_VALID;
267	else
268		pteh |= HPTE_V_ABSENT;
269
270	/* Check WIMG */
271	if (is_io != ~0ul && !hpte_cache_flags_ok(ptel, is_io)) {
272		if (is_io)
273			return H_PARAMETER;
274		/*
275		 * Allow guest to map emulated device memory as
276		 * uncacheable, but actually make it cacheable.
277		 */
278		ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
279		ptel |= HPTE_R_M;
280	}
281
282	/* Find and lock the HPTEG slot to use */
283 do_insert:
284	if (pte_index >= kvm->arch.hpt_npte)
285		return H_PARAMETER;
286	if (likely((flags & H_EXACT) == 0)) {
287		pte_index &= ~7UL;
288		hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
289		for (i = 0; i < 8; ++i) {
290			if ((be64_to_cpu(*hpte) & HPTE_V_VALID) == 0 &&
291			    try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
292					  HPTE_V_ABSENT))
293				break;
294			hpte += 2;
295		}
296		if (i == 8) {
297			/*
298			 * Since try_lock_hpte doesn't retry (not even stdcx.
299			 * failures), it could be that there is a free slot
300			 * but we transiently failed to lock it.  Try again,
301			 * actually locking each slot and checking it.
302			 */
303			hpte -= 16;
304			for (i = 0; i < 8; ++i) {
305				u64 pte;
306				while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
307					cpu_relax();
308				pte = be64_to_cpu(hpte[0]);
309				if (!(pte & (HPTE_V_VALID | HPTE_V_ABSENT)))
310					break;
311				__unlock_hpte(hpte, pte);
312				hpte += 2;
313			}
314			if (i == 8)
315				return H_PTEG_FULL;
316		}
317		pte_index += i;
318	} else {
319		hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
320		if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
321				   HPTE_V_ABSENT)) {
322			/* Lock the slot and check again */
323			u64 pte;
324
325			while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
326				cpu_relax();
327			pte = be64_to_cpu(hpte[0]);
328			if (pte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
329				__unlock_hpte(hpte, pte);
330				return H_PTEG_FULL;
331			}
332		}
333	}
334
335	/* Save away the guest's idea of the second HPTE dword */
336	rev = &kvm->arch.revmap[pte_index];
337	if (realmode)
338		rev = real_vmalloc_addr(rev);
339	if (rev) {
340		rev->guest_rpte = g_ptel;
341		note_hpte_modification(kvm, rev);
342	}
343
344	/* Link HPTE into reverse-map chain */
345	if (pteh & HPTE_V_VALID) {
346		if (realmode)
347			rmap = real_vmalloc_addr(rmap);
348		lock_rmap(rmap);
349		/* Check for pending invalidations under the rmap chain lock */
350		if (mmu_notifier_retry(kvm, mmu_seq)) {
351			/* inval in progress, write a non-present HPTE */
352			pteh |= HPTE_V_ABSENT;
353			pteh &= ~HPTE_V_VALID;
354			unlock_rmap(rmap);
355		} else {
356			kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
357						realmode);
358			/* Only set R/C in real HPTE if already set in *rmap */
359			rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
360			ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
361		}
362	}
363
364	hpte[1] = cpu_to_be64(ptel);
365
366	/* Write the first HPTE dword, unlocking the HPTE and making it valid */
367	eieio();
368	__unlock_hpte(hpte, pteh);
369	asm volatile("ptesync" : : : "memory");
370
371	*pte_idx_ret = pte_index;
372	return H_SUCCESS;
373}
374EXPORT_SYMBOL_GPL(kvmppc_do_h_enter);
375
376long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
377		    long pte_index, unsigned long pteh, unsigned long ptel)
378{
379	return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel,
380				 vcpu->arch.pgdir, true, &vcpu->arch.gpr[4]);
381}
382
383#ifdef __BIG_ENDIAN__
384#define LOCK_TOKEN	(*(u32 *)(&get_paca()->lock_token))
385#else
386#define LOCK_TOKEN	(*(u32 *)(&get_paca()->paca_index))
387#endif
388
389static inline int try_lock_tlbie(unsigned int *lock)
390{
391	unsigned int tmp, old;
392	unsigned int token = LOCK_TOKEN;
393
394	asm volatile("1:lwarx	%1,0,%2\n"
395		     "	cmpwi	cr0,%1,0\n"
396		     "	bne	2f\n"
397		     "  stwcx.	%3,0,%2\n"
398		     "	bne-	1b\n"
399		     "  isync\n"
400		     "2:"
401		     : "=&r" (tmp), "=&r" (old)
402		     : "r" (lock), "r" (token)
403		     : "cc", "memory");
404	return old == 0;
405}
406
407static void do_tlbies(struct kvm *kvm, unsigned long *rbvalues,
408		      long npages, int global, bool need_sync)
409{
410	long i;
411
412	if (global) {
413		while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
414			cpu_relax();
415		if (need_sync)
416			asm volatile("ptesync" : : : "memory");
417		for (i = 0; i < npages; ++i)
418			asm volatile(PPC_TLBIE(%1,%0) : :
419				     "r" (rbvalues[i]), "r" (kvm->arch.lpid));
420		asm volatile("eieio; tlbsync; ptesync" : : : "memory");
421		kvm->arch.tlbie_lock = 0;
422	} else {
423		if (need_sync)
424			asm volatile("ptesync" : : : "memory");
425		for (i = 0; i < npages; ++i)
426			asm volatile("tlbiel %0" : : "r" (rbvalues[i]));
427		asm volatile("ptesync" : : : "memory");
428	}
429}
430
431long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
432			unsigned long pte_index, unsigned long avpn,
433			unsigned long *hpret)
434{
435	__be64 *hpte;
436	unsigned long v, r, rb;
437	struct revmap_entry *rev;
438	u64 pte;
439
440	if (pte_index >= kvm->arch.hpt_npte)
441		return H_PARAMETER;
442	hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
443	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
444		cpu_relax();
445	pte = be64_to_cpu(hpte[0]);
446	if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
447	    ((flags & H_AVPN) && (pte & ~0x7fUL) != avpn) ||
448	    ((flags & H_ANDCOND) && (pte & avpn) != 0)) {
449		__unlock_hpte(hpte, pte);
450		return H_NOT_FOUND;
451	}
452
453	rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
454	v = pte & ~HPTE_V_HVLOCK;
455	if (v & HPTE_V_VALID) {
456		hpte[0] &= ~cpu_to_be64(HPTE_V_VALID);
457		rb = compute_tlbie_rb(v, be64_to_cpu(hpte[1]), pte_index);
458		do_tlbies(kvm, &rb, 1, global_invalidates(kvm, flags), true);
459		/*
460		 * The reference (R) and change (C) bits in a HPT
461		 * entry can be set by hardware at any time up until
462		 * the HPTE is invalidated and the TLB invalidation
463		 * sequence has completed.  This means that when
464		 * removing a HPTE, we need to re-read the HPTE after
465		 * the invalidation sequence has completed in order to
466		 * obtain reliable values of R and C.
467		 */
468		remove_revmap_chain(kvm, pte_index, rev, v,
469				    be64_to_cpu(hpte[1]));
470	}
471	r = rev->guest_rpte & ~HPTE_GR_RESERVED;
472	note_hpte_modification(kvm, rev);
473	unlock_hpte(hpte, 0);
474
475	if (v & HPTE_V_ABSENT)
476		v = (v & ~HPTE_V_ABSENT) | HPTE_V_VALID;
477	hpret[0] = v;
478	hpret[1] = r;
479	return H_SUCCESS;
480}
481EXPORT_SYMBOL_GPL(kvmppc_do_h_remove);
482
483long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
484		     unsigned long pte_index, unsigned long avpn)
485{
486	return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn,
487				  &vcpu->arch.gpr[4]);
488}
489
490long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
491{
492	struct kvm *kvm = vcpu->kvm;
493	unsigned long *args = &vcpu->arch.gpr[4];
494	__be64 *hp, *hptes[4];
495	unsigned long tlbrb[4];
496	long int i, j, k, n, found, indexes[4];
497	unsigned long flags, req, pte_index, rcbits;
498	int global;
499	long int ret = H_SUCCESS;
500	struct revmap_entry *rev, *revs[4];
501	u64 hp0;
502
503	global = global_invalidates(kvm, 0);
504	for (i = 0; i < 4 && ret == H_SUCCESS; ) {
505		n = 0;
506		for (; i < 4; ++i) {
507			j = i * 2;
508			pte_index = args[j];
509			flags = pte_index >> 56;
510			pte_index &= ((1ul << 56) - 1);
511			req = flags >> 6;
512			flags &= 3;
513			if (req == 3) {		/* no more requests */
514				i = 4;
515				break;
516			}
517			if (req != 1 || flags == 3 ||
518			    pte_index >= kvm->arch.hpt_npte) {
519				/* parameter error */
520				args[j] = ((0xa0 | flags) << 56) + pte_index;
521				ret = H_PARAMETER;
522				break;
523			}
524			hp = (__be64 *) (kvm->arch.hpt_virt + (pte_index << 4));
525			/* to avoid deadlock, don't spin except for first */
526			if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
527				if (n)
528					break;
529				while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
530					cpu_relax();
531			}
532			found = 0;
533			hp0 = be64_to_cpu(hp[0]);
534			if (hp0 & (HPTE_V_ABSENT | HPTE_V_VALID)) {
535				switch (flags & 3) {
536				case 0:		/* absolute */
537					found = 1;
538					break;
539				case 1:		/* andcond */
540					if (!(hp0 & args[j + 1]))
541						found = 1;
542					break;
543				case 2:		/* AVPN */
544					if ((hp0 & ~0x7fUL) == args[j + 1])
545						found = 1;
546					break;
547				}
548			}
549			if (!found) {
550				hp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
551				args[j] = ((0x90 | flags) << 56) + pte_index;
552				continue;
553			}
554
555			args[j] = ((0x80 | flags) << 56) + pte_index;
556			rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
557			note_hpte_modification(kvm, rev);
558
559			if (!(hp0 & HPTE_V_VALID)) {
560				/* insert R and C bits from PTE */
561				rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
562				args[j] |= rcbits << (56 - 5);
563				hp[0] = 0;
564				continue;
565			}
566
567			/* leave it locked */
568			hp[0] &= ~cpu_to_be64(HPTE_V_VALID);
569			tlbrb[n] = compute_tlbie_rb(be64_to_cpu(hp[0]),
570				be64_to_cpu(hp[1]), pte_index);
571			indexes[n] = j;
572			hptes[n] = hp;
573			revs[n] = rev;
574			++n;
575		}
576
577		if (!n)
578			break;
579
580		/* Now that we've collected a batch, do the tlbies */
581		do_tlbies(kvm, tlbrb, n, global, true);
582
583		/* Read PTE low words after tlbie to get final R/C values */
584		for (k = 0; k < n; ++k) {
585			j = indexes[k];
586			pte_index = args[j] & ((1ul << 56) - 1);
587			hp = hptes[k];
588			rev = revs[k];
589			remove_revmap_chain(kvm, pte_index, rev,
590				be64_to_cpu(hp[0]), be64_to_cpu(hp[1]));
591			rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
592			args[j] |= rcbits << (56 - 5);
593			__unlock_hpte(hp, 0);
594		}
595	}
596
597	return ret;
598}
599
600long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
601		      unsigned long pte_index, unsigned long avpn,
602		      unsigned long va)
603{
604	struct kvm *kvm = vcpu->kvm;
605	__be64 *hpte;
606	struct revmap_entry *rev;
607	unsigned long v, r, rb, mask, bits;
608	u64 pte;
609
610	if (pte_index >= kvm->arch.hpt_npte)
611		return H_PARAMETER;
612
613	hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
614	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
615		cpu_relax();
616	pte = be64_to_cpu(hpte[0]);
617	if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
618	    ((flags & H_AVPN) && (pte & ~0x7fUL) != avpn)) {
619		__unlock_hpte(hpte, pte);
620		return H_NOT_FOUND;
621	}
622
623	v = pte;
624	bits = (flags << 55) & HPTE_R_PP0;
625	bits |= (flags << 48) & HPTE_R_KEY_HI;
626	bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
627
628	/* Update guest view of 2nd HPTE dword */
629	mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
630		HPTE_R_KEY_HI | HPTE_R_KEY_LO;
631	rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
632	if (rev) {
633		r = (rev->guest_rpte & ~mask) | bits;
634		rev->guest_rpte = r;
635		note_hpte_modification(kvm, rev);
636	}
637
638	/* Update HPTE */
639	if (v & HPTE_V_VALID) {
640		/*
641		 * If the page is valid, don't let it transition from
642		 * readonly to writable.  If it should be writable, we'll
643		 * take a trap and let the page fault code sort it out.
644		 */
645		pte = be64_to_cpu(hpte[1]);
646		r = (pte & ~mask) | bits;
647		if (hpte_is_writable(r) && !hpte_is_writable(pte))
648			r = hpte_make_readonly(r);
649		/* If the PTE is changing, invalidate it first */
650		if (r != pte) {
651			rb = compute_tlbie_rb(v, r, pte_index);
652			hpte[0] = cpu_to_be64((v & ~HPTE_V_VALID) |
653					      HPTE_V_ABSENT);
654			do_tlbies(kvm, &rb, 1, global_invalidates(kvm, flags),
655				  true);
656			hpte[1] = cpu_to_be64(r);
657		}
658	}
659	unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
660	asm volatile("ptesync" : : : "memory");
661	return H_SUCCESS;
662}
663
664long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
665		   unsigned long pte_index)
666{
667	struct kvm *kvm = vcpu->kvm;
668	__be64 *hpte;
669	unsigned long v, r;
670	int i, n = 1;
671	struct revmap_entry *rev = NULL;
672
673	if (pte_index >= kvm->arch.hpt_npte)
674		return H_PARAMETER;
675	if (flags & H_READ_4) {
676		pte_index &= ~3;
677		n = 4;
678	}
679	rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
680	for (i = 0; i < n; ++i, ++pte_index) {
681		hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
682		v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
683		r = be64_to_cpu(hpte[1]);
684		if (v & HPTE_V_ABSENT) {
685			v &= ~HPTE_V_ABSENT;
686			v |= HPTE_V_VALID;
687		}
688		if (v & HPTE_V_VALID) {
689			r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
690			r &= ~HPTE_GR_RESERVED;
691		}
692		vcpu->arch.gpr[4 + i * 2] = v;
693		vcpu->arch.gpr[5 + i * 2] = r;
694	}
695	return H_SUCCESS;
696}
697
698long kvmppc_h_clear_ref(struct kvm_vcpu *vcpu, unsigned long flags,
699			unsigned long pte_index)
700{
701	struct kvm *kvm = vcpu->kvm;
702	__be64 *hpte;
703	unsigned long v, r, gr;
704	struct revmap_entry *rev;
705	unsigned long *rmap;
706	long ret = H_NOT_FOUND;
707
708	if (pte_index >= kvm->arch.hpt_npte)
709		return H_PARAMETER;
710
711	rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
712	hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
713	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
714		cpu_relax();
715	v = be64_to_cpu(hpte[0]);
716	r = be64_to_cpu(hpte[1]);
717	if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
718		goto out;
719
720	gr = rev->guest_rpte;
721	if (rev->guest_rpte & HPTE_R_R) {
722		rev->guest_rpte &= ~HPTE_R_R;
723		note_hpte_modification(kvm, rev);
724	}
725	if (v & HPTE_V_VALID) {
726		gr |= r & (HPTE_R_R | HPTE_R_C);
727		if (r & HPTE_R_R) {
728			kvmppc_clear_ref_hpte(kvm, hpte, pte_index);
729			rmap = revmap_for_hpte(kvm, v, gr);
730			if (rmap) {
731				lock_rmap(rmap);
732				*rmap |= KVMPPC_RMAP_REFERENCED;
733				unlock_rmap(rmap);
734			}
735		}
736	}
737	vcpu->arch.gpr[4] = gr;
738	ret = H_SUCCESS;
739 out:
740	unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
741	return ret;
742}
743
744long kvmppc_h_clear_mod(struct kvm_vcpu *vcpu, unsigned long flags,
745			unsigned long pte_index)
746{
747	struct kvm *kvm = vcpu->kvm;
748	__be64 *hpte;
749	unsigned long v, r, gr;
750	struct revmap_entry *rev;
751	unsigned long *rmap;
752	long ret = H_NOT_FOUND;
753
754	if (pte_index >= kvm->arch.hpt_npte)
755		return H_PARAMETER;
756
757	rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
758	hpte = (__be64 *)(kvm->arch.hpt_virt + (pte_index << 4));
759	while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
760		cpu_relax();
761	v = be64_to_cpu(hpte[0]);
762	r = be64_to_cpu(hpte[1]);
763	if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
764		goto out;
765
766	gr = rev->guest_rpte;
767	if (gr & HPTE_R_C) {
768		rev->guest_rpte &= ~HPTE_R_C;
769		note_hpte_modification(kvm, rev);
770	}
771	if (v & HPTE_V_VALID) {
772		/* need to make it temporarily absent so C is stable */
773		hpte[0] |= cpu_to_be64(HPTE_V_ABSENT);
774		kvmppc_invalidate_hpte(kvm, hpte, pte_index);
775		r = be64_to_cpu(hpte[1]);
776		gr |= r & (HPTE_R_R | HPTE_R_C);
777		if (r & HPTE_R_C) {
778			unsigned long psize = hpte_page_size(v, r);
779			hpte[1] = cpu_to_be64(r & ~HPTE_R_C);
780			eieio();
781			rmap = revmap_for_hpte(kvm, v, gr);
782			if (rmap) {
783				lock_rmap(rmap);
784				*rmap |= KVMPPC_RMAP_CHANGED;
785				kvmppc_update_rmap_change(rmap, psize);
786				unlock_rmap(rmap);
787			}
788		}
789	}
790	vcpu->arch.gpr[4] = gr;
791	ret = H_SUCCESS;
792 out:
793	unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
794	return ret;
795}
796
797void kvmppc_invalidate_hpte(struct kvm *kvm, __be64 *hptep,
798			unsigned long pte_index)
799{
800	unsigned long rb;
801
802	hptep[0] &= ~cpu_to_be64(HPTE_V_VALID);
803	rb = compute_tlbie_rb(be64_to_cpu(hptep[0]), be64_to_cpu(hptep[1]),
804			      pte_index);
805	do_tlbies(kvm, &rb, 1, 1, true);
806}
807EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
808
809void kvmppc_clear_ref_hpte(struct kvm *kvm, __be64 *hptep,
810			   unsigned long pte_index)
811{
812	unsigned long rb;
813	unsigned char rbyte;
814
815	rb = compute_tlbie_rb(be64_to_cpu(hptep[0]), be64_to_cpu(hptep[1]),
816			      pte_index);
817	rbyte = (be64_to_cpu(hptep[1]) & ~HPTE_R_R) >> 8;
818	/* modify only the second-last byte, which contains the ref bit */
819	*((char *)hptep + 14) = rbyte;
820	do_tlbies(kvm, &rb, 1, 1, false);
821}
822EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
823
824static int slb_base_page_shift[4] = {
825	24,	/* 16M */
826	16,	/* 64k */
827	34,	/* 16G */
828	20,	/* 1M, unsupported */
829};
830
831/* When called from virtmode, this func should be protected by
832 * preempt_disable(), otherwise, the holding of HPTE_V_HVLOCK
833 * can trigger deadlock issue.
834 */
835long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
836			      unsigned long valid)
837{
838	unsigned int i;
839	unsigned int pshift;
840	unsigned long somask;
841	unsigned long vsid, hash;
842	unsigned long avpn;
843	__be64 *hpte;
844	unsigned long mask, val;
845	unsigned long v, r;
846
847	/* Get page shift, work out hash and AVPN etc. */
848	mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
849	val = 0;
850	pshift = 12;
851	if (slb_v & SLB_VSID_L) {
852		mask |= HPTE_V_LARGE;
853		val |= HPTE_V_LARGE;
854		pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
855	}
856	if (slb_v & SLB_VSID_B_1T) {
857		somask = (1UL << 40) - 1;
858		vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
859		vsid ^= vsid << 25;
860	} else {
861		somask = (1UL << 28) - 1;
862		vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
863	}
864	hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvm->arch.hpt_mask;
865	avpn = slb_v & ~(somask >> 16);	/* also includes B */
866	avpn |= (eaddr & somask) >> 16;
867
868	if (pshift >= 24)
869		avpn &= ~((1UL << (pshift - 16)) - 1);
870	else
871		avpn &= ~0x7fUL;
872	val |= avpn;
873
874	for (;;) {
875		hpte = (__be64 *)(kvm->arch.hpt_virt + (hash << 7));
876
877		for (i = 0; i < 16; i += 2) {
878			/* Read the PTE racily */
879			v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
880
881			/* Check valid/absent, hash, segment size and AVPN */
882			if (!(v & valid) || (v & mask) != val)
883				continue;
884
885			/* Lock the PTE and read it under the lock */
886			while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
887				cpu_relax();
888			v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
889			r = be64_to_cpu(hpte[i+1]);
890
891			/*
892			 * Check the HPTE again, including base page size
893			 */
894			if ((v & valid) && (v & mask) == val &&
895			    hpte_base_page_size(v, r) == (1ul << pshift))
896				/* Return with the HPTE still locked */
897				return (hash << 3) + (i >> 1);
898
899			__unlock_hpte(&hpte[i], v);
900		}
901
902		if (val & HPTE_V_SECONDARY)
903			break;
904		val |= HPTE_V_SECONDARY;
905		hash = hash ^ kvm->arch.hpt_mask;
906	}
907	return -1;
908}
909EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
910
911/*
912 * Called in real mode to check whether an HPTE not found fault
913 * is due to accessing a paged-out page or an emulated MMIO page,
914 * or if a protection fault is due to accessing a page that the
915 * guest wanted read/write access to but which we made read-only.
916 * Returns a possibly modified status (DSISR) value if not
917 * (i.e. pass the interrupt to the guest),
918 * -1 to pass the fault up to host kernel mode code, -2 to do that
919 * and also load the instruction word (for MMIO emulation),
920 * or 0 if we should make the guest retry the access.
921 */
922long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
923			  unsigned long slb_v, unsigned int status, bool data)
924{
925	struct kvm *kvm = vcpu->kvm;
926	long int index;
927	unsigned long v, r, gr;
928	__be64 *hpte;
929	unsigned long valid;
930	struct revmap_entry *rev;
931	unsigned long pp, key;
932
933	/* For protection fault, expect to find a valid HPTE */
934	valid = HPTE_V_VALID;
935	if (status & DSISR_NOHPTE)
936		valid |= HPTE_V_ABSENT;
937
938	index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
939	if (index < 0) {
940		if (status & DSISR_NOHPTE)
941			return status;	/* there really was no HPTE */
942		return 0;		/* for prot fault, HPTE disappeared */
943	}
944	hpte = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
945	v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
946	r = be64_to_cpu(hpte[1]);
947	rev = real_vmalloc_addr(&kvm->arch.revmap[index]);
948	gr = rev->guest_rpte;
949
950	unlock_hpte(hpte, v);
951
952	/* For not found, if the HPTE is valid by now, retry the instruction */
953	if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
954		return 0;
955
956	/* Check access permissions to the page */
957	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
958	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
959	status &= ~DSISR_NOHPTE;	/* DSISR_NOHPTE == SRR1_ISI_NOPT */
960	if (!data) {
961		if (gr & (HPTE_R_N | HPTE_R_G))
962			return status | SRR1_ISI_N_OR_G;
963		if (!hpte_read_permission(pp, slb_v & key))
964			return status | SRR1_ISI_PROT;
965	} else if (status & DSISR_ISSTORE) {
966		/* check write permission */
967		if (!hpte_write_permission(pp, slb_v & key))
968			return status | DSISR_PROTFAULT;
969	} else {
970		if (!hpte_read_permission(pp, slb_v & key))
971			return status | DSISR_PROTFAULT;
972	}
973
974	/* Check storage key, if applicable */
975	if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
976		unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
977		if (status & DSISR_ISSTORE)
978			perm >>= 1;
979		if (perm & 1)
980			return status | DSISR_KEYFAULT;
981	}
982
983	/* Save HPTE info for virtual-mode handler */
984	vcpu->arch.pgfault_addr = addr;
985	vcpu->arch.pgfault_index = index;
986	vcpu->arch.pgfault_hpte[0] = v;
987	vcpu->arch.pgfault_hpte[1] = r;
988
989	/* Check the storage key to see if it is possibly emulated MMIO */
990	if (data && (vcpu->arch.shregs.msr & MSR_IR) &&
991	    (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
992	    (HPTE_R_KEY_HI | HPTE_R_KEY_LO))
993		return -2;	/* MMIO emulation - load instr word */
994
995	return -1;		/* send fault up to host kernel mode */
996}
997