1/*
2 * The file intends to implement PE based on the information from
3 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
4 * All the PEs should be organized as hierarchy tree. The first level
5 * of the tree will be associated to existing PHBs since the particular
6 * PE is only meaningful in one PHB domain.
7 *
8 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
23 */
24
25#include <linux/delay.h>
26#include <linux/export.h>
27#include <linux/gfp.h>
28#include <linux/kernel.h>
29#include <linux/pci.h>
30#include <linux/string.h>
31
32#include <asm/pci-bridge.h>
33#include <asm/ppc-pci.h>
34
35static int eeh_pe_aux_size = 0;
36static LIST_HEAD(eeh_phb_pe);
37
38/**
39 * eeh_set_pe_aux_size - Set PE auxillary data size
40 * @size: PE auxillary data size
41 *
42 * Set PE auxillary data size
43 */
44void eeh_set_pe_aux_size(int size)
45{
46	if (size < 0)
47		return;
48
49	eeh_pe_aux_size = size;
50}
51
52/**
53 * eeh_pe_alloc - Allocate PE
54 * @phb: PCI controller
55 * @type: PE type
56 *
57 * Allocate PE instance dynamically.
58 */
59static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
60{
61	struct eeh_pe *pe;
62	size_t alloc_size;
63
64	alloc_size = sizeof(struct eeh_pe);
65	if (eeh_pe_aux_size) {
66		alloc_size = ALIGN(alloc_size, cache_line_size());
67		alloc_size += eeh_pe_aux_size;
68	}
69
70	/* Allocate PHB PE */
71	pe = kzalloc(alloc_size, GFP_KERNEL);
72	if (!pe) return NULL;
73
74	/* Initialize PHB PE */
75	pe->type = type;
76	pe->phb = phb;
77	INIT_LIST_HEAD(&pe->child_list);
78	INIT_LIST_HEAD(&pe->child);
79	INIT_LIST_HEAD(&pe->edevs);
80
81	pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
82				      cache_line_size());
83	return pe;
84}
85
86/**
87 * eeh_phb_pe_create - Create PHB PE
88 * @phb: PCI controller
89 *
90 * The function should be called while the PHB is detected during
91 * system boot or PCI hotplug in order to create PHB PE.
92 */
93int eeh_phb_pe_create(struct pci_controller *phb)
94{
95	struct eeh_pe *pe;
96
97	/* Allocate PHB PE */
98	pe = eeh_pe_alloc(phb, EEH_PE_PHB);
99	if (!pe) {
100		pr_err("%s: out of memory!\n", __func__);
101		return -ENOMEM;
102	}
103
104	/* Put it into the list */
105	list_add_tail(&pe->child, &eeh_phb_pe);
106
107	pr_debug("EEH: Add PE for PHB#%d\n", phb->global_number);
108
109	return 0;
110}
111
112/**
113 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
114 * @phb: PCI controller
115 *
116 * The overall PEs form hierarchy tree. The first layer of the
117 * hierarchy tree is composed of PHB PEs. The function is used
118 * to retrieve the corresponding PHB PE according to the given PHB.
119 */
120struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
121{
122	struct eeh_pe *pe;
123
124	list_for_each_entry(pe, &eeh_phb_pe, child) {
125		/*
126		 * Actually, we needn't check the type since
127		 * the PE for PHB has been determined when that
128		 * was created.
129		 */
130		if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
131			return pe;
132	}
133
134	return NULL;
135}
136
137/**
138 * eeh_pe_next - Retrieve the next PE in the tree
139 * @pe: current PE
140 * @root: root PE
141 *
142 * The function is used to retrieve the next PE in the
143 * hierarchy PE tree.
144 */
145static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe,
146				  struct eeh_pe *root)
147{
148	struct list_head *next = pe->child_list.next;
149
150	if (next == &pe->child_list) {
151		while (1) {
152			if (pe == root)
153				return NULL;
154			next = pe->child.next;
155			if (next != &pe->parent->child_list)
156				break;
157			pe = pe->parent;
158		}
159	}
160
161	return list_entry(next, struct eeh_pe, child);
162}
163
164/**
165 * eeh_pe_traverse - Traverse PEs in the specified PHB
166 * @root: root PE
167 * @fn: callback
168 * @flag: extra parameter to callback
169 *
170 * The function is used to traverse the specified PE and its
171 * child PEs. The traversing is to be terminated once the
172 * callback returns something other than NULL, or no more PEs
173 * to be traversed.
174 */
175void *eeh_pe_traverse(struct eeh_pe *root,
176		      eeh_traverse_func fn, void *flag)
177{
178	struct eeh_pe *pe;
179	void *ret;
180
181	for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
182		ret = fn(pe, flag);
183		if (ret) return ret;
184	}
185
186	return NULL;
187}
188
189/**
190 * eeh_pe_dev_traverse - Traverse the devices from the PE
191 * @root: EEH PE
192 * @fn: function callback
193 * @flag: extra parameter to callback
194 *
195 * The function is used to traverse the devices of the specified
196 * PE and its child PEs.
197 */
198void *eeh_pe_dev_traverse(struct eeh_pe *root,
199		eeh_traverse_func fn, void *flag)
200{
201	struct eeh_pe *pe;
202	struct eeh_dev *edev, *tmp;
203	void *ret;
204
205	if (!root) {
206		pr_warn("%s: Invalid PE %p\n",
207			__func__, root);
208		return NULL;
209	}
210
211	/* Traverse root PE */
212	for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
213		eeh_pe_for_each_dev(pe, edev, tmp) {
214			ret = fn(edev, flag);
215			if (ret)
216				return ret;
217		}
218	}
219
220	return NULL;
221}
222
223/**
224 * __eeh_pe_get - Check the PE address
225 * @data: EEH PE
226 * @flag: EEH device
227 *
228 * For one particular PE, it can be identified by PE address
229 * or tranditional BDF address. BDF address is composed of
230 * Bus/Device/Function number. The extra data referred by flag
231 * indicates which type of address should be used.
232 */
233static void *__eeh_pe_get(void *data, void *flag)
234{
235	struct eeh_pe *pe = (struct eeh_pe *)data;
236	struct eeh_dev *edev = (struct eeh_dev *)flag;
237
238	/* Unexpected PHB PE */
239	if (pe->type & EEH_PE_PHB)
240		return NULL;
241
242	/*
243	 * We prefer PE address. For most cases, we should
244	 * have non-zero PE address
245	 */
246	if (eeh_has_flag(EEH_VALID_PE_ZERO)) {
247		if (edev->pe_config_addr == pe->addr)
248			return pe;
249	} else {
250		if (edev->pe_config_addr &&
251		    (edev->pe_config_addr == pe->addr))
252		return pe;
253	}
254
255	/* Try BDF address */
256	if (edev->config_addr &&
257	   (edev->config_addr == pe->config_addr))
258		return pe;
259
260	return NULL;
261}
262
263/**
264 * eeh_pe_get - Search PE based on the given address
265 * @edev: EEH device
266 *
267 * Search the corresponding PE based on the specified address which
268 * is included in the eeh device. The function is used to check if
269 * the associated PE has been created against the PE address. It's
270 * notable that the PE address has 2 format: traditional PE address
271 * which is composed of PCI bus/device/function number, or unified
272 * PE address.
273 */
274struct eeh_pe *eeh_pe_get(struct eeh_dev *edev)
275{
276	struct eeh_pe *root = eeh_phb_pe_get(edev->phb);
277	struct eeh_pe *pe;
278
279	pe = eeh_pe_traverse(root, __eeh_pe_get, edev);
280
281	return pe;
282}
283
284/**
285 * eeh_pe_get_parent - Retrieve the parent PE
286 * @edev: EEH device
287 *
288 * The whole PEs existing in the system are organized as hierarchy
289 * tree. The function is used to retrieve the parent PE according
290 * to the parent EEH device.
291 */
292static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
293{
294	struct eeh_dev *parent;
295	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
296
297	/*
298	 * It might have the case for the indirect parent
299	 * EEH device already having associated PE, but
300	 * the direct parent EEH device doesn't have yet.
301	 */
302	pdn = pdn ? pdn->parent : NULL;
303	while (pdn) {
304		/* We're poking out of PCI territory */
305		parent = pdn_to_eeh_dev(pdn);
306		if (!parent)
307			return NULL;
308
309		if (parent->pe)
310			return parent->pe;
311
312		pdn = pdn->parent;
313	}
314
315	return NULL;
316}
317
318/**
319 * eeh_add_to_parent_pe - Add EEH device to parent PE
320 * @edev: EEH device
321 *
322 * Add EEH device to the parent PE. If the parent PE already
323 * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
324 * we have to create new PE to hold the EEH device and the new
325 * PE will be linked to its parent PE as well.
326 */
327int eeh_add_to_parent_pe(struct eeh_dev *edev)
328{
329	struct eeh_pe *pe, *parent;
330
331	/* Check if the PE number is valid */
332	if (!eeh_has_flag(EEH_VALID_PE_ZERO) && !edev->pe_config_addr) {
333		pr_err("%s: Invalid PE#0 for edev 0x%x on PHB#%d\n",
334		       __func__, edev->config_addr, edev->phb->global_number);
335		return -EINVAL;
336	}
337
338	/*
339	 * Search the PE has been existing or not according
340	 * to the PE address. If that has been existing, the
341	 * PE should be composed of PCI bus and its subordinate
342	 * components.
343	 */
344	pe = eeh_pe_get(edev);
345	if (pe && !(pe->type & EEH_PE_INVALID)) {
346		/* Mark the PE as type of PCI bus */
347		pe->type = EEH_PE_BUS;
348		edev->pe = pe;
349
350		/* Put the edev to PE */
351		list_add_tail(&edev->list, &pe->edevs);
352		pr_debug("EEH: Add %04x:%02x:%02x.%01x to Bus PE#%x\n",
353			edev->phb->global_number,
354			edev->config_addr >> 8,
355			PCI_SLOT(edev->config_addr & 0xFF),
356			PCI_FUNC(edev->config_addr & 0xFF),
357			pe->addr);
358		return 0;
359	} else if (pe && (pe->type & EEH_PE_INVALID)) {
360		list_add_tail(&edev->list, &pe->edevs);
361		edev->pe = pe;
362		/*
363		 * We're running to here because of PCI hotplug caused by
364		 * EEH recovery. We need clear EEH_PE_INVALID until the top.
365		 */
366		parent = pe;
367		while (parent) {
368			if (!(parent->type & EEH_PE_INVALID))
369				break;
370			parent->type &= ~(EEH_PE_INVALID | EEH_PE_KEEP);
371			parent = parent->parent;
372		}
373
374		pr_debug("EEH: Add %04x:%02x:%02x.%01x to Device "
375			 "PE#%x, Parent PE#%x\n",
376			edev->phb->global_number,
377			edev->config_addr >> 8,
378                        PCI_SLOT(edev->config_addr & 0xFF),
379                        PCI_FUNC(edev->config_addr & 0xFF),
380			pe->addr, pe->parent->addr);
381		return 0;
382	}
383
384	/* Create a new EEH PE */
385	pe = eeh_pe_alloc(edev->phb, EEH_PE_DEVICE);
386	if (!pe) {
387		pr_err("%s: out of memory!\n", __func__);
388		return -ENOMEM;
389	}
390	pe->addr	= edev->pe_config_addr;
391	pe->config_addr	= edev->config_addr;
392
393	/*
394	 * Put the new EEH PE into hierarchy tree. If the parent
395	 * can't be found, the newly created PE will be attached
396	 * to PHB directly. Otherwise, we have to associate the
397	 * PE with its parent.
398	 */
399	parent = eeh_pe_get_parent(edev);
400	if (!parent) {
401		parent = eeh_phb_pe_get(edev->phb);
402		if (!parent) {
403			pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
404				__func__, edev->phb->global_number);
405			edev->pe = NULL;
406			kfree(pe);
407			return -EEXIST;
408		}
409	}
410	pe->parent = parent;
411
412	/*
413	 * Put the newly created PE into the child list and
414	 * link the EEH device accordingly.
415	 */
416	list_add_tail(&pe->child, &parent->child_list);
417	list_add_tail(&edev->list, &pe->edevs);
418	edev->pe = pe;
419	pr_debug("EEH: Add %04x:%02x:%02x.%01x to "
420		 "Device PE#%x, Parent PE#%x\n",
421		 edev->phb->global_number,
422		 edev->config_addr >> 8,
423		 PCI_SLOT(edev->config_addr & 0xFF),
424		 PCI_FUNC(edev->config_addr & 0xFF),
425		 pe->addr, pe->parent->addr);
426
427	return 0;
428}
429
430/**
431 * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
432 * @edev: EEH device
433 *
434 * The PE hierarchy tree might be changed when doing PCI hotplug.
435 * Also, the PCI devices or buses could be removed from the system
436 * during EEH recovery. So we have to call the function remove the
437 * corresponding PE accordingly if necessary.
438 */
439int eeh_rmv_from_parent_pe(struct eeh_dev *edev)
440{
441	struct eeh_pe *pe, *parent, *child;
442	int cnt;
443
444	if (!edev->pe) {
445		pr_debug("%s: No PE found for device %04x:%02x:%02x.%01x\n",
446			 __func__,  edev->phb->global_number,
447			 edev->config_addr >> 8,
448			 PCI_SLOT(edev->config_addr & 0xFF),
449			 PCI_FUNC(edev->config_addr & 0xFF));
450		return -EEXIST;
451	}
452
453	/* Remove the EEH device */
454	pe = eeh_dev_to_pe(edev);
455	edev->pe = NULL;
456	list_del(&edev->list);
457
458	/*
459	 * Check if the parent PE includes any EEH devices.
460	 * If not, we should delete that. Also, we should
461	 * delete the parent PE if it doesn't have associated
462	 * child PEs and EEH devices.
463	 */
464	while (1) {
465		parent = pe->parent;
466		if (pe->type & EEH_PE_PHB)
467			break;
468
469		if (!(pe->state & EEH_PE_KEEP)) {
470			if (list_empty(&pe->edevs) &&
471			    list_empty(&pe->child_list)) {
472				list_del(&pe->child);
473				kfree(pe);
474			} else {
475				break;
476			}
477		} else {
478			if (list_empty(&pe->edevs)) {
479				cnt = 0;
480				list_for_each_entry(child, &pe->child_list, child) {
481					if (!(child->type & EEH_PE_INVALID)) {
482						cnt++;
483						break;
484					}
485				}
486
487				if (!cnt)
488					pe->type |= EEH_PE_INVALID;
489				else
490					break;
491			}
492		}
493
494		pe = parent;
495	}
496
497	return 0;
498}
499
500/**
501 * eeh_pe_update_time_stamp - Update PE's frozen time stamp
502 * @pe: EEH PE
503 *
504 * We have time stamp for each PE to trace its time of getting
505 * frozen in last hour. The function should be called to update
506 * the time stamp on first error of the specific PE. On the other
507 * handle, we needn't account for errors happened in last hour.
508 */
509void eeh_pe_update_time_stamp(struct eeh_pe *pe)
510{
511	struct timeval tstamp;
512
513	if (!pe) return;
514
515	if (pe->freeze_count <= 0) {
516		pe->freeze_count = 0;
517		do_gettimeofday(&pe->tstamp);
518	} else {
519		do_gettimeofday(&tstamp);
520		if (tstamp.tv_sec - pe->tstamp.tv_sec > 3600) {
521			pe->tstamp = tstamp;
522			pe->freeze_count = 0;
523		}
524	}
525}
526
527/**
528 * __eeh_pe_state_mark - Mark the state for the PE
529 * @data: EEH PE
530 * @flag: state
531 *
532 * The function is used to mark the indicated state for the given
533 * PE. Also, the associated PCI devices will be put into IO frozen
534 * state as well.
535 */
536static void *__eeh_pe_state_mark(void *data, void *flag)
537{
538	struct eeh_pe *pe = (struct eeh_pe *)data;
539	int state = *((int *)flag);
540	struct eeh_dev *edev, *tmp;
541	struct pci_dev *pdev;
542
543	/* Keep the state of permanently removed PE intact */
544	if (pe->state & EEH_PE_REMOVED)
545		return NULL;
546
547	pe->state |= state;
548
549	/* Offline PCI devices if applicable */
550	if (!(state & EEH_PE_ISOLATED))
551		return NULL;
552
553	eeh_pe_for_each_dev(pe, edev, tmp) {
554		pdev = eeh_dev_to_pci_dev(edev);
555		if (pdev)
556			pdev->error_state = pci_channel_io_frozen;
557	}
558
559	/* Block PCI config access if required */
560	if (pe->state & EEH_PE_CFG_RESTRICTED)
561		pe->state |= EEH_PE_CFG_BLOCKED;
562
563	return NULL;
564}
565
566/**
567 * eeh_pe_state_mark - Mark specified state for PE and its associated device
568 * @pe: EEH PE
569 *
570 * EEH error affects the current PE and its child PEs. The function
571 * is used to mark appropriate state for the affected PEs and the
572 * associated devices.
573 */
574void eeh_pe_state_mark(struct eeh_pe *pe, int state)
575{
576	eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
577}
578
579static void *__eeh_pe_dev_mode_mark(void *data, void *flag)
580{
581	struct eeh_dev *edev = data;
582	int mode = *((int *)flag);
583
584	edev->mode |= mode;
585
586	return NULL;
587}
588
589/**
590 * eeh_pe_dev_state_mark - Mark state for all device under the PE
591 * @pe: EEH PE
592 *
593 * Mark specific state for all child devices of the PE.
594 */
595void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
596{
597	eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
598}
599
600/**
601 * __eeh_pe_state_clear - Clear state for the PE
602 * @data: EEH PE
603 * @flag: state
604 *
605 * The function is used to clear the indicated state from the
606 * given PE. Besides, we also clear the check count of the PE
607 * as well.
608 */
609static void *__eeh_pe_state_clear(void *data, void *flag)
610{
611	struct eeh_pe *pe = (struct eeh_pe *)data;
612	int state = *((int *)flag);
613	struct eeh_dev *edev, *tmp;
614	struct pci_dev *pdev;
615
616	/* Keep the state of permanently removed PE intact */
617	if (pe->state & EEH_PE_REMOVED)
618		return NULL;
619
620	pe->state &= ~state;
621
622	/*
623	 * Special treatment on clearing isolated state. Clear
624	 * check count since last isolation and put all affected
625	 * devices to normal state.
626	 */
627	if (!(state & EEH_PE_ISOLATED))
628		return NULL;
629
630	pe->check_count = 0;
631	eeh_pe_for_each_dev(pe, edev, tmp) {
632		pdev = eeh_dev_to_pci_dev(edev);
633		if (!pdev)
634			continue;
635
636		pdev->error_state = pci_channel_io_normal;
637	}
638
639	/* Unblock PCI config access if required */
640	if (pe->state & EEH_PE_CFG_RESTRICTED)
641		pe->state &= ~EEH_PE_CFG_BLOCKED;
642
643	return NULL;
644}
645
646/**
647 * eeh_pe_state_clear - Clear state for the PE and its children
648 * @pe: PE
649 * @state: state to be cleared
650 *
651 * When the PE and its children has been recovered from error,
652 * we need clear the error state for that. The function is used
653 * for the purpose.
654 */
655void eeh_pe_state_clear(struct eeh_pe *pe, int state)
656{
657	eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
658}
659
660/**
661 * eeh_pe_state_mark_with_cfg - Mark PE state with unblocked config space
662 * @pe: PE
663 * @state: PE state to be set
664 *
665 * Set specified flag to PE and its child PEs. The PCI config space
666 * of some PEs is blocked automatically when EEH_PE_ISOLATED is set,
667 * which isn't needed in some situations. The function allows to set
668 * the specified flag to indicated PEs without blocking their PCI
669 * config space.
670 */
671void eeh_pe_state_mark_with_cfg(struct eeh_pe *pe, int state)
672{
673	eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
674	if (!(state & EEH_PE_ISOLATED))
675		return;
676
677	/* Clear EEH_PE_CFG_BLOCKED, which might be set just now */
678	state = EEH_PE_CFG_BLOCKED;
679	eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
680}
681
682/*
683 * Some PCI bridges (e.g. PLX bridges) have primary/secondary
684 * buses assigned explicitly by firmware, and we probably have
685 * lost that after reset. So we have to delay the check until
686 * the PCI-CFG registers have been restored for the parent
687 * bridge.
688 *
689 * Don't use normal PCI-CFG accessors, which probably has been
690 * blocked on normal path during the stage. So we need utilize
691 * eeh operations, which is always permitted.
692 */
693static void eeh_bridge_check_link(struct eeh_dev *edev)
694{
695	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
696	int cap;
697	uint32_t val;
698	int timeout = 0;
699
700	/*
701	 * We only check root port and downstream ports of
702	 * PCIe switches
703	 */
704	if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
705		return;
706
707	pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n",
708		 __func__, edev->phb->global_number,
709		 edev->config_addr >> 8,
710		 PCI_SLOT(edev->config_addr & 0xFF),
711		 PCI_FUNC(edev->config_addr & 0xFF));
712
713	/* Check slot status */
714	cap = edev->pcie_cap;
715	eeh_ops->read_config(pdn, cap + PCI_EXP_SLTSTA, 2, &val);
716	if (!(val & PCI_EXP_SLTSTA_PDS)) {
717		pr_debug("  No card in the slot (0x%04x) !\n", val);
718		return;
719	}
720
721	/* Check power status if we have the capability */
722	eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCAP, 2, &val);
723	if (val & PCI_EXP_SLTCAP_PCP) {
724		eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCTL, 2, &val);
725		if (val & PCI_EXP_SLTCTL_PCC) {
726			pr_debug("  In power-off state, power it on ...\n");
727			val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
728			val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
729			eeh_ops->write_config(pdn, cap + PCI_EXP_SLTCTL, 2, val);
730			msleep(2 * 1000);
731		}
732	}
733
734	/* Enable link */
735	eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCTL, 2, &val);
736	val &= ~PCI_EXP_LNKCTL_LD;
737	eeh_ops->write_config(pdn, cap + PCI_EXP_LNKCTL, 2, val);
738
739	/* Check link */
740	eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCAP, 4, &val);
741	if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
742		pr_debug("  No link reporting capability (0x%08x) \n", val);
743		msleep(1000);
744		return;
745	}
746
747	/* Wait the link is up until timeout (5s) */
748	timeout = 0;
749	while (timeout < 5000) {
750		msleep(20);
751		timeout += 20;
752
753		eeh_ops->read_config(pdn, cap + PCI_EXP_LNKSTA, 2, &val);
754		if (val & PCI_EXP_LNKSTA_DLLLA)
755			break;
756	}
757
758	if (val & PCI_EXP_LNKSTA_DLLLA)
759		pr_debug("  Link up (%s)\n",
760			 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
761	else
762		pr_debug("  Link not ready (0x%04x)\n", val);
763}
764
765#define BYTE_SWAP(OFF)	(8*((OFF)/4)+3-(OFF))
766#define SAVED_BYTE(OFF)	(((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
767
768static void eeh_restore_bridge_bars(struct eeh_dev *edev)
769{
770	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
771	int i;
772
773	/*
774	 * Device BARs: 0x10 - 0x18
775	 * Bus numbers and windows: 0x18 - 0x30
776	 */
777	for (i = 4; i < 13; i++)
778		eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
779	/* Rom: 0x38 */
780	eeh_ops->write_config(pdn, 14*4, 4, edev->config_space[14]);
781
782	/* Cache line & Latency timer: 0xC 0xD */
783	eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
784                SAVED_BYTE(PCI_CACHE_LINE_SIZE));
785        eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
786                SAVED_BYTE(PCI_LATENCY_TIMER));
787	/* Max latency, min grant, interrupt ping and line: 0x3C */
788	eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
789
790	/* PCI Command: 0x4 */
791	eeh_ops->write_config(pdn, PCI_COMMAND, 4, edev->config_space[1]);
792
793	/* Check the PCIe link is ready */
794	eeh_bridge_check_link(edev);
795}
796
797static void eeh_restore_device_bars(struct eeh_dev *edev)
798{
799	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
800	int i;
801	u32 cmd;
802
803	for (i = 4; i < 10; i++)
804		eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
805	/* 12 == Expansion ROM Address */
806	eeh_ops->write_config(pdn, 12*4, 4, edev->config_space[12]);
807
808	eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
809		SAVED_BYTE(PCI_CACHE_LINE_SIZE));
810	eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
811		SAVED_BYTE(PCI_LATENCY_TIMER));
812
813	/* max latency, min grant, interrupt pin and line */
814	eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
815
816	/*
817	 * Restore PERR & SERR bits, some devices require it,
818	 * don't touch the other command bits
819	 */
820	eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cmd);
821	if (edev->config_space[1] & PCI_COMMAND_PARITY)
822		cmd |= PCI_COMMAND_PARITY;
823	else
824		cmd &= ~PCI_COMMAND_PARITY;
825	if (edev->config_space[1] & PCI_COMMAND_SERR)
826		cmd |= PCI_COMMAND_SERR;
827	else
828		cmd &= ~PCI_COMMAND_SERR;
829	eeh_ops->write_config(pdn, PCI_COMMAND, 4, cmd);
830}
831
832/**
833 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
834 * @data: EEH device
835 * @flag: Unused
836 *
837 * Loads the PCI configuration space base address registers,
838 * the expansion ROM base address, the latency timer, and etc.
839 * from the saved values in the device node.
840 */
841static void *eeh_restore_one_device_bars(void *data, void *flag)
842{
843	struct eeh_dev *edev = (struct eeh_dev *)data;
844	struct pci_dn *pdn = eeh_dev_to_pdn(edev);
845
846	/* Do special restore for bridges */
847	if (edev->mode & EEH_DEV_BRIDGE)
848		eeh_restore_bridge_bars(edev);
849	else
850		eeh_restore_device_bars(edev);
851
852	if (eeh_ops->restore_config && pdn)
853		eeh_ops->restore_config(pdn);
854
855	return NULL;
856}
857
858/**
859 * eeh_pe_restore_bars - Restore the PCI config space info
860 * @pe: EEH PE
861 *
862 * This routine performs a recursive walk to the children
863 * of this device as well.
864 */
865void eeh_pe_restore_bars(struct eeh_pe *pe)
866{
867	/*
868	 * We needn't take the EEH lock since eeh_pe_dev_traverse()
869	 * will take that.
870	 */
871	eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
872}
873
874/**
875 * eeh_pe_loc_get - Retrieve location code binding to the given PE
876 * @pe: EEH PE
877 *
878 * Retrieve the location code of the given PE. If the primary PE bus
879 * is root bus, we will grab location code from PHB device tree node
880 * or root port. Otherwise, the upstream bridge's device tree node
881 * of the primary PE bus will be checked for the location code.
882 */
883const char *eeh_pe_loc_get(struct eeh_pe *pe)
884{
885	struct pci_bus *bus = eeh_pe_bus_get(pe);
886	struct device_node *dn;
887	const char *loc = NULL;
888
889	while (bus) {
890		dn = pci_bus_to_OF_node(bus);
891		if (!dn) {
892			bus = bus->parent;
893			continue;
894		}
895
896		if (pci_is_root_bus(bus))
897			loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
898		else
899			loc = of_get_property(dn, "ibm,slot-location-code",
900					      NULL);
901
902		if (loc)
903			return loc;
904
905		bus = bus->parent;
906	}
907
908	return "N/A";
909}
910
911/**
912 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
913 * @pe: EEH PE
914 *
915 * Retrieve the PCI bus according to the given PE. Basically,
916 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
917 * primary PCI bus will be retrieved. The parent bus will be
918 * returned for BUS PE. However, we don't have associated PCI
919 * bus for DEVICE PE.
920 */
921struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
922{
923	struct pci_bus *bus = NULL;
924	struct eeh_dev *edev;
925	struct pci_dev *pdev;
926
927	if (pe->type & EEH_PE_PHB) {
928		bus = pe->phb->bus;
929	} else if (pe->type & EEH_PE_BUS ||
930		   pe->type & EEH_PE_DEVICE) {
931		if (pe->state & EEH_PE_PRI_BUS) {
932			bus = pe->bus;
933			goto out;
934		}
935
936		edev = list_first_entry(&pe->edevs, struct eeh_dev, list);
937		pdev = eeh_dev_to_pci_dev(edev);
938		if (pdev)
939			bus = pdev->bus;
940	}
941
942out:
943	return bus;
944}
945