1/* align.c - handle alignment exceptions for the Power PC.
2 *
3 * Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
4 * Copyright (c) 1998-1999 TiVo, Inc.
5 *   PowerPC 403GCX modifications.
6 * Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu>
7 *   PowerPC 403GCX/405GP modifications.
8 * Copyright (c) 2001-2002 PPC64 team, IBM Corp
9 *   64-bit and Power4 support
10 * Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp
11 *                    <benh@kernel.crashing.org>
12 *   Merge ppc32 and ppc64 implementations
13 *
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
18 */
19
20#include <linux/kernel.h>
21#include <linux/mm.h>
22#include <asm/processor.h>
23#include <asm/uaccess.h>
24#include <asm/cache.h>
25#include <asm/cputable.h>
26#include <asm/emulated_ops.h>
27#include <asm/switch_to.h>
28#include <asm/disassemble.h>
29
30struct aligninfo {
31	unsigned char len;
32	unsigned char flags;
33};
34
35
36#define INVALID	{ 0, 0 }
37
38/* Bits in the flags field */
39#define LD	0	/* load */
40#define ST	1	/* store */
41#define SE	2	/* sign-extend value, or FP ld/st as word */
42#define F	4	/* to/from fp regs */
43#define U	8	/* update index register */
44#define M	0x10	/* multiple load/store */
45#define SW	0x20	/* byte swap */
46#define S	0x40	/* single-precision fp or... */
47#define SX	0x40	/* ... byte count in XER */
48#define HARD	0x80	/* string, stwcx. */
49#define E4	0x40	/* SPE endianness is word */
50#define E8	0x80	/* SPE endianness is double word */
51#define SPLT	0x80	/* VSX SPLAT load */
52
53/* DSISR bits reported for a DCBZ instruction: */
54#define DCBZ	0x5f	/* 8xx/82xx dcbz faults when cache not enabled */
55
56/*
57 * The PowerPC stores certain bits of the instruction that caused the
58 * alignment exception in the DSISR register.  This array maps those
59 * bits to information about the operand length and what the
60 * instruction would do.
61 */
62static struct aligninfo aligninfo[128] = {
63	{ 4, LD },		/* 00 0 0000: lwz / lwarx */
64	INVALID,		/* 00 0 0001 */
65	{ 4, ST },		/* 00 0 0010: stw */
66	INVALID,		/* 00 0 0011 */
67	{ 2, LD },		/* 00 0 0100: lhz */
68	{ 2, LD+SE },		/* 00 0 0101: lha */
69	{ 2, ST },		/* 00 0 0110: sth */
70	{ 4, LD+M },		/* 00 0 0111: lmw */
71	{ 4, LD+F+S },		/* 00 0 1000: lfs */
72	{ 8, LD+F },		/* 00 0 1001: lfd */
73	{ 4, ST+F+S },		/* 00 0 1010: stfs */
74	{ 8, ST+F },		/* 00 0 1011: stfd */
75	{ 16, LD },		/* 00 0 1100: lq */
76	{ 8, LD },		/* 00 0 1101: ld/ldu/lwa */
77	INVALID,		/* 00 0 1110 */
78	{ 8, ST },		/* 00 0 1111: std/stdu */
79	{ 4, LD+U },		/* 00 1 0000: lwzu */
80	INVALID,		/* 00 1 0001 */
81	{ 4, ST+U },		/* 00 1 0010: stwu */
82	INVALID,		/* 00 1 0011 */
83	{ 2, LD+U },		/* 00 1 0100: lhzu */
84	{ 2, LD+SE+U },		/* 00 1 0101: lhau */
85	{ 2, ST+U },		/* 00 1 0110: sthu */
86	{ 4, ST+M },		/* 00 1 0111: stmw */
87	{ 4, LD+F+S+U },	/* 00 1 1000: lfsu */
88	{ 8, LD+F+U },		/* 00 1 1001: lfdu */
89	{ 4, ST+F+S+U },	/* 00 1 1010: stfsu */
90	{ 8, ST+F+U },		/* 00 1 1011: stfdu */
91	{ 16, LD+F },		/* 00 1 1100: lfdp */
92	INVALID,		/* 00 1 1101 */
93	{ 16, ST+F },		/* 00 1 1110: stfdp */
94	INVALID,		/* 00 1 1111 */
95	{ 8, LD },		/* 01 0 0000: ldx */
96	INVALID,		/* 01 0 0001 */
97	{ 8, ST },		/* 01 0 0010: stdx */
98	INVALID,		/* 01 0 0011 */
99	INVALID,		/* 01 0 0100 */
100	{ 4, LD+SE },		/* 01 0 0101: lwax */
101	INVALID,		/* 01 0 0110 */
102	INVALID,		/* 01 0 0111 */
103	{ 4, LD+M+HARD+SX },	/* 01 0 1000: lswx */
104	{ 4, LD+M+HARD },	/* 01 0 1001: lswi */
105	{ 4, ST+M+HARD+SX },	/* 01 0 1010: stswx */
106	{ 4, ST+M+HARD },	/* 01 0 1011: stswi */
107	INVALID,		/* 01 0 1100 */
108	{ 8, LD+U },		/* 01 0 1101: ldu */
109	INVALID,		/* 01 0 1110 */
110	{ 8, ST+U },		/* 01 0 1111: stdu */
111	{ 8, LD+U },		/* 01 1 0000: ldux */
112	INVALID,		/* 01 1 0001 */
113	{ 8, ST+U },		/* 01 1 0010: stdux */
114	INVALID,		/* 01 1 0011 */
115	INVALID,		/* 01 1 0100 */
116	{ 4, LD+SE+U },		/* 01 1 0101: lwaux */
117	INVALID,		/* 01 1 0110 */
118	INVALID,		/* 01 1 0111 */
119	INVALID,		/* 01 1 1000 */
120	INVALID,		/* 01 1 1001 */
121	INVALID,		/* 01 1 1010 */
122	INVALID,		/* 01 1 1011 */
123	INVALID,		/* 01 1 1100 */
124	INVALID,		/* 01 1 1101 */
125	INVALID,		/* 01 1 1110 */
126	INVALID,		/* 01 1 1111 */
127	INVALID,		/* 10 0 0000 */
128	INVALID,		/* 10 0 0001 */
129	INVALID,		/* 10 0 0010: stwcx. */
130	INVALID,		/* 10 0 0011 */
131	INVALID,		/* 10 0 0100 */
132	INVALID,		/* 10 0 0101 */
133	INVALID,		/* 10 0 0110 */
134	INVALID,		/* 10 0 0111 */
135	{ 4, LD+SW },		/* 10 0 1000: lwbrx */
136	INVALID,		/* 10 0 1001 */
137	{ 4, ST+SW },		/* 10 0 1010: stwbrx */
138	INVALID,		/* 10 0 1011 */
139	{ 2, LD+SW },		/* 10 0 1100: lhbrx */
140	{ 4, LD+SE },		/* 10 0 1101  lwa */
141	{ 2, ST+SW },		/* 10 0 1110: sthbrx */
142	{ 16, ST },		/* 10 0 1111: stq */
143	INVALID,		/* 10 1 0000 */
144	INVALID,		/* 10 1 0001 */
145	INVALID,		/* 10 1 0010 */
146	INVALID,		/* 10 1 0011 */
147	INVALID,		/* 10 1 0100 */
148	INVALID,		/* 10 1 0101 */
149	INVALID,		/* 10 1 0110 */
150	INVALID,		/* 10 1 0111 */
151	INVALID,		/* 10 1 1000 */
152	INVALID,		/* 10 1 1001 */
153	INVALID,		/* 10 1 1010 */
154	INVALID,		/* 10 1 1011 */
155	INVALID,		/* 10 1 1100 */
156	INVALID,		/* 10 1 1101 */
157	INVALID,		/* 10 1 1110 */
158	{ 0, ST+HARD },		/* 10 1 1111: dcbz */
159	{ 4, LD },		/* 11 0 0000: lwzx */
160	INVALID,		/* 11 0 0001 */
161	{ 4, ST },		/* 11 0 0010: stwx */
162	INVALID,		/* 11 0 0011 */
163	{ 2, LD },		/* 11 0 0100: lhzx */
164	{ 2, LD+SE },		/* 11 0 0101: lhax */
165	{ 2, ST },		/* 11 0 0110: sthx */
166	INVALID,		/* 11 0 0111 */
167	{ 4, LD+F+S },		/* 11 0 1000: lfsx */
168	{ 8, LD+F },		/* 11 0 1001: lfdx */
169	{ 4, ST+F+S },		/* 11 0 1010: stfsx */
170	{ 8, ST+F },		/* 11 0 1011: stfdx */
171	{ 16, LD+F },		/* 11 0 1100: lfdpx */
172	{ 4, LD+F+SE },		/* 11 0 1101: lfiwax */
173	{ 16, ST+F },		/* 11 0 1110: stfdpx */
174	{ 4, ST+F },		/* 11 0 1111: stfiwx */
175	{ 4, LD+U },		/* 11 1 0000: lwzux */
176	INVALID,		/* 11 1 0001 */
177	{ 4, ST+U },		/* 11 1 0010: stwux */
178	INVALID,		/* 11 1 0011 */
179	{ 2, LD+U },		/* 11 1 0100: lhzux */
180	{ 2, LD+SE+U },		/* 11 1 0101: lhaux */
181	{ 2, ST+U },		/* 11 1 0110: sthux */
182	INVALID,		/* 11 1 0111 */
183	{ 4, LD+F+S+U },	/* 11 1 1000: lfsux */
184	{ 8, LD+F+U },		/* 11 1 1001: lfdux */
185	{ 4, ST+F+S+U },	/* 11 1 1010: stfsux */
186	{ 8, ST+F+U },		/* 11 1 1011: stfdux */
187	INVALID,		/* 11 1 1100 */
188	{ 4, LD+F },		/* 11 1 1101: lfiwzx */
189	INVALID,		/* 11 1 1110 */
190	INVALID,		/* 11 1 1111 */
191};
192
193/*
194 * The dcbz (data cache block zero) instruction
195 * gives an alignment fault if used on non-cacheable
196 * memory.  We handle the fault mainly for the
197 * case when we are running with the cache disabled
198 * for debugging.
199 */
200static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr)
201{
202	long __user *p;
203	int i, size;
204
205#ifdef __powerpc64__
206	size = ppc64_caches.dline_size;
207#else
208	size = L1_CACHE_BYTES;
209#endif
210	p = (long __user *) (regs->dar & -size);
211	if (user_mode(regs) && !access_ok(VERIFY_WRITE, p, size))
212		return -EFAULT;
213	for (i = 0; i < size / sizeof(long); ++i)
214		if (__put_user_inatomic(0, p+i))
215			return -EFAULT;
216	return 1;
217}
218
219/*
220 * Emulate load & store multiple instructions
221 * On 64-bit machines, these instructions only affect/use the
222 * bottom 4 bytes of each register, and the loads clear the
223 * top 4 bytes of the affected register.
224 */
225#ifdef __BIG_ENDIAN__
226#ifdef CONFIG_PPC64
227#define REG_BYTE(rp, i)		*((u8 *)((rp) + ((i) >> 2)) + ((i) & 3) + 4)
228#else
229#define REG_BYTE(rp, i)		*((u8 *)(rp) + (i))
230#endif
231#endif
232
233#ifdef __LITTLE_ENDIAN__
234#define REG_BYTE(rp, i)		(*(((u8 *)((rp) + ((i)>>2)) + ((i)&3))))
235#endif
236
237#define SWIZ_PTR(p)		((unsigned char __user *)((p) ^ swiz))
238
239static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr,
240			    unsigned int reg, unsigned int nb,
241			    unsigned int flags, unsigned int instr,
242			    unsigned long swiz)
243{
244	unsigned long *rptr;
245	unsigned int nb0, i, bswiz;
246	unsigned long p;
247
248	/*
249	 * We do not try to emulate 8 bytes multiple as they aren't really
250	 * available in our operating environments and we don't try to
251	 * emulate multiples operations in kernel land as they should never
252	 * be used/generated there at least not on unaligned boundaries
253	 */
254	if (unlikely((nb > 4) || !user_mode(regs)))
255		return 0;
256
257	/* lmw, stmw, lswi/x, stswi/x */
258	nb0 = 0;
259	if (flags & HARD) {
260		if (flags & SX) {
261			nb = regs->xer & 127;
262			if (nb == 0)
263				return 1;
264		} else {
265			unsigned long pc = regs->nip ^ (swiz & 4);
266
267			if (__get_user_inatomic(instr,
268						(unsigned int __user *)pc))
269				return -EFAULT;
270			if (swiz == 0 && (flags & SW))
271				instr = cpu_to_le32(instr);
272			nb = (instr >> 11) & 0x1f;
273			if (nb == 0)
274				nb = 32;
275		}
276		if (nb + reg * 4 > 128) {
277			nb0 = nb + reg * 4 - 128;
278			nb = 128 - reg * 4;
279		}
280#ifdef __LITTLE_ENDIAN__
281		/*
282		 *  String instructions are endian neutral but the code
283		 *  below is not.  Force byte swapping on so that the
284		 *  effects of swizzling are undone in the load/store
285		 *  loops below.
286		 */
287		flags ^= SW;
288#endif
289	} else {
290		/* lwm, stmw */
291		nb = (32 - reg) * 4;
292	}
293
294	if (!access_ok((flags & ST ? VERIFY_WRITE: VERIFY_READ), addr, nb+nb0))
295		return -EFAULT;	/* bad address */
296
297	rptr = &regs->gpr[reg];
298	p = (unsigned long) addr;
299	bswiz = (flags & SW)? 3: 0;
300
301	if (!(flags & ST)) {
302		/*
303		 * This zeroes the top 4 bytes of the affected registers
304		 * in 64-bit mode, and also zeroes out any remaining
305		 * bytes of the last register for lsw*.
306		 */
307		memset(rptr, 0, ((nb + 3) / 4) * sizeof(unsigned long));
308		if (nb0 > 0)
309			memset(&regs->gpr[0], 0,
310			       ((nb0 + 3) / 4) * sizeof(unsigned long));
311
312		for (i = 0; i < nb; ++i, ++p)
313			if (__get_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
314						SWIZ_PTR(p)))
315				return -EFAULT;
316		if (nb0 > 0) {
317			rptr = &regs->gpr[0];
318			addr += nb;
319			for (i = 0; i < nb0; ++i, ++p)
320				if (__get_user_inatomic(REG_BYTE(rptr,
321								 i ^ bswiz),
322							SWIZ_PTR(p)))
323					return -EFAULT;
324		}
325
326	} else {
327		for (i = 0; i < nb; ++i, ++p)
328			if (__put_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
329						SWIZ_PTR(p)))
330				return -EFAULT;
331		if (nb0 > 0) {
332			rptr = &regs->gpr[0];
333			addr += nb;
334			for (i = 0; i < nb0; ++i, ++p)
335				if (__put_user_inatomic(REG_BYTE(rptr,
336								 i ^ bswiz),
337							SWIZ_PTR(p)))
338					return -EFAULT;
339		}
340	}
341	return 1;
342}
343
344/*
345 * Emulate floating-point pair loads and stores.
346 * Only POWER6 has these instructions, and it does true little-endian,
347 * so we don't need the address swizzling.
348 */
349static int emulate_fp_pair(unsigned char __user *addr, unsigned int reg,
350			   unsigned int flags)
351{
352	char *ptr0 = (char *) &current->thread.TS_FPR(reg);
353	char *ptr1 = (char *) &current->thread.TS_FPR(reg+1);
354	int i, ret, sw = 0;
355
356	if (reg & 1)
357		return 0;	/* invalid form: FRS/FRT must be even */
358	if (flags & SW)
359		sw = 7;
360	ret = 0;
361	for (i = 0; i < 8; ++i) {
362		if (!(flags & ST)) {
363			ret |= __get_user(ptr0[i^sw], addr + i);
364			ret |= __get_user(ptr1[i^sw], addr + i + 8);
365		} else {
366			ret |= __put_user(ptr0[i^sw], addr + i);
367			ret |= __put_user(ptr1[i^sw], addr + i + 8);
368		}
369	}
370	if (ret)
371		return -EFAULT;
372	return 1;	/* exception handled and fixed up */
373}
374
375#ifdef CONFIG_PPC64
376static int emulate_lq_stq(struct pt_regs *regs, unsigned char __user *addr,
377			  unsigned int reg, unsigned int flags)
378{
379	char *ptr0 = (char *)&regs->gpr[reg];
380	char *ptr1 = (char *)&regs->gpr[reg+1];
381	int i, ret, sw = 0;
382
383	if (reg & 1)
384		return 0;	/* invalid form: GPR must be even */
385	if (flags & SW)
386		sw = 7;
387	ret = 0;
388	for (i = 0; i < 8; ++i) {
389		if (!(flags & ST)) {
390			ret |= __get_user(ptr0[i^sw], addr + i);
391			ret |= __get_user(ptr1[i^sw], addr + i + 8);
392		} else {
393			ret |= __put_user(ptr0[i^sw], addr + i);
394			ret |= __put_user(ptr1[i^sw], addr + i + 8);
395		}
396	}
397	if (ret)
398		return -EFAULT;
399	return 1;	/* exception handled and fixed up */
400}
401#endif /* CONFIG_PPC64 */
402
403#ifdef CONFIG_SPE
404
405static struct aligninfo spe_aligninfo[32] = {
406	{ 8, LD+E8 },		/* 0 00 00: evldd[x] */
407	{ 8, LD+E4 },		/* 0 00 01: evldw[x] */
408	{ 8, LD },		/* 0 00 10: evldh[x] */
409	INVALID,		/* 0 00 11 */
410	{ 2, LD },		/* 0 01 00: evlhhesplat[x] */
411	INVALID,		/* 0 01 01 */
412	{ 2, LD },		/* 0 01 10: evlhhousplat[x] */
413	{ 2, LD+SE },		/* 0 01 11: evlhhossplat[x] */
414	{ 4, LD },		/* 0 10 00: evlwhe[x] */
415	INVALID,		/* 0 10 01 */
416	{ 4, LD },		/* 0 10 10: evlwhou[x] */
417	{ 4, LD+SE },		/* 0 10 11: evlwhos[x] */
418	{ 4, LD+E4 },		/* 0 11 00: evlwwsplat[x] */
419	INVALID,		/* 0 11 01 */
420	{ 4, LD },		/* 0 11 10: evlwhsplat[x] */
421	INVALID,		/* 0 11 11 */
422
423	{ 8, ST+E8 },		/* 1 00 00: evstdd[x] */
424	{ 8, ST+E4 },		/* 1 00 01: evstdw[x] */
425	{ 8, ST },		/* 1 00 10: evstdh[x] */
426	INVALID,		/* 1 00 11 */
427	INVALID,		/* 1 01 00 */
428	INVALID,		/* 1 01 01 */
429	INVALID,		/* 1 01 10 */
430	INVALID,		/* 1 01 11 */
431	{ 4, ST },		/* 1 10 00: evstwhe[x] */
432	INVALID,		/* 1 10 01 */
433	{ 4, ST },		/* 1 10 10: evstwho[x] */
434	INVALID,		/* 1 10 11 */
435	{ 4, ST+E4 },		/* 1 11 00: evstwwe[x] */
436	INVALID,		/* 1 11 01 */
437	{ 4, ST+E4 },		/* 1 11 10: evstwwo[x] */
438	INVALID,		/* 1 11 11 */
439};
440
441#define	EVLDD		0x00
442#define	EVLDW		0x01
443#define	EVLDH		0x02
444#define	EVLHHESPLAT	0x04
445#define	EVLHHOUSPLAT	0x06
446#define	EVLHHOSSPLAT	0x07
447#define	EVLWHE		0x08
448#define	EVLWHOU		0x0A
449#define	EVLWHOS		0x0B
450#define	EVLWWSPLAT	0x0C
451#define	EVLWHSPLAT	0x0E
452#define	EVSTDD		0x10
453#define	EVSTDW		0x11
454#define	EVSTDH		0x12
455#define	EVSTWHE		0x18
456#define	EVSTWHO		0x1A
457#define	EVSTWWE		0x1C
458#define	EVSTWWO		0x1E
459
460/*
461 * Emulate SPE loads and stores.
462 * Only Book-E has these instructions, and it does true little-endian,
463 * so we don't need the address swizzling.
464 */
465static int emulate_spe(struct pt_regs *regs, unsigned int reg,
466		       unsigned int instr)
467{
468	int ret;
469	union {
470		u64 ll;
471		u32 w[2];
472		u16 h[4];
473		u8 v[8];
474	} data, temp;
475	unsigned char __user *p, *addr;
476	unsigned long *evr = &current->thread.evr[reg];
477	unsigned int nb, flags;
478
479	instr = (instr >> 1) & 0x1f;
480
481	/* DAR has the operand effective address */
482	addr = (unsigned char __user *)regs->dar;
483
484	nb = spe_aligninfo[instr].len;
485	flags = spe_aligninfo[instr].flags;
486
487	/* Verify the address of the operand */
488	if (unlikely(user_mode(regs) &&
489		     !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
490				addr, nb)))
491		return -EFAULT;
492
493	/* userland only */
494	if (unlikely(!user_mode(regs)))
495		return 0;
496
497	flush_spe_to_thread(current);
498
499	/* If we are loading, get the data from user space, else
500	 * get it from register values
501	 */
502	if (flags & ST) {
503		data.ll = 0;
504		switch (instr) {
505		case EVSTDD:
506		case EVSTDW:
507		case EVSTDH:
508			data.w[0] = *evr;
509			data.w[1] = regs->gpr[reg];
510			break;
511		case EVSTWHE:
512			data.h[2] = *evr >> 16;
513			data.h[3] = regs->gpr[reg] >> 16;
514			break;
515		case EVSTWHO:
516			data.h[2] = *evr & 0xffff;
517			data.h[3] = regs->gpr[reg] & 0xffff;
518			break;
519		case EVSTWWE:
520			data.w[1] = *evr;
521			break;
522		case EVSTWWO:
523			data.w[1] = regs->gpr[reg];
524			break;
525		default:
526			return -EINVAL;
527		}
528	} else {
529		temp.ll = data.ll = 0;
530		ret = 0;
531		p = addr;
532
533		switch (nb) {
534		case 8:
535			ret |= __get_user_inatomic(temp.v[0], p++);
536			ret |= __get_user_inatomic(temp.v[1], p++);
537			ret |= __get_user_inatomic(temp.v[2], p++);
538			ret |= __get_user_inatomic(temp.v[3], p++);
539		case 4:
540			ret |= __get_user_inatomic(temp.v[4], p++);
541			ret |= __get_user_inatomic(temp.v[5], p++);
542		case 2:
543			ret |= __get_user_inatomic(temp.v[6], p++);
544			ret |= __get_user_inatomic(temp.v[7], p++);
545			if (unlikely(ret))
546				return -EFAULT;
547		}
548
549		switch (instr) {
550		case EVLDD:
551		case EVLDW:
552		case EVLDH:
553			data.ll = temp.ll;
554			break;
555		case EVLHHESPLAT:
556			data.h[0] = temp.h[3];
557			data.h[2] = temp.h[3];
558			break;
559		case EVLHHOUSPLAT:
560		case EVLHHOSSPLAT:
561			data.h[1] = temp.h[3];
562			data.h[3] = temp.h[3];
563			break;
564		case EVLWHE:
565			data.h[0] = temp.h[2];
566			data.h[2] = temp.h[3];
567			break;
568		case EVLWHOU:
569		case EVLWHOS:
570			data.h[1] = temp.h[2];
571			data.h[3] = temp.h[3];
572			break;
573		case EVLWWSPLAT:
574			data.w[0] = temp.w[1];
575			data.w[1] = temp.w[1];
576			break;
577		case EVLWHSPLAT:
578			data.h[0] = temp.h[2];
579			data.h[1] = temp.h[2];
580			data.h[2] = temp.h[3];
581			data.h[3] = temp.h[3];
582			break;
583		default:
584			return -EINVAL;
585		}
586	}
587
588	if (flags & SW) {
589		switch (flags & 0xf0) {
590		case E8:
591			data.ll = swab64(data.ll);
592			break;
593		case E4:
594			data.w[0] = swab32(data.w[0]);
595			data.w[1] = swab32(data.w[1]);
596			break;
597		/* Its half word endian */
598		default:
599			data.h[0] = swab16(data.h[0]);
600			data.h[1] = swab16(data.h[1]);
601			data.h[2] = swab16(data.h[2]);
602			data.h[3] = swab16(data.h[3]);
603			break;
604		}
605	}
606
607	if (flags & SE) {
608		data.w[0] = (s16)data.h[1];
609		data.w[1] = (s16)data.h[3];
610	}
611
612	/* Store result to memory or update registers */
613	if (flags & ST) {
614		ret = 0;
615		p = addr;
616		switch (nb) {
617		case 8:
618			ret |= __put_user_inatomic(data.v[0], p++);
619			ret |= __put_user_inatomic(data.v[1], p++);
620			ret |= __put_user_inatomic(data.v[2], p++);
621			ret |= __put_user_inatomic(data.v[3], p++);
622		case 4:
623			ret |= __put_user_inatomic(data.v[4], p++);
624			ret |= __put_user_inatomic(data.v[5], p++);
625		case 2:
626			ret |= __put_user_inatomic(data.v[6], p++);
627			ret |= __put_user_inatomic(data.v[7], p++);
628		}
629		if (unlikely(ret))
630			return -EFAULT;
631	} else {
632		*evr = data.w[0];
633		regs->gpr[reg] = data.w[1];
634	}
635
636	return 1;
637}
638#endif /* CONFIG_SPE */
639
640#ifdef CONFIG_VSX
641/*
642 * Emulate VSX instructions...
643 */
644static int emulate_vsx(unsigned char __user *addr, unsigned int reg,
645		       unsigned int areg, struct pt_regs *regs,
646		       unsigned int flags, unsigned int length,
647		       unsigned int elsize)
648{
649	char *ptr;
650	unsigned long *lptr;
651	int ret = 0;
652	int sw = 0;
653	int i, j;
654
655	/* userland only */
656	if (unlikely(!user_mode(regs)))
657		return 0;
658
659	flush_vsx_to_thread(current);
660
661	if (reg < 32)
662		ptr = (char *) &current->thread.fp_state.fpr[reg][0];
663	else
664		ptr = (char *) &current->thread.vr_state.vr[reg - 32];
665
666	lptr = (unsigned long *) ptr;
667
668#ifdef __LITTLE_ENDIAN__
669	if (flags & SW) {
670		elsize = length;
671		sw = length-1;
672	} else {
673		/*
674		 * The elements are BE ordered, even in LE mode, so process
675		 * them in reverse order.
676		 */
677		addr += length - elsize;
678
679		/* 8 byte memory accesses go in the top 8 bytes of the VR */
680		if (length == 8)
681			ptr += 8;
682	}
683#else
684	if (flags & SW)
685		sw = elsize-1;
686#endif
687
688	for (j = 0; j < length; j += elsize) {
689		for (i = 0; i < elsize; ++i) {
690			if (flags & ST)
691				ret |= __put_user(ptr[i^sw], addr + i);
692			else
693				ret |= __get_user(ptr[i^sw], addr + i);
694		}
695		ptr  += elsize;
696#ifdef __LITTLE_ENDIAN__
697		addr -= elsize;
698#else
699		addr += elsize;
700#endif
701	}
702
703#ifdef __BIG_ENDIAN__
704#define VSX_HI 0
705#define VSX_LO 1
706#else
707#define VSX_HI 1
708#define VSX_LO 0
709#endif
710
711	if (!ret) {
712		if (flags & U)
713			regs->gpr[areg] = regs->dar;
714
715		/* Splat load copies the same data to top and bottom 8 bytes */
716		if (flags & SPLT)
717			lptr[VSX_LO] = lptr[VSX_HI];
718		/* For 8 byte loads, zero the low 8 bytes */
719		else if (!(flags & ST) && (8 == length))
720			lptr[VSX_LO] = 0;
721	} else
722		return -EFAULT;
723
724	return 1;
725}
726#endif
727
728/*
729 * Called on alignment exception. Attempts to fixup
730 *
731 * Return 1 on success
732 * Return 0 if unable to handle the interrupt
733 * Return -EFAULT if data address is bad
734 */
735
736int fix_alignment(struct pt_regs *regs)
737{
738	unsigned int instr, nb, flags, instruction = 0;
739	unsigned int reg, areg;
740	unsigned int dsisr;
741	unsigned char __user *addr;
742	unsigned long p, swiz;
743	int ret, i;
744	union data {
745		u64 ll;
746		double dd;
747		unsigned char v[8];
748		struct {
749#ifdef __LITTLE_ENDIAN__
750			int	 low32;
751			unsigned hi32;
752#else
753			unsigned hi32;
754			int	 low32;
755#endif
756		} x32;
757		struct {
758#ifdef __LITTLE_ENDIAN__
759			short	      low16;
760			unsigned char hi48[6];
761#else
762			unsigned char hi48[6];
763			short	      low16;
764#endif
765		} x16;
766	} data;
767
768	/*
769	 * We require a complete register set, if not, then our assembly
770	 * is broken
771	 */
772	CHECK_FULL_REGS(regs);
773
774	dsisr = regs->dsisr;
775
776	/* Some processors don't provide us with a DSISR we can use here,
777	 * let's make one up from the instruction
778	 */
779	if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) {
780		unsigned long pc = regs->nip;
781
782		if (cpu_has_feature(CPU_FTR_PPC_LE) && (regs->msr & MSR_LE))
783			pc ^= 4;
784		if (unlikely(__get_user_inatomic(instr,
785						 (unsigned int __user *)pc)))
786			return -EFAULT;
787		if (cpu_has_feature(CPU_FTR_REAL_LE) && (regs->msr & MSR_LE))
788			instr = cpu_to_le32(instr);
789		dsisr = make_dsisr(instr);
790		instruction = instr;
791	}
792
793	/* extract the operation and registers from the dsisr */
794	reg = (dsisr >> 5) & 0x1f;	/* source/dest register */
795	areg = dsisr & 0x1f;		/* register to update */
796
797#ifdef CONFIG_SPE
798	if ((instr >> 26) == 0x4) {
799		PPC_WARN_ALIGNMENT(spe, regs);
800		return emulate_spe(regs, reg, instr);
801	}
802#endif
803
804	instr = (dsisr >> 10) & 0x7f;
805	instr |= (dsisr >> 13) & 0x60;
806
807	/* Lookup the operation in our table */
808	nb = aligninfo[instr].len;
809	flags = aligninfo[instr].flags;
810
811	/* ldbrx/stdbrx overlap lfs/stfs in the DSISR unfortunately */
812	if (IS_XFORM(instruction) && ((instruction >> 1) & 0x3ff) == 532) {
813		nb = 8;
814		flags = LD+SW;
815	} else if (IS_XFORM(instruction) &&
816		   ((instruction >> 1) & 0x3ff) == 660) {
817		nb = 8;
818		flags = ST+SW;
819	}
820
821	/* Byteswap little endian loads and stores */
822	swiz = 0;
823	if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE)) {
824		flags ^= SW;
825#ifdef __BIG_ENDIAN__
826		/*
827		 * So-called "PowerPC little endian" mode works by
828		 * swizzling addresses rather than by actually doing
829		 * any byte-swapping.  To emulate this, we XOR each
830		 * byte address with 7.  We also byte-swap, because
831		 * the processor's address swizzling depends on the
832		 * operand size (it xors the address with 7 for bytes,
833		 * 6 for halfwords, 4 for words, 0 for doublewords) but
834		 * we will xor with 7 and load/store each byte separately.
835		 */
836		if (cpu_has_feature(CPU_FTR_PPC_LE))
837			swiz = 7;
838#endif
839	}
840
841	/* DAR has the operand effective address */
842	addr = (unsigned char __user *)regs->dar;
843
844#ifdef CONFIG_VSX
845	if ((instruction & 0xfc00003e) == 0x7c000018) {
846		unsigned int elsize;
847
848		/* Additional register addressing bit (64 VSX vs 32 FPR/GPR) */
849		reg |= (instruction & 0x1) << 5;
850		/* Simple inline decoder instead of a table */
851		/* VSX has only 8 and 16 byte memory accesses */
852		nb = 8;
853		if (instruction & 0x200)
854			nb = 16;
855
856		/* Vector stores in little-endian mode swap individual
857		   elements, so process them separately */
858		elsize = 4;
859		if (instruction & 0x80)
860			elsize = 8;
861
862		flags = 0;
863		if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE))
864			flags |= SW;
865		if (instruction & 0x100)
866			flags |= ST;
867		if (instruction & 0x040)
868			flags |= U;
869		/* splat load needs a special decoder */
870		if ((instruction & 0x400) == 0){
871			flags |= SPLT;
872			nb = 8;
873		}
874		PPC_WARN_ALIGNMENT(vsx, regs);
875		return emulate_vsx(addr, reg, areg, regs, flags, nb, elsize);
876	}
877#endif
878	/* A size of 0 indicates an instruction we don't support, with
879	 * the exception of DCBZ which is handled as a special case here
880	 */
881	if (instr == DCBZ) {
882		PPC_WARN_ALIGNMENT(dcbz, regs);
883		return emulate_dcbz(regs, addr);
884	}
885	if (unlikely(nb == 0))
886		return 0;
887
888	/* Load/Store Multiple instructions are handled in their own
889	 * function
890	 */
891	if (flags & M) {
892		PPC_WARN_ALIGNMENT(multiple, regs);
893		return emulate_multiple(regs, addr, reg, nb,
894					flags, instr, swiz);
895	}
896
897	/* Verify the address of the operand */
898	if (unlikely(user_mode(regs) &&
899		     !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
900				addr, nb)))
901		return -EFAULT;
902
903	/* Force the fprs into the save area so we can reference them */
904	if (flags & F) {
905		/* userland only */
906		if (unlikely(!user_mode(regs)))
907			return 0;
908		flush_fp_to_thread(current);
909	}
910
911	if (nb == 16) {
912		if (flags & F) {
913			/* Special case for 16-byte FP loads and stores */
914			PPC_WARN_ALIGNMENT(fp_pair, regs);
915			return emulate_fp_pair(addr, reg, flags);
916		} else {
917#ifdef CONFIG_PPC64
918			/* Special case for 16-byte loads and stores */
919			PPC_WARN_ALIGNMENT(lq_stq, regs);
920			return emulate_lq_stq(regs, addr, reg, flags);
921#else
922			return 0;
923#endif
924		}
925	}
926
927	PPC_WARN_ALIGNMENT(unaligned, regs);
928
929	/* If we are loading, get the data from user space, else
930	 * get it from register values
931	 */
932	if (!(flags & ST)) {
933		unsigned int start = 0;
934
935		switch (nb) {
936		case 4:
937			start = offsetof(union data, x32.low32);
938			break;
939		case 2:
940			start = offsetof(union data, x16.low16);
941			break;
942		}
943
944		data.ll = 0;
945		ret = 0;
946		p = (unsigned long)addr;
947
948		for (i = 0; i < nb; i++)
949			ret |= __get_user_inatomic(data.v[start + i],
950						   SWIZ_PTR(p++));
951
952		if (unlikely(ret))
953			return -EFAULT;
954
955	} else if (flags & F) {
956		data.ll = current->thread.TS_FPR(reg);
957		if (flags & S) {
958			/* Single-precision FP store requires conversion... */
959#ifdef CONFIG_PPC_FPU
960			preempt_disable();
961			enable_kernel_fp();
962			cvt_df(&data.dd, (float *)&data.x32.low32);
963			preempt_enable();
964#else
965			return 0;
966#endif
967		}
968	} else
969		data.ll = regs->gpr[reg];
970
971	if (flags & SW) {
972		switch (nb) {
973		case 8:
974			data.ll = swab64(data.ll);
975			break;
976		case 4:
977			data.x32.low32 = swab32(data.x32.low32);
978			break;
979		case 2:
980			data.x16.low16 = swab16(data.x16.low16);
981			break;
982		}
983	}
984
985	/* Perform other misc operations like sign extension
986	 * or floating point single precision conversion
987	 */
988	switch (flags & ~(U|SW)) {
989	case LD+SE:	/* sign extending integer loads */
990	case LD+F+SE:	/* sign extend for lfiwax */
991		if ( nb == 2 )
992			data.ll = data.x16.low16;
993		else	/* nb must be 4 */
994			data.ll = data.x32.low32;
995		break;
996
997	/* Single-precision FP load requires conversion... */
998	case LD+F+S:
999#ifdef CONFIG_PPC_FPU
1000		preempt_disable();
1001		enable_kernel_fp();
1002		cvt_fd((float *)&data.x32.low32, &data.dd);
1003		preempt_enable();
1004#else
1005		return 0;
1006#endif
1007		break;
1008	}
1009
1010	/* Store result to memory or update registers */
1011	if (flags & ST) {
1012		unsigned int start = 0;
1013
1014		switch (nb) {
1015		case 4:
1016			start = offsetof(union data, x32.low32);
1017			break;
1018		case 2:
1019			start = offsetof(union data, x16.low16);
1020			break;
1021		}
1022
1023		ret = 0;
1024		p = (unsigned long)addr;
1025
1026		for (i = 0; i < nb; i++)
1027			ret |= __put_user_inatomic(data.v[start + i],
1028						   SWIZ_PTR(p++));
1029
1030		if (unlikely(ret))
1031			return -EFAULT;
1032	} else if (flags & F)
1033		current->thread.TS_FPR(reg) = data.ll;
1034	else
1035		regs->gpr[reg] = data.ll;
1036
1037	/* Update RA as needed */
1038	if (flags & U)
1039		regs->gpr[areg] = regs->dar;
1040
1041	return 1;
1042}
1043