1/* align.c - handle alignment exceptions for the Power PC. 2 * 3 * Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au> 4 * Copyright (c) 1998-1999 TiVo, Inc. 5 * PowerPC 403GCX modifications. 6 * Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu> 7 * PowerPC 403GCX/405GP modifications. 8 * Copyright (c) 2001-2002 PPC64 team, IBM Corp 9 * 64-bit and Power4 support 10 * Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp 11 * <benh@kernel.crashing.org> 12 * Merge ppc32 and ppc64 implementations 13 * 14 * This program is free software; you can redistribute it and/or 15 * modify it under the terms of the GNU General Public License 16 * as published by the Free Software Foundation; either version 17 * 2 of the License, or (at your option) any later version. 18 */ 19 20#include <linux/kernel.h> 21#include <linux/mm.h> 22#include <asm/processor.h> 23#include <asm/uaccess.h> 24#include <asm/cache.h> 25#include <asm/cputable.h> 26#include <asm/emulated_ops.h> 27#include <asm/switch_to.h> 28#include <asm/disassemble.h> 29 30struct aligninfo { 31 unsigned char len; 32 unsigned char flags; 33}; 34 35 36#define INVALID { 0, 0 } 37 38/* Bits in the flags field */ 39#define LD 0 /* load */ 40#define ST 1 /* store */ 41#define SE 2 /* sign-extend value, or FP ld/st as word */ 42#define F 4 /* to/from fp regs */ 43#define U 8 /* update index register */ 44#define M 0x10 /* multiple load/store */ 45#define SW 0x20 /* byte swap */ 46#define S 0x40 /* single-precision fp or... */ 47#define SX 0x40 /* ... byte count in XER */ 48#define HARD 0x80 /* string, stwcx. */ 49#define E4 0x40 /* SPE endianness is word */ 50#define E8 0x80 /* SPE endianness is double word */ 51#define SPLT 0x80 /* VSX SPLAT load */ 52 53/* DSISR bits reported for a DCBZ instruction: */ 54#define DCBZ 0x5f /* 8xx/82xx dcbz faults when cache not enabled */ 55 56/* 57 * The PowerPC stores certain bits of the instruction that caused the 58 * alignment exception in the DSISR register. This array maps those 59 * bits to information about the operand length and what the 60 * instruction would do. 61 */ 62static struct aligninfo aligninfo[128] = { 63 { 4, LD }, /* 00 0 0000: lwz / lwarx */ 64 INVALID, /* 00 0 0001 */ 65 { 4, ST }, /* 00 0 0010: stw */ 66 INVALID, /* 00 0 0011 */ 67 { 2, LD }, /* 00 0 0100: lhz */ 68 { 2, LD+SE }, /* 00 0 0101: lha */ 69 { 2, ST }, /* 00 0 0110: sth */ 70 { 4, LD+M }, /* 00 0 0111: lmw */ 71 { 4, LD+F+S }, /* 00 0 1000: lfs */ 72 { 8, LD+F }, /* 00 0 1001: lfd */ 73 { 4, ST+F+S }, /* 00 0 1010: stfs */ 74 { 8, ST+F }, /* 00 0 1011: stfd */ 75 { 16, LD }, /* 00 0 1100: lq */ 76 { 8, LD }, /* 00 0 1101: ld/ldu/lwa */ 77 INVALID, /* 00 0 1110 */ 78 { 8, ST }, /* 00 0 1111: std/stdu */ 79 { 4, LD+U }, /* 00 1 0000: lwzu */ 80 INVALID, /* 00 1 0001 */ 81 { 4, ST+U }, /* 00 1 0010: stwu */ 82 INVALID, /* 00 1 0011 */ 83 { 2, LD+U }, /* 00 1 0100: lhzu */ 84 { 2, LD+SE+U }, /* 00 1 0101: lhau */ 85 { 2, ST+U }, /* 00 1 0110: sthu */ 86 { 4, ST+M }, /* 00 1 0111: stmw */ 87 { 4, LD+F+S+U }, /* 00 1 1000: lfsu */ 88 { 8, LD+F+U }, /* 00 1 1001: lfdu */ 89 { 4, ST+F+S+U }, /* 00 1 1010: stfsu */ 90 { 8, ST+F+U }, /* 00 1 1011: stfdu */ 91 { 16, LD+F }, /* 00 1 1100: lfdp */ 92 INVALID, /* 00 1 1101 */ 93 { 16, ST+F }, /* 00 1 1110: stfdp */ 94 INVALID, /* 00 1 1111 */ 95 { 8, LD }, /* 01 0 0000: ldx */ 96 INVALID, /* 01 0 0001 */ 97 { 8, ST }, /* 01 0 0010: stdx */ 98 INVALID, /* 01 0 0011 */ 99 INVALID, /* 01 0 0100 */ 100 { 4, LD+SE }, /* 01 0 0101: lwax */ 101 INVALID, /* 01 0 0110 */ 102 INVALID, /* 01 0 0111 */ 103 { 4, LD+M+HARD+SX }, /* 01 0 1000: lswx */ 104 { 4, LD+M+HARD }, /* 01 0 1001: lswi */ 105 { 4, ST+M+HARD+SX }, /* 01 0 1010: stswx */ 106 { 4, ST+M+HARD }, /* 01 0 1011: stswi */ 107 INVALID, /* 01 0 1100 */ 108 { 8, LD+U }, /* 01 0 1101: ldu */ 109 INVALID, /* 01 0 1110 */ 110 { 8, ST+U }, /* 01 0 1111: stdu */ 111 { 8, LD+U }, /* 01 1 0000: ldux */ 112 INVALID, /* 01 1 0001 */ 113 { 8, ST+U }, /* 01 1 0010: stdux */ 114 INVALID, /* 01 1 0011 */ 115 INVALID, /* 01 1 0100 */ 116 { 4, LD+SE+U }, /* 01 1 0101: lwaux */ 117 INVALID, /* 01 1 0110 */ 118 INVALID, /* 01 1 0111 */ 119 INVALID, /* 01 1 1000 */ 120 INVALID, /* 01 1 1001 */ 121 INVALID, /* 01 1 1010 */ 122 INVALID, /* 01 1 1011 */ 123 INVALID, /* 01 1 1100 */ 124 INVALID, /* 01 1 1101 */ 125 INVALID, /* 01 1 1110 */ 126 INVALID, /* 01 1 1111 */ 127 INVALID, /* 10 0 0000 */ 128 INVALID, /* 10 0 0001 */ 129 INVALID, /* 10 0 0010: stwcx. */ 130 INVALID, /* 10 0 0011 */ 131 INVALID, /* 10 0 0100 */ 132 INVALID, /* 10 0 0101 */ 133 INVALID, /* 10 0 0110 */ 134 INVALID, /* 10 0 0111 */ 135 { 4, LD+SW }, /* 10 0 1000: lwbrx */ 136 INVALID, /* 10 0 1001 */ 137 { 4, ST+SW }, /* 10 0 1010: stwbrx */ 138 INVALID, /* 10 0 1011 */ 139 { 2, LD+SW }, /* 10 0 1100: lhbrx */ 140 { 4, LD+SE }, /* 10 0 1101 lwa */ 141 { 2, ST+SW }, /* 10 0 1110: sthbrx */ 142 { 16, ST }, /* 10 0 1111: stq */ 143 INVALID, /* 10 1 0000 */ 144 INVALID, /* 10 1 0001 */ 145 INVALID, /* 10 1 0010 */ 146 INVALID, /* 10 1 0011 */ 147 INVALID, /* 10 1 0100 */ 148 INVALID, /* 10 1 0101 */ 149 INVALID, /* 10 1 0110 */ 150 INVALID, /* 10 1 0111 */ 151 INVALID, /* 10 1 1000 */ 152 INVALID, /* 10 1 1001 */ 153 INVALID, /* 10 1 1010 */ 154 INVALID, /* 10 1 1011 */ 155 INVALID, /* 10 1 1100 */ 156 INVALID, /* 10 1 1101 */ 157 INVALID, /* 10 1 1110 */ 158 { 0, ST+HARD }, /* 10 1 1111: dcbz */ 159 { 4, LD }, /* 11 0 0000: lwzx */ 160 INVALID, /* 11 0 0001 */ 161 { 4, ST }, /* 11 0 0010: stwx */ 162 INVALID, /* 11 0 0011 */ 163 { 2, LD }, /* 11 0 0100: lhzx */ 164 { 2, LD+SE }, /* 11 0 0101: lhax */ 165 { 2, ST }, /* 11 0 0110: sthx */ 166 INVALID, /* 11 0 0111 */ 167 { 4, LD+F+S }, /* 11 0 1000: lfsx */ 168 { 8, LD+F }, /* 11 0 1001: lfdx */ 169 { 4, ST+F+S }, /* 11 0 1010: stfsx */ 170 { 8, ST+F }, /* 11 0 1011: stfdx */ 171 { 16, LD+F }, /* 11 0 1100: lfdpx */ 172 { 4, LD+F+SE }, /* 11 0 1101: lfiwax */ 173 { 16, ST+F }, /* 11 0 1110: stfdpx */ 174 { 4, ST+F }, /* 11 0 1111: stfiwx */ 175 { 4, LD+U }, /* 11 1 0000: lwzux */ 176 INVALID, /* 11 1 0001 */ 177 { 4, ST+U }, /* 11 1 0010: stwux */ 178 INVALID, /* 11 1 0011 */ 179 { 2, LD+U }, /* 11 1 0100: lhzux */ 180 { 2, LD+SE+U }, /* 11 1 0101: lhaux */ 181 { 2, ST+U }, /* 11 1 0110: sthux */ 182 INVALID, /* 11 1 0111 */ 183 { 4, LD+F+S+U }, /* 11 1 1000: lfsux */ 184 { 8, LD+F+U }, /* 11 1 1001: lfdux */ 185 { 4, ST+F+S+U }, /* 11 1 1010: stfsux */ 186 { 8, ST+F+U }, /* 11 1 1011: stfdux */ 187 INVALID, /* 11 1 1100 */ 188 { 4, LD+F }, /* 11 1 1101: lfiwzx */ 189 INVALID, /* 11 1 1110 */ 190 INVALID, /* 11 1 1111 */ 191}; 192 193/* 194 * The dcbz (data cache block zero) instruction 195 * gives an alignment fault if used on non-cacheable 196 * memory. We handle the fault mainly for the 197 * case when we are running with the cache disabled 198 * for debugging. 199 */ 200static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr) 201{ 202 long __user *p; 203 int i, size; 204 205#ifdef __powerpc64__ 206 size = ppc64_caches.dline_size; 207#else 208 size = L1_CACHE_BYTES; 209#endif 210 p = (long __user *) (regs->dar & -size); 211 if (user_mode(regs) && !access_ok(VERIFY_WRITE, p, size)) 212 return -EFAULT; 213 for (i = 0; i < size / sizeof(long); ++i) 214 if (__put_user_inatomic(0, p+i)) 215 return -EFAULT; 216 return 1; 217} 218 219/* 220 * Emulate load & store multiple instructions 221 * On 64-bit machines, these instructions only affect/use the 222 * bottom 4 bytes of each register, and the loads clear the 223 * top 4 bytes of the affected register. 224 */ 225#ifdef __BIG_ENDIAN__ 226#ifdef CONFIG_PPC64 227#define REG_BYTE(rp, i) *((u8 *)((rp) + ((i) >> 2)) + ((i) & 3) + 4) 228#else 229#define REG_BYTE(rp, i) *((u8 *)(rp) + (i)) 230#endif 231#endif 232 233#ifdef __LITTLE_ENDIAN__ 234#define REG_BYTE(rp, i) (*(((u8 *)((rp) + ((i)>>2)) + ((i)&3)))) 235#endif 236 237#define SWIZ_PTR(p) ((unsigned char __user *)((p) ^ swiz)) 238 239static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr, 240 unsigned int reg, unsigned int nb, 241 unsigned int flags, unsigned int instr, 242 unsigned long swiz) 243{ 244 unsigned long *rptr; 245 unsigned int nb0, i, bswiz; 246 unsigned long p; 247 248 /* 249 * We do not try to emulate 8 bytes multiple as they aren't really 250 * available in our operating environments and we don't try to 251 * emulate multiples operations in kernel land as they should never 252 * be used/generated there at least not on unaligned boundaries 253 */ 254 if (unlikely((nb > 4) || !user_mode(regs))) 255 return 0; 256 257 /* lmw, stmw, lswi/x, stswi/x */ 258 nb0 = 0; 259 if (flags & HARD) { 260 if (flags & SX) { 261 nb = regs->xer & 127; 262 if (nb == 0) 263 return 1; 264 } else { 265 unsigned long pc = regs->nip ^ (swiz & 4); 266 267 if (__get_user_inatomic(instr, 268 (unsigned int __user *)pc)) 269 return -EFAULT; 270 if (swiz == 0 && (flags & SW)) 271 instr = cpu_to_le32(instr); 272 nb = (instr >> 11) & 0x1f; 273 if (nb == 0) 274 nb = 32; 275 } 276 if (nb + reg * 4 > 128) { 277 nb0 = nb + reg * 4 - 128; 278 nb = 128 - reg * 4; 279 } 280#ifdef __LITTLE_ENDIAN__ 281 /* 282 * String instructions are endian neutral but the code 283 * below is not. Force byte swapping on so that the 284 * effects of swizzling are undone in the load/store 285 * loops below. 286 */ 287 flags ^= SW; 288#endif 289 } else { 290 /* lwm, stmw */ 291 nb = (32 - reg) * 4; 292 } 293 294 if (!access_ok((flags & ST ? VERIFY_WRITE: VERIFY_READ), addr, nb+nb0)) 295 return -EFAULT; /* bad address */ 296 297 rptr = ®s->gpr[reg]; 298 p = (unsigned long) addr; 299 bswiz = (flags & SW)? 3: 0; 300 301 if (!(flags & ST)) { 302 /* 303 * This zeroes the top 4 bytes of the affected registers 304 * in 64-bit mode, and also zeroes out any remaining 305 * bytes of the last register for lsw*. 306 */ 307 memset(rptr, 0, ((nb + 3) / 4) * sizeof(unsigned long)); 308 if (nb0 > 0) 309 memset(®s->gpr[0], 0, 310 ((nb0 + 3) / 4) * sizeof(unsigned long)); 311 312 for (i = 0; i < nb; ++i, ++p) 313 if (__get_user_inatomic(REG_BYTE(rptr, i ^ bswiz), 314 SWIZ_PTR(p))) 315 return -EFAULT; 316 if (nb0 > 0) { 317 rptr = ®s->gpr[0]; 318 addr += nb; 319 for (i = 0; i < nb0; ++i, ++p) 320 if (__get_user_inatomic(REG_BYTE(rptr, 321 i ^ bswiz), 322 SWIZ_PTR(p))) 323 return -EFAULT; 324 } 325 326 } else { 327 for (i = 0; i < nb; ++i, ++p) 328 if (__put_user_inatomic(REG_BYTE(rptr, i ^ bswiz), 329 SWIZ_PTR(p))) 330 return -EFAULT; 331 if (nb0 > 0) { 332 rptr = ®s->gpr[0]; 333 addr += nb; 334 for (i = 0; i < nb0; ++i, ++p) 335 if (__put_user_inatomic(REG_BYTE(rptr, 336 i ^ bswiz), 337 SWIZ_PTR(p))) 338 return -EFAULT; 339 } 340 } 341 return 1; 342} 343 344/* 345 * Emulate floating-point pair loads and stores. 346 * Only POWER6 has these instructions, and it does true little-endian, 347 * so we don't need the address swizzling. 348 */ 349static int emulate_fp_pair(unsigned char __user *addr, unsigned int reg, 350 unsigned int flags) 351{ 352 char *ptr0 = (char *) ¤t->thread.TS_FPR(reg); 353 char *ptr1 = (char *) ¤t->thread.TS_FPR(reg+1); 354 int i, ret, sw = 0; 355 356 if (reg & 1) 357 return 0; /* invalid form: FRS/FRT must be even */ 358 if (flags & SW) 359 sw = 7; 360 ret = 0; 361 for (i = 0; i < 8; ++i) { 362 if (!(flags & ST)) { 363 ret |= __get_user(ptr0[i^sw], addr + i); 364 ret |= __get_user(ptr1[i^sw], addr + i + 8); 365 } else { 366 ret |= __put_user(ptr0[i^sw], addr + i); 367 ret |= __put_user(ptr1[i^sw], addr + i + 8); 368 } 369 } 370 if (ret) 371 return -EFAULT; 372 return 1; /* exception handled and fixed up */ 373} 374 375#ifdef CONFIG_PPC64 376static int emulate_lq_stq(struct pt_regs *regs, unsigned char __user *addr, 377 unsigned int reg, unsigned int flags) 378{ 379 char *ptr0 = (char *)®s->gpr[reg]; 380 char *ptr1 = (char *)®s->gpr[reg+1]; 381 int i, ret, sw = 0; 382 383 if (reg & 1) 384 return 0; /* invalid form: GPR must be even */ 385 if (flags & SW) 386 sw = 7; 387 ret = 0; 388 for (i = 0; i < 8; ++i) { 389 if (!(flags & ST)) { 390 ret |= __get_user(ptr0[i^sw], addr + i); 391 ret |= __get_user(ptr1[i^sw], addr + i + 8); 392 } else { 393 ret |= __put_user(ptr0[i^sw], addr + i); 394 ret |= __put_user(ptr1[i^sw], addr + i + 8); 395 } 396 } 397 if (ret) 398 return -EFAULT; 399 return 1; /* exception handled and fixed up */ 400} 401#endif /* CONFIG_PPC64 */ 402 403#ifdef CONFIG_SPE 404 405static struct aligninfo spe_aligninfo[32] = { 406 { 8, LD+E8 }, /* 0 00 00: evldd[x] */ 407 { 8, LD+E4 }, /* 0 00 01: evldw[x] */ 408 { 8, LD }, /* 0 00 10: evldh[x] */ 409 INVALID, /* 0 00 11 */ 410 { 2, LD }, /* 0 01 00: evlhhesplat[x] */ 411 INVALID, /* 0 01 01 */ 412 { 2, LD }, /* 0 01 10: evlhhousplat[x] */ 413 { 2, LD+SE }, /* 0 01 11: evlhhossplat[x] */ 414 { 4, LD }, /* 0 10 00: evlwhe[x] */ 415 INVALID, /* 0 10 01 */ 416 { 4, LD }, /* 0 10 10: evlwhou[x] */ 417 { 4, LD+SE }, /* 0 10 11: evlwhos[x] */ 418 { 4, LD+E4 }, /* 0 11 00: evlwwsplat[x] */ 419 INVALID, /* 0 11 01 */ 420 { 4, LD }, /* 0 11 10: evlwhsplat[x] */ 421 INVALID, /* 0 11 11 */ 422 423 { 8, ST+E8 }, /* 1 00 00: evstdd[x] */ 424 { 8, ST+E4 }, /* 1 00 01: evstdw[x] */ 425 { 8, ST }, /* 1 00 10: evstdh[x] */ 426 INVALID, /* 1 00 11 */ 427 INVALID, /* 1 01 00 */ 428 INVALID, /* 1 01 01 */ 429 INVALID, /* 1 01 10 */ 430 INVALID, /* 1 01 11 */ 431 { 4, ST }, /* 1 10 00: evstwhe[x] */ 432 INVALID, /* 1 10 01 */ 433 { 4, ST }, /* 1 10 10: evstwho[x] */ 434 INVALID, /* 1 10 11 */ 435 { 4, ST+E4 }, /* 1 11 00: evstwwe[x] */ 436 INVALID, /* 1 11 01 */ 437 { 4, ST+E4 }, /* 1 11 10: evstwwo[x] */ 438 INVALID, /* 1 11 11 */ 439}; 440 441#define EVLDD 0x00 442#define EVLDW 0x01 443#define EVLDH 0x02 444#define EVLHHESPLAT 0x04 445#define EVLHHOUSPLAT 0x06 446#define EVLHHOSSPLAT 0x07 447#define EVLWHE 0x08 448#define EVLWHOU 0x0A 449#define EVLWHOS 0x0B 450#define EVLWWSPLAT 0x0C 451#define EVLWHSPLAT 0x0E 452#define EVSTDD 0x10 453#define EVSTDW 0x11 454#define EVSTDH 0x12 455#define EVSTWHE 0x18 456#define EVSTWHO 0x1A 457#define EVSTWWE 0x1C 458#define EVSTWWO 0x1E 459 460/* 461 * Emulate SPE loads and stores. 462 * Only Book-E has these instructions, and it does true little-endian, 463 * so we don't need the address swizzling. 464 */ 465static int emulate_spe(struct pt_regs *regs, unsigned int reg, 466 unsigned int instr) 467{ 468 int ret; 469 union { 470 u64 ll; 471 u32 w[2]; 472 u16 h[4]; 473 u8 v[8]; 474 } data, temp; 475 unsigned char __user *p, *addr; 476 unsigned long *evr = ¤t->thread.evr[reg]; 477 unsigned int nb, flags; 478 479 instr = (instr >> 1) & 0x1f; 480 481 /* DAR has the operand effective address */ 482 addr = (unsigned char __user *)regs->dar; 483 484 nb = spe_aligninfo[instr].len; 485 flags = spe_aligninfo[instr].flags; 486 487 /* Verify the address of the operand */ 488 if (unlikely(user_mode(regs) && 489 !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ), 490 addr, nb))) 491 return -EFAULT; 492 493 /* userland only */ 494 if (unlikely(!user_mode(regs))) 495 return 0; 496 497 flush_spe_to_thread(current); 498 499 /* If we are loading, get the data from user space, else 500 * get it from register values 501 */ 502 if (flags & ST) { 503 data.ll = 0; 504 switch (instr) { 505 case EVSTDD: 506 case EVSTDW: 507 case EVSTDH: 508 data.w[0] = *evr; 509 data.w[1] = regs->gpr[reg]; 510 break; 511 case EVSTWHE: 512 data.h[2] = *evr >> 16; 513 data.h[3] = regs->gpr[reg] >> 16; 514 break; 515 case EVSTWHO: 516 data.h[2] = *evr & 0xffff; 517 data.h[3] = regs->gpr[reg] & 0xffff; 518 break; 519 case EVSTWWE: 520 data.w[1] = *evr; 521 break; 522 case EVSTWWO: 523 data.w[1] = regs->gpr[reg]; 524 break; 525 default: 526 return -EINVAL; 527 } 528 } else { 529 temp.ll = data.ll = 0; 530 ret = 0; 531 p = addr; 532 533 switch (nb) { 534 case 8: 535 ret |= __get_user_inatomic(temp.v[0], p++); 536 ret |= __get_user_inatomic(temp.v[1], p++); 537 ret |= __get_user_inatomic(temp.v[2], p++); 538 ret |= __get_user_inatomic(temp.v[3], p++); 539 case 4: 540 ret |= __get_user_inatomic(temp.v[4], p++); 541 ret |= __get_user_inatomic(temp.v[5], p++); 542 case 2: 543 ret |= __get_user_inatomic(temp.v[6], p++); 544 ret |= __get_user_inatomic(temp.v[7], p++); 545 if (unlikely(ret)) 546 return -EFAULT; 547 } 548 549 switch (instr) { 550 case EVLDD: 551 case EVLDW: 552 case EVLDH: 553 data.ll = temp.ll; 554 break; 555 case EVLHHESPLAT: 556 data.h[0] = temp.h[3]; 557 data.h[2] = temp.h[3]; 558 break; 559 case EVLHHOUSPLAT: 560 case EVLHHOSSPLAT: 561 data.h[1] = temp.h[3]; 562 data.h[3] = temp.h[3]; 563 break; 564 case EVLWHE: 565 data.h[0] = temp.h[2]; 566 data.h[2] = temp.h[3]; 567 break; 568 case EVLWHOU: 569 case EVLWHOS: 570 data.h[1] = temp.h[2]; 571 data.h[3] = temp.h[3]; 572 break; 573 case EVLWWSPLAT: 574 data.w[0] = temp.w[1]; 575 data.w[1] = temp.w[1]; 576 break; 577 case EVLWHSPLAT: 578 data.h[0] = temp.h[2]; 579 data.h[1] = temp.h[2]; 580 data.h[2] = temp.h[3]; 581 data.h[3] = temp.h[3]; 582 break; 583 default: 584 return -EINVAL; 585 } 586 } 587 588 if (flags & SW) { 589 switch (flags & 0xf0) { 590 case E8: 591 data.ll = swab64(data.ll); 592 break; 593 case E4: 594 data.w[0] = swab32(data.w[0]); 595 data.w[1] = swab32(data.w[1]); 596 break; 597 /* Its half word endian */ 598 default: 599 data.h[0] = swab16(data.h[0]); 600 data.h[1] = swab16(data.h[1]); 601 data.h[2] = swab16(data.h[2]); 602 data.h[3] = swab16(data.h[3]); 603 break; 604 } 605 } 606 607 if (flags & SE) { 608 data.w[0] = (s16)data.h[1]; 609 data.w[1] = (s16)data.h[3]; 610 } 611 612 /* Store result to memory or update registers */ 613 if (flags & ST) { 614 ret = 0; 615 p = addr; 616 switch (nb) { 617 case 8: 618 ret |= __put_user_inatomic(data.v[0], p++); 619 ret |= __put_user_inatomic(data.v[1], p++); 620 ret |= __put_user_inatomic(data.v[2], p++); 621 ret |= __put_user_inatomic(data.v[3], p++); 622 case 4: 623 ret |= __put_user_inatomic(data.v[4], p++); 624 ret |= __put_user_inatomic(data.v[5], p++); 625 case 2: 626 ret |= __put_user_inatomic(data.v[6], p++); 627 ret |= __put_user_inatomic(data.v[7], p++); 628 } 629 if (unlikely(ret)) 630 return -EFAULT; 631 } else { 632 *evr = data.w[0]; 633 regs->gpr[reg] = data.w[1]; 634 } 635 636 return 1; 637} 638#endif /* CONFIG_SPE */ 639 640#ifdef CONFIG_VSX 641/* 642 * Emulate VSX instructions... 643 */ 644static int emulate_vsx(unsigned char __user *addr, unsigned int reg, 645 unsigned int areg, struct pt_regs *regs, 646 unsigned int flags, unsigned int length, 647 unsigned int elsize) 648{ 649 char *ptr; 650 unsigned long *lptr; 651 int ret = 0; 652 int sw = 0; 653 int i, j; 654 655 /* userland only */ 656 if (unlikely(!user_mode(regs))) 657 return 0; 658 659 flush_vsx_to_thread(current); 660 661 if (reg < 32) 662 ptr = (char *) ¤t->thread.fp_state.fpr[reg][0]; 663 else 664 ptr = (char *) ¤t->thread.vr_state.vr[reg - 32]; 665 666 lptr = (unsigned long *) ptr; 667 668#ifdef __LITTLE_ENDIAN__ 669 if (flags & SW) { 670 elsize = length; 671 sw = length-1; 672 } else { 673 /* 674 * The elements are BE ordered, even in LE mode, so process 675 * them in reverse order. 676 */ 677 addr += length - elsize; 678 679 /* 8 byte memory accesses go in the top 8 bytes of the VR */ 680 if (length == 8) 681 ptr += 8; 682 } 683#else 684 if (flags & SW) 685 sw = elsize-1; 686#endif 687 688 for (j = 0; j < length; j += elsize) { 689 for (i = 0; i < elsize; ++i) { 690 if (flags & ST) 691 ret |= __put_user(ptr[i^sw], addr + i); 692 else 693 ret |= __get_user(ptr[i^sw], addr + i); 694 } 695 ptr += elsize; 696#ifdef __LITTLE_ENDIAN__ 697 addr -= elsize; 698#else 699 addr += elsize; 700#endif 701 } 702 703#ifdef __BIG_ENDIAN__ 704#define VSX_HI 0 705#define VSX_LO 1 706#else 707#define VSX_HI 1 708#define VSX_LO 0 709#endif 710 711 if (!ret) { 712 if (flags & U) 713 regs->gpr[areg] = regs->dar; 714 715 /* Splat load copies the same data to top and bottom 8 bytes */ 716 if (flags & SPLT) 717 lptr[VSX_LO] = lptr[VSX_HI]; 718 /* For 8 byte loads, zero the low 8 bytes */ 719 else if (!(flags & ST) && (8 == length)) 720 lptr[VSX_LO] = 0; 721 } else 722 return -EFAULT; 723 724 return 1; 725} 726#endif 727 728/* 729 * Called on alignment exception. Attempts to fixup 730 * 731 * Return 1 on success 732 * Return 0 if unable to handle the interrupt 733 * Return -EFAULT if data address is bad 734 */ 735 736int fix_alignment(struct pt_regs *regs) 737{ 738 unsigned int instr, nb, flags, instruction = 0; 739 unsigned int reg, areg; 740 unsigned int dsisr; 741 unsigned char __user *addr; 742 unsigned long p, swiz; 743 int ret, i; 744 union data { 745 u64 ll; 746 double dd; 747 unsigned char v[8]; 748 struct { 749#ifdef __LITTLE_ENDIAN__ 750 int low32; 751 unsigned hi32; 752#else 753 unsigned hi32; 754 int low32; 755#endif 756 } x32; 757 struct { 758#ifdef __LITTLE_ENDIAN__ 759 short low16; 760 unsigned char hi48[6]; 761#else 762 unsigned char hi48[6]; 763 short low16; 764#endif 765 } x16; 766 } data; 767 768 /* 769 * We require a complete register set, if not, then our assembly 770 * is broken 771 */ 772 CHECK_FULL_REGS(regs); 773 774 dsisr = regs->dsisr; 775 776 /* Some processors don't provide us with a DSISR we can use here, 777 * let's make one up from the instruction 778 */ 779 if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) { 780 unsigned long pc = regs->nip; 781 782 if (cpu_has_feature(CPU_FTR_PPC_LE) && (regs->msr & MSR_LE)) 783 pc ^= 4; 784 if (unlikely(__get_user_inatomic(instr, 785 (unsigned int __user *)pc))) 786 return -EFAULT; 787 if (cpu_has_feature(CPU_FTR_REAL_LE) && (regs->msr & MSR_LE)) 788 instr = cpu_to_le32(instr); 789 dsisr = make_dsisr(instr); 790 instruction = instr; 791 } 792 793 /* extract the operation and registers from the dsisr */ 794 reg = (dsisr >> 5) & 0x1f; /* source/dest register */ 795 areg = dsisr & 0x1f; /* register to update */ 796 797#ifdef CONFIG_SPE 798 if ((instr >> 26) == 0x4) { 799 PPC_WARN_ALIGNMENT(spe, regs); 800 return emulate_spe(regs, reg, instr); 801 } 802#endif 803 804 instr = (dsisr >> 10) & 0x7f; 805 instr |= (dsisr >> 13) & 0x60; 806 807 /* Lookup the operation in our table */ 808 nb = aligninfo[instr].len; 809 flags = aligninfo[instr].flags; 810 811 /* ldbrx/stdbrx overlap lfs/stfs in the DSISR unfortunately */ 812 if (IS_XFORM(instruction) && ((instruction >> 1) & 0x3ff) == 532) { 813 nb = 8; 814 flags = LD+SW; 815 } else if (IS_XFORM(instruction) && 816 ((instruction >> 1) & 0x3ff) == 660) { 817 nb = 8; 818 flags = ST+SW; 819 } 820 821 /* Byteswap little endian loads and stores */ 822 swiz = 0; 823 if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE)) { 824 flags ^= SW; 825#ifdef __BIG_ENDIAN__ 826 /* 827 * So-called "PowerPC little endian" mode works by 828 * swizzling addresses rather than by actually doing 829 * any byte-swapping. To emulate this, we XOR each 830 * byte address with 7. We also byte-swap, because 831 * the processor's address swizzling depends on the 832 * operand size (it xors the address with 7 for bytes, 833 * 6 for halfwords, 4 for words, 0 for doublewords) but 834 * we will xor with 7 and load/store each byte separately. 835 */ 836 if (cpu_has_feature(CPU_FTR_PPC_LE)) 837 swiz = 7; 838#endif 839 } 840 841 /* DAR has the operand effective address */ 842 addr = (unsigned char __user *)regs->dar; 843 844#ifdef CONFIG_VSX 845 if ((instruction & 0xfc00003e) == 0x7c000018) { 846 unsigned int elsize; 847 848 /* Additional register addressing bit (64 VSX vs 32 FPR/GPR) */ 849 reg |= (instruction & 0x1) << 5; 850 /* Simple inline decoder instead of a table */ 851 /* VSX has only 8 and 16 byte memory accesses */ 852 nb = 8; 853 if (instruction & 0x200) 854 nb = 16; 855 856 /* Vector stores in little-endian mode swap individual 857 elements, so process them separately */ 858 elsize = 4; 859 if (instruction & 0x80) 860 elsize = 8; 861 862 flags = 0; 863 if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE)) 864 flags |= SW; 865 if (instruction & 0x100) 866 flags |= ST; 867 if (instruction & 0x040) 868 flags |= U; 869 /* splat load needs a special decoder */ 870 if ((instruction & 0x400) == 0){ 871 flags |= SPLT; 872 nb = 8; 873 } 874 PPC_WARN_ALIGNMENT(vsx, regs); 875 return emulate_vsx(addr, reg, areg, regs, flags, nb, elsize); 876 } 877#endif 878 /* A size of 0 indicates an instruction we don't support, with 879 * the exception of DCBZ which is handled as a special case here 880 */ 881 if (instr == DCBZ) { 882 PPC_WARN_ALIGNMENT(dcbz, regs); 883 return emulate_dcbz(regs, addr); 884 } 885 if (unlikely(nb == 0)) 886 return 0; 887 888 /* Load/Store Multiple instructions are handled in their own 889 * function 890 */ 891 if (flags & M) { 892 PPC_WARN_ALIGNMENT(multiple, regs); 893 return emulate_multiple(regs, addr, reg, nb, 894 flags, instr, swiz); 895 } 896 897 /* Verify the address of the operand */ 898 if (unlikely(user_mode(regs) && 899 !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ), 900 addr, nb))) 901 return -EFAULT; 902 903 /* Force the fprs into the save area so we can reference them */ 904 if (flags & F) { 905 /* userland only */ 906 if (unlikely(!user_mode(regs))) 907 return 0; 908 flush_fp_to_thread(current); 909 } 910 911 if (nb == 16) { 912 if (flags & F) { 913 /* Special case for 16-byte FP loads and stores */ 914 PPC_WARN_ALIGNMENT(fp_pair, regs); 915 return emulate_fp_pair(addr, reg, flags); 916 } else { 917#ifdef CONFIG_PPC64 918 /* Special case for 16-byte loads and stores */ 919 PPC_WARN_ALIGNMENT(lq_stq, regs); 920 return emulate_lq_stq(regs, addr, reg, flags); 921#else 922 return 0; 923#endif 924 } 925 } 926 927 PPC_WARN_ALIGNMENT(unaligned, regs); 928 929 /* If we are loading, get the data from user space, else 930 * get it from register values 931 */ 932 if (!(flags & ST)) { 933 unsigned int start = 0; 934 935 switch (nb) { 936 case 4: 937 start = offsetof(union data, x32.low32); 938 break; 939 case 2: 940 start = offsetof(union data, x16.low16); 941 break; 942 } 943 944 data.ll = 0; 945 ret = 0; 946 p = (unsigned long)addr; 947 948 for (i = 0; i < nb; i++) 949 ret |= __get_user_inatomic(data.v[start + i], 950 SWIZ_PTR(p++)); 951 952 if (unlikely(ret)) 953 return -EFAULT; 954 955 } else if (flags & F) { 956 data.ll = current->thread.TS_FPR(reg); 957 if (flags & S) { 958 /* Single-precision FP store requires conversion... */ 959#ifdef CONFIG_PPC_FPU 960 preempt_disable(); 961 enable_kernel_fp(); 962 cvt_df(&data.dd, (float *)&data.x32.low32); 963 preempt_enable(); 964#else 965 return 0; 966#endif 967 } 968 } else 969 data.ll = regs->gpr[reg]; 970 971 if (flags & SW) { 972 switch (nb) { 973 case 8: 974 data.ll = swab64(data.ll); 975 break; 976 case 4: 977 data.x32.low32 = swab32(data.x32.low32); 978 break; 979 case 2: 980 data.x16.low16 = swab16(data.x16.low16); 981 break; 982 } 983 } 984 985 /* Perform other misc operations like sign extension 986 * or floating point single precision conversion 987 */ 988 switch (flags & ~(U|SW)) { 989 case LD+SE: /* sign extending integer loads */ 990 case LD+F+SE: /* sign extend for lfiwax */ 991 if ( nb == 2 ) 992 data.ll = data.x16.low16; 993 else /* nb must be 4 */ 994 data.ll = data.x32.low32; 995 break; 996 997 /* Single-precision FP load requires conversion... */ 998 case LD+F+S: 999#ifdef CONFIG_PPC_FPU 1000 preempt_disable(); 1001 enable_kernel_fp(); 1002 cvt_fd((float *)&data.x32.low32, &data.dd); 1003 preempt_enable(); 1004#else 1005 return 0; 1006#endif 1007 break; 1008 } 1009 1010 /* Store result to memory or update registers */ 1011 if (flags & ST) { 1012 unsigned int start = 0; 1013 1014 switch (nb) { 1015 case 4: 1016 start = offsetof(union data, x32.low32); 1017 break; 1018 case 2: 1019 start = offsetof(union data, x16.low16); 1020 break; 1021 } 1022 1023 ret = 0; 1024 p = (unsigned long)addr; 1025 1026 for (i = 0; i < nb; i++) 1027 ret |= __put_user_inatomic(data.v[start + i], 1028 SWIZ_PTR(p++)); 1029 1030 if (unlikely(ret)) 1031 return -EFAULT; 1032 } else if (flags & F) 1033 current->thread.TS_FPR(reg) = data.ll; 1034 else 1035 regs->gpr[reg] = data.ll; 1036 1037 /* Update RA as needed */ 1038 if (flags & U) 1039 regs->gpr[areg] = regs->dar; 1040 1041 return 1; 1042} 1043