1#ifndef _ASM_POWERPC_PAGE_H
2#define _ASM_POWERPC_PAGE_H
3
4/*
5 * Copyright (C) 2001,2005 IBM Corporation.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#ifndef __ASSEMBLY__
14#include <linux/types.h>
15#include <linux/kernel.h>
16#else
17#include <asm/types.h>
18#endif
19#include <asm/asm-compat.h>
20#include <asm/kdump.h>
21
22/*
23 * On regular PPC32 page size is 4K (but we support 4K/16K/64K/256K pages
24 * on PPC44x). For PPC64 we support either 4K or 64K software
25 * page size. When using 64K pages however, whether we are really supporting
26 * 64K pages in HW or not is irrelevant to those definitions.
27 */
28#if defined(CONFIG_PPC_256K_PAGES)
29#define PAGE_SHIFT		18
30#elif defined(CONFIG_PPC_64K_PAGES)
31#define PAGE_SHIFT		16
32#elif defined(CONFIG_PPC_16K_PAGES)
33#define PAGE_SHIFT		14
34#else
35#define PAGE_SHIFT		12
36#endif
37
38#define PAGE_SIZE		(ASM_CONST(1) << PAGE_SHIFT)
39
40#ifndef __ASSEMBLY__
41#ifdef CONFIG_HUGETLB_PAGE
42extern unsigned int HPAGE_SHIFT;
43#else
44#define HPAGE_SHIFT PAGE_SHIFT
45#endif
46#define HPAGE_SIZE		((1UL) << HPAGE_SHIFT)
47#define HPAGE_MASK		(~(HPAGE_SIZE - 1))
48#define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
49#define HUGE_MAX_HSTATE		(MMU_PAGE_COUNT-1)
50#endif
51
52/*
53 * Subtle: (1 << PAGE_SHIFT) is an int, not an unsigned long. So if we
54 * assign PAGE_MASK to a larger type it gets extended the way we want
55 * (i.e. with 1s in the high bits)
56 */
57#define PAGE_MASK      (~((1 << PAGE_SHIFT) - 1))
58
59/*
60 * KERNELBASE is the virtual address of the start of the kernel, it's often
61 * the same as PAGE_OFFSET, but _might not be_.
62 *
63 * The kdump dump kernel is one example where KERNELBASE != PAGE_OFFSET.
64 *
65 * PAGE_OFFSET is the virtual address of the start of lowmem.
66 *
67 * PHYSICAL_START is the physical address of the start of the kernel.
68 *
69 * MEMORY_START is the physical address of the start of lowmem.
70 *
71 * KERNELBASE, PAGE_OFFSET, and PHYSICAL_START are all configurable on
72 * ppc32 and based on how they are set we determine MEMORY_START.
73 *
74 * For the linear mapping the following equation should be true:
75 * KERNELBASE - PAGE_OFFSET = PHYSICAL_START - MEMORY_START
76 *
77 * Also, KERNELBASE >= PAGE_OFFSET and PHYSICAL_START >= MEMORY_START
78 *
79 * There are two ways to determine a physical address from a virtual one:
80 * va = pa + PAGE_OFFSET - MEMORY_START
81 * va = pa + KERNELBASE - PHYSICAL_START
82 *
83 * If you want to know something's offset from the start of the kernel you
84 * should subtract KERNELBASE.
85 *
86 * If you want to test if something's a kernel address, use is_kernel_addr().
87 */
88
89#define KERNELBASE      ASM_CONST(CONFIG_KERNEL_START)
90#define PAGE_OFFSET	ASM_CONST(CONFIG_PAGE_OFFSET)
91#define LOAD_OFFSET	ASM_CONST((CONFIG_KERNEL_START-CONFIG_PHYSICAL_START))
92
93#if defined(CONFIG_NONSTATIC_KERNEL)
94#ifndef __ASSEMBLY__
95
96extern phys_addr_t memstart_addr;
97extern phys_addr_t kernstart_addr;
98
99#ifdef CONFIG_RELOCATABLE_PPC32
100extern long long virt_phys_offset;
101#endif
102
103#endif /* __ASSEMBLY__ */
104#define PHYSICAL_START	kernstart_addr
105
106#else	/* !CONFIG_NONSTATIC_KERNEL */
107#define PHYSICAL_START	ASM_CONST(CONFIG_PHYSICAL_START)
108#endif
109
110/* See Description below for VIRT_PHYS_OFFSET */
111#if defined(CONFIG_PPC32) && defined(CONFIG_BOOKE)
112#ifdef CONFIG_RELOCATABLE
113#define VIRT_PHYS_OFFSET virt_phys_offset
114#else
115#define VIRT_PHYS_OFFSET (KERNELBASE - PHYSICAL_START)
116#endif
117#endif
118
119#ifdef CONFIG_PPC64
120#define MEMORY_START	0UL
121#elif defined(CONFIG_NONSTATIC_KERNEL)
122#define MEMORY_START	memstart_addr
123#else
124#define MEMORY_START	(PHYSICAL_START + PAGE_OFFSET - KERNELBASE)
125#endif
126
127#ifdef CONFIG_FLATMEM
128#define ARCH_PFN_OFFSET		((unsigned long)(MEMORY_START >> PAGE_SHIFT))
129#define pfn_valid(pfn)		((pfn) >= ARCH_PFN_OFFSET && (pfn) < max_mapnr)
130#endif
131
132#define virt_to_pfn(kaddr)	(__pa(kaddr) >> PAGE_SHIFT)
133#define virt_to_page(kaddr)	pfn_to_page(virt_to_pfn(kaddr))
134#define pfn_to_kaddr(pfn)	__va((pfn) << PAGE_SHIFT)
135#define virt_addr_valid(kaddr)	pfn_valid(virt_to_pfn(kaddr))
136
137/*
138 * On Book-E parts we need __va to parse the device tree and we can't
139 * determine MEMORY_START until then.  However we can determine PHYSICAL_START
140 * from information at hand (program counter, TLB lookup).
141 *
142 * On BookE with RELOCATABLE (RELOCATABLE_PPC32)
143 *
144 *   With RELOCATABLE_PPC32,  we support loading the kernel at any physical
145 *   address without any restriction on the page alignment.
146 *
147 *   We find the runtime address of _stext and relocate ourselves based on
148 *   the following calculation:
149 *
150 *  	  virtual_base = ALIGN_DOWN(KERNELBASE,256M) +
151 *  				MODULO(_stext.run,256M)
152 *   and create the following mapping:
153 *
154 * 	  ALIGN_DOWN(_stext.run,256M) => ALIGN_DOWN(KERNELBASE,256M)
155 *
156 *   When we process relocations, we cannot depend on the
157 *   existing equation for the __va()/__pa() translations:
158 *
159 * 	   __va(x) = (x)  - PHYSICAL_START + KERNELBASE
160 *
161 *   Where:
162 *   	 PHYSICAL_START = kernstart_addr = Physical address of _stext
163 *  	 KERNELBASE = Compiled virtual address of _stext.
164 *
165 *   This formula holds true iff, kernel load address is TLB page aligned.
166 *
167 *   In our case, we need to also account for the shift in the kernel Virtual
168 *   address.
169 *
170 *   E.g.,
171 *
172 *   Let the kernel be loaded at 64MB and KERNELBASE be 0xc0000000 (same as PAGE_OFFSET).
173 *   In this case, we would be mapping 0 to 0xc0000000, and kernstart_addr = 64M
174 *
175 *   Now __va(1MB) = (0x100000) - (0x4000000) + 0xc0000000
176 *                 = 0xbc100000 , which is wrong.
177 *
178 *   Rather, it should be : 0xc0000000 + 0x100000 = 0xc0100000
179 *      	according to our mapping.
180 *
181 *   Hence we use the following formula to get the translations right:
182 *
183 * 	  __va(x) = (x) - [ PHYSICAL_START - Effective KERNELBASE ]
184 *
185 * 	  Where :
186 * 		PHYSICAL_START = dynamic load address.(kernstart_addr variable)
187 * 		Effective KERNELBASE = virtual_base =
188 * 				     = ALIGN_DOWN(KERNELBASE,256M) +
189 * 						MODULO(PHYSICAL_START,256M)
190 *
191 * 	To make the cost of __va() / __pa() more light weight, we introduce
192 * 	a new variable virt_phys_offset, which will hold :
193 *
194 * 	virt_phys_offset = Effective KERNELBASE - PHYSICAL_START
195 * 			 = ALIGN_DOWN(KERNELBASE,256M) -
196 * 			 	ALIGN_DOWN(PHYSICALSTART,256M)
197 *
198 * 	Hence :
199 *
200 * 	__va(x) = x - PHYSICAL_START + Effective KERNELBASE
201 * 		= x + virt_phys_offset
202 *
203 * 		and
204 * 	__pa(x) = x + PHYSICAL_START - Effective KERNELBASE
205 * 		= x - virt_phys_offset
206 *
207 * On non-Book-E PPC64 PAGE_OFFSET and MEMORY_START are constants so use
208 * the other definitions for __va & __pa.
209 */
210#if defined(CONFIG_PPC32) && defined(CONFIG_BOOKE)
211#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) + VIRT_PHYS_OFFSET))
212#define __pa(x) ((unsigned long)(x) - VIRT_PHYS_OFFSET)
213#else
214#ifdef CONFIG_PPC64
215/*
216 * gcc miscompiles (unsigned long)(&static_var) - PAGE_OFFSET
217 * with -mcmodel=medium, so we use & and | instead of - and + on 64-bit.
218 */
219#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) | PAGE_OFFSET))
220#define __pa(x) ((unsigned long)(x) & 0x0fffffffffffffffUL)
221
222#else /* 32-bit, non book E */
223#define __va(x) ((void *)(unsigned long)((phys_addr_t)(x) + PAGE_OFFSET - MEMORY_START))
224#define __pa(x) ((unsigned long)(x) - PAGE_OFFSET + MEMORY_START)
225#endif
226#endif
227
228/*
229 * Unfortunately the PLT is in the BSS in the PPC32 ELF ABI,
230 * and needs to be executable.  This means the whole heap ends
231 * up being executable.
232 */
233#define VM_DATA_DEFAULT_FLAGS32	(VM_READ | VM_WRITE | VM_EXEC | \
234				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
235
236#define VM_DATA_DEFAULT_FLAGS64	(VM_READ | VM_WRITE | \
237				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
238
239#ifdef __powerpc64__
240#include <asm/page_64.h>
241#else
242#include <asm/page_32.h>
243#endif
244
245/* align addr on a size boundary - adjust address up/down if needed */
246#define _ALIGN_UP(addr, size)   __ALIGN_KERNEL(addr, size)
247#define _ALIGN_DOWN(addr, size)	((addr)&(~((typeof(addr))(size)-1)))
248
249/* align addr on a size boundary - adjust address up if needed */
250#define _ALIGN(addr,size)     _ALIGN_UP(addr,size)
251
252/*
253 * Don't compare things with KERNELBASE or PAGE_OFFSET to test for
254 * "kernelness", use is_kernel_addr() - it should do what you want.
255 */
256#ifdef CONFIG_PPC_BOOK3E_64
257#define is_kernel_addr(x)	((x) >= 0x8000000000000000ul)
258#else
259#define is_kernel_addr(x)	((x) >= PAGE_OFFSET)
260#endif
261
262#ifndef CONFIG_PPC_BOOK3S_64
263/*
264 * Use the top bit of the higher-level page table entries to indicate whether
265 * the entries we point to contain hugepages.  This works because we know that
266 * the page tables live in kernel space.  If we ever decide to support having
267 * page tables at arbitrary addresses, this breaks and will have to change.
268 */
269#ifdef CONFIG_PPC64
270#define PD_HUGE 0x8000000000000000
271#else
272#define PD_HUGE 0x80000000
273#endif
274#endif /* CONFIG_PPC_BOOK3S_64 */
275
276/*
277 * Some number of bits at the level of the page table that points to
278 * a hugepte are used to encode the size.  This masks those bits.
279 */
280#define HUGEPD_SHIFT_MASK     0x3f
281
282#ifndef __ASSEMBLY__
283
284#ifdef CONFIG_STRICT_MM_TYPECHECKS
285/* These are used to make use of C type-checking. */
286
287/* PTE level */
288typedef struct { pte_basic_t pte; } pte_t;
289#define pte_val(x)	((x).pte)
290#define __pte(x)	((pte_t) { (x) })
291
292/* 64k pages additionally define a bigger "real PTE" type that gathers
293 * the "second half" part of the PTE for pseudo 64k pages
294 */
295#if defined(CONFIG_PPC_64K_PAGES) && defined(CONFIG_PPC_STD_MMU_64)
296typedef struct { pte_t pte; unsigned long hidx; } real_pte_t;
297#else
298typedef struct { pte_t pte; } real_pte_t;
299#endif
300
301/* PMD level */
302#ifdef CONFIG_PPC64
303typedef struct { unsigned long pmd; } pmd_t;
304#define pmd_val(x)	((x).pmd)
305#define __pmd(x)	((pmd_t) { (x) })
306
307/* PUD level exusts only on 4k pages */
308#ifndef CONFIG_PPC_64K_PAGES
309typedef struct { unsigned long pud; } pud_t;
310#define pud_val(x)	((x).pud)
311#define __pud(x)	((pud_t) { (x) })
312#endif /* !CONFIG_PPC_64K_PAGES */
313#endif /* CONFIG_PPC64 */
314
315/* PGD level */
316typedef struct { unsigned long pgd; } pgd_t;
317#define pgd_val(x)	((x).pgd)
318#define __pgd(x)	((pgd_t) { (x) })
319
320/* Page protection bits */
321typedef struct { unsigned long pgprot; } pgprot_t;
322#define pgprot_val(x)	((x).pgprot)
323#define __pgprot(x)	((pgprot_t) { (x) })
324
325#else
326
327/*
328 * .. while these make it easier on the compiler
329 */
330
331typedef pte_basic_t pte_t;
332#define pte_val(x)	(x)
333#define __pte(x)	(x)
334
335#if defined(CONFIG_PPC_64K_PAGES) && defined(CONFIG_PPC_STD_MMU_64)
336typedef struct { pte_t pte; unsigned long hidx; } real_pte_t;
337#else
338typedef pte_t real_pte_t;
339#endif
340
341
342#ifdef CONFIG_PPC64
343typedef unsigned long pmd_t;
344#define pmd_val(x)	(x)
345#define __pmd(x)	(x)
346
347#ifndef CONFIG_PPC_64K_PAGES
348typedef unsigned long pud_t;
349#define pud_val(x)	(x)
350#define __pud(x)	(x)
351#endif /* !CONFIG_PPC_64K_PAGES */
352#endif /* CONFIG_PPC64 */
353
354typedef unsigned long pgd_t;
355#define pgd_val(x)	(x)
356#define pgprot_val(x)	(x)
357
358typedef unsigned long pgprot_t;
359#define __pgd(x)	(x)
360#define __pgprot(x)	(x)
361
362#endif
363
364typedef struct { signed long pd; } hugepd_t;
365
366#ifdef CONFIG_HUGETLB_PAGE
367#ifdef CONFIG_PPC_BOOK3S_64
368#ifdef CONFIG_PPC_64K_PAGES
369/*
370 * With 64k page size, we have hugepage ptes in the pgd and pmd entries. We don't
371 * need to setup hugepage directory for them. Our pte and page directory format
372 * enable us to have this enabled. But to avoid errors when implementing new
373 * features disable hugepd for 64K. We enable a debug version here, So we catch
374 * wrong usage.
375 */
376#ifdef CONFIG_DEBUG_VM
377extern int hugepd_ok(hugepd_t hpd);
378#else
379#define hugepd_ok(x)	(0)
380#endif
381#else
382static inline int hugepd_ok(hugepd_t hpd)
383{
384	/*
385	 * hugepd pointer, bottom two bits == 00 and next 4 bits
386	 * indicate size of table
387	 */
388	return (((hpd.pd & 0x3) == 0x0) && ((hpd.pd & HUGEPD_SHIFT_MASK) != 0));
389}
390#endif
391#else
392static inline int hugepd_ok(hugepd_t hpd)
393{
394	return (hpd.pd > 0);
395}
396#endif
397
398#define is_hugepd(hpd)               (hugepd_ok(hpd))
399#define pgd_huge pgd_huge
400int pgd_huge(pgd_t pgd);
401#else /* CONFIG_HUGETLB_PAGE */
402#define is_hugepd(pdep)			0
403#define pgd_huge(pgd)			0
404#endif /* CONFIG_HUGETLB_PAGE */
405#define __hugepd(x) ((hugepd_t) { (x) })
406
407struct page;
408extern void clear_user_page(void *page, unsigned long vaddr, struct page *pg);
409extern void copy_user_page(void *to, void *from, unsigned long vaddr,
410		struct page *p);
411extern int page_is_ram(unsigned long pfn);
412extern int devmem_is_allowed(unsigned long pfn);
413
414#ifdef CONFIG_PPC_SMLPAR
415void arch_free_page(struct page *page, int order);
416#define HAVE_ARCH_FREE_PAGE
417#endif
418
419struct vm_area_struct;
420
421#if defined(CONFIG_PPC_64K_PAGES) && defined(CONFIG_PPC64)
422typedef pte_t *pgtable_t;
423#else
424typedef struct page *pgtable_t;
425#endif
426
427#include <asm-generic/memory_model.h>
428#endif /* __ASSEMBLY__ */
429
430#endif /* _ASM_POWERPC_PAGE_H */
431