1#ifndef _ASM_POWERPC_IO_H
2#define _ASM_POWERPC_IO_H
3#ifdef __KERNEL__
4
5#define ARCH_HAS_IOREMAP_WC
6
7/*
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14/* Check of existence of legacy devices */
15extern int check_legacy_ioport(unsigned long base_port);
16#define I8042_DATA_REG	0x60
17#define FDC_BASE	0x3f0
18
19#if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
20extern struct pci_dev *isa_bridge_pcidev;
21/*
22 * has legacy ISA devices ?
23 */
24#define arch_has_dev_port()	(isa_bridge_pcidev != NULL || isa_io_special)
25#endif
26
27#include <linux/device.h>
28#include <linux/io.h>
29
30#include <linux/compiler.h>
31#include <asm/page.h>
32#include <asm/byteorder.h>
33#include <asm/synch.h>
34#include <asm/delay.h>
35#include <asm/mmu.h>
36
37#include <asm-generic/iomap.h>
38
39#ifdef CONFIG_PPC64
40#include <asm/paca.h>
41#endif
42
43#define SIO_CONFIG_RA	0x398
44#define SIO_CONFIG_RD	0x399
45
46#define SLOW_DOWN_IO
47
48/* 32 bits uses slightly different variables for the various IO
49 * bases. Most of this file only uses _IO_BASE though which we
50 * define properly based on the platform
51 */
52#ifndef CONFIG_PCI
53#define _IO_BASE	0
54#define _ISA_MEM_BASE	0
55#define PCI_DRAM_OFFSET 0
56#elif defined(CONFIG_PPC32)
57#define _IO_BASE	isa_io_base
58#define _ISA_MEM_BASE	isa_mem_base
59#define PCI_DRAM_OFFSET	pci_dram_offset
60#else
61#define _IO_BASE	pci_io_base
62#define _ISA_MEM_BASE	isa_mem_base
63#define PCI_DRAM_OFFSET	0
64#endif
65
66extern unsigned long isa_io_base;
67extern unsigned long pci_io_base;
68extern unsigned long pci_dram_offset;
69
70extern resource_size_t isa_mem_base;
71
72/* Boolean set by platform if PIO accesses are suppored while _IO_BASE
73 * is not set or addresses cannot be translated to MMIO. This is typically
74 * set when the platform supports "special" PIO accesses via a non memory
75 * mapped mechanism, and allows things like the early udbg UART code to
76 * function.
77 */
78extern bool isa_io_special;
79
80#ifdef CONFIG_PPC32
81#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
82#error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
83#endif
84#endif
85
86/*
87 *
88 * Low level MMIO accessors
89 *
90 * This provides the non-bus specific accessors to MMIO. Those are PowerPC
91 * specific and thus shouldn't be used in generic code. The accessors
92 * provided here are:
93 *
94 *	in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
95 *	out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
96 *	_insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
97 *
98 * Those operate directly on a kernel virtual address. Note that the prototype
99 * for the out_* accessors has the arguments in opposite order from the usual
100 * linux PCI accessors. Unlike those, they take the address first and the value
101 * next.
102 *
103 * Note: I might drop the _ns suffix on the stream operations soon as it is
104 * simply normal for stream operations to not swap in the first place.
105 *
106 */
107
108#ifdef CONFIG_PPC64
109#define IO_SET_SYNC_FLAG()	do { local_paca->io_sync = 1; } while(0)
110#else
111#define IO_SET_SYNC_FLAG()
112#endif
113
114/* gcc 4.0 and older doesn't have 'Z' constraint */
115#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ == 0)
116#define DEF_MMIO_IN_X(name, size, insn)				\
117static inline u##size name(const volatile u##size __iomem *addr)	\
118{									\
119	u##size ret;							\
120	__asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync"	\
121		: "=r" (ret) : "r" (addr), "m" (*addr) : "memory");	\
122	return ret;							\
123}
124
125#define DEF_MMIO_OUT_X(name, size, insn)				\
126static inline void name(volatile u##size __iomem *addr, u##size val)	\
127{									\
128	__asm__ __volatile__("sync;"#insn" %1,0,%2"			\
129		: "=m" (*addr) : "r" (val), "r" (addr) : "memory");	\
130	IO_SET_SYNC_FLAG();						\
131}
132#else /* newer gcc */
133#define DEF_MMIO_IN_X(name, size, insn)				\
134static inline u##size name(const volatile u##size __iomem *addr)	\
135{									\
136	u##size ret;							\
137	__asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync"	\
138		: "=r" (ret) : "Z" (*addr) : "memory");			\
139	return ret;							\
140}
141
142#define DEF_MMIO_OUT_X(name, size, insn)				\
143static inline void name(volatile u##size __iomem *addr, u##size val)	\
144{									\
145	__asm__ __volatile__("sync;"#insn" %1,%y0"			\
146		: "=Z" (*addr) : "r" (val) : "memory");			\
147	IO_SET_SYNC_FLAG();						\
148}
149#endif
150
151#define DEF_MMIO_IN_D(name, size, insn)				\
152static inline u##size name(const volatile u##size __iomem *addr)	\
153{									\
154	u##size ret;							\
155	__asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
156		: "=r" (ret) : "m" (*addr) : "memory");			\
157	return ret;							\
158}
159
160#define DEF_MMIO_OUT_D(name, size, insn)				\
161static inline void name(volatile u##size __iomem *addr, u##size val)	\
162{									\
163	__asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0"			\
164		: "=m" (*addr) : "r" (val) : "memory");			\
165	IO_SET_SYNC_FLAG();						\
166}
167
168DEF_MMIO_IN_D(in_8,     8, lbz);
169DEF_MMIO_OUT_D(out_8,   8, stb);
170
171#ifdef __BIG_ENDIAN__
172DEF_MMIO_IN_D(in_be16, 16, lhz);
173DEF_MMIO_IN_D(in_be32, 32, lwz);
174DEF_MMIO_IN_X(in_le16, 16, lhbrx);
175DEF_MMIO_IN_X(in_le32, 32, lwbrx);
176
177DEF_MMIO_OUT_D(out_be16, 16, sth);
178DEF_MMIO_OUT_D(out_be32, 32, stw);
179DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
180DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
181#else
182DEF_MMIO_IN_X(in_be16, 16, lhbrx);
183DEF_MMIO_IN_X(in_be32, 32, lwbrx);
184DEF_MMIO_IN_D(in_le16, 16, lhz);
185DEF_MMIO_IN_D(in_le32, 32, lwz);
186
187DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
188DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
189DEF_MMIO_OUT_D(out_le16, 16, sth);
190DEF_MMIO_OUT_D(out_le32, 32, stw);
191
192#endif /* __BIG_ENDIAN */
193
194/*
195 * Cache inhibitied accessors for use in real mode, you don't want to use these
196 * unless you know what you're doing.
197 *
198 * NB. These use the cpu byte ordering.
199 */
200DEF_MMIO_OUT_X(out_rm8,   8, stbcix);
201DEF_MMIO_OUT_X(out_rm16, 16, sthcix);
202DEF_MMIO_OUT_X(out_rm32, 32, stwcix);
203DEF_MMIO_IN_X(in_rm8,   8, lbzcix);
204DEF_MMIO_IN_X(in_rm16, 16, lhzcix);
205DEF_MMIO_IN_X(in_rm32, 32, lwzcix);
206
207#ifdef __powerpc64__
208
209DEF_MMIO_OUT_X(out_rm64, 64, stdcix);
210DEF_MMIO_IN_X(in_rm64, 64, ldcix);
211
212#ifdef __BIG_ENDIAN__
213DEF_MMIO_OUT_D(out_be64, 64, std);
214DEF_MMIO_IN_D(in_be64, 64, ld);
215
216/* There is no asm instructions for 64 bits reverse loads and stores */
217static inline u64 in_le64(const volatile u64 __iomem *addr)
218{
219	return swab64(in_be64(addr));
220}
221
222static inline void out_le64(volatile u64 __iomem *addr, u64 val)
223{
224	out_be64(addr, swab64(val));
225}
226#else
227DEF_MMIO_OUT_D(out_le64, 64, std);
228DEF_MMIO_IN_D(in_le64, 64, ld);
229
230/* There is no asm instructions for 64 bits reverse loads and stores */
231static inline u64 in_be64(const volatile u64 __iomem *addr)
232{
233	return swab64(in_le64(addr));
234}
235
236static inline void out_be64(volatile u64 __iomem *addr, u64 val)
237{
238	out_le64(addr, swab64(val));
239}
240
241#endif
242#endif /* __powerpc64__ */
243
244/*
245 * Low level IO stream instructions are defined out of line for now
246 */
247extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
248extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
249extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
250extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
251extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
252extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
253
254/* The _ns naming is historical and will be removed. For now, just #define
255 * the non _ns equivalent names
256 */
257#define _insw	_insw_ns
258#define _insl	_insl_ns
259#define _outsw	_outsw_ns
260#define _outsl	_outsl_ns
261
262
263/*
264 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
265 */
266
267extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
268extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
269			   unsigned long n);
270extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
271			 unsigned long n);
272
273/*
274 *
275 * PCI and standard ISA accessors
276 *
277 * Those are globally defined linux accessors for devices on PCI or ISA
278 * busses. They follow the Linux defined semantics. The current implementation
279 * for PowerPC is as close as possible to the x86 version of these, and thus
280 * provides fairly heavy weight barriers for the non-raw versions
281 *
282 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
283 * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
284 * own implementation of some or all of the accessors.
285 */
286
287/*
288 * Include the EEH definitions when EEH is enabled only so they don't get
289 * in the way when building for 32 bits
290 */
291#ifdef CONFIG_EEH
292#include <asm/eeh.h>
293#endif
294
295/* Shortcut to the MMIO argument pointer */
296#define PCI_IO_ADDR	volatile void __iomem *
297
298/* Indirect IO address tokens:
299 *
300 * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
301 * on all MMIOs. (Note that this is all 64 bits only for now)
302 *
303 * To help platforms who may need to differenciate MMIO addresses in
304 * their hooks, a bitfield is reserved for use by the platform near the
305 * top of MMIO addresses (not PIO, those have to cope the hard way).
306 *
307 * This bit field is 12 bits and is at the top of the IO virtual
308 * addresses PCI_IO_INDIRECT_TOKEN_MASK.
309 *
310 * The kernel virtual space is thus:
311 *
312 *  0xD000000000000000		: vmalloc
313 *  0xD000080000000000		: PCI PHB IO space
314 *  0xD000080080000000		: ioremap
315 *  0xD0000fffffffffff		: end of ioremap region
316 *
317 * Since the top 4 bits are reserved as the region ID, we use thus
318 * the next 12 bits and keep 4 bits available for the future if the
319 * virtual address space is ever to be extended.
320 *
321 * The direct IO mapping operations will then mask off those bits
322 * before doing the actual access, though that only happen when
323 * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
324 * mechanism
325 *
326 * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
327 * all PIO functions call through a hook.
328 */
329
330#ifdef CONFIG_PPC_INDIRECT_MMIO
331#define PCI_IO_IND_TOKEN_MASK	0x0fff000000000000ul
332#define PCI_IO_IND_TOKEN_SHIFT	48
333#define PCI_FIX_ADDR(addr)						\
334	((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
335#define PCI_GET_ADDR_TOKEN(addr)					\
336	(((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> 		\
337		PCI_IO_IND_TOKEN_SHIFT)
338#define PCI_SET_ADDR_TOKEN(addr, token) 				\
339do {									\
340	unsigned long __a = (unsigned long)(addr);			\
341	__a &= ~PCI_IO_IND_TOKEN_MASK;					\
342	__a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT;	\
343	(addr) = (void __iomem *)__a;					\
344} while(0)
345#else
346#define PCI_FIX_ADDR(addr) (addr)
347#endif
348
349
350/*
351 * Non ordered and non-swapping "raw" accessors
352 */
353
354static inline unsigned char __raw_readb(const volatile void __iomem *addr)
355{
356	return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
357}
358static inline unsigned short __raw_readw(const volatile void __iomem *addr)
359{
360	return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
361}
362static inline unsigned int __raw_readl(const volatile void __iomem *addr)
363{
364	return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
365}
366static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
367{
368	*(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
369}
370static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
371{
372	*(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
373}
374static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
375{
376	*(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
377}
378
379#ifdef __powerpc64__
380static inline unsigned long __raw_readq(const volatile void __iomem *addr)
381{
382	return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
383}
384static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
385{
386	*(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
387}
388#endif /* __powerpc64__ */
389
390/*
391 *
392 * PCI PIO and MMIO accessors.
393 *
394 *
395 * On 32 bits, PIO operations have a recovery mechanism in case they trigger
396 * machine checks (which they occasionally do when probing non existing
397 * IO ports on some platforms, like PowerMac and 8xx).
398 * I always found it to be of dubious reliability and I am tempted to get
399 * rid of it one of these days. So if you think it's important to keep it,
400 * please voice up asap. We never had it for 64 bits and I do not intend
401 * to port it over
402 */
403
404#ifdef CONFIG_PPC32
405
406#define __do_in_asm(name, op)				\
407static inline unsigned int name(unsigned int port)	\
408{							\
409	unsigned int x;					\
410	__asm__ __volatile__(				\
411		"sync\n"				\
412		"0:"	op "	%0,0,%1\n"		\
413		"1:	twi	0,%0,0\n"		\
414		"2:	isync\n"			\
415		"3:	nop\n"				\
416		"4:\n"					\
417		".section .fixup,\"ax\"\n"		\
418		"5:	li	%0,-1\n"		\
419		"	b	4b\n"			\
420		".previous\n"				\
421		".section __ex_table,\"a\"\n"		\
422		"	.align	2\n"			\
423		"	.long	0b,5b\n"		\
424		"	.long	1b,5b\n"		\
425		"	.long	2b,5b\n"		\
426		"	.long	3b,5b\n"		\
427		".previous"				\
428		: "=&r" (x)				\
429		: "r" (port + _IO_BASE)			\
430		: "memory");  				\
431	return x;					\
432}
433
434#define __do_out_asm(name, op)				\
435static inline void name(unsigned int val, unsigned int port) \
436{							\
437	__asm__ __volatile__(				\
438		"sync\n"				\
439		"0:" op " %0,0,%1\n"			\
440		"1:	sync\n"				\
441		"2:\n"					\
442		".section __ex_table,\"a\"\n"		\
443		"	.align	2\n"			\
444		"	.long	0b,2b\n"		\
445		"	.long	1b,2b\n"		\
446		".previous"				\
447		: : "r" (val), "r" (port + _IO_BASE)	\
448		: "memory");   	   	   		\
449}
450
451__do_in_asm(_rec_inb, "lbzx")
452__do_in_asm(_rec_inw, "lhbrx")
453__do_in_asm(_rec_inl, "lwbrx")
454__do_out_asm(_rec_outb, "stbx")
455__do_out_asm(_rec_outw, "sthbrx")
456__do_out_asm(_rec_outl, "stwbrx")
457
458#endif /* CONFIG_PPC32 */
459
460/* The "__do_*" operations below provide the actual "base" implementation
461 * for each of the defined accessors. Some of them use the out_* functions
462 * directly, some of them still use EEH, though we might change that in the
463 * future. Those macros below provide the necessary argument swapping and
464 * handling of the IO base for PIO.
465 *
466 * They are themselves used by the macros that define the actual accessors
467 * and can be used by the hooks if any.
468 *
469 * Note that PIO operations are always defined in terms of their corresonding
470 * MMIO operations. That allows platforms like iSeries who want to modify the
471 * behaviour of both to only hook on the MMIO version and get both. It's also
472 * possible to hook directly at the toplevel PIO operation if they have to
473 * be handled differently
474 */
475#define __do_writeb(val, addr)	out_8(PCI_FIX_ADDR(addr), val)
476#define __do_writew(val, addr)	out_le16(PCI_FIX_ADDR(addr), val)
477#define __do_writel(val, addr)	out_le32(PCI_FIX_ADDR(addr), val)
478#define __do_writeq(val, addr)	out_le64(PCI_FIX_ADDR(addr), val)
479#define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
480#define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
481#define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
482
483#ifdef CONFIG_EEH
484#define __do_readb(addr)	eeh_readb(PCI_FIX_ADDR(addr))
485#define __do_readw(addr)	eeh_readw(PCI_FIX_ADDR(addr))
486#define __do_readl(addr)	eeh_readl(PCI_FIX_ADDR(addr))
487#define __do_readq(addr)	eeh_readq(PCI_FIX_ADDR(addr))
488#define __do_readw_be(addr)	eeh_readw_be(PCI_FIX_ADDR(addr))
489#define __do_readl_be(addr)	eeh_readl_be(PCI_FIX_ADDR(addr))
490#define __do_readq_be(addr)	eeh_readq_be(PCI_FIX_ADDR(addr))
491#else /* CONFIG_EEH */
492#define __do_readb(addr)	in_8(PCI_FIX_ADDR(addr))
493#define __do_readw(addr)	in_le16(PCI_FIX_ADDR(addr))
494#define __do_readl(addr)	in_le32(PCI_FIX_ADDR(addr))
495#define __do_readq(addr)	in_le64(PCI_FIX_ADDR(addr))
496#define __do_readw_be(addr)	in_be16(PCI_FIX_ADDR(addr))
497#define __do_readl_be(addr)	in_be32(PCI_FIX_ADDR(addr))
498#define __do_readq_be(addr)	in_be64(PCI_FIX_ADDR(addr))
499#endif /* !defined(CONFIG_EEH) */
500
501#ifdef CONFIG_PPC32
502#define __do_outb(val, port)	_rec_outb(val, port)
503#define __do_outw(val, port)	_rec_outw(val, port)
504#define __do_outl(val, port)	_rec_outl(val, port)
505#define __do_inb(port)		_rec_inb(port)
506#define __do_inw(port)		_rec_inw(port)
507#define __do_inl(port)		_rec_inl(port)
508#else /* CONFIG_PPC32 */
509#define __do_outb(val, port)	writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
510#define __do_outw(val, port)	writew(val,(PCI_IO_ADDR)_IO_BASE+port);
511#define __do_outl(val, port)	writel(val,(PCI_IO_ADDR)_IO_BASE+port);
512#define __do_inb(port)		readb((PCI_IO_ADDR)_IO_BASE + port);
513#define __do_inw(port)		readw((PCI_IO_ADDR)_IO_BASE + port);
514#define __do_inl(port)		readl((PCI_IO_ADDR)_IO_BASE + port);
515#endif /* !CONFIG_PPC32 */
516
517#ifdef CONFIG_EEH
518#define __do_readsb(a, b, n)	eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
519#define __do_readsw(a, b, n)	eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
520#define __do_readsl(a, b, n)	eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
521#else /* CONFIG_EEH */
522#define __do_readsb(a, b, n)	_insb(PCI_FIX_ADDR(a), (b), (n))
523#define __do_readsw(a, b, n)	_insw(PCI_FIX_ADDR(a), (b), (n))
524#define __do_readsl(a, b, n)	_insl(PCI_FIX_ADDR(a), (b), (n))
525#endif /* !CONFIG_EEH */
526#define __do_writesb(a, b, n)	_outsb(PCI_FIX_ADDR(a),(b),(n))
527#define __do_writesw(a, b, n)	_outsw(PCI_FIX_ADDR(a),(b),(n))
528#define __do_writesl(a, b, n)	_outsl(PCI_FIX_ADDR(a),(b),(n))
529
530#define __do_insb(p, b, n)	readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
531#define __do_insw(p, b, n)	readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
532#define __do_insl(p, b, n)	readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
533#define __do_outsb(p, b, n)	writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
534#define __do_outsw(p, b, n)	writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
535#define __do_outsl(p, b, n)	writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
536
537#define __do_memset_io(addr, c, n)	\
538				_memset_io(PCI_FIX_ADDR(addr), c, n)
539#define __do_memcpy_toio(dst, src, n)	\
540				_memcpy_toio(PCI_FIX_ADDR(dst), src, n)
541
542#ifdef CONFIG_EEH
543#define __do_memcpy_fromio(dst, src, n)	\
544				eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
545#else /* CONFIG_EEH */
546#define __do_memcpy_fromio(dst, src, n)	\
547				_memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
548#endif /* !CONFIG_EEH */
549
550#ifdef CONFIG_PPC_INDIRECT_PIO
551#define DEF_PCI_HOOK_pio(x)	x
552#else
553#define DEF_PCI_HOOK_pio(x)	NULL
554#endif
555
556#ifdef CONFIG_PPC_INDIRECT_MMIO
557#define DEF_PCI_HOOK_mem(x)	x
558#else
559#define DEF_PCI_HOOK_mem(x)	NULL
560#endif
561
562/* Structure containing all the hooks */
563extern struct ppc_pci_io {
564
565#define DEF_PCI_AC_RET(name, ret, at, al, space, aa)	ret (*name) at;
566#define DEF_PCI_AC_NORET(name, at, al, space, aa)	void (*name) at;
567
568#include <asm/io-defs.h>
569
570#undef DEF_PCI_AC_RET
571#undef DEF_PCI_AC_NORET
572
573} ppc_pci_io;
574
575/* The inline wrappers */
576#define DEF_PCI_AC_RET(name, ret, at, al, space, aa)		\
577static inline ret name at					\
578{								\
579	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)	\
580		return ppc_pci_io.name al;			\
581	return __do_##name al;					\
582}
583
584#define DEF_PCI_AC_NORET(name, at, al, space, aa)		\
585static inline void name at					\
586{								\
587	if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL)		\
588		ppc_pci_io.name al;				\
589	else							\
590		__do_##name al;					\
591}
592
593#include <asm/io-defs.h>
594
595#undef DEF_PCI_AC_RET
596#undef DEF_PCI_AC_NORET
597
598/* Some drivers check for the presence of readq & writeq with
599 * a #ifdef, so we make them happy here.
600 */
601#ifdef __powerpc64__
602#define readq	readq
603#define writeq	writeq
604#endif
605
606/*
607 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
608 * access
609 */
610#define xlate_dev_mem_ptr(p)	__va(p)
611
612/*
613 * Convert a virtual cached pointer to an uncached pointer
614 */
615#define xlate_dev_kmem_ptr(p)	p
616
617/*
618 * We don't do relaxed operations yet, at least not with this semantic
619 */
620#define readb_relaxed(addr)	readb(addr)
621#define readw_relaxed(addr)	readw(addr)
622#define readl_relaxed(addr)	readl(addr)
623#define readq_relaxed(addr)	readq(addr)
624#define writeb_relaxed(v, addr)	writeb(v, addr)
625#define writew_relaxed(v, addr)	writew(v, addr)
626#define writel_relaxed(v, addr)	writel(v, addr)
627#define writeq_relaxed(v, addr)	writeq(v, addr)
628
629#ifdef CONFIG_PPC32
630#define mmiowb()
631#else
632/*
633 * Enforce synchronisation of stores vs. spin_unlock
634 * (this does it explicitly, though our implementation of spin_unlock
635 * does it implicitely too)
636 */
637static inline void mmiowb(void)
638{
639	unsigned long tmp;
640
641	__asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
642	: "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
643	: "memory");
644}
645#endif /* !CONFIG_PPC32 */
646
647static inline void iosync(void)
648{
649        __asm__ __volatile__ ("sync" : : : "memory");
650}
651
652/* Enforce in-order execution of data I/O.
653 * No distinction between read/write on PPC; use eieio for all three.
654 * Those are fairly week though. They don't provide a barrier between
655 * MMIO and cacheable storage nor do they provide a barrier vs. locks,
656 * they only provide barriers between 2 __raw MMIO operations and
657 * possibly break write combining.
658 */
659#define iobarrier_rw() eieio()
660#define iobarrier_r()  eieio()
661#define iobarrier_w()  eieio()
662
663
664/*
665 * output pause versions need a delay at least for the
666 * w83c105 ide controller in a p610.
667 */
668#define inb_p(port)             inb(port)
669#define outb_p(val, port)       (udelay(1), outb((val), (port)))
670#define inw_p(port)             inw(port)
671#define outw_p(val, port)       (udelay(1), outw((val), (port)))
672#define inl_p(port)             inl(port)
673#define outl_p(val, port)       (udelay(1), outl((val), (port)))
674
675
676#define IO_SPACE_LIMIT ~(0UL)
677
678
679/**
680 * ioremap     -   map bus memory into CPU space
681 * @address:   bus address of the memory
682 * @size:      size of the resource to map
683 *
684 * ioremap performs a platform specific sequence of operations to
685 * make bus memory CPU accessible via the readb/readw/readl/writeb/
686 * writew/writel functions and the other mmio helpers. The returned
687 * address is not guaranteed to be usable directly as a virtual
688 * address.
689 *
690 * We provide a few variations of it:
691 *
692 * * ioremap is the standard one and provides non-cacheable guarded mappings
693 *   and can be hooked by the platform via ppc_md
694 *
695 * * ioremap_prot allows to specify the page flags as an argument and can
696 *   also be hooked by the platform via ppc_md.
697 *
698 * * ioremap_nocache is identical to ioremap
699 *
700 * * ioremap_wc enables write combining
701 *
702 * * iounmap undoes such a mapping and can be hooked
703 *
704 * * __ioremap_at (and the pending __iounmap_at) are low level functions to
705 *   create hand-made mappings for use only by the PCI code and cannot
706 *   currently be hooked. Must be page aligned.
707 *
708 * * __ioremap is the low level implementation used by ioremap and
709 *   ioremap_prot and cannot be hooked (but can be used by a hook on one
710 *   of the previous ones)
711 *
712 * * __ioremap_caller is the same as above but takes an explicit caller
713 *   reference rather than using __builtin_return_address(0)
714 *
715 * * __iounmap, is the low level implementation used by iounmap and cannot
716 *   be hooked (but can be used by a hook on iounmap)
717 *
718 */
719extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
720extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
721				  unsigned long flags);
722extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
723#define ioremap_nocache(addr, size)	ioremap((addr), (size))
724#define ioremap_uc(addr, size)		ioremap((addr), (size))
725
726extern void iounmap(volatile void __iomem *addr);
727
728extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
729			       unsigned long flags);
730extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
731				      unsigned long flags, void *caller);
732
733extern void __iounmap(volatile void __iomem *addr);
734
735extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
736				   unsigned long size, unsigned long flags);
737extern void __iounmap_at(void *ea, unsigned long size);
738
739/*
740 * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
741 * which needs some additional definitions here. They basically allow PIO
742 * space overall to be 1GB. This will work as long as we never try to use
743 * iomap to map MMIO below 1GB which should be fine on ppc64
744 */
745#define HAVE_ARCH_PIO_SIZE		1
746#define PIO_OFFSET			0x00000000UL
747#define PIO_MASK			(FULL_IO_SIZE - 1)
748#define PIO_RESERVED			(FULL_IO_SIZE)
749
750#define mmio_read16be(addr)		readw_be(addr)
751#define mmio_read32be(addr)		readl_be(addr)
752#define mmio_write16be(val, addr)	writew_be(val, addr)
753#define mmio_write32be(val, addr)	writel_be(val, addr)
754#define mmio_insb(addr, dst, count)	readsb(addr, dst, count)
755#define mmio_insw(addr, dst, count)	readsw(addr, dst, count)
756#define mmio_insl(addr, dst, count)	readsl(addr, dst, count)
757#define mmio_outsb(addr, src, count)	writesb(addr, src, count)
758#define mmio_outsw(addr, src, count)	writesw(addr, src, count)
759#define mmio_outsl(addr, src, count)	writesl(addr, src, count)
760
761/**
762 *	virt_to_phys	-	map virtual addresses to physical
763 *	@address: address to remap
764 *
765 *	The returned physical address is the physical (CPU) mapping for
766 *	the memory address given. It is only valid to use this function on
767 *	addresses directly mapped or allocated via kmalloc.
768 *
769 *	This function does not give bus mappings for DMA transfers. In
770 *	almost all conceivable cases a device driver should not be using
771 *	this function
772 */
773static inline unsigned long virt_to_phys(volatile void * address)
774{
775	return __pa((unsigned long)address);
776}
777
778/**
779 *	phys_to_virt	-	map physical address to virtual
780 *	@address: address to remap
781 *
782 *	The returned virtual address is a current CPU mapping for
783 *	the memory address given. It is only valid to use this function on
784 *	addresses that have a kernel mapping
785 *
786 *	This function does not handle bus mappings for DMA transfers. In
787 *	almost all conceivable cases a device driver should not be using
788 *	this function
789 */
790static inline void * phys_to_virt(unsigned long address)
791{
792	return (void *)__va(address);
793}
794
795/*
796 * Change "struct page" to physical address.
797 */
798#define page_to_phys(page)	((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT)
799
800/*
801 * 32 bits still uses virt_to_bus() for it's implementation of DMA
802 * mappings se we have to keep it defined here. We also have some old
803 * drivers (shame shame shame) that use bus_to_virt() and haven't been
804 * fixed yet so I need to define it here.
805 */
806#ifdef CONFIG_PPC32
807
808static inline unsigned long virt_to_bus(volatile void * address)
809{
810        if (address == NULL)
811		return 0;
812        return __pa(address) + PCI_DRAM_OFFSET;
813}
814
815static inline void * bus_to_virt(unsigned long address)
816{
817        if (address == 0)
818		return NULL;
819        return __va(address - PCI_DRAM_OFFSET);
820}
821
822#define page_to_bus(page)	(page_to_phys(page) + PCI_DRAM_OFFSET)
823
824#endif /* CONFIG_PPC32 */
825
826/* access ports */
827#define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) |  (_v))
828#define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
829
830#define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) |  (_v))
831#define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
832
833#define setbits8(_addr, _v) out_8((_addr), in_8(_addr) |  (_v))
834#define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
835
836/* Clear and set bits in one shot.  These macros can be used to clear and
837 * set multiple bits in a register using a single read-modify-write.  These
838 * macros can also be used to set a multiple-bit bit pattern using a mask,
839 * by specifying the mask in the 'clear' parameter and the new bit pattern
840 * in the 'set' parameter.
841 */
842
843#define clrsetbits(type, addr, clear, set) \
844	out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
845
846#ifdef __powerpc64__
847#define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
848#define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
849#endif
850
851#define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
852#define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
853
854#define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
855#define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
856
857#define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
858
859#endif /* __KERNEL__ */
860
861#endif /* _ASM_POWERPC_IO_H */
862