1/*
2 *  linux/arch/parisc/kernel/time.c
3 *
4 *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
5 *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6 *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
7 *
8 * 1994-07-02  Alan Modra
9 *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
11 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
12 */
13#include <linux/errno.h>
14#include <linux/module.h>
15#include <linux/sched.h>
16#include <linux/kernel.h>
17#include <linux/param.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/interrupt.h>
21#include <linux/time.h>
22#include <linux/init.h>
23#include <linux/smp.h>
24#include <linux/profile.h>
25#include <linux/clocksource.h>
26#include <linux/platform_device.h>
27#include <linux/ftrace.h>
28
29#include <asm/uaccess.h>
30#include <asm/io.h>
31#include <asm/irq.h>
32#include <asm/page.h>
33#include <asm/param.h>
34#include <asm/pdc.h>
35#include <asm/led.h>
36
37#include <linux/timex.h>
38
39static unsigned long clocktick __read_mostly;	/* timer cycles per tick */
40
41/*
42 * We keep time on PA-RISC Linux by using the Interval Timer which is
43 * a pair of registers; one is read-only and one is write-only; both
44 * accessed through CR16.  The read-only register is 32 or 64 bits wide,
45 * and increments by 1 every CPU clock tick.  The architecture only
46 * guarantees us a rate between 0.5 and 2, but all implementations use a
47 * rate of 1.  The write-only register is 32-bits wide.  When the lowest
48 * 32 bits of the read-only register compare equal to the write-only
49 * register, it raises a maskable external interrupt.  Each processor has
50 * an Interval Timer of its own and they are not synchronised.
51 *
52 * We want to generate an interrupt every 1/HZ seconds.  So we program
53 * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
54 * is programmed with the intended time of the next tick.  We can be
55 * held off for an arbitrarily long period of time by interrupts being
56 * disabled, so we may miss one or more ticks.
57 */
58irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
59{
60	unsigned long now, now2;
61	unsigned long next_tick;
62	unsigned long cycles_elapsed, ticks_elapsed = 1;
63	unsigned long cycles_remainder;
64	unsigned int cpu = smp_processor_id();
65	struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
66
67	/* gcc can optimize for "read-only" case with a local clocktick */
68	unsigned long cpt = clocktick;
69
70	profile_tick(CPU_PROFILING);
71
72	/* Initialize next_tick to the expected tick time. */
73	next_tick = cpuinfo->it_value;
74
75	/* Get current cycle counter (Control Register 16). */
76	now = mfctl(16);
77
78	cycles_elapsed = now - next_tick;
79
80	if ((cycles_elapsed >> 6) < cpt) {
81		/* use "cheap" math (add/subtract) instead
82		 * of the more expensive div/mul method
83		 */
84		cycles_remainder = cycles_elapsed;
85		while (cycles_remainder > cpt) {
86			cycles_remainder -= cpt;
87			ticks_elapsed++;
88		}
89	} else {
90		/* TODO: Reduce this to one fdiv op */
91		cycles_remainder = cycles_elapsed % cpt;
92		ticks_elapsed += cycles_elapsed / cpt;
93	}
94
95	/* convert from "division remainder" to "remainder of clock tick" */
96	cycles_remainder = cpt - cycles_remainder;
97
98	/* Determine when (in CR16 cycles) next IT interrupt will fire.
99	 * We want IT to fire modulo clocktick even if we miss/skip some.
100	 * But those interrupts don't in fact get delivered that regularly.
101	 */
102	next_tick = now + cycles_remainder;
103
104	cpuinfo->it_value = next_tick;
105
106	/* Program the IT when to deliver the next interrupt.
107	 * Only bottom 32-bits of next_tick are writable in CR16!
108	 */
109	mtctl(next_tick, 16);
110
111	/* Skip one clocktick on purpose if we missed next_tick.
112	 * The new CR16 must be "later" than current CR16 otherwise
113	 * itimer would not fire until CR16 wrapped - e.g 4 seconds
114	 * later on a 1Ghz processor. We'll account for the missed
115	 * tick on the next timer interrupt.
116	 *
117	 * "next_tick - now" will always give the difference regardless
118	 * if one or the other wrapped. If "now" is "bigger" we'll end up
119	 * with a very large unsigned number.
120	 */
121	now2 = mfctl(16);
122	if (next_tick - now2 > cpt)
123		mtctl(next_tick+cpt, 16);
124
125#if 1
126/*
127 * GGG: DEBUG code for how many cycles programming CR16 used.
128 */
129	if (unlikely(now2 - now > 0x3000)) 	/* 12K cycles */
130		printk (KERN_CRIT "timer_interrupt(CPU %d): SLOW! 0x%lx cycles!"
131			" cyc %lX rem %lX "
132			" next/now %lX/%lX\n",
133			cpu, now2 - now, cycles_elapsed, cycles_remainder,
134			next_tick, now );
135#endif
136
137	/* Can we differentiate between "early CR16" (aka Scenario 1) and
138	 * "long delay" (aka Scenario 3)? I don't think so.
139	 *
140	 * Timer_interrupt will be delivered at least a few hundred cycles
141	 * after the IT fires. But it's arbitrary how much time passes
142	 * before we call it "late". I've picked one second.
143	 *
144	 * It's important NO printk's are between reading CR16 and
145	 * setting up the next value. May introduce huge variance.
146	 */
147	if (unlikely(ticks_elapsed > HZ)) {
148		/* Scenario 3: very long delay?  bad in any case */
149		printk (KERN_CRIT "timer_interrupt(CPU %d): delayed!"
150			" cycles %lX rem %lX "
151			" next/now %lX/%lX\n",
152			cpu,
153			cycles_elapsed, cycles_remainder,
154			next_tick, now );
155	}
156
157	/* Done mucking with unreliable delivery of interrupts.
158	 * Go do system house keeping.
159	 */
160
161	if (!--cpuinfo->prof_counter) {
162		cpuinfo->prof_counter = cpuinfo->prof_multiplier;
163		update_process_times(user_mode(get_irq_regs()));
164	}
165
166	if (cpu == 0)
167		xtime_update(ticks_elapsed);
168
169	return IRQ_HANDLED;
170}
171
172
173unsigned long profile_pc(struct pt_regs *regs)
174{
175	unsigned long pc = instruction_pointer(regs);
176
177	if (regs->gr[0] & PSW_N)
178		pc -= 4;
179
180#ifdef CONFIG_SMP
181	if (in_lock_functions(pc))
182		pc = regs->gr[2];
183#endif
184
185	return pc;
186}
187EXPORT_SYMBOL(profile_pc);
188
189
190/* clock source code */
191
192static cycle_t read_cr16(struct clocksource *cs)
193{
194	return get_cycles();
195}
196
197static struct clocksource clocksource_cr16 = {
198	.name			= "cr16",
199	.rating			= 300,
200	.read			= read_cr16,
201	.mask			= CLOCKSOURCE_MASK(BITS_PER_LONG),
202	.flags			= CLOCK_SOURCE_IS_CONTINUOUS,
203};
204
205int update_cr16_clocksource(void)
206{
207	/* since the cr16 cycle counters are not synchronized across CPUs,
208	   we'll check if we should switch to a safe clocksource: */
209	if (clocksource_cr16.rating != 0 && num_online_cpus() > 1) {
210		clocksource_change_rating(&clocksource_cr16, 0);
211		return 1;
212	}
213
214	return 0;
215}
216
217void __init start_cpu_itimer(void)
218{
219	unsigned int cpu = smp_processor_id();
220	unsigned long next_tick = mfctl(16) + clocktick;
221
222	mtctl(next_tick, 16);		/* kick off Interval Timer (CR16) */
223
224	per_cpu(cpu_data, cpu).it_value = next_tick;
225}
226
227static int __init rtc_init(void)
228{
229	struct platform_device *pdev;
230
231	pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
232	return PTR_ERR_OR_ZERO(pdev);
233}
234device_initcall(rtc_init);
235
236void read_persistent_clock(struct timespec *ts)
237{
238	static struct pdc_tod tod_data;
239	if (pdc_tod_read(&tod_data) == 0) {
240		ts->tv_sec = tod_data.tod_sec;
241		ts->tv_nsec = tod_data.tod_usec * 1000;
242	} else {
243		printk(KERN_ERR "Error reading tod clock\n");
244	        ts->tv_sec = 0;
245		ts->tv_nsec = 0;
246	}
247}
248
249void __init time_init(void)
250{
251	unsigned long current_cr16_khz;
252
253	clocktick = (100 * PAGE0->mem_10msec) / HZ;
254
255	start_cpu_itimer();	/* get CPU 0 started */
256
257	/* register at clocksource framework */
258	current_cr16_khz = PAGE0->mem_10msec/10;  /* kHz */
259	clocksource_register_khz(&clocksource_cr16, current_cr16_khz);
260}
261