1/*
2 * arch/parisc/kernel/firmware.c  - safe PDC access routines
3 *
4 *	PDC == Processor Dependent Code
5 *
6 * See http://www.parisc-linux.org/documentation/index.html
7 * for documentation describing the entry points and calling
8 * conventions defined below.
9 *
10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
15 *
16 *    This program is free software; you can redistribute it and/or modify
17 *    it under the terms of the GNU General Public License as published by
18 *    the Free Software Foundation; either version 2 of the License, or
19 *    (at your option) any later version.
20 *
21 */
22
23/*	I think it would be in everyone's best interest to follow this
24 *	guidelines when writing PDC wrappers:
25 *
26 *	 - the name of the pdc wrapper should match one of the macros
27 *	   used for the first two arguments
28 *	 - don't use caps for random parts of the name
29 *	 - use the static PDC result buffers and "copyout" to structs
30 *	   supplied by the caller to encapsulate alignment restrictions
31 *	 - hold pdc_lock while in PDC or using static result buffers
32 *	 - use __pa() to convert virtual (kernel) pointers to physical
33 *	   ones.
34 *	 - the name of the struct used for pdc return values should equal
35 *	   one of the macros used for the first two arguments to the
36 *	   corresponding PDC call
37 *	 - keep the order of arguments
38 *	 - don't be smart (setting trailing NUL bytes for strings, return
39 *	   something useful even if the call failed) unless you are sure
40 *	   it's not going to affect functionality or performance
41 *
42 *	Example:
43 *	int pdc_cache_info(struct pdc_cache_info *cache_info )
44 *	{
45 *		int retval;
46 *
47 *		spin_lock_irq(&pdc_lock);
48 *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49 *		convert_to_wide(pdc_result);
50 *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
51 *		spin_unlock_irq(&pdc_lock);
52 *
53 *		return retval;
54 *	}
55 *					prumpf	991016
56 */
57
58#include <stdarg.h>
59
60#include <linux/delay.h>
61#include <linux/init.h>
62#include <linux/kernel.h>
63#include <linux/module.h>
64#include <linux/string.h>
65#include <linux/spinlock.h>
66
67#include <asm/page.h>
68#include <asm/pdc.h>
69#include <asm/pdcpat.h>
70#include <asm/processor.h>	/* for boot_cpu_data */
71
72static DEFINE_SPINLOCK(pdc_lock);
73extern unsigned long pdc_result[NUM_PDC_RESULT];
74extern unsigned long pdc_result2[NUM_PDC_RESULT];
75
76#ifdef CONFIG_64BIT
77#define WIDE_FIRMWARE 0x1
78#define NARROW_FIRMWARE 0x2
79
80/* Firmware needs to be initially set to narrow to determine the
81 * actual firmware width. */
82int parisc_narrow_firmware __read_mostly = 1;
83#endif
84
85/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
86 * and MEM_PDC calls are always the same width as the OS.
87 * Some PAT boxes may have 64-bit IODC I/O.
88 *
89 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
90 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
91 * This allowed wide kernels to run on Cxxx boxes.
92 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
93 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
94 */
95
96#ifdef CONFIG_64BIT
97long real64_call(unsigned long function, ...);
98#endif
99long real32_call(unsigned long function, ...);
100
101#ifdef CONFIG_64BIT
102#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
103#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
104#else
105#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
106#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
107#endif
108
109
110/**
111 * f_extend - Convert PDC addresses to kernel addresses.
112 * @address: Address returned from PDC.
113 *
114 * This function is used to convert PDC addresses into kernel addresses
115 * when the PDC address size and kernel address size are different.
116 */
117static unsigned long f_extend(unsigned long address)
118{
119#ifdef CONFIG_64BIT
120	if(unlikely(parisc_narrow_firmware)) {
121		if((address & 0xff000000) == 0xf0000000)
122			return 0xf0f0f0f000000000UL | (u32)address;
123
124		if((address & 0xf0000000) == 0xf0000000)
125			return 0xffffffff00000000UL | (u32)address;
126	}
127#endif
128	return address;
129}
130
131/**
132 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
133 * @address: The return buffer from PDC.
134 *
135 * This function is used to convert the return buffer addresses retrieved from PDC
136 * into kernel addresses when the PDC address size and kernel address size are
137 * different.
138 */
139static void convert_to_wide(unsigned long *addr)
140{
141#ifdef CONFIG_64BIT
142	int i;
143	unsigned int *p = (unsigned int *)addr;
144
145	if(unlikely(parisc_narrow_firmware)) {
146		for(i = 31; i >= 0; --i)
147			addr[i] = p[i];
148	}
149#endif
150}
151
152#ifdef CONFIG_64BIT
153void set_firmware_width_unlocked(void)
154{
155	int ret;
156
157	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
158		__pa(pdc_result), 0);
159	convert_to_wide(pdc_result);
160	if (pdc_result[0] != NARROW_FIRMWARE)
161		parisc_narrow_firmware = 0;
162}
163
164/**
165 * set_firmware_width - Determine if the firmware is wide or narrow.
166 *
167 * This function must be called before any pdc_* function that uses the
168 * convert_to_wide function.
169 */
170void set_firmware_width(void)
171{
172	unsigned long flags;
173	spin_lock_irqsave(&pdc_lock, flags);
174	set_firmware_width_unlocked();
175	spin_unlock_irqrestore(&pdc_lock, flags);
176}
177#else
178void set_firmware_width_unlocked(void)
179{
180	return;
181}
182
183void set_firmware_width(void)
184{
185	return;
186}
187#endif /*CONFIG_64BIT*/
188
189/**
190 * pdc_emergency_unlock - Unlock the linux pdc lock
191 *
192 * This call unlocks the linux pdc lock in case we need some PDC functions
193 * (like pdc_add_valid) during kernel stack dump.
194 */
195void pdc_emergency_unlock(void)
196{
197 	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
198        if (spin_is_locked(&pdc_lock))
199		spin_unlock(&pdc_lock);
200}
201
202
203/**
204 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
205 * @address: Address to be verified.
206 *
207 * This PDC call attempts to read from the specified address and verifies
208 * if the address is valid.
209 *
210 * The return value is PDC_OK (0) in case accessing this address is valid.
211 */
212int pdc_add_valid(unsigned long address)
213{
214        int retval;
215	unsigned long flags;
216
217        spin_lock_irqsave(&pdc_lock, flags);
218        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
219        spin_unlock_irqrestore(&pdc_lock, flags);
220
221        return retval;
222}
223EXPORT_SYMBOL(pdc_add_valid);
224
225/**
226 * pdc_chassis_info - Return chassis information.
227 * @result: The return buffer.
228 * @chassis_info: The memory buffer address.
229 * @len: The size of the memory buffer address.
230 *
231 * An HVERSION dependent call for returning the chassis information.
232 */
233int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
234{
235        int retval;
236	unsigned long flags;
237
238        spin_lock_irqsave(&pdc_lock, flags);
239        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
240        memcpy(&pdc_result2, led_info, len);
241        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
242                              __pa(pdc_result), __pa(pdc_result2), len);
243        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
244        memcpy(led_info, pdc_result2, len);
245        spin_unlock_irqrestore(&pdc_lock, flags);
246
247        return retval;
248}
249
250/**
251 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
252 * @retval: -1 on error, 0 on success. Other value are PDC errors
253 *
254 * Must be correctly formatted or expect system crash
255 */
256#ifdef CONFIG_64BIT
257int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
258{
259	int retval = 0;
260	unsigned long flags;
261
262	if (!is_pdc_pat())
263		return -1;
264
265	spin_lock_irqsave(&pdc_lock, flags);
266	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
267	spin_unlock_irqrestore(&pdc_lock, flags);
268
269	return retval;
270}
271#endif
272
273/**
274 * pdc_chassis_disp - Updates chassis code
275 * @retval: -1 on error, 0 on success
276 */
277int pdc_chassis_disp(unsigned long disp)
278{
279	int retval = 0;
280	unsigned long flags;
281
282	spin_lock_irqsave(&pdc_lock, flags);
283	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
284	spin_unlock_irqrestore(&pdc_lock, flags);
285
286	return retval;
287}
288
289/**
290 * pdc_chassis_warn - Fetches chassis warnings
291 * @retval: -1 on error, 0 on success
292 */
293int pdc_chassis_warn(unsigned long *warn)
294{
295	int retval = 0;
296	unsigned long flags;
297
298	spin_lock_irqsave(&pdc_lock, flags);
299	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
300	*warn = pdc_result[0];
301	spin_unlock_irqrestore(&pdc_lock, flags);
302
303	return retval;
304}
305
306int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
307{
308	int ret;
309
310	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
311	convert_to_wide(pdc_result);
312	pdc_coproc_info->ccr_functional = pdc_result[0];
313	pdc_coproc_info->ccr_present = pdc_result[1];
314	pdc_coproc_info->revision = pdc_result[17];
315	pdc_coproc_info->model = pdc_result[18];
316
317	return ret;
318}
319
320/**
321 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
322 * @pdc_coproc_info: Return buffer address.
323 *
324 * This PDC call returns the presence and status of all the coprocessors
325 * attached to the processor.
326 */
327int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
328{
329	int ret;
330	unsigned long flags;
331
332	spin_lock_irqsave(&pdc_lock, flags);
333	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
334	spin_unlock_irqrestore(&pdc_lock, flags);
335
336	return ret;
337}
338
339/**
340 * pdc_iodc_read - Read data from the modules IODC.
341 * @actcnt: The actual number of bytes.
342 * @hpa: The HPA of the module for the iodc read.
343 * @index: The iodc entry point.
344 * @iodc_data: A buffer memory for the iodc options.
345 * @iodc_data_size: Size of the memory buffer.
346 *
347 * This PDC call reads from the IODC of the module specified by the hpa
348 * argument.
349 */
350int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
351		  void *iodc_data, unsigned int iodc_data_size)
352{
353	int retval;
354	unsigned long flags;
355
356	spin_lock_irqsave(&pdc_lock, flags);
357	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
358			      index, __pa(pdc_result2), iodc_data_size);
359	convert_to_wide(pdc_result);
360	*actcnt = pdc_result[0];
361	memcpy(iodc_data, pdc_result2, iodc_data_size);
362	spin_unlock_irqrestore(&pdc_lock, flags);
363
364	return retval;
365}
366EXPORT_SYMBOL(pdc_iodc_read);
367
368/**
369 * pdc_system_map_find_mods - Locate unarchitected modules.
370 * @pdc_mod_info: Return buffer address.
371 * @mod_path: pointer to dev path structure.
372 * @mod_index: fixed address module index.
373 *
374 * To locate and identify modules which reside at fixed I/O addresses, which
375 * do not self-identify via architected bus walks.
376 */
377int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
378			     struct pdc_module_path *mod_path, long mod_index)
379{
380	int retval;
381	unsigned long flags;
382
383	spin_lock_irqsave(&pdc_lock, flags);
384	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
385			      __pa(pdc_result2), mod_index);
386	convert_to_wide(pdc_result);
387	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
388	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
389	spin_unlock_irqrestore(&pdc_lock, flags);
390
391	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
392	return retval;
393}
394
395/**
396 * pdc_system_map_find_addrs - Retrieve additional address ranges.
397 * @pdc_addr_info: Return buffer address.
398 * @mod_index: Fixed address module index.
399 * @addr_index: Address range index.
400 *
401 * Retrieve additional information about subsequent address ranges for modules
402 * with multiple address ranges.
403 */
404int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
405			      long mod_index, long addr_index)
406{
407	int retval;
408	unsigned long flags;
409
410	spin_lock_irqsave(&pdc_lock, flags);
411	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
412			      mod_index, addr_index);
413	convert_to_wide(pdc_result);
414	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
415	spin_unlock_irqrestore(&pdc_lock, flags);
416
417	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
418	return retval;
419}
420
421/**
422 * pdc_model_info - Return model information about the processor.
423 * @model: The return buffer.
424 *
425 * Returns the version numbers, identifiers, and capabilities from the processor module.
426 */
427int pdc_model_info(struct pdc_model *model)
428{
429	int retval;
430	unsigned long flags;
431
432	spin_lock_irqsave(&pdc_lock, flags);
433	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
434	convert_to_wide(pdc_result);
435	memcpy(model, pdc_result, sizeof(*model));
436	spin_unlock_irqrestore(&pdc_lock, flags);
437
438	return retval;
439}
440
441/**
442 * pdc_model_sysmodel - Get the system model name.
443 * @name: A char array of at least 81 characters.
444 *
445 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
446 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
447 * on HP/UX.
448 */
449int pdc_model_sysmodel(char *name)
450{
451        int retval;
452	unsigned long flags;
453
454        spin_lock_irqsave(&pdc_lock, flags);
455        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
456                              OS_ID_HPUX, __pa(name));
457        convert_to_wide(pdc_result);
458
459        if (retval == PDC_OK) {
460                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
461        } else {
462                name[0] = 0;
463        }
464        spin_unlock_irqrestore(&pdc_lock, flags);
465
466        return retval;
467}
468
469/**
470 * pdc_model_versions - Identify the version number of each processor.
471 * @cpu_id: The return buffer.
472 * @id: The id of the processor to check.
473 *
474 * Returns the version number for each processor component.
475 *
476 * This comment was here before, but I do not know what it means :( -RB
477 * id: 0 = cpu revision, 1 = boot-rom-version
478 */
479int pdc_model_versions(unsigned long *versions, int id)
480{
481        int retval;
482	unsigned long flags;
483
484        spin_lock_irqsave(&pdc_lock, flags);
485        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
486        convert_to_wide(pdc_result);
487        *versions = pdc_result[0];
488        spin_unlock_irqrestore(&pdc_lock, flags);
489
490        return retval;
491}
492
493/**
494 * pdc_model_cpuid - Returns the CPU_ID.
495 * @cpu_id: The return buffer.
496 *
497 * Returns the CPU_ID value which uniquely identifies the cpu portion of
498 * the processor module.
499 */
500int pdc_model_cpuid(unsigned long *cpu_id)
501{
502        int retval;
503	unsigned long flags;
504
505        spin_lock_irqsave(&pdc_lock, flags);
506        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
507        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
508        convert_to_wide(pdc_result);
509        *cpu_id = pdc_result[0];
510        spin_unlock_irqrestore(&pdc_lock, flags);
511
512        return retval;
513}
514
515/**
516 * pdc_model_capabilities - Returns the platform capabilities.
517 * @capabilities: The return buffer.
518 *
519 * Returns information about platform support for 32- and/or 64-bit
520 * OSes, IO-PDIR coherency, and virtual aliasing.
521 */
522int pdc_model_capabilities(unsigned long *capabilities)
523{
524        int retval;
525	unsigned long flags;
526
527        spin_lock_irqsave(&pdc_lock, flags);
528        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
529        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
530        convert_to_wide(pdc_result);
531        if (retval == PDC_OK) {
532                *capabilities = pdc_result[0];
533        } else {
534                *capabilities = PDC_MODEL_OS32;
535        }
536        spin_unlock_irqrestore(&pdc_lock, flags);
537
538        return retval;
539}
540
541/**
542 * pdc_cache_info - Return cache and TLB information.
543 * @cache_info: The return buffer.
544 *
545 * Returns information about the processor's cache and TLB.
546 */
547int pdc_cache_info(struct pdc_cache_info *cache_info)
548{
549        int retval;
550	unsigned long flags;
551
552        spin_lock_irqsave(&pdc_lock, flags);
553        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
554        convert_to_wide(pdc_result);
555        memcpy(cache_info, pdc_result, sizeof(*cache_info));
556        spin_unlock_irqrestore(&pdc_lock, flags);
557
558        return retval;
559}
560
561/**
562 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
563 * @space_bits: Should be 0, if not, bad mojo!
564 *
565 * Returns information about Space ID hashing.
566 */
567int pdc_spaceid_bits(unsigned long *space_bits)
568{
569	int retval;
570	unsigned long flags;
571
572	spin_lock_irqsave(&pdc_lock, flags);
573	pdc_result[0] = 0;
574	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
575	convert_to_wide(pdc_result);
576	*space_bits = pdc_result[0];
577	spin_unlock_irqrestore(&pdc_lock, flags);
578
579	return retval;
580}
581
582#ifndef CONFIG_PA20
583/**
584 * pdc_btlb_info - Return block TLB information.
585 * @btlb: The return buffer.
586 *
587 * Returns information about the hardware Block TLB.
588 */
589int pdc_btlb_info(struct pdc_btlb_info *btlb)
590{
591        int retval;
592	unsigned long flags;
593
594        spin_lock_irqsave(&pdc_lock, flags);
595        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
596        memcpy(btlb, pdc_result, sizeof(*btlb));
597        spin_unlock_irqrestore(&pdc_lock, flags);
598
599        if(retval < 0) {
600                btlb->max_size = 0;
601        }
602        return retval;
603}
604
605/**
606 * pdc_mem_map_hpa - Find fixed module information.
607 * @address: The return buffer
608 * @mod_path: pointer to dev path structure.
609 *
610 * This call was developed for S700 workstations to allow the kernel to find
611 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
612 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
613 * call.
614 *
615 * This call is supported by all existing S700 workstations (up to  Gecko).
616 */
617int pdc_mem_map_hpa(struct pdc_memory_map *address,
618		struct pdc_module_path *mod_path)
619{
620        int retval;
621	unsigned long flags;
622
623        spin_lock_irqsave(&pdc_lock, flags);
624        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
625        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
626				__pa(pdc_result2));
627        memcpy(address, pdc_result, sizeof(*address));
628        spin_unlock_irqrestore(&pdc_lock, flags);
629
630        return retval;
631}
632#endif	/* !CONFIG_PA20 */
633
634/**
635 * pdc_lan_station_id - Get the LAN address.
636 * @lan_addr: The return buffer.
637 * @hpa: The network device HPA.
638 *
639 * Get the LAN station address when it is not directly available from the LAN hardware.
640 */
641int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
642{
643	int retval;
644	unsigned long flags;
645
646	spin_lock_irqsave(&pdc_lock, flags);
647	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
648			__pa(pdc_result), hpa);
649	if (retval < 0) {
650		/* FIXME: else read MAC from NVRAM */
651		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
652	} else {
653		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
654	}
655	spin_unlock_irqrestore(&pdc_lock, flags);
656
657	return retval;
658}
659EXPORT_SYMBOL(pdc_lan_station_id);
660
661/**
662 * pdc_stable_read - Read data from Stable Storage.
663 * @staddr: Stable Storage address to access.
664 * @memaddr: The memory address where Stable Storage data shall be copied.
665 * @count: number of bytes to transfer. count is multiple of 4.
666 *
667 * This PDC call reads from the Stable Storage address supplied in staddr
668 * and copies count bytes to the memory address memaddr.
669 * The call will fail if staddr+count > PDC_STABLE size.
670 */
671int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
672{
673       int retval;
674	unsigned long flags;
675
676       spin_lock_irqsave(&pdc_lock, flags);
677       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
678               __pa(pdc_result), count);
679       convert_to_wide(pdc_result);
680       memcpy(memaddr, pdc_result, count);
681       spin_unlock_irqrestore(&pdc_lock, flags);
682
683       return retval;
684}
685EXPORT_SYMBOL(pdc_stable_read);
686
687/**
688 * pdc_stable_write - Write data to Stable Storage.
689 * @staddr: Stable Storage address to access.
690 * @memaddr: The memory address where Stable Storage data shall be read from.
691 * @count: number of bytes to transfer. count is multiple of 4.
692 *
693 * This PDC call reads count bytes from the supplied memaddr address,
694 * and copies count bytes to the Stable Storage address staddr.
695 * The call will fail if staddr+count > PDC_STABLE size.
696 */
697int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
698{
699       int retval;
700	unsigned long flags;
701
702       spin_lock_irqsave(&pdc_lock, flags);
703       memcpy(pdc_result, memaddr, count);
704       convert_to_wide(pdc_result);
705       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
706               __pa(pdc_result), count);
707       spin_unlock_irqrestore(&pdc_lock, flags);
708
709       return retval;
710}
711EXPORT_SYMBOL(pdc_stable_write);
712
713/**
714 * pdc_stable_get_size - Get Stable Storage size in bytes.
715 * @size: pointer where the size will be stored.
716 *
717 * This PDC call returns the number of bytes in the processor's Stable
718 * Storage, which is the number of contiguous bytes implemented in Stable
719 * Storage starting from staddr=0. size in an unsigned 64-bit integer
720 * which is a multiple of four.
721 */
722int pdc_stable_get_size(unsigned long *size)
723{
724       int retval;
725	unsigned long flags;
726
727       spin_lock_irqsave(&pdc_lock, flags);
728       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
729       *size = pdc_result[0];
730       spin_unlock_irqrestore(&pdc_lock, flags);
731
732       return retval;
733}
734EXPORT_SYMBOL(pdc_stable_get_size);
735
736/**
737 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
738 *
739 * This PDC call is meant to be used to check the integrity of the current
740 * contents of Stable Storage.
741 */
742int pdc_stable_verify_contents(void)
743{
744       int retval;
745	unsigned long flags;
746
747       spin_lock_irqsave(&pdc_lock, flags);
748       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
749       spin_unlock_irqrestore(&pdc_lock, flags);
750
751       return retval;
752}
753EXPORT_SYMBOL(pdc_stable_verify_contents);
754
755/**
756 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
757 * the validity indicator.
758 *
759 * This PDC call will erase all contents of Stable Storage. Use with care!
760 */
761int pdc_stable_initialize(void)
762{
763       int retval;
764	unsigned long flags;
765
766       spin_lock_irqsave(&pdc_lock, flags);
767       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
768       spin_unlock_irqrestore(&pdc_lock, flags);
769
770       return retval;
771}
772EXPORT_SYMBOL(pdc_stable_initialize);
773
774/**
775 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
776 * @hwpath: fully bc.mod style path to the device.
777 * @initiator: the array to return the result into
778 *
779 * Get the SCSI operational parameters from PDC.
780 * Needed since HPUX never used BIOS or symbios card NVRAM.
781 * Most ncr/sym cards won't have an entry and just use whatever
782 * capabilities of the card are (eg Ultra, LVD). But there are
783 * several cases where it's useful:
784 *    o set SCSI id for Multi-initiator clusters,
785 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
786 *    o bus width exported is less than what the interface chip supports.
787 */
788int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
789{
790	int retval;
791	unsigned long flags;
792
793	spin_lock_irqsave(&pdc_lock, flags);
794
795/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
796#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
797	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
798
799	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
800			      __pa(pdc_result), __pa(hwpath));
801	if (retval < PDC_OK)
802		goto out;
803
804	if (pdc_result[0] < 16) {
805		initiator->host_id = pdc_result[0];
806	} else {
807		initiator->host_id = -1;
808	}
809
810	/*
811	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
812	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
813	 */
814	switch (pdc_result[1]) {
815		case  1: initiator->factor = 50; break;
816		case  2: initiator->factor = 25; break;
817		case  5: initiator->factor = 12; break;
818		case 25: initiator->factor = 10; break;
819		case 20: initiator->factor = 12; break;
820		case 40: initiator->factor = 10; break;
821		default: initiator->factor = -1; break;
822	}
823
824	if (IS_SPROCKETS()) {
825		initiator->width = pdc_result[4];
826		initiator->mode = pdc_result[5];
827	} else {
828		initiator->width = -1;
829		initiator->mode = -1;
830	}
831
832 out:
833	spin_unlock_irqrestore(&pdc_lock, flags);
834
835	return (retval >= PDC_OK);
836}
837EXPORT_SYMBOL(pdc_get_initiator);
838
839
840/**
841 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
842 * @num_entries: The return value.
843 * @hpa: The HPA for the device.
844 *
845 * This PDC function returns the number of entries in the specified cell's
846 * interrupt table.
847 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
848 */
849int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
850{
851	int retval;
852	unsigned long flags;
853
854	spin_lock_irqsave(&pdc_lock, flags);
855	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
856			      __pa(pdc_result), hpa);
857	convert_to_wide(pdc_result);
858	*num_entries = pdc_result[0];
859	spin_unlock_irqrestore(&pdc_lock, flags);
860
861	return retval;
862}
863
864/**
865 * pdc_pci_irt - Get the PCI interrupt routing table.
866 * @num_entries: The number of entries in the table.
867 * @hpa: The Hard Physical Address of the device.
868 * @tbl:
869 *
870 * Get the PCI interrupt routing table for the device at the given HPA.
871 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
872 */
873int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
874{
875	int retval;
876	unsigned long flags;
877
878	BUG_ON((unsigned long)tbl & 0x7);
879
880	spin_lock_irqsave(&pdc_lock, flags);
881	pdc_result[0] = num_entries;
882	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
883			      __pa(pdc_result), hpa, __pa(tbl));
884	spin_unlock_irqrestore(&pdc_lock, flags);
885
886	return retval;
887}
888
889
890#if 0	/* UNTEST CODE - left here in case someone needs it */
891
892/**
893 * pdc_pci_config_read - read PCI config space.
894 * @hpa		token from PDC to indicate which PCI device
895 * @pci_addr	configuration space address to read from
896 *
897 * Read PCI Configuration space *before* linux PCI subsystem is running.
898 */
899unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
900{
901	int retval;
902	unsigned long flags;
903
904	spin_lock_irqsave(&pdc_lock, flags);
905	pdc_result[0] = 0;
906	pdc_result[1] = 0;
907	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
908			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
909	spin_unlock_irqrestore(&pdc_lock, flags);
910
911	return retval ? ~0 : (unsigned int) pdc_result[0];
912}
913
914
915/**
916 * pdc_pci_config_write - read PCI config space.
917 * @hpa		token from PDC to indicate which PCI device
918 * @pci_addr	configuration space address to write
919 * @val		value we want in the 32-bit register
920 *
921 * Write PCI Configuration space *before* linux PCI subsystem is running.
922 */
923void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
924{
925	int retval;
926	unsigned long flags;
927
928	spin_lock_irqsave(&pdc_lock, flags);
929	pdc_result[0] = 0;
930	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
931			      __pa(pdc_result), hpa,
932			      cfg_addr&~3UL, 4UL, (unsigned long) val);
933	spin_unlock_irqrestore(&pdc_lock, flags);
934
935	return retval;
936}
937#endif /* UNTESTED CODE */
938
939/**
940 * pdc_tod_read - Read the Time-Of-Day clock.
941 * @tod: The return buffer:
942 *
943 * Read the Time-Of-Day clock
944 */
945int pdc_tod_read(struct pdc_tod *tod)
946{
947        int retval;
948	unsigned long flags;
949
950        spin_lock_irqsave(&pdc_lock, flags);
951        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
952        convert_to_wide(pdc_result);
953        memcpy(tod, pdc_result, sizeof(*tod));
954        spin_unlock_irqrestore(&pdc_lock, flags);
955
956        return retval;
957}
958EXPORT_SYMBOL(pdc_tod_read);
959
960/**
961 * pdc_tod_set - Set the Time-Of-Day clock.
962 * @sec: The number of seconds since epoch.
963 * @usec: The number of micro seconds.
964 *
965 * Set the Time-Of-Day clock.
966 */
967int pdc_tod_set(unsigned long sec, unsigned long usec)
968{
969        int retval;
970	unsigned long flags;
971
972        spin_lock_irqsave(&pdc_lock, flags);
973        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
974        spin_unlock_irqrestore(&pdc_lock, flags);
975
976        return retval;
977}
978EXPORT_SYMBOL(pdc_tod_set);
979
980#ifdef CONFIG_64BIT
981int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
982		struct pdc_memory_table *tbl, unsigned long entries)
983{
984	int retval;
985	unsigned long flags;
986
987	spin_lock_irqsave(&pdc_lock, flags);
988	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
989	convert_to_wide(pdc_result);
990	memcpy(r_addr, pdc_result, sizeof(*r_addr));
991	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
992	spin_unlock_irqrestore(&pdc_lock, flags);
993
994	return retval;
995}
996#endif /* CONFIG_64BIT */
997
998/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
999 * so I guessed at unsigned long.  Someone who knows what this does, can fix
1000 * it later. :)
1001 */
1002int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1003{
1004        int retval;
1005	unsigned long flags;
1006
1007        spin_lock_irqsave(&pdc_lock, flags);
1008        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1009                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1010        spin_unlock_irqrestore(&pdc_lock, flags);
1011
1012        return retval;
1013}
1014
1015/*
1016 * pdc_do_reset - Reset the system.
1017 *
1018 * Reset the system.
1019 */
1020int pdc_do_reset(void)
1021{
1022        int retval;
1023	unsigned long flags;
1024
1025        spin_lock_irqsave(&pdc_lock, flags);
1026        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1027        spin_unlock_irqrestore(&pdc_lock, flags);
1028
1029        return retval;
1030}
1031
1032/*
1033 * pdc_soft_power_info - Enable soft power switch.
1034 * @power_reg: address of soft power register
1035 *
1036 * Return the absolute address of the soft power switch register
1037 */
1038int __init pdc_soft_power_info(unsigned long *power_reg)
1039{
1040	int retval;
1041	unsigned long flags;
1042
1043	*power_reg = (unsigned long) (-1);
1044
1045	spin_lock_irqsave(&pdc_lock, flags);
1046	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1047	if (retval == PDC_OK) {
1048                convert_to_wide(pdc_result);
1049                *power_reg = f_extend(pdc_result[0]);
1050	}
1051	spin_unlock_irqrestore(&pdc_lock, flags);
1052
1053	return retval;
1054}
1055
1056/*
1057 * pdc_soft_power_button - Control the soft power button behaviour
1058 * @sw_control: 0 for hardware control, 1 for software control
1059 *
1060 *
1061 * This PDC function places the soft power button under software or
1062 * hardware control.
1063 * Under software control the OS may control to when to allow to shut
1064 * down the system. Under hardware control pressing the power button
1065 * powers off the system immediately.
1066 */
1067int pdc_soft_power_button(int sw_control)
1068{
1069	int retval;
1070	unsigned long flags;
1071
1072	spin_lock_irqsave(&pdc_lock, flags);
1073	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1074	spin_unlock_irqrestore(&pdc_lock, flags);
1075
1076	return retval;
1077}
1078
1079/*
1080 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1081 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1082 * who knows what other platform firmware might do with this OS "hook".
1083 */
1084void pdc_io_reset(void)
1085{
1086	unsigned long flags;
1087
1088	spin_lock_irqsave(&pdc_lock, flags);
1089	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1090	spin_unlock_irqrestore(&pdc_lock, flags);
1091}
1092
1093/*
1094 * pdc_io_reset_devices - Hack to Stop USB controller
1095 *
1096 * If PDC used the usb controller, the usb controller
1097 * is still running and will crash the machines during iommu
1098 * setup, because of still running DMA. This PDC call
1099 * stops the USB controller.
1100 * Normally called after calling pdc_io_reset().
1101 */
1102void pdc_io_reset_devices(void)
1103{
1104	unsigned long flags;
1105
1106	spin_lock_irqsave(&pdc_lock, flags);
1107	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1108	spin_unlock_irqrestore(&pdc_lock, flags);
1109}
1110
1111/* locked by pdc_console_lock */
1112static int __attribute__((aligned(8)))   iodc_retbuf[32];
1113static char __attribute__((aligned(64))) iodc_dbuf[4096];
1114
1115/**
1116 * pdc_iodc_print - Console print using IODC.
1117 * @str: the string to output.
1118 * @count: length of str
1119 *
1120 * Note that only these special chars are architected for console IODC io:
1121 * BEL, BS, CR, and LF. Others are passed through.
1122 * Since the HP console requires CR+LF to perform a 'newline', we translate
1123 * "\n" to "\r\n".
1124 */
1125int pdc_iodc_print(const unsigned char *str, unsigned count)
1126{
1127	unsigned int i;
1128	unsigned long flags;
1129
1130	for (i = 0; i < count;) {
1131		switch(str[i]) {
1132		case '\n':
1133			iodc_dbuf[i+0] = '\r';
1134			iodc_dbuf[i+1] = '\n';
1135			i += 2;
1136			goto print;
1137		default:
1138			iodc_dbuf[i] = str[i];
1139			i++;
1140			break;
1141		}
1142	}
1143
1144print:
1145        spin_lock_irqsave(&pdc_lock, flags);
1146        real32_call(PAGE0->mem_cons.iodc_io,
1147                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1148                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1149                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1150        spin_unlock_irqrestore(&pdc_lock, flags);
1151
1152	return i;
1153}
1154
1155/**
1156 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1157 *
1158 * Read a character (non-blocking) from the PDC console, returns -1 if
1159 * key is not present.
1160 */
1161int pdc_iodc_getc(void)
1162{
1163	int ch;
1164	int status;
1165	unsigned long flags;
1166
1167	/* Bail if no console input device. */
1168	if (!PAGE0->mem_kbd.iodc_io)
1169		return 0;
1170
1171	/* wait for a keyboard (rs232)-input */
1172	spin_lock_irqsave(&pdc_lock, flags);
1173	real32_call(PAGE0->mem_kbd.iodc_io,
1174		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1175		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1176		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1177
1178	ch = *iodc_dbuf;
1179	status = *iodc_retbuf;
1180	spin_unlock_irqrestore(&pdc_lock, flags);
1181
1182	if (status == 0)
1183	    return -1;
1184
1185	return ch;
1186}
1187
1188int pdc_sti_call(unsigned long func, unsigned long flags,
1189                 unsigned long inptr, unsigned long outputr,
1190                 unsigned long glob_cfg)
1191{
1192        int retval;
1193	unsigned long irqflags;
1194
1195        spin_lock_irqsave(&pdc_lock, irqflags);
1196        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1197        spin_unlock_irqrestore(&pdc_lock, irqflags);
1198
1199        return retval;
1200}
1201EXPORT_SYMBOL(pdc_sti_call);
1202
1203#ifdef CONFIG_64BIT
1204/**
1205 * pdc_pat_cell_get_number - Returns the cell number.
1206 * @cell_info: The return buffer.
1207 *
1208 * This PDC call returns the cell number of the cell from which the call
1209 * is made.
1210 */
1211int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1212{
1213	int retval;
1214	unsigned long flags;
1215
1216	spin_lock_irqsave(&pdc_lock, flags);
1217	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1218	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1219	spin_unlock_irqrestore(&pdc_lock, flags);
1220
1221	return retval;
1222}
1223
1224/**
1225 * pdc_pat_cell_module - Retrieve the cell's module information.
1226 * @actcnt: The number of bytes written to mem_addr.
1227 * @ploc: The physical location.
1228 * @mod: The module index.
1229 * @view_type: The view of the address type.
1230 * @mem_addr: The return buffer.
1231 *
1232 * This PDC call returns information about each module attached to the cell
1233 * at the specified location.
1234 */
1235int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1236			unsigned long view_type, void *mem_addr)
1237{
1238	int retval;
1239	unsigned long flags;
1240	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1241
1242	spin_lock_irqsave(&pdc_lock, flags);
1243	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1244			      ploc, mod, view_type, __pa(&result));
1245	if(!retval) {
1246		*actcnt = pdc_result[0];
1247		memcpy(mem_addr, &result, *actcnt);
1248	}
1249	spin_unlock_irqrestore(&pdc_lock, flags);
1250
1251	return retval;
1252}
1253
1254/**
1255 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1256 * @cpu_info: The return buffer.
1257 * @hpa: The Hard Physical Address of the CPU.
1258 *
1259 * Retrieve the cpu number for the cpu at the specified HPA.
1260 */
1261int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1262{
1263	int retval;
1264	unsigned long flags;
1265
1266	spin_lock_irqsave(&pdc_lock, flags);
1267	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1268			      __pa(&pdc_result), hpa);
1269	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1270	spin_unlock_irqrestore(&pdc_lock, flags);
1271
1272	return retval;
1273}
1274
1275/**
1276 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1277 * @num_entries: The return value.
1278 * @cell_num: The target cell.
1279 *
1280 * This PDC function returns the number of entries in the specified cell's
1281 * interrupt table.
1282 */
1283int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1284{
1285	int retval;
1286	unsigned long flags;
1287
1288	spin_lock_irqsave(&pdc_lock, flags);
1289	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1290			      __pa(pdc_result), cell_num);
1291	*num_entries = pdc_result[0];
1292	spin_unlock_irqrestore(&pdc_lock, flags);
1293
1294	return retval;
1295}
1296
1297/**
1298 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1299 * @r_addr: The return buffer.
1300 * @cell_num: The target cell.
1301 *
1302 * This PDC function returns the actual interrupt table for the specified cell.
1303 */
1304int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1305{
1306	int retval;
1307	unsigned long flags;
1308
1309	spin_lock_irqsave(&pdc_lock, flags);
1310	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1311			      __pa(r_addr), cell_num);
1312	spin_unlock_irqrestore(&pdc_lock, flags);
1313
1314	return retval;
1315}
1316
1317/**
1318 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1319 * @actlen: The return buffer.
1320 * @mem_addr: Pointer to the memory buffer.
1321 * @count: The number of bytes to read from the buffer.
1322 * @offset: The offset with respect to the beginning of the buffer.
1323 *
1324 */
1325int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1326			    unsigned long count, unsigned long offset)
1327{
1328	int retval;
1329	unsigned long flags;
1330
1331	spin_lock_irqsave(&pdc_lock, flags);
1332	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1333			      __pa(pdc_result2), count, offset);
1334	*actual_len = pdc_result[0];
1335	memcpy(mem_addr, pdc_result2, *actual_len);
1336	spin_unlock_irqrestore(&pdc_lock, flags);
1337
1338	return retval;
1339}
1340
1341/**
1342 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1343 * @pci_addr: PCI configuration space address for which the read request is being made.
1344 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1345 * @mem_addr: Pointer to return memory buffer.
1346 *
1347 */
1348int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1349{
1350	int retval;
1351	unsigned long flags;
1352
1353	spin_lock_irqsave(&pdc_lock, flags);
1354	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1355					__pa(pdc_result), pci_addr, pci_size);
1356	switch(pci_size) {
1357		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0];
1358		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0];
1359		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0];
1360	}
1361	spin_unlock_irqrestore(&pdc_lock, flags);
1362
1363	return retval;
1364}
1365
1366/**
1367 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1368 * @pci_addr: PCI configuration space address for which the write  request is being made.
1369 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1370 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1371 *         written to PCI Config space.
1372 *
1373 */
1374int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1375{
1376	int retval;
1377	unsigned long flags;
1378
1379	spin_lock_irqsave(&pdc_lock, flags);
1380	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1381				pci_addr, pci_size, val);
1382	spin_unlock_irqrestore(&pdc_lock, flags);
1383
1384	return retval;
1385}
1386#endif /* CONFIG_64BIT */
1387
1388
1389/***************** 32-bit real-mode calls ***********/
1390/* The struct below is used
1391 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1392 * real32_call_asm() then uses this stack in narrow real mode
1393 */
1394
1395struct narrow_stack {
1396	/* use int, not long which is 64 bits */
1397	unsigned int arg13;
1398	unsigned int arg12;
1399	unsigned int arg11;
1400	unsigned int arg10;
1401	unsigned int arg9;
1402	unsigned int arg8;
1403	unsigned int arg7;
1404	unsigned int arg6;
1405	unsigned int arg5;
1406	unsigned int arg4;
1407	unsigned int arg3;
1408	unsigned int arg2;
1409	unsigned int arg1;
1410	unsigned int arg0;
1411	unsigned int frame_marker[8];
1412	unsigned int sp;
1413	/* in reality, there's nearly 8k of stack after this */
1414};
1415
1416long real32_call(unsigned long fn, ...)
1417{
1418	va_list args;
1419	extern struct narrow_stack real_stack;
1420	extern unsigned long real32_call_asm(unsigned int *,
1421					     unsigned int *,
1422					     unsigned int);
1423
1424	va_start(args, fn);
1425	real_stack.arg0 = va_arg(args, unsigned int);
1426	real_stack.arg1 = va_arg(args, unsigned int);
1427	real_stack.arg2 = va_arg(args, unsigned int);
1428	real_stack.arg3 = va_arg(args, unsigned int);
1429	real_stack.arg4 = va_arg(args, unsigned int);
1430	real_stack.arg5 = va_arg(args, unsigned int);
1431	real_stack.arg6 = va_arg(args, unsigned int);
1432	real_stack.arg7 = va_arg(args, unsigned int);
1433	real_stack.arg8 = va_arg(args, unsigned int);
1434	real_stack.arg9 = va_arg(args, unsigned int);
1435	real_stack.arg10 = va_arg(args, unsigned int);
1436	real_stack.arg11 = va_arg(args, unsigned int);
1437	real_stack.arg12 = va_arg(args, unsigned int);
1438	real_stack.arg13 = va_arg(args, unsigned int);
1439	va_end(args);
1440
1441	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1442}
1443
1444#ifdef CONFIG_64BIT
1445/***************** 64-bit real-mode calls ***********/
1446
1447struct wide_stack {
1448	unsigned long arg0;
1449	unsigned long arg1;
1450	unsigned long arg2;
1451	unsigned long arg3;
1452	unsigned long arg4;
1453	unsigned long arg5;
1454	unsigned long arg6;
1455	unsigned long arg7;
1456	unsigned long arg8;
1457	unsigned long arg9;
1458	unsigned long arg10;
1459	unsigned long arg11;
1460	unsigned long arg12;
1461	unsigned long arg13;
1462	unsigned long frame_marker[2];	/* rp, previous sp */
1463	unsigned long sp;
1464	/* in reality, there's nearly 8k of stack after this */
1465};
1466
1467long real64_call(unsigned long fn, ...)
1468{
1469	va_list args;
1470	extern struct wide_stack real64_stack;
1471	extern unsigned long real64_call_asm(unsigned long *,
1472					     unsigned long *,
1473					     unsigned long);
1474
1475	va_start(args, fn);
1476	real64_stack.arg0 = va_arg(args, unsigned long);
1477	real64_stack.arg1 = va_arg(args, unsigned long);
1478	real64_stack.arg2 = va_arg(args, unsigned long);
1479	real64_stack.arg3 = va_arg(args, unsigned long);
1480	real64_stack.arg4 = va_arg(args, unsigned long);
1481	real64_stack.arg5 = va_arg(args, unsigned long);
1482	real64_stack.arg6 = va_arg(args, unsigned long);
1483	real64_stack.arg7 = va_arg(args, unsigned long);
1484	real64_stack.arg8 = va_arg(args, unsigned long);
1485	real64_stack.arg9 = va_arg(args, unsigned long);
1486	real64_stack.arg10 = va_arg(args, unsigned long);
1487	real64_stack.arg11 = va_arg(args, unsigned long);
1488	real64_stack.arg12 = va_arg(args, unsigned long);
1489	real64_stack.arg13 = va_arg(args, unsigned long);
1490	va_end(args);
1491
1492	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1493}
1494
1495#endif /* CONFIG_64BIT */
1496
1497