1/*
2 * Just-In-Time compiler for BPF filters on MIPS
3 *
4 * Copyright (c) 2014 Imagination Technologies Ltd.
5 * Author: Markos Chandras <markos.chandras@imgtec.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; version 2 of the License.
10 */
11
12#include <linux/bitops.h>
13#include <linux/compiler.h>
14#include <linux/errno.h>
15#include <linux/filter.h>
16#include <linux/if_vlan.h>
17#include <linux/kconfig.h>
18#include <linux/moduleloader.h>
19#include <linux/netdevice.h>
20#include <linux/string.h>
21#include <linux/slab.h>
22#include <linux/types.h>
23#include <asm/asm.h>
24#include <asm/bitops.h>
25#include <asm/cacheflush.h>
26#include <asm/cpu-features.h>
27#include <asm/uasm.h>
28
29#include "bpf_jit.h"
30
31/* ABI
32 * r_skb_hl	SKB header length
33 * r_data	SKB data pointer
34 * r_off	Offset
35 * r_A		BPF register A
36 * r_X		BPF register X
37 * r_skb	*skb
38 * r_M		*scratch memory
39 * r_skb_len	SKB length
40 *
41 * On entry (*bpf_func)(*skb, *filter)
42 * a0 = MIPS_R_A0 = skb;
43 * a1 = MIPS_R_A1 = filter;
44 *
45 * Stack
46 * ...
47 * M[15]
48 * M[14]
49 * M[13]
50 * ...
51 * M[0] <-- r_M
52 * saved reg k-1
53 * saved reg k-2
54 * ...
55 * saved reg 0 <-- r_sp
56 * <no argument area>
57 *
58 *                     Packet layout
59 *
60 * <--------------------- len ------------------------>
61 * <--skb-len(r_skb_hl)-->< ----- skb->data_len ------>
62 * ----------------------------------------------------
63 * |                  skb->data                       |
64 * ----------------------------------------------------
65 */
66
67#define ptr typeof(unsigned long)
68
69#define SCRATCH_OFF(k)		(4 * (k))
70
71/* JIT flags */
72#define SEEN_CALL		(1 << BPF_MEMWORDS)
73#define SEEN_SREG_SFT		(BPF_MEMWORDS + 1)
74#define SEEN_SREG_BASE		(1 << SEEN_SREG_SFT)
75#define SEEN_SREG(x)		(SEEN_SREG_BASE << (x))
76#define SEEN_OFF		SEEN_SREG(2)
77#define SEEN_A			SEEN_SREG(3)
78#define SEEN_X			SEEN_SREG(4)
79#define SEEN_SKB		SEEN_SREG(5)
80#define SEEN_MEM		SEEN_SREG(6)
81/* SEEN_SK_DATA also implies skb_hl an skb_len */
82#define SEEN_SKB_DATA		(SEEN_SREG(7) | SEEN_SREG(1) | SEEN_SREG(0))
83
84/* Arguments used by JIT */
85#define ARGS_USED_BY_JIT	2 /* only applicable to 64-bit */
86
87#define SBIT(x)			(1 << (x)) /* Signed version of BIT() */
88
89/**
90 * struct jit_ctx - JIT context
91 * @skf:		The sk_filter
92 * @prologue_bytes:	Number of bytes for prologue
93 * @idx:		Instruction index
94 * @flags:		JIT flags
95 * @offsets:		Instruction offsets
96 * @target:		Memory location for the compiled filter
97 */
98struct jit_ctx {
99	const struct bpf_prog *skf;
100	unsigned int prologue_bytes;
101	u32 idx;
102	u32 flags;
103	u32 *offsets;
104	u32 *target;
105};
106
107
108static inline int optimize_div(u32 *k)
109{
110	/* power of 2 divides can be implemented with right shift */
111	if (!(*k & (*k-1))) {
112		*k = ilog2(*k);
113		return 1;
114	}
115
116	return 0;
117}
118
119static inline void emit_jit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx);
120
121/* Simply emit the instruction if the JIT memory space has been allocated */
122#define emit_instr(ctx, func, ...)			\
123do {							\
124	if ((ctx)->target != NULL) {			\
125		u32 *p = &(ctx)->target[ctx->idx];	\
126		uasm_i_##func(&p, ##__VA_ARGS__);	\
127	}						\
128	(ctx)->idx++;					\
129} while (0)
130
131/*
132 * Similar to emit_instr but it must be used when we need to emit
133 * 32-bit or 64-bit instructions
134 */
135#define emit_long_instr(ctx, func, ...)			\
136do {							\
137	if ((ctx)->target != NULL) {			\
138		u32 *p = &(ctx)->target[ctx->idx];	\
139		UASM_i_##func(&p, ##__VA_ARGS__);	\
140	}						\
141	(ctx)->idx++;					\
142} while (0)
143
144/* Determine if immediate is within the 16-bit signed range */
145static inline bool is_range16(s32 imm)
146{
147	return !(imm >= SBIT(15) || imm < -SBIT(15));
148}
149
150static inline void emit_addu(unsigned int dst, unsigned int src1,
151			     unsigned int src2, struct jit_ctx *ctx)
152{
153	emit_instr(ctx, addu, dst, src1, src2);
154}
155
156static inline void emit_nop(struct jit_ctx *ctx)
157{
158	emit_instr(ctx, nop);
159}
160
161/* Load a u32 immediate to a register */
162static inline void emit_load_imm(unsigned int dst, u32 imm, struct jit_ctx *ctx)
163{
164	if (ctx->target != NULL) {
165		/* addiu can only handle s16 */
166		if (!is_range16(imm)) {
167			u32 *p = &ctx->target[ctx->idx];
168			uasm_i_lui(&p, r_tmp_imm, (s32)imm >> 16);
169			p = &ctx->target[ctx->idx + 1];
170			uasm_i_ori(&p, dst, r_tmp_imm, imm & 0xffff);
171		} else {
172			u32 *p = &ctx->target[ctx->idx];
173			uasm_i_addiu(&p, dst, r_zero, imm);
174		}
175	}
176	ctx->idx++;
177
178	if (!is_range16(imm))
179		ctx->idx++;
180}
181
182static inline void emit_or(unsigned int dst, unsigned int src1,
183			   unsigned int src2, struct jit_ctx *ctx)
184{
185	emit_instr(ctx, or, dst, src1, src2);
186}
187
188static inline void emit_ori(unsigned int dst, unsigned src, u32 imm,
189			    struct jit_ctx *ctx)
190{
191	if (imm >= BIT(16)) {
192		emit_load_imm(r_tmp, imm, ctx);
193		emit_or(dst, src, r_tmp, ctx);
194	} else {
195		emit_instr(ctx, ori, dst, src, imm);
196	}
197}
198
199static inline void emit_daddiu(unsigned int dst, unsigned int src,
200			       int imm, struct jit_ctx *ctx)
201{
202	/*
203	 * Only used for stack, so the imm is relatively small
204	 * and it fits in 15-bits
205	 */
206	emit_instr(ctx, daddiu, dst, src, imm);
207}
208
209static inline void emit_addiu(unsigned int dst, unsigned int src,
210			      u32 imm, struct jit_ctx *ctx)
211{
212	if (!is_range16(imm)) {
213		emit_load_imm(r_tmp, imm, ctx);
214		emit_addu(dst, r_tmp, src, ctx);
215	} else {
216		emit_instr(ctx, addiu, dst, src, imm);
217	}
218}
219
220static inline void emit_and(unsigned int dst, unsigned int src1,
221			    unsigned int src2, struct jit_ctx *ctx)
222{
223	emit_instr(ctx, and, dst, src1, src2);
224}
225
226static inline void emit_andi(unsigned int dst, unsigned int src,
227			     u32 imm, struct jit_ctx *ctx)
228{
229	/* If imm does not fit in u16 then load it to register */
230	if (imm >= BIT(16)) {
231		emit_load_imm(r_tmp, imm, ctx);
232		emit_and(dst, src, r_tmp, ctx);
233	} else {
234		emit_instr(ctx, andi, dst, src, imm);
235	}
236}
237
238static inline void emit_xor(unsigned int dst, unsigned int src1,
239			    unsigned int src2, struct jit_ctx *ctx)
240{
241	emit_instr(ctx, xor, dst, src1, src2);
242}
243
244static inline void emit_xori(ptr dst, ptr src, u32 imm, struct jit_ctx *ctx)
245{
246	/* If imm does not fit in u16 then load it to register */
247	if (imm >= BIT(16)) {
248		emit_load_imm(r_tmp, imm, ctx);
249		emit_xor(dst, src, r_tmp, ctx);
250	} else {
251		emit_instr(ctx, xori, dst, src, imm);
252	}
253}
254
255static inline void emit_stack_offset(int offset, struct jit_ctx *ctx)
256{
257	emit_long_instr(ctx, ADDIU, r_sp, r_sp, offset);
258}
259
260static inline void emit_subu(unsigned int dst, unsigned int src1,
261			     unsigned int src2, struct jit_ctx *ctx)
262{
263	emit_instr(ctx, subu, dst, src1, src2);
264}
265
266static inline void emit_neg(unsigned int reg, struct jit_ctx *ctx)
267{
268	emit_subu(reg, r_zero, reg, ctx);
269}
270
271static inline void emit_sllv(unsigned int dst, unsigned int src,
272			     unsigned int sa, struct jit_ctx *ctx)
273{
274	emit_instr(ctx, sllv, dst, src, sa);
275}
276
277static inline void emit_sll(unsigned int dst, unsigned int src,
278			    unsigned int sa, struct jit_ctx *ctx)
279{
280	/* sa is 5-bits long */
281	if (sa >= BIT(5))
282		/* Shifting >= 32 results in zero */
283		emit_jit_reg_move(dst, r_zero, ctx);
284	else
285		emit_instr(ctx, sll, dst, src, sa);
286}
287
288static inline void emit_srlv(unsigned int dst, unsigned int src,
289			     unsigned int sa, struct jit_ctx *ctx)
290{
291	emit_instr(ctx, srlv, dst, src, sa);
292}
293
294static inline void emit_srl(unsigned int dst, unsigned int src,
295			    unsigned int sa, struct jit_ctx *ctx)
296{
297	/* sa is 5-bits long */
298	if (sa >= BIT(5))
299		/* Shifting >= 32 results in zero */
300		emit_jit_reg_move(dst, r_zero, ctx);
301	else
302		emit_instr(ctx, srl, dst, src, sa);
303}
304
305static inline void emit_slt(unsigned int dst, unsigned int src1,
306			    unsigned int src2, struct jit_ctx *ctx)
307{
308	emit_instr(ctx, slt, dst, src1, src2);
309}
310
311static inline void emit_sltu(unsigned int dst, unsigned int src1,
312			     unsigned int src2, struct jit_ctx *ctx)
313{
314	emit_instr(ctx, sltu, dst, src1, src2);
315}
316
317static inline void emit_sltiu(unsigned dst, unsigned int src,
318			      unsigned int imm, struct jit_ctx *ctx)
319{
320	/* 16 bit immediate */
321	if (!is_range16((s32)imm)) {
322		emit_load_imm(r_tmp, imm, ctx);
323		emit_sltu(dst, src, r_tmp, ctx);
324	} else {
325		emit_instr(ctx, sltiu, dst, src, imm);
326	}
327
328}
329
330/* Store register on the stack */
331static inline void emit_store_stack_reg(ptr reg, ptr base,
332					unsigned int offset,
333					struct jit_ctx *ctx)
334{
335	emit_long_instr(ctx, SW, reg, offset, base);
336}
337
338static inline void emit_store(ptr reg, ptr base, unsigned int offset,
339			      struct jit_ctx *ctx)
340{
341	emit_instr(ctx, sw, reg, offset, base);
342}
343
344static inline void emit_load_stack_reg(ptr reg, ptr base,
345				       unsigned int offset,
346				       struct jit_ctx *ctx)
347{
348	emit_long_instr(ctx, LW, reg, offset, base);
349}
350
351static inline void emit_load(unsigned int reg, unsigned int base,
352			     unsigned int offset, struct jit_ctx *ctx)
353{
354	emit_instr(ctx, lw, reg, offset, base);
355}
356
357static inline void emit_load_byte(unsigned int reg, unsigned int base,
358				  unsigned int offset, struct jit_ctx *ctx)
359{
360	emit_instr(ctx, lb, reg, offset, base);
361}
362
363static inline void emit_half_load(unsigned int reg, unsigned int base,
364				  unsigned int offset, struct jit_ctx *ctx)
365{
366	emit_instr(ctx, lh, reg, offset, base);
367}
368
369static inline void emit_mul(unsigned int dst, unsigned int src1,
370			    unsigned int src2, struct jit_ctx *ctx)
371{
372	emit_instr(ctx, mul, dst, src1, src2);
373}
374
375static inline void emit_div(unsigned int dst, unsigned int src,
376			    struct jit_ctx *ctx)
377{
378	if (ctx->target != NULL) {
379		u32 *p = &ctx->target[ctx->idx];
380		uasm_i_divu(&p, dst, src);
381		p = &ctx->target[ctx->idx + 1];
382		uasm_i_mflo(&p, dst);
383	}
384	ctx->idx += 2; /* 2 insts */
385}
386
387static inline void emit_mod(unsigned int dst, unsigned int src,
388			    struct jit_ctx *ctx)
389{
390	if (ctx->target != NULL) {
391		u32 *p = &ctx->target[ctx->idx];
392		uasm_i_divu(&p, dst, src);
393		p = &ctx->target[ctx->idx + 1];
394		uasm_i_mfhi(&p, dst);
395	}
396	ctx->idx += 2; /* 2 insts */
397}
398
399static inline void emit_dsll(unsigned int dst, unsigned int src,
400			     unsigned int sa, struct jit_ctx *ctx)
401{
402	emit_instr(ctx, dsll, dst, src, sa);
403}
404
405static inline void emit_dsrl32(unsigned int dst, unsigned int src,
406			       unsigned int sa, struct jit_ctx *ctx)
407{
408	emit_instr(ctx, dsrl32, dst, src, sa);
409}
410
411static inline void emit_wsbh(unsigned int dst, unsigned int src,
412			     struct jit_ctx *ctx)
413{
414	emit_instr(ctx, wsbh, dst, src);
415}
416
417/* load pointer to register */
418static inline void emit_load_ptr(unsigned int dst, unsigned int src,
419				     int imm, struct jit_ctx *ctx)
420{
421	/* src contains the base addr of the 32/64-pointer */
422	emit_long_instr(ctx, LW, dst, imm, src);
423}
424
425/* load a function pointer to register */
426static inline void emit_load_func(unsigned int reg, ptr imm,
427				  struct jit_ctx *ctx)
428{
429	if (config_enabled(CONFIG_64BIT)) {
430		/* At this point imm is always 64-bit */
431		emit_load_imm(r_tmp, (u64)imm >> 32, ctx);
432		emit_dsll(r_tmp_imm, r_tmp, 16, ctx); /* left shift by 16 */
433		emit_ori(r_tmp, r_tmp_imm, (imm >> 16) & 0xffff, ctx);
434		emit_dsll(r_tmp_imm, r_tmp, 16, ctx); /* left shift by 16 */
435		emit_ori(reg, r_tmp_imm, imm & 0xffff, ctx);
436	} else {
437		emit_load_imm(reg, imm, ctx);
438	}
439}
440
441/* Move to real MIPS register */
442static inline void emit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx)
443{
444	emit_long_instr(ctx, ADDU, dst, src, r_zero);
445}
446
447/* Move to JIT (32-bit) register */
448static inline void emit_jit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx)
449{
450	emit_addu(dst, src, r_zero, ctx);
451}
452
453/* Compute the immediate value for PC-relative branches. */
454static inline u32 b_imm(unsigned int tgt, struct jit_ctx *ctx)
455{
456	if (ctx->target == NULL)
457		return 0;
458
459	/*
460	 * We want a pc-relative branch. We only do forward branches
461	 * so tgt is always after pc. tgt is the instruction offset
462	 * we want to jump to.
463
464	 * Branch on MIPS:
465	 * I: target_offset <- sign_extend(offset)
466	 * I+1: PC += target_offset (delay slot)
467	 *
468	 * ctx->idx currently points to the branch instruction
469	 * but the offset is added to the delay slot so we need
470	 * to subtract 4.
471	 */
472	return ctx->offsets[tgt] -
473		(ctx->idx * 4 - ctx->prologue_bytes) - 4;
474}
475
476static inline void emit_bcond(int cond, unsigned int reg1, unsigned int reg2,
477			     unsigned int imm, struct jit_ctx *ctx)
478{
479	if (ctx->target != NULL) {
480		u32 *p = &ctx->target[ctx->idx];
481
482		switch (cond) {
483		case MIPS_COND_EQ:
484			uasm_i_beq(&p, reg1, reg2, imm);
485			break;
486		case MIPS_COND_NE:
487			uasm_i_bne(&p, reg1, reg2, imm);
488			break;
489		case MIPS_COND_ALL:
490			uasm_i_b(&p, imm);
491			break;
492		default:
493			pr_warn("%s: Unhandled branch conditional: %d\n",
494				__func__, cond);
495		}
496	}
497	ctx->idx++;
498}
499
500static inline void emit_b(unsigned int imm, struct jit_ctx *ctx)
501{
502	emit_bcond(MIPS_COND_ALL, r_zero, r_zero, imm, ctx);
503}
504
505static inline void emit_jalr(unsigned int link, unsigned int reg,
506			     struct jit_ctx *ctx)
507{
508	emit_instr(ctx, jalr, link, reg);
509}
510
511static inline void emit_jr(unsigned int reg, struct jit_ctx *ctx)
512{
513	emit_instr(ctx, jr, reg);
514}
515
516static inline u16 align_sp(unsigned int num)
517{
518	/* Double word alignment for 32-bit, quadword for 64-bit */
519	unsigned int align = config_enabled(CONFIG_64BIT) ? 16 : 8;
520	num = (num + (align - 1)) & -align;
521	return num;
522}
523
524static void save_bpf_jit_regs(struct jit_ctx *ctx, unsigned offset)
525{
526	int i = 0, real_off = 0;
527	u32 sflags, tmp_flags;
528
529	/* Adjust the stack pointer */
530	emit_stack_offset(-align_sp(offset), ctx);
531
532	tmp_flags = sflags = ctx->flags >> SEEN_SREG_SFT;
533	/* sflags is essentially a bitmap */
534	while (tmp_flags) {
535		if ((sflags >> i) & 0x1) {
536			emit_store_stack_reg(MIPS_R_S0 + i, r_sp, real_off,
537					     ctx);
538			real_off += SZREG;
539		}
540		i++;
541		tmp_flags >>= 1;
542	}
543
544	/* save return address */
545	if (ctx->flags & SEEN_CALL) {
546		emit_store_stack_reg(r_ra, r_sp, real_off, ctx);
547		real_off += SZREG;
548	}
549
550	/* Setup r_M leaving the alignment gap if necessary */
551	if (ctx->flags & SEEN_MEM) {
552		if (real_off % (SZREG * 2))
553			real_off += SZREG;
554		emit_long_instr(ctx, ADDIU, r_M, r_sp, real_off);
555	}
556}
557
558static void restore_bpf_jit_regs(struct jit_ctx *ctx,
559				 unsigned int offset)
560{
561	int i, real_off = 0;
562	u32 sflags, tmp_flags;
563
564	tmp_flags = sflags = ctx->flags >> SEEN_SREG_SFT;
565	/* sflags is a bitmap */
566	i = 0;
567	while (tmp_flags) {
568		if ((sflags >> i) & 0x1) {
569			emit_load_stack_reg(MIPS_R_S0 + i, r_sp, real_off,
570					    ctx);
571			real_off += SZREG;
572		}
573		i++;
574		tmp_flags >>= 1;
575	}
576
577	/* restore return address */
578	if (ctx->flags & SEEN_CALL)
579		emit_load_stack_reg(r_ra, r_sp, real_off, ctx);
580
581	/* Restore the sp and discard the scrach memory */
582	emit_stack_offset(align_sp(offset), ctx);
583}
584
585static unsigned int get_stack_depth(struct jit_ctx *ctx)
586{
587	int sp_off = 0;
588
589
590	/* How may s* regs do we need to preserved? */
591	sp_off += hweight32(ctx->flags >> SEEN_SREG_SFT) * SZREG;
592
593	if (ctx->flags & SEEN_MEM)
594		sp_off += 4 * BPF_MEMWORDS; /* BPF_MEMWORDS are 32-bit */
595
596	if (ctx->flags & SEEN_CALL)
597		sp_off += SZREG; /* Space for our ra register */
598
599	return sp_off;
600}
601
602static void build_prologue(struct jit_ctx *ctx)
603{
604	int sp_off;
605
606	/* Calculate the total offset for the stack pointer */
607	sp_off = get_stack_depth(ctx);
608	save_bpf_jit_regs(ctx, sp_off);
609
610	if (ctx->flags & SEEN_SKB)
611		emit_reg_move(r_skb, MIPS_R_A0, ctx);
612
613	if (ctx->flags & SEEN_SKB_DATA) {
614		/* Load packet length */
615		emit_load(r_skb_len, r_skb, offsetof(struct sk_buff, len),
616			  ctx);
617		emit_load(r_tmp, r_skb, offsetof(struct sk_buff, data_len),
618			  ctx);
619		/* Load the data pointer */
620		emit_load_ptr(r_skb_data, r_skb,
621			      offsetof(struct sk_buff, data), ctx);
622		/* Load the header length */
623		emit_subu(r_skb_hl, r_skb_len, r_tmp, ctx);
624	}
625
626	if (ctx->flags & SEEN_X)
627		emit_jit_reg_move(r_X, r_zero, ctx);
628
629	/* Do not leak kernel data to userspace */
630	if (bpf_needs_clear_a(&ctx->skf->insns[0]))
631		emit_jit_reg_move(r_A, r_zero, ctx);
632}
633
634static void build_epilogue(struct jit_ctx *ctx)
635{
636	unsigned int sp_off;
637
638	/* Calculate the total offset for the stack pointer */
639
640	sp_off = get_stack_depth(ctx);
641	restore_bpf_jit_regs(ctx, sp_off);
642
643	/* Return */
644	emit_jr(r_ra, ctx);
645	emit_nop(ctx);
646}
647
648#define CHOOSE_LOAD_FUNC(K, func) \
649	((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative : func) : \
650	 func##_positive)
651
652static int build_body(struct jit_ctx *ctx)
653{
654	const struct bpf_prog *prog = ctx->skf;
655	const struct sock_filter *inst;
656	unsigned int i, off, condt;
657	u32 k, b_off __maybe_unused;
658	u8 (*sk_load_func)(unsigned long *skb, int offset);
659
660	for (i = 0; i < prog->len; i++) {
661		u16 code;
662
663		inst = &(prog->insns[i]);
664		pr_debug("%s: code->0x%02x, jt->0x%x, jf->0x%x, k->0x%x\n",
665			 __func__, inst->code, inst->jt, inst->jf, inst->k);
666		k = inst->k;
667		code = bpf_anc_helper(inst);
668
669		if (ctx->target == NULL)
670			ctx->offsets[i] = ctx->idx * 4;
671
672		switch (code) {
673		case BPF_LD | BPF_IMM:
674			/* A <- k ==> li r_A, k */
675			ctx->flags |= SEEN_A;
676			emit_load_imm(r_A, k, ctx);
677			break;
678		case BPF_LD | BPF_W | BPF_LEN:
679			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
680			/* A <- len ==> lw r_A, offset(skb) */
681			ctx->flags |= SEEN_SKB | SEEN_A;
682			off = offsetof(struct sk_buff, len);
683			emit_load(r_A, r_skb, off, ctx);
684			break;
685		case BPF_LD | BPF_MEM:
686			/* A <- M[k] ==> lw r_A, offset(M) */
687			ctx->flags |= SEEN_MEM | SEEN_A;
688			emit_load(r_A, r_M, SCRATCH_OFF(k), ctx);
689			break;
690		case BPF_LD | BPF_W | BPF_ABS:
691			/* A <- P[k:4] */
692			sk_load_func = CHOOSE_LOAD_FUNC(k, sk_load_word);
693			goto load;
694		case BPF_LD | BPF_H | BPF_ABS:
695			/* A <- P[k:2] */
696			sk_load_func = CHOOSE_LOAD_FUNC(k, sk_load_half);
697			goto load;
698		case BPF_LD | BPF_B | BPF_ABS:
699			/* A <- P[k:1] */
700			sk_load_func = CHOOSE_LOAD_FUNC(k, sk_load_byte);
701load:
702			emit_load_imm(r_off, k, ctx);
703load_common:
704			ctx->flags |= SEEN_CALL | SEEN_OFF |
705				SEEN_SKB | SEEN_A | SEEN_SKB_DATA;
706
707			emit_load_func(r_s0, (ptr)sk_load_func, ctx);
708			emit_reg_move(MIPS_R_A0, r_skb, ctx);
709			emit_jalr(MIPS_R_RA, r_s0, ctx);
710			/* Load second argument to delay slot */
711			emit_reg_move(MIPS_R_A1, r_off, ctx);
712			/* Check the error value */
713			emit_bcond(MIPS_COND_EQ, r_ret, 0, b_imm(i + 1, ctx),
714				   ctx);
715			/* Load return register on DS for failures */
716			emit_reg_move(r_ret, r_zero, ctx);
717			/* Return with error */
718			emit_b(b_imm(prog->len, ctx), ctx);
719			emit_nop(ctx);
720			break;
721		case BPF_LD | BPF_W | BPF_IND:
722			/* A <- P[X + k:4] */
723			sk_load_func = sk_load_word;
724			goto load_ind;
725		case BPF_LD | BPF_H | BPF_IND:
726			/* A <- P[X + k:2] */
727			sk_load_func = sk_load_half;
728			goto load_ind;
729		case BPF_LD | BPF_B | BPF_IND:
730			/* A <- P[X + k:1] */
731			sk_load_func = sk_load_byte;
732load_ind:
733			ctx->flags |= SEEN_OFF | SEEN_X;
734			emit_addiu(r_off, r_X, k, ctx);
735			goto load_common;
736		case BPF_LDX | BPF_IMM:
737			/* X <- k */
738			ctx->flags |= SEEN_X;
739			emit_load_imm(r_X, k, ctx);
740			break;
741		case BPF_LDX | BPF_MEM:
742			/* X <- M[k] */
743			ctx->flags |= SEEN_X | SEEN_MEM;
744			emit_load(r_X, r_M, SCRATCH_OFF(k), ctx);
745			break;
746		case BPF_LDX | BPF_W | BPF_LEN:
747			/* X <- len */
748			ctx->flags |= SEEN_X | SEEN_SKB;
749			off = offsetof(struct sk_buff, len);
750			emit_load(r_X, r_skb, off, ctx);
751			break;
752		case BPF_LDX | BPF_B | BPF_MSH:
753			/* X <- 4 * (P[k:1] & 0xf) */
754			ctx->flags |= SEEN_X | SEEN_CALL | SEEN_SKB;
755			/* Load offset to a1 */
756			emit_load_func(r_s0, (ptr)sk_load_byte, ctx);
757			/*
758			 * This may emit two instructions so it may not fit
759			 * in the delay slot. So use a0 in the delay slot.
760			 */
761			emit_load_imm(MIPS_R_A1, k, ctx);
762			emit_jalr(MIPS_R_RA, r_s0, ctx);
763			emit_reg_move(MIPS_R_A0, r_skb, ctx); /* delay slot */
764			/* Check the error value */
765			emit_bcond(MIPS_COND_NE, r_ret, 0,
766				   b_imm(prog->len, ctx), ctx);
767			emit_reg_move(r_ret, r_zero, ctx);
768			/* We are good */
769			/* X <- P[1:K] & 0xf */
770			emit_andi(r_X, r_A, 0xf, ctx);
771			/* X << 2 */
772			emit_b(b_imm(i + 1, ctx), ctx);
773			emit_sll(r_X, r_X, 2, ctx); /* delay slot */
774			break;
775		case BPF_ST:
776			/* M[k] <- A */
777			ctx->flags |= SEEN_MEM | SEEN_A;
778			emit_store(r_A, r_M, SCRATCH_OFF(k), ctx);
779			break;
780		case BPF_STX:
781			/* M[k] <- X */
782			ctx->flags |= SEEN_MEM | SEEN_X;
783			emit_store(r_X, r_M, SCRATCH_OFF(k), ctx);
784			break;
785		case BPF_ALU | BPF_ADD | BPF_K:
786			/* A += K */
787			ctx->flags |= SEEN_A;
788			emit_addiu(r_A, r_A, k, ctx);
789			break;
790		case BPF_ALU | BPF_ADD | BPF_X:
791			/* A += X */
792			ctx->flags |= SEEN_A | SEEN_X;
793			emit_addu(r_A, r_A, r_X, ctx);
794			break;
795		case BPF_ALU | BPF_SUB | BPF_K:
796			/* A -= K */
797			ctx->flags |= SEEN_A;
798			emit_addiu(r_A, r_A, -k, ctx);
799			break;
800		case BPF_ALU | BPF_SUB | BPF_X:
801			/* A -= X */
802			ctx->flags |= SEEN_A | SEEN_X;
803			emit_subu(r_A, r_A, r_X, ctx);
804			break;
805		case BPF_ALU | BPF_MUL | BPF_K:
806			/* A *= K */
807			/* Load K to scratch register before MUL */
808			ctx->flags |= SEEN_A;
809			emit_load_imm(r_s0, k, ctx);
810			emit_mul(r_A, r_A, r_s0, ctx);
811			break;
812		case BPF_ALU | BPF_MUL | BPF_X:
813			/* A *= X */
814			ctx->flags |= SEEN_A | SEEN_X;
815			emit_mul(r_A, r_A, r_X, ctx);
816			break;
817		case BPF_ALU | BPF_DIV | BPF_K:
818			/* A /= k */
819			if (k == 1)
820				break;
821			if (optimize_div(&k)) {
822				ctx->flags |= SEEN_A;
823				emit_srl(r_A, r_A, k, ctx);
824				break;
825			}
826			ctx->flags |= SEEN_A;
827			emit_load_imm(r_s0, k, ctx);
828			emit_div(r_A, r_s0, ctx);
829			break;
830		case BPF_ALU | BPF_MOD | BPF_K:
831			/* A %= k */
832			if (k == 1) {
833				ctx->flags |= SEEN_A;
834				emit_jit_reg_move(r_A, r_zero, ctx);
835			} else {
836				ctx->flags |= SEEN_A;
837				emit_load_imm(r_s0, k, ctx);
838				emit_mod(r_A, r_s0, ctx);
839			}
840			break;
841		case BPF_ALU | BPF_DIV | BPF_X:
842			/* A /= X */
843			ctx->flags |= SEEN_X | SEEN_A;
844			/* Check if r_X is zero */
845			emit_bcond(MIPS_COND_EQ, r_X, r_zero,
846				   b_imm(prog->len, ctx), ctx);
847			emit_load_imm(r_ret, 0, ctx); /* delay slot */
848			emit_div(r_A, r_X, ctx);
849			break;
850		case BPF_ALU | BPF_MOD | BPF_X:
851			/* A %= X */
852			ctx->flags |= SEEN_X | SEEN_A;
853			/* Check if r_X is zero */
854			emit_bcond(MIPS_COND_EQ, r_X, r_zero,
855				   b_imm(prog->len, ctx), ctx);
856			emit_load_imm(r_ret, 0, ctx); /* delay slot */
857			emit_mod(r_A, r_X, ctx);
858			break;
859		case BPF_ALU | BPF_OR | BPF_K:
860			/* A |= K */
861			ctx->flags |= SEEN_A;
862			emit_ori(r_A, r_A, k, ctx);
863			break;
864		case BPF_ALU | BPF_OR | BPF_X:
865			/* A |= X */
866			ctx->flags |= SEEN_A;
867			emit_ori(r_A, r_A, r_X, ctx);
868			break;
869		case BPF_ALU | BPF_XOR | BPF_K:
870			/* A ^= k */
871			ctx->flags |= SEEN_A;
872			emit_xori(r_A, r_A, k, ctx);
873			break;
874		case BPF_ANC | SKF_AD_ALU_XOR_X:
875		case BPF_ALU | BPF_XOR | BPF_X:
876			/* A ^= X */
877			ctx->flags |= SEEN_A;
878			emit_xor(r_A, r_A, r_X, ctx);
879			break;
880		case BPF_ALU | BPF_AND | BPF_K:
881			/* A &= K */
882			ctx->flags |= SEEN_A;
883			emit_andi(r_A, r_A, k, ctx);
884			break;
885		case BPF_ALU | BPF_AND | BPF_X:
886			/* A &= X */
887			ctx->flags |= SEEN_A | SEEN_X;
888			emit_and(r_A, r_A, r_X, ctx);
889			break;
890		case BPF_ALU | BPF_LSH | BPF_K:
891			/* A <<= K */
892			ctx->flags |= SEEN_A;
893			emit_sll(r_A, r_A, k, ctx);
894			break;
895		case BPF_ALU | BPF_LSH | BPF_X:
896			/* A <<= X */
897			ctx->flags |= SEEN_A | SEEN_X;
898			emit_sllv(r_A, r_A, r_X, ctx);
899			break;
900		case BPF_ALU | BPF_RSH | BPF_K:
901			/* A >>= K */
902			ctx->flags |= SEEN_A;
903			emit_srl(r_A, r_A, k, ctx);
904			break;
905		case BPF_ALU | BPF_RSH | BPF_X:
906			ctx->flags |= SEEN_A | SEEN_X;
907			emit_srlv(r_A, r_A, r_X, ctx);
908			break;
909		case BPF_ALU | BPF_NEG:
910			/* A = -A */
911			ctx->flags |= SEEN_A;
912			emit_neg(r_A, ctx);
913			break;
914		case BPF_JMP | BPF_JA:
915			/* pc += K */
916			emit_b(b_imm(i + k + 1, ctx), ctx);
917			emit_nop(ctx);
918			break;
919		case BPF_JMP | BPF_JEQ | BPF_K:
920			/* pc += ( A == K ) ? pc->jt : pc->jf */
921			condt = MIPS_COND_EQ | MIPS_COND_K;
922			goto jmp_cmp;
923		case BPF_JMP | BPF_JEQ | BPF_X:
924			ctx->flags |= SEEN_X;
925			/* pc += ( A == X ) ? pc->jt : pc->jf */
926			condt = MIPS_COND_EQ | MIPS_COND_X;
927			goto jmp_cmp;
928		case BPF_JMP | BPF_JGE | BPF_K:
929			/* pc += ( A >= K ) ? pc->jt : pc->jf */
930			condt = MIPS_COND_GE | MIPS_COND_K;
931			goto jmp_cmp;
932		case BPF_JMP | BPF_JGE | BPF_X:
933			ctx->flags |= SEEN_X;
934			/* pc += ( A >= X ) ? pc->jt : pc->jf */
935			condt = MIPS_COND_GE | MIPS_COND_X;
936			goto jmp_cmp;
937		case BPF_JMP | BPF_JGT | BPF_K:
938			/* pc += ( A > K ) ? pc->jt : pc->jf */
939			condt = MIPS_COND_GT | MIPS_COND_K;
940			goto jmp_cmp;
941		case BPF_JMP | BPF_JGT | BPF_X:
942			ctx->flags |= SEEN_X;
943			/* pc += ( A > X ) ? pc->jt : pc->jf */
944			condt = MIPS_COND_GT | MIPS_COND_X;
945jmp_cmp:
946			/* Greater or Equal */
947			if ((condt & MIPS_COND_GE) ||
948			    (condt & MIPS_COND_GT)) {
949				if (condt & MIPS_COND_K) { /* K */
950					ctx->flags |= SEEN_A;
951					emit_sltiu(r_s0, r_A, k, ctx);
952				} else { /* X */
953					ctx->flags |= SEEN_A |
954						SEEN_X;
955					emit_sltu(r_s0, r_A, r_X, ctx);
956				}
957				/* A < (K|X) ? r_scrach = 1 */
958				b_off = b_imm(i + inst->jf + 1, ctx);
959				emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off,
960					   ctx);
961				emit_nop(ctx);
962				/* A > (K|X) ? scratch = 0 */
963				if (condt & MIPS_COND_GT) {
964					/* Checking for equality */
965					ctx->flags |= SEEN_A | SEEN_X;
966					if (condt & MIPS_COND_K)
967						emit_load_imm(r_s0, k, ctx);
968					else
969						emit_jit_reg_move(r_s0, r_X,
970								  ctx);
971					b_off = b_imm(i + inst->jf + 1, ctx);
972					emit_bcond(MIPS_COND_EQ, r_A, r_s0,
973						   b_off, ctx);
974					emit_nop(ctx);
975					/* Finally, A > K|X */
976					b_off = b_imm(i + inst->jt + 1, ctx);
977					emit_b(b_off, ctx);
978					emit_nop(ctx);
979				} else {
980					/* A >= (K|X) so jump */
981					b_off = b_imm(i + inst->jt + 1, ctx);
982					emit_b(b_off, ctx);
983					emit_nop(ctx);
984				}
985			} else {
986				/* A == K|X */
987				if (condt & MIPS_COND_K) { /* K */
988					ctx->flags |= SEEN_A;
989					emit_load_imm(r_s0, k, ctx);
990					/* jump true */
991					b_off = b_imm(i + inst->jt + 1, ctx);
992					emit_bcond(MIPS_COND_EQ, r_A, r_s0,
993						   b_off, ctx);
994					emit_nop(ctx);
995					/* jump false */
996					b_off = b_imm(i + inst->jf + 1,
997						      ctx);
998					emit_bcond(MIPS_COND_NE, r_A, r_s0,
999						   b_off, ctx);
1000					emit_nop(ctx);
1001				} else { /* X */
1002					/* jump true */
1003					ctx->flags |= SEEN_A | SEEN_X;
1004					b_off = b_imm(i + inst->jt + 1,
1005						      ctx);
1006					emit_bcond(MIPS_COND_EQ, r_A, r_X,
1007						   b_off, ctx);
1008					emit_nop(ctx);
1009					/* jump false */
1010					b_off = b_imm(i + inst->jf + 1, ctx);
1011					emit_bcond(MIPS_COND_NE, r_A, r_X,
1012						   b_off, ctx);
1013					emit_nop(ctx);
1014				}
1015			}
1016			break;
1017		case BPF_JMP | BPF_JSET | BPF_K:
1018			ctx->flags |= SEEN_A;
1019			/* pc += (A & K) ? pc -> jt : pc -> jf */
1020			emit_load_imm(r_s1, k, ctx);
1021			emit_and(r_s0, r_A, r_s1, ctx);
1022			/* jump true */
1023			b_off = b_imm(i + inst->jt + 1, ctx);
1024			emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off, ctx);
1025			emit_nop(ctx);
1026			/* jump false */
1027			b_off = b_imm(i + inst->jf + 1, ctx);
1028			emit_b(b_off, ctx);
1029			emit_nop(ctx);
1030			break;
1031		case BPF_JMP | BPF_JSET | BPF_X:
1032			ctx->flags |= SEEN_X | SEEN_A;
1033			/* pc += (A & X) ? pc -> jt : pc -> jf */
1034			emit_and(r_s0, r_A, r_X, ctx);
1035			/* jump true */
1036			b_off = b_imm(i + inst->jt + 1, ctx);
1037			emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off, ctx);
1038			emit_nop(ctx);
1039			/* jump false */
1040			b_off = b_imm(i + inst->jf + 1, ctx);
1041			emit_b(b_off, ctx);
1042			emit_nop(ctx);
1043			break;
1044		case BPF_RET | BPF_A:
1045			ctx->flags |= SEEN_A;
1046			if (i != prog->len - 1)
1047				/*
1048				 * If this is not the last instruction
1049				 * then jump to the epilogue
1050				 */
1051				emit_b(b_imm(prog->len, ctx), ctx);
1052			emit_reg_move(r_ret, r_A, ctx); /* delay slot */
1053			break;
1054		case BPF_RET | BPF_K:
1055			/*
1056			 * It can emit two instructions so it does not fit on
1057			 * the delay slot.
1058			 */
1059			emit_load_imm(r_ret, k, ctx);
1060			if (i != prog->len - 1) {
1061				/*
1062				 * If this is not the last instruction
1063				 * then jump to the epilogue
1064				 */
1065				emit_b(b_imm(prog->len, ctx), ctx);
1066				emit_nop(ctx);
1067			}
1068			break;
1069		case BPF_MISC | BPF_TAX:
1070			/* X = A */
1071			ctx->flags |= SEEN_X | SEEN_A;
1072			emit_jit_reg_move(r_X, r_A, ctx);
1073			break;
1074		case BPF_MISC | BPF_TXA:
1075			/* A = X */
1076			ctx->flags |= SEEN_A | SEEN_X;
1077			emit_jit_reg_move(r_A, r_X, ctx);
1078			break;
1079		/* AUX */
1080		case BPF_ANC | SKF_AD_PROTOCOL:
1081			/* A = ntohs(skb->protocol */
1082			ctx->flags |= SEEN_SKB | SEEN_OFF | SEEN_A;
1083			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
1084						  protocol) != 2);
1085			off = offsetof(struct sk_buff, protocol);
1086			emit_half_load(r_A, r_skb, off, ctx);
1087#ifdef CONFIG_CPU_LITTLE_ENDIAN
1088			/* This needs little endian fixup */
1089			if (cpu_has_wsbh) {
1090				/* R2 and later have the wsbh instruction */
1091				emit_wsbh(r_A, r_A, ctx);
1092			} else {
1093				/* Get first byte */
1094				emit_andi(r_tmp_imm, r_A, 0xff, ctx);
1095				/* Shift it */
1096				emit_sll(r_tmp, r_tmp_imm, 8, ctx);
1097				/* Get second byte */
1098				emit_srl(r_tmp_imm, r_A, 8, ctx);
1099				emit_andi(r_tmp_imm, r_tmp_imm, 0xff, ctx);
1100				/* Put everyting together in r_A */
1101				emit_or(r_A, r_tmp, r_tmp_imm, ctx);
1102			}
1103#endif
1104			break;
1105		case BPF_ANC | SKF_AD_CPU:
1106			ctx->flags |= SEEN_A | SEEN_OFF;
1107			/* A = current_thread_info()->cpu */
1108			BUILD_BUG_ON(FIELD_SIZEOF(struct thread_info,
1109						  cpu) != 4);
1110			off = offsetof(struct thread_info, cpu);
1111			/* $28/gp points to the thread_info struct */
1112			emit_load(r_A, 28, off, ctx);
1113			break;
1114		case BPF_ANC | SKF_AD_IFINDEX:
1115			/* A = skb->dev->ifindex */
1116			ctx->flags |= SEEN_SKB | SEEN_A;
1117			off = offsetof(struct sk_buff, dev);
1118			/* Load *dev pointer */
1119			emit_load_ptr(r_s0, r_skb, off, ctx);
1120			/* error (0) in the delay slot */
1121			emit_bcond(MIPS_COND_EQ, r_s0, r_zero,
1122				   b_imm(prog->len, ctx), ctx);
1123			emit_reg_move(r_ret, r_zero, ctx);
1124			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
1125						  ifindex) != 4);
1126			off = offsetof(struct net_device, ifindex);
1127			emit_load(r_A, r_s0, off, ctx);
1128			break;
1129		case BPF_ANC | SKF_AD_MARK:
1130			ctx->flags |= SEEN_SKB | SEEN_A;
1131			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
1132			off = offsetof(struct sk_buff, mark);
1133			emit_load(r_A, r_skb, off, ctx);
1134			break;
1135		case BPF_ANC | SKF_AD_RXHASH:
1136			ctx->flags |= SEEN_SKB | SEEN_A;
1137			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
1138			off = offsetof(struct sk_buff, hash);
1139			emit_load(r_A, r_skb, off, ctx);
1140			break;
1141		case BPF_ANC | SKF_AD_VLAN_TAG:
1142		case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
1143			ctx->flags |= SEEN_SKB | SEEN_A;
1144			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
1145						  vlan_tci) != 2);
1146			off = offsetof(struct sk_buff, vlan_tci);
1147			emit_half_load(r_s0, r_skb, off, ctx);
1148			if (code == (BPF_ANC | SKF_AD_VLAN_TAG)) {
1149				emit_andi(r_A, r_s0, (u16)~VLAN_TAG_PRESENT, ctx);
1150			} else {
1151				emit_andi(r_A, r_s0, VLAN_TAG_PRESENT, ctx);
1152				/* return 1 if present */
1153				emit_sltu(r_A, r_zero, r_A, ctx);
1154			}
1155			break;
1156		case BPF_ANC | SKF_AD_PKTTYPE:
1157			ctx->flags |= SEEN_SKB;
1158
1159			emit_load_byte(r_tmp, r_skb, PKT_TYPE_OFFSET(), ctx);
1160			/* Keep only the last 3 bits */
1161			emit_andi(r_A, r_tmp, PKT_TYPE_MAX, ctx);
1162#ifdef __BIG_ENDIAN_BITFIELD
1163			/* Get the actual packet type to the lower 3 bits */
1164			emit_srl(r_A, r_A, 5, ctx);
1165#endif
1166			break;
1167		case BPF_ANC | SKF_AD_QUEUE:
1168			ctx->flags |= SEEN_SKB | SEEN_A;
1169			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
1170						  queue_mapping) != 2);
1171			BUILD_BUG_ON(offsetof(struct sk_buff,
1172					      queue_mapping) > 0xff);
1173			off = offsetof(struct sk_buff, queue_mapping);
1174			emit_half_load(r_A, r_skb, off, ctx);
1175			break;
1176		default:
1177			pr_debug("%s: Unhandled opcode: 0x%02x\n", __FILE__,
1178				 inst->code);
1179			return -1;
1180		}
1181	}
1182
1183	/* compute offsets only during the first pass */
1184	if (ctx->target == NULL)
1185		ctx->offsets[i] = ctx->idx * 4;
1186
1187	return 0;
1188}
1189
1190int bpf_jit_enable __read_mostly;
1191
1192void bpf_jit_compile(struct bpf_prog *fp)
1193{
1194	struct jit_ctx ctx;
1195	unsigned int alloc_size, tmp_idx;
1196
1197	if (!bpf_jit_enable)
1198		return;
1199
1200	memset(&ctx, 0, sizeof(ctx));
1201
1202	ctx.offsets = kcalloc(fp->len, sizeof(*ctx.offsets), GFP_KERNEL);
1203	if (ctx.offsets == NULL)
1204		return;
1205
1206	ctx.skf = fp;
1207
1208	if (build_body(&ctx))
1209		goto out;
1210
1211	tmp_idx = ctx.idx;
1212	build_prologue(&ctx);
1213	ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1214	/* just to complete the ctx.idx count */
1215	build_epilogue(&ctx);
1216
1217	alloc_size = 4 * ctx.idx;
1218	ctx.target = module_alloc(alloc_size);
1219	if (ctx.target == NULL)
1220		goto out;
1221
1222	/* Clean it */
1223	memset(ctx.target, 0, alloc_size);
1224
1225	ctx.idx = 0;
1226
1227	/* Generate the actual JIT code */
1228	build_prologue(&ctx);
1229	build_body(&ctx);
1230	build_epilogue(&ctx);
1231
1232	/* Update the icache */
1233	flush_icache_range((ptr)ctx.target, (ptr)(ctx.target + ctx.idx));
1234
1235	if (bpf_jit_enable > 1)
1236		/* Dump JIT code */
1237		bpf_jit_dump(fp->len, alloc_size, 2, ctx.target);
1238
1239	fp->bpf_func = (void *)ctx.target;
1240	fp->jited = 1;
1241
1242out:
1243	kfree(ctx.offsets);
1244}
1245
1246void bpf_jit_free(struct bpf_prog *fp)
1247{
1248	if (fp->jited)
1249		module_memfree(fp->bpf_func);
1250
1251	bpf_prog_unlock_free(fp);
1252}
1253