1/* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com) 7 * 8 * SMP support for BMIPS 9 */ 10 11#include <linux/init.h> 12#include <linux/sched.h> 13#include <linux/mm.h> 14#include <linux/delay.h> 15#include <linux/smp.h> 16#include <linux/interrupt.h> 17#include <linux/spinlock.h> 18#include <linux/cpu.h> 19#include <linux/cpumask.h> 20#include <linux/reboot.h> 21#include <linux/io.h> 22#include <linux/compiler.h> 23#include <linux/linkage.h> 24#include <linux/bug.h> 25#include <linux/kernel.h> 26 27#include <asm/time.h> 28#include <asm/pgtable.h> 29#include <asm/processor.h> 30#include <asm/bootinfo.h> 31#include <asm/pmon.h> 32#include <asm/cacheflush.h> 33#include <asm/tlbflush.h> 34#include <asm/mipsregs.h> 35#include <asm/bmips.h> 36#include <asm/traps.h> 37#include <asm/barrier.h> 38#include <asm/cpu-features.h> 39 40static int __maybe_unused max_cpus = 1; 41 42/* these may be configured by the platform code */ 43int bmips_smp_enabled = 1; 44int bmips_cpu_offset; 45cpumask_t bmips_booted_mask; 46unsigned long bmips_tp1_irqs = IE_IRQ1; 47 48#define RESET_FROM_KSEG0 0x80080800 49#define RESET_FROM_KSEG1 0xa0080800 50 51static void bmips_set_reset_vec(int cpu, u32 val); 52 53#ifdef CONFIG_SMP 54 55/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */ 56unsigned long bmips_smp_boot_sp; 57unsigned long bmips_smp_boot_gp; 58 59static void bmips43xx_send_ipi_single(int cpu, unsigned int action); 60static void bmips5000_send_ipi_single(int cpu, unsigned int action); 61static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id); 62static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id); 63 64/* SW interrupts 0,1 are used for interprocessor signaling */ 65#define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0) 66#define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1) 67 68#define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift)) 69#define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8)) 70#define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8)) 71#define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0)) 72 73static void __init bmips_smp_setup(void) 74{ 75 int i, cpu = 1, boot_cpu = 0; 76 int cpu_hw_intr; 77 78 switch (current_cpu_type()) { 79 case CPU_BMIPS4350: 80 case CPU_BMIPS4380: 81 /* arbitration priority */ 82 clear_c0_brcm_cmt_ctrl(0x30); 83 84 /* NBK and weak order flags */ 85 set_c0_brcm_config_0(0x30000); 86 87 /* Find out if we are running on TP0 or TP1 */ 88 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31)); 89 90 /* 91 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other 92 * thread 93 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output 94 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output 95 */ 96 if (boot_cpu == 0) 97 cpu_hw_intr = 0x02; 98 else 99 cpu_hw_intr = 0x1d; 100 101 change_c0_brcm_cmt_intr(0xf8018000, 102 (cpu_hw_intr << 27) | (0x03 << 15)); 103 104 /* single core, 2 threads (2 pipelines) */ 105 max_cpus = 2; 106 107 break; 108 case CPU_BMIPS5000: 109 /* enable raceless SW interrupts */ 110 set_c0_brcm_config(0x03 << 22); 111 112 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */ 113 change_c0_brcm_mode(0x1f << 27, 0x02 << 27); 114 115 /* N cores, 2 threads per core */ 116 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1; 117 118 /* clear any pending SW interrupts */ 119 for (i = 0; i < max_cpus; i++) { 120 write_c0_brcm_action(ACTION_CLR_IPI(i, 0)); 121 write_c0_brcm_action(ACTION_CLR_IPI(i, 1)); 122 } 123 124 break; 125 default: 126 max_cpus = 1; 127 } 128 129 if (!bmips_smp_enabled) 130 max_cpus = 1; 131 132 /* this can be overridden by the BSP */ 133 if (!board_ebase_setup) 134 board_ebase_setup = &bmips_ebase_setup; 135 136 __cpu_number_map[boot_cpu] = 0; 137 __cpu_logical_map[0] = boot_cpu; 138 139 for (i = 0; i < max_cpus; i++) { 140 if (i != boot_cpu) { 141 __cpu_number_map[i] = cpu; 142 __cpu_logical_map[cpu] = i; 143 cpu++; 144 } 145 set_cpu_possible(i, 1); 146 set_cpu_present(i, 1); 147 } 148} 149 150/* 151 * IPI IRQ setup - runs on CPU0 152 */ 153static void bmips_prepare_cpus(unsigned int max_cpus) 154{ 155 irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id); 156 157 switch (current_cpu_type()) { 158 case CPU_BMIPS4350: 159 case CPU_BMIPS4380: 160 bmips_ipi_interrupt = bmips43xx_ipi_interrupt; 161 break; 162 case CPU_BMIPS5000: 163 bmips_ipi_interrupt = bmips5000_ipi_interrupt; 164 break; 165 default: 166 return; 167 } 168 169 if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU, 170 "smp_ipi0", NULL)) 171 panic("Can't request IPI0 interrupt"); 172 if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU, 173 "smp_ipi1", NULL)) 174 panic("Can't request IPI1 interrupt"); 175} 176 177/* 178 * Tell the hardware to boot CPUx - runs on CPU0 179 */ 180static void bmips_boot_secondary(int cpu, struct task_struct *idle) 181{ 182 bmips_smp_boot_sp = __KSTK_TOS(idle); 183 bmips_smp_boot_gp = (unsigned long)task_thread_info(idle); 184 mb(); 185 186 /* 187 * Initial boot sequence for secondary CPU: 188 * bmips_reset_nmi_vec @ a000_0000 -> 189 * bmips_smp_entry -> 190 * plat_wired_tlb_setup (cached function call; optional) -> 191 * start_secondary (cached jump) 192 * 193 * Warm restart sequence: 194 * play_dead WAIT loop -> 195 * bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC -> 196 * eret to play_dead -> 197 * bmips_secondary_reentry -> 198 * start_secondary 199 */ 200 201 pr_info("SMP: Booting CPU%d...\n", cpu); 202 203 if (cpumask_test_cpu(cpu, &bmips_booted_mask)) { 204 /* kseg1 might not exist if this CPU enabled XKS01 */ 205 bmips_set_reset_vec(cpu, RESET_FROM_KSEG0); 206 207 switch (current_cpu_type()) { 208 case CPU_BMIPS4350: 209 case CPU_BMIPS4380: 210 bmips43xx_send_ipi_single(cpu, 0); 211 break; 212 case CPU_BMIPS5000: 213 bmips5000_send_ipi_single(cpu, 0); 214 break; 215 } 216 } else { 217 bmips_set_reset_vec(cpu, RESET_FROM_KSEG1); 218 219 switch (current_cpu_type()) { 220 case CPU_BMIPS4350: 221 case CPU_BMIPS4380: 222 /* Reset slave TP1 if booting from TP0 */ 223 if (cpu_logical_map(cpu) == 1) 224 set_c0_brcm_cmt_ctrl(0x01); 225 break; 226 case CPU_BMIPS5000: 227 write_c0_brcm_action(ACTION_BOOT_THREAD(cpu)); 228 break; 229 } 230 cpumask_set_cpu(cpu, &bmips_booted_mask); 231 } 232} 233 234/* 235 * Early setup - runs on secondary CPU after cache probe 236 */ 237static void bmips_init_secondary(void) 238{ 239 switch (current_cpu_type()) { 240 case CPU_BMIPS4350: 241 case CPU_BMIPS4380: 242 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0); 243 break; 244 case CPU_BMIPS5000: 245 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0)); 246 break; 247 } 248} 249 250/* 251 * Late setup - runs on secondary CPU before entering the idle loop 252 */ 253static void bmips_smp_finish(void) 254{ 255 pr_info("SMP: CPU%d is running\n", smp_processor_id()); 256 257 /* make sure there won't be a timer interrupt for a little while */ 258 write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ); 259 260 irq_enable_hazard(); 261 set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE); 262 irq_enable_hazard(); 263} 264 265/* 266 * BMIPS5000 raceless IPIs 267 * 268 * Each CPU has two inbound SW IRQs which are independent of all other CPUs. 269 * IPI0 is used for SMP_RESCHEDULE_YOURSELF 270 * IPI1 is used for SMP_CALL_FUNCTION 271 */ 272 273static void bmips5000_send_ipi_single(int cpu, unsigned int action) 274{ 275 write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION)); 276} 277 278static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id) 279{ 280 int action = irq - IPI0_IRQ; 281 282 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action)); 283 284 if (action == 0) 285 scheduler_ipi(); 286 else 287 generic_smp_call_function_interrupt(); 288 289 return IRQ_HANDLED; 290} 291 292static void bmips5000_send_ipi_mask(const struct cpumask *mask, 293 unsigned int action) 294{ 295 unsigned int i; 296 297 for_each_cpu(i, mask) 298 bmips5000_send_ipi_single(i, action); 299} 300 301/* 302 * BMIPS43xx racey IPIs 303 * 304 * We use one inbound SW IRQ for each CPU. 305 * 306 * A spinlock must be held in order to keep CPUx from accidentally clearing 307 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The 308 * same spinlock is used to protect the action masks. 309 */ 310 311static DEFINE_SPINLOCK(ipi_lock); 312static DEFINE_PER_CPU(int, ipi_action_mask); 313 314static void bmips43xx_send_ipi_single(int cpu, unsigned int action) 315{ 316 unsigned long flags; 317 318 spin_lock_irqsave(&ipi_lock, flags); 319 set_c0_cause(cpu ? C_SW1 : C_SW0); 320 per_cpu(ipi_action_mask, cpu) |= action; 321 irq_enable_hazard(); 322 spin_unlock_irqrestore(&ipi_lock, flags); 323} 324 325static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id) 326{ 327 unsigned long flags; 328 int action, cpu = irq - IPI0_IRQ; 329 330 spin_lock_irqsave(&ipi_lock, flags); 331 action = __this_cpu_read(ipi_action_mask); 332 per_cpu(ipi_action_mask, cpu) = 0; 333 clear_c0_cause(cpu ? C_SW1 : C_SW0); 334 spin_unlock_irqrestore(&ipi_lock, flags); 335 336 if (action & SMP_RESCHEDULE_YOURSELF) 337 scheduler_ipi(); 338 if (action & SMP_CALL_FUNCTION) 339 generic_smp_call_function_interrupt(); 340 341 return IRQ_HANDLED; 342} 343 344static void bmips43xx_send_ipi_mask(const struct cpumask *mask, 345 unsigned int action) 346{ 347 unsigned int i; 348 349 for_each_cpu(i, mask) 350 bmips43xx_send_ipi_single(i, action); 351} 352 353#ifdef CONFIG_HOTPLUG_CPU 354 355static int bmips_cpu_disable(void) 356{ 357 unsigned int cpu = smp_processor_id(); 358 359 if (cpu == 0) 360 return -EBUSY; 361 362 pr_info("SMP: CPU%d is offline\n", cpu); 363 364 set_cpu_online(cpu, false); 365 cpumask_clear_cpu(cpu, &cpu_callin_map); 366 clear_c0_status(IE_IRQ5); 367 368 local_flush_tlb_all(); 369 local_flush_icache_range(0, ~0); 370 371 return 0; 372} 373 374static void bmips_cpu_die(unsigned int cpu) 375{ 376} 377 378void __ref play_dead(void) 379{ 380 idle_task_exit(); 381 382 /* flush data cache */ 383 _dma_cache_wback_inv(0, ~0); 384 385 /* 386 * Wakeup is on SW0 or SW1; disable everything else 387 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux 388 * IRQ handlers; this clears ST0_IE and returns immediately. 389 */ 390 clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1); 391 change_c0_status( 392 IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV, 393 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV); 394 irq_disable_hazard(); 395 396 /* 397 * wait for SW interrupt from bmips_boot_secondary(), then jump 398 * back to start_secondary() 399 */ 400 __asm__ __volatile__( 401 " wait\n" 402 " j bmips_secondary_reentry\n" 403 : : : "memory"); 404} 405 406#endif /* CONFIG_HOTPLUG_CPU */ 407 408struct plat_smp_ops bmips43xx_smp_ops = { 409 .smp_setup = bmips_smp_setup, 410 .prepare_cpus = bmips_prepare_cpus, 411 .boot_secondary = bmips_boot_secondary, 412 .smp_finish = bmips_smp_finish, 413 .init_secondary = bmips_init_secondary, 414 .send_ipi_single = bmips43xx_send_ipi_single, 415 .send_ipi_mask = bmips43xx_send_ipi_mask, 416#ifdef CONFIG_HOTPLUG_CPU 417 .cpu_disable = bmips_cpu_disable, 418 .cpu_die = bmips_cpu_die, 419#endif 420}; 421 422struct plat_smp_ops bmips5000_smp_ops = { 423 .smp_setup = bmips_smp_setup, 424 .prepare_cpus = bmips_prepare_cpus, 425 .boot_secondary = bmips_boot_secondary, 426 .smp_finish = bmips_smp_finish, 427 .init_secondary = bmips_init_secondary, 428 .send_ipi_single = bmips5000_send_ipi_single, 429 .send_ipi_mask = bmips5000_send_ipi_mask, 430#ifdef CONFIG_HOTPLUG_CPU 431 .cpu_disable = bmips_cpu_disable, 432 .cpu_die = bmips_cpu_die, 433#endif 434}; 435 436#endif /* CONFIG_SMP */ 437 438/*********************************************************************** 439 * BMIPS vector relocation 440 * This is primarily used for SMP boot, but it is applicable to some 441 * UP BMIPS systems as well. 442 ***********************************************************************/ 443 444static void bmips_wr_vec(unsigned long dst, char *start, char *end) 445{ 446 memcpy((void *)dst, start, end - start); 447 dma_cache_wback(dst, end - start); 448 local_flush_icache_range(dst, dst + (end - start)); 449 instruction_hazard(); 450} 451 452static inline void bmips_nmi_handler_setup(void) 453{ 454 bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec, 455 &bmips_reset_nmi_vec_end); 456 bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec, 457 &bmips_smp_int_vec_end); 458} 459 460struct reset_vec_info { 461 int cpu; 462 u32 val; 463}; 464 465static void bmips_set_reset_vec_remote(void *vinfo) 466{ 467 struct reset_vec_info *info = vinfo; 468 int shift = info->cpu & 0x01 ? 16 : 0; 469 u32 mask = ~(0xffff << shift), val = info->val >> 16; 470 471 preempt_disable(); 472 if (smp_processor_id() > 0) { 473 smp_call_function_single(0, &bmips_set_reset_vec_remote, 474 info, 1); 475 } else { 476 if (info->cpu & 0x02) { 477 /* BMIPS5200 "should" use mask/shift, but it's buggy */ 478 bmips_write_zscm_reg(0xa0, (val << 16) | val); 479 bmips_read_zscm_reg(0xa0); 480 } else { 481 write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) | 482 (val << shift)); 483 } 484 } 485 preempt_enable(); 486} 487 488static void bmips_set_reset_vec(int cpu, u32 val) 489{ 490 struct reset_vec_info info; 491 492 if (current_cpu_type() == CPU_BMIPS5000) { 493 /* this needs to run from CPU0 (which is always online) */ 494 info.cpu = cpu; 495 info.val = val; 496 bmips_set_reset_vec_remote(&info); 497 } else { 498 void __iomem *cbr = BMIPS_GET_CBR(); 499 500 if (cpu == 0) 501 __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0); 502 else { 503 if (current_cpu_type() != CPU_BMIPS4380) 504 return; 505 __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1); 506 } 507 } 508 __sync(); 509 back_to_back_c0_hazard(); 510} 511 512void bmips_ebase_setup(void) 513{ 514 unsigned long new_ebase = ebase; 515 516 BUG_ON(ebase != CKSEG0); 517 518 switch (current_cpu_type()) { 519 case CPU_BMIPS4350: 520 /* 521 * BMIPS4350 cannot relocate the normal vectors, but it 522 * can relocate the BEV=1 vectors. So CPU1 starts up at 523 * the relocated BEV=1, IV=0 general exception vector @ 524 * 0xa000_0380. 525 * 526 * set_uncached_handler() is used here because: 527 * - CPU1 will run this from uncached space 528 * - None of the cacheflush functions are set up yet 529 */ 530 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0, 531 &bmips_smp_int_vec, 0x80); 532 __sync(); 533 return; 534 case CPU_BMIPS3300: 535 case CPU_BMIPS4380: 536 /* 537 * 0x8000_0000: reset/NMI (initially in kseg1) 538 * 0x8000_0400: normal vectors 539 */ 540 new_ebase = 0x80000400; 541 bmips_set_reset_vec(0, RESET_FROM_KSEG0); 542 break; 543 case CPU_BMIPS5000: 544 /* 545 * 0x8000_0000: reset/NMI (initially in kseg1) 546 * 0x8000_1000: normal vectors 547 */ 548 new_ebase = 0x80001000; 549 bmips_set_reset_vec(0, RESET_FROM_KSEG0); 550 write_c0_ebase(new_ebase); 551 break; 552 default: 553 return; 554 } 555 556 board_nmi_handler_setup = &bmips_nmi_handler_setup; 557 ebase = new_ebase; 558} 559 560asmlinkage void __weak plat_wired_tlb_setup(void) 561{ 562 /* 563 * Called when starting/restarting a secondary CPU. 564 * Kernel stacks and other important data might only be accessible 565 * once the wired entries are present. 566 */ 567} 568